University of Massachusetts Lowell
 Electrical and Computer Engineering 25.108 Intro to Engineering II for ECE Writing Programs and functions in Matlab

Date: \qquad
Section \# \qquad

Learning Objectives:

By completing this Lab exercise you should be competent in the following learning objectives:

- Getting more experience with Matlab functions
- Using commands: while, if then - elseif to control program structure
- Writing simple programs in Matlab

Instructions:

Part A. Grading Problem, Using Control Structures

In 25108, all the Labs, MPs and exams consist 600 points. The final letter grade is given according to the following table:

E	$0-300$
D-	$300-320$
D	$320-340$
D^{+}	$340-360$
C-	$360-380$
C	$380-400$
$C+$	$400-420$
$B-$	$420-450$
B	$450-480$
B+	$510-540$
A-	$540-570$
A	$570-600$
A+	

In this section, the work is divided into 3 parts: a main program "Convert" that allows you to input the points a student earned, a function "Grade" which decides which letter grade the student should get, and another function "plus_minus" which decides whether the student should get + or - .

The outlines of these 3 parts are given below, you should fill in your code to make them run.

Convert.m

Points $=$ input (\ldots); \% ask user to input the points a student earned
Finalgrade = Grade(Points); \%calls function Grade to decide the letter grade

Grade.m

\% Grade function only decides the letter students should get
\% It calls plus_minus to decides what goes behind, a "+" or a "-"
Function g = Grade (points)
If points >= 510
$\mathrm{g}=[$ 'A', plus_minus(points, 540, 570)] \%Here a concatenation is used

plus_minus.m

\% this function returns a "+" or a "-" or nothing.
\% this function takes 3 parameters: the points a student got, a low point, a high point.
\% when the points is higher than high point, the student gets a "+"
\% if the points is lower than low point, he gets a "- ".
Function pm = plus_minus(points, lpoint, hpoint)
If
pm = "-";

Example: Steven got 520 points, now we want to know his letter grade. First we run the program "Convert" in Matlab command window. The output is:

Convert

Please input the points the student earned: 520
A-

What will happen if you input 800 or -20 as the points a student got?
Convert
Please input the points the student earned: 800

How do you solve this problem?

Part B. In this section, you are going to write a function that can adds two polynomials of different degree.

1. Given two polynomials: $\mathrm{P}=\mathrm{x}^{\wedge} 3+2 \mathrm{x}^{\wedge} 2+3 \mathrm{x}+1, \mathrm{Q}=\mathrm{x}-1$.

How to represent them? $\mathrm{P}=$ \qquad , $\mathrm{Q}=$ \qquad .

What will happen if you want to add them up using $\mathrm{P}+\mathrm{Q}$?
2. We can not sum two vectors with different dimensions. We have to make their dimensions the same by adding 0 's to Q . The function zeros(a, b) can help.

Try commands zeros(2,3) and zeros(1,4).
What's the result of function zeros(a,b)? \qquad
Now write down a command that change Q's degree to the same as P, without changing Q's value.
$\mathrm{Q}=$ \qquad
3. Refer to notes for the use of function size(p).

Now suppose we have two polynomials R and S , we only know that R has a lower degree than S. By using a combination of commands size and zeros, we can change R's degree to the same as S's.

Vec $=(\operatorname{size}(\mathrm{R})-\operatorname{size}(\mathrm{S}))$ \% get the difference between R and S
$\%$ vec(2) will be the difference.
$\mathrm{R}=\left[\operatorname{zeros}\left(_\right), \mathrm{S}\right]$ \% concatenate zeros and S
4. Write a function adding two polynomials of different degrees and give out the sum as result.

For example, your function should behave as follows:
Add(P,Q)
ans $=$
[1,2,4,0]
Hint: your function should be able to sum up any two given polynomials, so you may first decide which polynomial has a higher degree. Use the results of step2 and step3.

Part C. Chebyshev polynomials.

Chebyshev polynomials are defined as follows:
$\mathrm{T}_{0}(\mathrm{x})=1$;
$\mathrm{T}_{1}(\mathrm{x})=\mathrm{x}$;
$\mathrm{T}_{\mathrm{n}}(\mathrm{x})=2 \mathrm{xT} \mathrm{T}_{\mathrm{n}-1}(\mathrm{x})-\mathrm{T}_{\mathrm{n}-2}(\mathrm{x})$

Write a function "Cheby(n)" that returns the Chebyshev polynomial for a given n in MATLAB vector polynomial format..

For example, your function will do the following:
Cheby(2)
ans=
$[2,0,-1]$ for $T 2=2 x^{2}-1$

The structure of the function is given below, you should fill in necessary code to make it run.

Function c = Cheby(n)
c0 = [1];
c1 $=$ [1,0]; \% initialization for Cheby(0) and Cheby(1)
$\mathrm{i}=1$; \% initialization for loop control variable used in while loop
if $\mathrm{n}=0$
elseif $n=1$

```
_;
else
ci2 = c0; % ci2 always represents Cheby(i-2)
ci1 = c1 % now i = 1, ci1 always represents Cheby(i-1)
\% in the following loop, the program always computes Cheby(i)
\% as i increases, all the Chebyshev polynomials Cheby(2), Cheby(3)...are calculated \% when i hits n, Cheby(n) is calculated.
while i < n
\(\mathrm{i}=\mathrm{i}+1\);
ci \(=\)
``` \(\qquad\)
``` ; \% now i increases, we calculate
the
\% new cheby(i) accordingly.
\% Hint: ci = 2x ci1 - ci2
\% you should utilize the "add" function implemented in Part B
\(\%\) and to multiply \(\mathrm{c}(\mathrm{i}-1)\) with 2 x , command conv should be used.
ci2 = ci1;
ci1 \(=\mathrm{ci}\);
end
```

Use the command "roots" to find all the roots of Cheby(5) and Cheby(10).
Hand in you code for each of the 3 parts to your TA. This lab counts for 3 Grading Units

