### EECE 1070 Introduction to Engineering for ECE

#### Professor Jay Weitzen

Fall 2017

University of Massachusetts Lowell Department of Electrical and Computer Engineering Ball 411, <u>Jay weitzen@uml.edu</u> OH Thursday 1630-1800 and Tuesday After Class 10:30-11:30



#### **Official Course Web Site**

- http://faculty.uml.edu/jweitzen
- Please check the website week for announcements, course materials etc.
- All materials will be distributed via the Web site.
- Please check your University Email regularly, that is how I will contact you

- Please use your UML email to contact me



#### **Overview**

- What are we going to cover ?
- How will you be graded?
- Why should you take this course?
- How to get the most out of this class?
- Introduction to Good Programming!



#### What are we going to cover ?

- Application Programming in Matlab (7 weeks)
  - Learn Basic Programming Skills
  - See Examples of Digital Signal Processing
  - Help Strengthen your math and problem solving skills
  - Learn Basics of Analysis of Data
- ECE "Lab Anywhere" (6 weeks)
  - Learn Analog Devices "Lab Anywhere" digital oscilloscope and function generator
  - Write Simple Programs on a C micro-controller to make lights blink, control servos, read sensors, make sounds
  - Play with basic electronic components, learn to breadboard
  - Learn design through open ended design projects



## **Grading Policy**

- 4 Regular Matlab Exercises 24%
- 2 Special Matlab Exercises 30%
- 6 ECE Hdw/Sw Labs 36%
- Attendance

- Attendance at 7 Lectures is required. (Lab Attendance will be factored into the final grade)
- Late Lab Reports are 20% loss per week late starting at the end of lab 1 week after assignment
- All Labs must be completed and submitted for grade of A or A-
- <u>Be aware: We are going to be very picky about good</u> programming techniques, and things like axis titles and descriptions, comments, variable naming, block indenting, etc.



<sup>10%</sup> 

### My Course Expectations!!!

- Have Fun!
  - If what we do in this class is not fun for you, consider whether ECE is the right major.
- COME TO LAB PREPARED
  - Attend or watch Lab Lectures
  - Read Lab Exercises and materials in Advance
  - Stay Caught UP, it is your responsibility
- Do your Best
  - Get Help if you Need it; it is your responsibility
- What you hand in should look professional



#### ORDERING YOUR OWN Lab In The Box

- You need to order your own Lab-In-A-Box kit: You will use it in future laboratories.
  - URL is on website
  - You need it by 10/11/2017: Don't Wait Order Now!
  - Software Available Free on the Website
- Contents of Lab in a Box:
  - Analog Devices Discovery Module
    - Oscilloscope
    - Function Generator
    - Logic Analyzer
    - Volt Meter
  - Arduino Uno 32 Microcontroller
- Parts kit (given out on first day of Hardware Labs)



#### **Textbook and References**

Matlab Textbook is free on Website to save you money Optional Text available in bookstore

Reference For Microcontroller: See Website Other References : Lecture Notes, Online Help



#### Why this course

- Matlab is used in many upcoming courses.
- This course builds your analytical and problem solving skills in preparation for circuits, signal processing, communications, and control disciplines.
- Give you a first C programming experience in advance of **EECE 2160**
- Learn to use a digital oscilloscope, function generator
- Learn basic Electronic Components such as resistors, capacitors and basic assembly and test techniques
- Understand interfacing software and hardware based systems



#### **Getting Help**

- See your TA in Lab or in office hours
- Come see me in office hours
- Make an appointment with me

   (I really don't bite and am here to help you <sup>(i)</sup>)
- Send an e-mail to me
- Talk to your peers, but be careful, they may be even more lost than you are!



## Getting the Most Out of This Class

- Come to the lectures or watch them on video. I will give you useful hints for solving the week's problem
  - Download the notes and annotate them
- Please be prepared for lab by reviewing the lab and lecture notes before coming to lab.
  - Ask questions, that is why your TA's are there
- Read the Reference Materials for each week's labs
- Check the Course Website each week for hints and important updates.
  - If Classes are cancelled go to the website for instructions.
- Come and see me if you have questions, are stuck, or just want to talk.
  - If you have spent 2 hours in lab and 2 more hours stuck, please stop and come see me.



#### **Course Logistics**

- One hour of lecture on Tuesday and two hours of lab each week are for ECE 1070
  - Each Week there will be assigned readings and video's
- ALL LABS meet in Maker Space Falmouth 102
  - Lab attendance is required and counts towards your grade.
  - At your scheduled time, you get priority on a seat: You are welcome at other times as space permits.
    - You can check out a laptop during lab times, or bring your own
- If you want an A or A- you need to complete and submit all lab exercises
- There is a Matlab Site license, you can download to your computer. It is a very good idea.



### **Cheating in Lab**

- Copying and submitting somebody else's work is cheating.
  - If we catch you and we probably will, you will get a 0 for the lab and may get an F for the course.
- If you have to cheat in to get bye in a lab course you really need to change majors. This is where you learn and perfect your hands on skills that employers want!



#### **Assignment for Lab This Week**

- Load Matlab on your own computer or run VLabs.
- Download and read Lecture Notes 0 and 1
- Do Exercise 0 and submit to your TA. Answers included





# Professor Jay Weitzen (that's me)

#### • EDUCATIONAL & PROFESSIONAL EXPERIENCE:

#### - Education:

- Ph.D. University of Wisconsin, Madison, 1983
- MSEE University of Wisconsin, Madison, 1979
- BSEE University of Wisconsin, Madison, 1978

#### - Professional Experience:

 More than 35 Years of Industrial and Academic experience in wireless networks, radio propagation, wireless network design. 2 US patents, and over 100 publications in the open literature in areas of modern wireless systems.

#### – Current Research Interests:

 Performance of large wireless 3G.4G and 5G networks, small cell networks, high speed wireless data networks, network planning, wireless position location and applications, radio propagation



### **LEARNING TO PROGRAM**



## How to write a program

- Start with the requirements. What is the program supposed to do?
  - No point running fast if you do not know where you are going
- What are the external interfaces (inputs and outputs)
- Define the algorithm
  - Describe it in pseudo-code or English. How are you going to meet the requirements
  - Turn the algorithm into real code e.g. Matlab
    - Don't forget to add comments, and good variable naming
- Test, validate, and debug.
  - Spend less time here, more at beginning



# Some Comments on good Programming!

- Stream of consciousness programming usually gets you in trouble
  - Understand clearly what you want to do before you start to program. It is more likely to work, and you will have to do less debugging (debugging takes 3-5x longer than doing it right!)
- Programming can be addicting like a video game
  - If you are stuck, do not keep doing the same thing over and over again (you will get same results)
    - Step back and understand what you are trying to do
    - Single step your program with the real time debugger
    - Test all Code paths including error handling



# University of Massachusetts End of Notes 0: Good Luck

University of Missachusetts

