Chapter 1

Logic Design Section (will be
Section 13.7)

1.1 A Brief Introduction to Switching Theory
and Logic Design

Disclaimer: T'm still looking for a good application for drawing logic gates.
The figures here are quite rough.

Early computers relied on many switches to perform the logical operations
needed for computation. This was true as late as the 1970’s when early personal
computers such as the Altair (Figure 1.1.1) started to appear. Pioneering com-
puter scientists such as Claude Shannon realized that the operation of these
computers could be simplified by making use of an isomorphism between com-
puter circuits and boolean algebra. The term Switching Theory was used at
the time. Logical gates realized through increasingly smaller and smaller inte-
grated circuits still perform the same functions as in early computers, but using
purely electronic means. In this section, we give examples of some switching
circuits. Soon afterward, we will transition to the more modern form of circuits
that are studied in Logic Design, where gates replace switches. Out main
goal is to give you an overview of how boolean functions corresponds to any
such circuit. We will introduce the common system notation used in logic de-
sign and show how it corresponds with the mathematical notation of Boolean
algebras. Any computer scientist should be familiar with both systems.

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 2

Figure 1.1.1: The Altair Computer, an early PC, by Todd Dailey, Creative
Commons

The simplest switching device is the on-off switch. If the switch is closed/
ON, current will pass through it; if it is open/OFF, current will not pass
through it. If we designate ON by 1, and OFF by 0, we can describe electrical
circuits containing switches by Boolean expressions with the variables repre-
senting the variable states of switches or the variable bits passing through
gates.

The electronics involved in these switches take into account whether we are
negating a switch or not. For electromagnetic switches, a magnet is used to
control whether the switch is open or closed. The magnets themselves may be
controlled by simple ON/OFF switches. There are two types of electromagnetic
switches. One is normally open (OFF) when the magnet is not activated, but
activating the magnet will close the circuit and the switch is then ON. A
separate type of switch corresponds with a negated switch. For that type, the
switch is closed when the magnet is not activated, and when the magnet is
activated, the switch opens. We won’t be overly concerned with the details of
these switches or the electronics corresponding to logical gates. We will simply
assume they are available to plug into a circuit. For simplicity, we use the
inversion symbol on a varible that labels a switch to indicate that it is a switch
of the second type, as in Figure 1.1.3.

Standby power generators that many people have in their homes use a transfer
switch to connect the generator to the home power system. This switch is open
(OFF) if there is power coming from the normal municipal power supply. It
stays OFF because a magnet is keeping it open. When power is lost, the
magnet is no longer activated, and the switch closes and is ON. So the transfer
switch is a normally ON switch.

S A

X1 X

Figure 1.1.2: Representation of a

normally OFF switch controlled by =~ Figure 1.1.3: Representation of a
variable x normally ON switch controlled by

variable x1

The standard notation used for Boolean algebra operations in switching
theory and logic design is + for join, instead of V; and - for meet, instead of

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 3

A. Complementation is the same in both notational systems, denoted with an
overline.

The expression 1 - o represents the situation in which a series of two
switches appears in sequence as in Figure 1.1.4. In order for current to flow
through the circuit, both switches must be ON; that is, they must both have
the value 1. Similarly, a pair of parallel switches, as in Figure 1.1.5, is described
algebraically by x1 + x2. Here, current flows through this part of the circuit
as long as at least on of the switches is ON.

X2
Figure 1.1.4: Two switches in AND

configuration realizing 1 - 3 Figure 1.1.5: Two switches in OR
configuration realizing x; + x2

All laws and concepts developed previously for Boolean algebras hold. The
only change is purely notational. We make the change in this section solely to
introduce the reader to another frequently used system of notation.

Many of the laws of Boolean algebra can be visualized thought switching
theory. For example, the distributive law of meet over join is expressed as

x1~(x2+x3):x1~x2+x1ox3.

The switching circuit analogue of the above statement is that the circuits in
Figure 1.1.6 are equivalent. In circuit (b), the presence of two x1’s represents
two electromagnetic switches controlled by the same magnet.

X2
/.‘L'l g
/]

S/ —

(b)
Figure 1.1.6: Two equivalent switching circuits

The circuits in a computer are now composed of large quantities of gates,
which serve the same purpose as switches, but can be miniaturized to a great

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 4

degree. For example, the OR gate, usually drawn as in Figure 1.1.7 imple-
ments the logical OR function. This happens electronically, but is equivalent
to Figure 1.1.5. The AND gate, which is equivalent to two sequential switches
is shown in Figure 1.1.7.

X1 —
X1

%2 X2 7

Figure 1.1.8: An AND gate
Figure 1.1.7: An OR gate

The complementation process is represented in a gate diagram by an in-
verter, as pictured in Figure 1.1.9.

X X

Figure 1.1.9: Inverter, or NOT gate

When drawing more complex circuits, multiple AND’s or OR’s are some-
times depicted using a more general gate drawing. For example if we want to
depict an OR gate with three inputs that is ON as long as at least one input
is ON, we would draw it as in Figure 1.1.10, although this would really be
two binary gates, as in Figure 1.1.11. Both diagrams are realizing the boolean
expression 1 + x2 + x3. Strictly speaking, the gates in Figure 1.1.11 represent
(z1+22)+ 23, but the associative law for join tells us that the grouping doesn’t
matter.

x1
x1
x2 x1+x2+x3 X2
x3

Figure 1.1.10: Simple version of a Figure 1.1.11: A ternary OR gate
ternary OR gate created with binary OR gates

In Figure 1.1.12, we show a few other commonly used gates, XOR, NAND,
and NOR, which correspond to the boolean exressions xy ® x2, T - T3, and
1 + x2, respectively.

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 5

x1—]
X2 —
x1 NAND
X2
XOR X1
X2

NOR

Figure 1.1.12

Let’s start with a logic circuit and see how the laws of boolean algebra can
help us simplify it.

Example 1.1.13 Simplification of a circuit. Consider the circuit in
Figure 1.1.14. As usual, we assume that three inputs enter on the left and the
output exits on the right.

Sx, xp, x3)

1+ x2) + (x + x3)

X+ X3

Figure 1.1.14: Initial gate diagram

If we trace the inputs through the gates we see that this circuit realizes the
boolean function

[(w1, 220,23) = 21 - T2 - (01 + 22) + (21 +23)) .

We simplify the boolean expression that defines f, simplifying the circuit
in so doing. You should be able to identify the laws of Boolean algebra that
are used in each of the steps. See Exercise 1.1.1.

r1 - Ty - (w1 + 22) + (21 +23)) = 21 - T3 - (21 + 22 + 23)
=21 T2 X1 +T1 T2 T2+ T1 T2 T3
=21 T2 +0- 21 +a3-21-T2
=T -T2+ T3 %1 T2
=21 - T3 (1 +x3)
=21 T2
Therefore, f (x1,x2,23) = 1 -T2, which can be realized with the much simpler
circuit in Figure 1.1.15, without using the input z3.

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 6

x1
XTD<>7 f(x1,x2)=x1 x2

Figure 1.1.15: Simplified gate diagram

|
Next, we start with a table of desired outputs based on three bits of input
and design an efficient circuit to realize this output.

Example 1.1.16 Consider the following table of desired outputs for the three
input bits x1, 2, x3.

r1 x2 w3 f(x1,72,73)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 1.1.17: Desired output table

The first step is to write the minterm normal form of f. Since we are
working with the two value Boolean algebra, By, the constants in each minterm
are either 0 or 1, and we simply list the minterms that have a 1. These
correspond with the rows of the table above that have an output of 1. We will
then attempt to simplify the expression as much as possible.

ca3) + (w1 T2 - T3) + (21 - T2 - 23)
~x3) + (21 T3) + (21 - 23)
-x3) + 21 - (T3 + 73)

1-23)+ 1)

I
_
G

flx1,22,23)

I
888

—

RS
=N

(

Therefore we can realize our table with the boolean function f (x1,x2,x3) =
T3 - ((T1 - x3) + x1). A circuit diagram for this function is Figure 1.1.18. But
is this the simplest circuit that realizes the table? See Exercise 1.1.3.

—

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 7

T
DL

x3

Figure 1.1.18: A realization of the table of desired outputs.

Exercises

1. List the laws of boolean algebra that justify the steps in the simplification
of the boolean function f (x1,x9,z3) in Example 1.1.13. Some steps use
more than one law.

Answer.

1) Associative, commutative, and idempotent laws.

2) Distributive law.

4

(1)
(2)
(3) Idempotent and complement laws.
(4) Null and identity laws

()

5) Distributive law.

(6) Null and identity laws.

2. Write the following Boolean expression in the notation of logic design.
(x1 ANT2) V (1 Ax2) V (TT A x2) .

Answer.
(.’L‘l 1’72) + (!L‘l -.1‘2) + (1’71 {L‘Q).
3. Find a further simplification of the boolean function in Example 1.1.16,
and draw the corresponding gate diagram for the circuit that it realizes.

Answer. A simpler boolean expression for the function is T3 - (1 + x3).

x1

- >

X3+

Figure 1.1.19: An even simpler circuit

4. Consider the switching circuit in Figure 1.1.20.

CHAPTER 1. LOGIC DESIGN SECTION (WILL BE SECTION 13.7) 8

L]

X2

Figure 1.1.20: Can this circuit be simplifed?

(a) Draw the corresponding gate diagram for this circuit.

(b) Construct a table of outputs for each of the eight inputs to this
circuit.

(c) Determine the minterm normal of the Boolean function based on
the table.

(d) Simplify the circuit as much as possible.
5. Consider the circuit in Figure 1.1.21.

()

—1)

X2

[

Figure 1.1.21: Can this circuit be simplifed?

(a) Trace the inputs though this circuit and determine the Boolean func-
tion that it realizes.

(b) Counstruct a table of outputs for each of the eight inputs to this
circuit.

(¢) Find the minterm normal form of f.
(d) Draw the circuit based on the minterm normal form.

(e) Simplify the circuit algebraically and draw the resulting circuit.
6. Consider the Boolean function f (21, xq, 23, 24) = 1+ (22 - (T1 + 24) + 23 - (T2 + T1)) .

(a) Simplify f algebraically.

(b) Draw the gate diagram based on the simplified version of f.

7. Draw a logic circuit using only AND, OR and NOT gates that realizes an
XOR gate.

	Preface
	Logic Design Section (will be Section 13.7)
	A Brief Introduction to Switching Theory and Logic Design

	References
	Index

