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Preface - what a difference 21 years make!
This is Applied Discrete Structures,  Part II - Algebraic Structures,  which contains an introduction to groups, monoids, rings, fields,vector
spaces, lattices, and boolean algebras.   It corresponds with the content of Discrete Structures II at UMass Lowell, which is a required course
for students in Computer Science.  It presumes background contained in Part I - Fundamentals, which is the content of Discrete Structures I
at UMass Lowell.

Twenty-one  years  after  the  publication  of  the  2nd  edition  of  Applied  Discrete  Structures  for  Computer  Science,  in  1989  the  publishing  and
computing landscape have both changed dramatically.  We signed a contract for the second edition with Science Research Associates but by the
time the book was ready to print, SRA had been sold to MacMillan.  Soon after, the rights had been passed on to Pearson Education, Inc.  In
2010, the long-term future of printed textbooks is uncertain.  In the meantime, textbook prices (both printed and e-books) have increased and a
growing open source textbook market movement has started.  One of our objectives in revisiting this text is to make it available to our students
in an affordable format.  In its original form, the text was peer-reviewed and was adopted for use at several universities throughout the country.
For this reason, we see Applied Discrete Structures as not only an inexpensive alternative, but a high quality alternative.   
As indicated above the computing landscape is very different from the 1980's and accounts for the most significant changes in the text.   One of
the most common programming languages of the 1980's, Pascal; and we used it to illustrate many of the concepts in the text.  Although it isn't
totally dead, Pascal is far from the mainstream of computing in the 21st  century.   In 1989, Mathematica had been out for less than a year —
now a major  force in  scientific  computing.    The open source software movement  also started in  the  1980's  and in  2005,  the  first  version of
Sage,  an  open-source  alternative  to  Mathematica  was  first  released.    In  Applied  Discrete  Structures  we  have  replaced  "Pascal  Notes"  with
"Mathematica Notes" and "Sage Notes."    Finally, 1989 was the year that World Wide Web was invented by Tim Berners-Lee.   There wasn't a
single www in the 2nd edition.   In this version, we intend to make use of extensive web resources, including video demonstrations.
We  would  like  to  thank  Tony  Penta,  Sitansu  Mittra,  and  Dan  Klain  for  using  the  preliminary  versions  of  Applied  Discrete  Structures.   The
corrections and input they provided was appreciated.
We repeat the preface to Applied Discrete Structures for Computer Science below.   Plans for the instructor's guide, which is mentioned in the
preface are uncertain at this time.

Preface to Applied Discrete Structures for Computer Science, 2nd Ed.

We feel proud and fortunate that most authorities, including MAA and ACM, have settled on a discrete mathematics syllabus that is virtually
identical  to  the  contents  of  the  first  edition  of  Applied  Discrete  Structures  for  Computer  Science.  For  that  reason,  very  few  topical  changes
needed  to  be  made  in  this  new  edition,  and  the  order  of  topics  is  almost  unchanged.  The  main  change  is  the  addition  of  a  large  number  of
exercises at all levels. We have "fine-tuned" the contents by expanding the preliminary coverage of sets and combinatorics, and we have added
a discussion of binary integer representation. We have also added an introduction including several examples, to provide motivation for those
students  who  may  find  it  reassuring  to  know  that  mathematics  has  "real"  applications.  "Appendix  B—Introduction  to  Algorithms,"  has  also
been added to make the text more self-contained.

How This Book Will Help Students
In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and
move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable
text, and we have tried to anticipate the questions that go unasked.
The  wide  range  of  examples  in  the  text  are  meant  to  augment  the  "favorite  examples"  that  most  instructors  have  for  teaching  the  topics  in
discrete mathematics.
To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include
detailed answers whenever warranted and complete proofs, not just terse outlines of proofs.
Our  use  of  standard terminology and notation makes  Applied Discrete  Structures  for  Computer  Science a  valuable  reference book for  future
courses. Although many advanced books have a short review of elementary topics, they cannot be complete.

How This Book Will Help Instructors
The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.

Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require
an understanding of the topics and how they are interrelated, not just a familiarity with the key words.
An Instructor's Guide is available to any instructor who uses the text. It includes:

(a) Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid;

(b) Suggested coverage times;

(c) Detailed solutions to most even-numbered exercises;
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(d) Sample quizzes, exams, and final exams.

How This Book Will Help the Chairperson/Coordinator
The text covers the standard topics that all instructors must be aware of; therefore it is safe to adopt Applied Discrete Structures for Computer
Science before an instructor has been selected.
The breadth of topics covered allows for flexibility that may be needed due to last-minute curriculum changes.

Since  discrete  mathematics  is  such  a  new course,  faculty  are  often  forced  to  teach  the  course  without  being  completely  familiar  with  it.  An
Instructor's Guide is an important feature for the new instructor.

What a Difference Five Years Makes!
In  the  last  five  years,  much  has  taken  place  in  regards  to  discrete  mathematics.  A  review  of  these  events  is  in  order  to  see  how  they  have
affected the Second Edition of Applied Discrete Structures for Computer Science.
(1) Scores  of  discrete  mathematics  texts  have  been  published.  Most  texts  in  discrete  mathematics  can  be  classified  as  one-semester  or  two-
semester texts. The two-semester texts, such as Applied Discrete Structures for Computer Science, differ in that the logical prerequisites for a
more thorough study of discrete mathematics are developed.
(2) Discrete mathematics has become more than just a computer science support course. Mathematics majors are being required to take it, often
before calculus. Rather than reducing the significance of calculus, this recognizes that the material a student sees in a discrete mathematics/struc-
tures course strengthens his or her understanding of the theoretical aspects of calculus. This is particularly important for today's students, since
many high school courses in geometry stress mechanics as opposed to proofs. The typical college freshman is skill-oriented and does not have a
high level of mathematical maturity. Discrete mathematics is also more typical of the higher-level courses that a mathematics major is likely to
take.
(3) Authorities such as MAA, ACM, and A. Ralson have all refined their ideas of what a discrete mathematics course should be. Instead of the
chaos  that  characterized  the  early  '80s,  we  now  have  some  agreement,  namely  that  discrete  mathematics  should  be  a  course  that  develops
mathematical maturity.
(4) Computer science enrollments have leveled off and in some cases have declined. Some attribute this to the lay-offs that have taken place in
the computer industry; but the amount of higher mathematics that is needed to advance in many areas of computer science has also discouraged
many. A year of discrete mathematics is an important first step in overcoming a deficiency in mathematics.
(5) The Educational Testing Service introduced its Advanced Placement Exam in Computer Science. The suggested preparation for this exam
includes many discrete mathematics topics, such as trees, graphs, and recursion. This continues the trend toward offering discrete mathematics
earlier in the overall curriculum.

Acknowledgments
The authors wish to thank our colleagues and students for their comments and assistance in writing and revising this text.  Among those who
have left their mark on this edition are Susan Assmann, Shim Berkovitz, Tony Penta, Kevin Ryan, and Richard Winslow.
We would also like to thank Jean Hutchings, Kathy Sullivan, and Michele Walsh for work that they did in typing this edition, and our depart-
ment secretaries, Mrs. Lyn Misserville and Mrs. Danielle White, whose cooperation in numerous ways has been greatly appreciated.
We are grateful for the response to the first edition from the faculty and students of over seventy-five colleges and universities. We know that
our second edition will  be a better  learning and teaching tool as a result  of  their  useful  comments and suggestions.  Our special  thanks to the
following reviewers: David Buchthal, University of Akron; Ronald L. Davis, Millersville University; John W Kennedy, Pace University; Betty
Mayfield,  Hood  College;  Nancy  Olmsted,  Worcester  State  College;  and  Pradip  Shrimani,  Southern  Illinois  University.  Finally,  it  has  been  a
pleasure to work with Nancy Osman, our acquisitions editor, David Morrow, our development editor, and the entire staff at SRA.
A.W. D. 

K.M.L.
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chapter 11

ALGEBRAIC SYSTEMS

GOALS
The  primary  goal  of  this  chapter  is  to  make  the  reader  aware  of  what  an  algebraic  system  is  and  how  algebraic  systems  can  be  studied  at
different  levels  of  abstraction.  After  describing  the  concrete,  axiomatic,  and  universal  levels,  we  will  introduce  one  of  the  most  important
algebraic  systems  at  the  axiomatic  level,  the  group.  In  this  chapter,  group  theory  will  be  a  vehicle  for  introducing  the  universal  concepts  of
isomorphism,  direct  product,  subsystem,  and generating set.  These  concepts  can  be  applied  to  all  algebraic  systems.  The simplicity  of  group
theory will help the reader obtain a good intuitive understanding of these concepts. In Chapter 15, we will introduce some additional concepts
and applications of group theory. We will  close the chapter with a discussion of how some computer hardware and software systems use the
concept of an algebraic system.
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11.1 Operations
One of the first mathematical skills that we all learn is how to add a pair of positive integers. A young child soon recognizes that something is
wrong if a sum has two values, particularly if his or her sum is different from the teacher's. In addition, it is unlikely that a child would consider
assigning  a  non-positive  value  to  the  sum  of  two  positive  integers.  In  other  words,  at  an  early  age  we  probably  know  that  the  sum  of  two
positive integers is unique and belongs to the set of positive integers. This is what characterizes all binary operations on a set.

Definition: Binary Operation. Let S be a nonempty set. A binary operation on S is a rule that assigns to each ordered pair of elements of
S a unique element of S. In other words, a binary operation is a function from Sµ S into S.

Example  11.1.1.  Union  and  intersection  are  both  binary  operations  on  the  power  set  of  any  universe.  Addition  and  multiplication  are
binary  operators  on  the  natural  numbers.  Addition  and  multiplication  are  binary  operations  on  the  set  of  2  by  2  real  matrices,  M2µ2HRL.
Division is a binary operation on some sets of numbers, such as the positive reals. But on the integers (1 ê2 – Z) and even on the real numbersH1 ê0 is not defined), division is not a binary operation.

Notes:

(a)  We  stress  that  the  image  of  each  ordered  pair  must  be  in  S.  This  requirement  disqualifies  subtraction  on  the  natural  numbers  from
consideration as a binary operation, since 1 - 2 is not a natural number. Subtraction is a binary operation on the integers.
(b)   On Notation. Despite the fact that a binary operation is a function, symbols, not letters, are used to name them. The most commonly used
symbol for a binary operation is an asterisk, *. We will also use a diamond, ù,  when a second symbol is needed.
(c)   If * is a binary operation on S and a, b œ S, there are three common ways of denoting the image of the pair (a, b). They are:

  
*a b a*b a b *

Prefix Form Infix Form Postfix FOrm
We are all familiar with infix form. For example, 2 + 3 is how everyone is taught to write the sum of 2 and 3. But notice how 2 + 3 was just
described in the previous sentence! The word sum preceded 2 and 3. Orally, prefix form is quite natural to us. The prefix and postfix forms
are  superior  to  infix  form  in  some  respects.  In  Chapter  10,  we  saw  that  algebraic  expressions  with  more  than  one  operation  didn't  need
parentheses  if  they  were  in  prefix  or  postfix  form.  However,  due  to  our  familiarity  with  infix  form,  we  will  use  it  throughout  most  of  the
remainder of this book.
Some operations, such as negation of numbers and complementation of sets, are not binary, but unary operators.

Definition:  Unary  Operation.  Let   S  be  a  nonempty  set.  A  unary  operator  on  S  is  a  rule  that  assigns  to  each  element  of  S  a  unique
element of S. In other words, a unary operator is a function from S into S.

COMMON PROPERTIES OF OPERATIONS
Whenever an operation on a set is encountered, there are several properties that should immediately come to mind. To effectively make use of
an operation, you should know which of these properties it has. By now, you should be familiar with most of these properties. We will list the
most common ones here to refresh your memory and define them for the first time in a general setting. Let S be any set and * a binary operation
on S.

Properties that apply to a single binary operation:
Let * be a binary operation on a set S

* is commutative if a * b = b * a  for all a, b œ S.

* is associative if Ha * bL * c = a * Hb * cL for all a, b, c œ S.

*  has an identity if there exists an element, e, in S such that a * e = e * a = a for all a œ S.

*  has the inverse property if for each a œ S, there exists  b œ S such that a*b = b*a = e.  

    We call b an inverse of a.

*  is idempotent if a * a = a for all a œ S. Properties that apply to two binary operations:

Let ù be a second binary operation on S.

ù is left distributive over * if a ù Hb * cL = Ha ù bL * Ha ù cL for all a, b, c œ S.

ù is right distributive over * if Hb * cLùa = HbùaL * Hc ù aL for all a, b, c œ S.

ù is distributive over * if ù is both left and right distributive over *.

Let  -  be a unary operation.

A unary operation — on S has the involution property if -H-aL = a for all a œ S.

Finally, a property of sets, as they relate to operations.

If T is a subset of S, we say that T is closed under * if a, b œ T implies that a * b œ T. In other words, by operating on elements of
T with *, you can't obtain new elements that are outside of T.

Chapter 11 - Algebraic Systems

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommerical-ShareAlike 3.0 United States License.



Example 11.1.2.

(a)   The odd integers are closed under multiplication, but not under addition.

(b)   Let p be a proposition over U and let A be the set of propositions over U that imply p. That is; q œ A if q p. Then A is closed under
both conjunction and disjunction.
(c)   The set positive integers that are multiples of 5 is closed under both addition and multiplication.

Note: It is important to realize that the properties listed above depend on both the set and the operation(s).

OPERATION TABLES
If  the set  on which an operation is  defined is  small,  a  table is  often a  good way of  describing the operation.  For example,  we might  want  to
define Å⊕ on 80, 1, 2< by 

a Å⊕b = : a + b if a + b < 3
a + b - 3 if a + b ¥ 3

The table for Å⊕ is

"

Å⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

The top row and left column are the column and row headings, respectively. To determine aÅ⊕b, find the entry in Row a and Column b. The
following operation table serves to define * on 8i, j, k<.

"

* i j k

i i i i

j j j j

k k k k

Note that;  j*k = j,  yet  k * j = k.  Thus,  * is  not  commutative.  Commutivity is  easy to identify in a table:  the table must  be symmetric with
respect to the diagonal going from the top left to lower right.

EXERCISES FOR SECTION 11.1
A Exercises
1.   Determine the properties that the following operations have on the positive integers.

(a)   addition

(b)   multiplication

(c)   M defined by a M b = larger of a and b

(d)   m defined by a m b = smaller of a and b

(e)  @ defined by a ü b = ab

2.   Which pairs of operations in Exercise 1 are distributive over one another?

3.   Let * be an operation on a set S and A, B Œ S. Prove that if A and B are both closed under *, then A › B is also closed under *, but A ‹ B
need not be.
4.   How can you pick out the identity of an operation from its table?

5.   Define a * b by a - b , the absolute value of a - b. Which properties does * have on the set of natural numbers, N?

Chapter 11 - Algebraic Systems
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11.2 Algebraic Systems
An  algebraic  system  is  a  mathematical  system  consisting  of  a  set  called  the  domain  and  one  or  more  operations  on  the  domain.  If  V  is  the
domain and *1 , *2 , …, *n  are  the  operations,  @V;*1, *2 , …, *nD  denotes  the  mathematical  system.  If  the  context  is  clear,  this  notation is
abbreviated to V.

Example 11.2.1.

(a)   Let B*  be the set of all finite strings of 0's and 1's including the null (or empty) string, l. An algebraic system is obtained by adding the
operation  of  concatenation.  The  concatenation  of  two  strings  is  simply  the  linking  of  the  two  strings  together  in  the  order  indicated.  The
concatenation  of  strings  a  with  b  is  denoted  a <> b.   For  example,  "01101" <> "101" = "01101101"  and  l <> "100" = "100".  Note  that
concatenation is an associative operation and that l is the identity for concatenation.

Note  on  Notation:   There  isn't  a  standard  symbol  for  concatenation.   We  have  chosen  <>  to  be  consistant  with  the  notation  used  in
Mathematica for the StringJoin function, which does concatenation.   Many programming languages use the plus sign for concatenation,
but others use & or ||.
(b)  Let M be any nonempty set and let * be any operation on M that is associative and has in identity in M.  Our second example might seem
strange, but we include it to illustrate a point. The algebraic system @B*; <>D is a special case of @M ;*D.  Most of us are much more comfort-
able with B*  than with M.  No doubt, the reason is that the elements in B*  are more concrete. We know what they look like and exactly how
they are combined. The description of M is so vague that we don't even know what the elements are, much less how they are combined. Why
would anyone want to study M? The reason is related to this question: What theorems are of interest in an algebraic system? Answering this
question  is  one  of  our  main  objectives  in  this  chapter.   Certain  properties  of  algebraic  systems  are  called  algebraic  properties,  and  any
theorem that says something about the algebraic properties of a system would be of interest. The ability to identify what is algebraic and what
isn't is one of the skills that you should learn from this chapter.
Now, back to the question of why we study M. Our answer is to illustrate the usefulness of M with a theorem about M.

Theorem 11.2.1. If a, b are elements of M and a * b = b * a, then Ha * bL * Ha * bL = Ha * aL * Hb * bL.
Proof:

Ha*bL* Ha*bL = a* Hb* Ha*bLL
= a* HHb*aL*bL
= a* HHa*bL*bL
= a* Ha* Hb*bLL
= Ha*aL* Hb*bL

  Why?
Why?
Why?
Why?
Why?

The  power  of  this  theorem  is  that  it  can  be  applied  to  any  algebraic  system  that  M  describes.  Since  B*  is  one  such  system,  we  can  apply
Theorem 11.2.1 to any two strings that commute—for example, 01 and 0101. Although a special case of this theorem could have been proven
for B*, it would not have been any easier to prove, and it would not have given us any insight into other special cases of M .
Example 11.2.2. Consider the set of 2µ2 real matrices, M2µ2HRL, with the operation of matrix multiplication. In this context, Theorem 11.2.1

can  be  interpreted  as  saying  that  if  A B = B A,   then  HA BL2 = A2 B2.   One  pair  of  matrices  that  this  theorem  applies  to  is  K 2 1
1 2 O  and

K 3 -4
-4 3 O.

LEVELS OF ABSTRACTION
One of  the  fundamental  tools  in  mathematics  is  abstraction.  There  are  three  levels  of  abstraction  that  we will  identify  for  algebraic  systems:
concrete, axiomatic, and universal.
Concrete Level. Almost all of the mathematics that you have done in the past was at the concrete level. As a rule, if you can give examples of a
few typical elements of the domain and describe how the operations act on them, you are describing a concrete algebraic system. Two examples
of concrete systems are B* and M2µ2HRL. A few others are:
(a)     The  integers  with  addition.  Of  course,  addition  isn't  the  only  standard  operation  that  we  could  include.  Technically,  if  we  were  to  add
multiplication, we would have a different system.
(b)   The subsets of the natural numbers, with union, intersection, and complementation.

(c)   The complex numbers with addition and multiplication.

Axiomatic Level.  The next level of abstraction is the axiomatic level.  At this level,  the elements of the domain are not specified, but certain
axioms are stated about the number of operations and their properties. The system that we called M is an axiomatic system. Some combinations
of axioms are so common that a name is given to any algebraic system  to which they apply. Any system with the properties of M is called a
monoid. The study of M would be called monoid theory. The assumptions that we made about M, associativity and the existence of an identity,
are  called  the  monoid  axioms.  One  of  your  few  brushes  with  the  axiomatic  level  may  have  been  in  your  elementary  algebra  course.  Many
algebra  texts  identify  the  properties  of  the  real  numbers  with  addition  and  multiplication  as  the  field  axioms.  As  we  will  see  in  Chapter  16,
"Rings and Fields," the real numbers share these axioms with other concrete systems, all of which are called fields.
Universal Level. The final level of abstraction is the universal level. There are certain concepts, called universal algebra concepts, that can be
applied to  the  study of  all  algebraic  systems.  Although a  purely  universal  approach to  algebra  would be  much too abstract  for  our  purposes,
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defining  concepts  at  this  level  should  make  it  easier  to  organize  the  various  algebraic  theories  in  your  own  mind.  In  this  chapter,  we  will
consider the concepts of isomorphism, subsystem, and direct product.
GROUPS
To illustrate the axiomatic level and the universal concepts, we will consider yet another kind of axiomatic system, the group. In Chapter 5 we
noted that the simplest equation in matrix algebra that we are often called upon to solve is A X = B, where A and B are known square matrices
and X  is  an unknown matrix. To solve this equation, we need the associative, identity,  and inverse laws. We call  the systems that have these
properties groups.

Definition: Group. A group consists of a nonempty set G and an operation * on G satisfying the properties

(a)  * is associative on G:     Ha*bL*c = a* Hb*cL   for all a, b, c œ G.

(b)   There exists an identity element, e œ G such that a*e = e*a = a  for all a œ G.

(c) For all a œ G, there exists an inverse, there exist b œ G such that a *b = b*a = e.

A group is usually denoted by its set's name, G, or occasionally by @G; * D to emphasize the operation. At the concrete level, most sets have a
standard operation associated with them that will form a group. As we will see below, the integers with addition is a group. Therefore, in group
theory Z always stands for @Z; +D.
Generic Symbols. At the axiomatic and universal levels, there are often symbols that have a special meaning attached to them. In group theory,
the letter e is used to denote the identity element of whatever group is being discussed. A little later, we will prove that the inverse of a group
element,  a,  is  unique and it  is  inverse is  usually denoted a-1  and is  read "a inverse."  When a concrete group is  discussed,  these symbols  are
dropped in  favor  of  concrete  symbols.  These  concrete  symbols  may or  may not  be  similar  to  the  generic  symbols.  For  example,  the  identity
element of the group of integers is 0, and the inverse of n is denoted by -n, the additive inverse of n.
The asterisk could also be considered a generic symbol since it is used to denote operations on the axiomatic level.

Example 11.2.3.

(a)   The integers with addition is a group. We know that addition is associative.  Zero is the identity for addition: 0 + n = n + 0 = n for all
integers n. The additive inverse of any integer is obtained by negating it.  Thus the inverse of n is -n.
(b)     The  integers  with  multiplication  is  not  a  group.  Although  multiplication  is  associative  and  1  is  the  identity  for  multiplication,  not  all
integers have a multiplicative inverse in Z.  For example, the multiplicative inverse of 10 is 1

10
, but 1

10
 is not an integer.

(c)     The  power  set  of  any  set  U  with  the  operation  of  symmetric  difference,  Å⊕,  is  a  group.  If  A  and  B  are  sets,  then
AÅ⊕B = HA ‹ BL - HA › BL. We will leave it to the reader to prove that Å⊕ is associative over PHUL. The identity of the group is the empty set:
AÅ⊕ « = A. Every set is its own inverse since A Å⊕ A = «. Note that PHUL is not a group with union or intersection.

Definition: Abelian Group. A group is abelian if its operation is commutative. 

Most of the groups that we will discuss in this book will be abelian. The term abelian is used to honor the Norwegian mathematician N. Abel
(1802-29), who helped develop group theory.

Norwegian Stamp honoring Abel

EXERCISES FOR SECTION 11.2
A Exercises
1.   Discuss the analogy between the terms generic and concrete for algebraic systems and the terms generic and trade for prescription drugs.

2.   Discuss the connection between groups and monoids. Is every monoid a group? Is every group a monoid?
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3.   Which of the following are groups?

(a)   B* with concatenation (Example 11.2.1a).

(b)   M2µ3HRL with matrix addition.

(c)   M2µ3HRL with matrix multiplication.

(d)   The positive real numbers, R+, with multiplication.

(e)   The nonzero real numbers, R*, with multiplication.

(f)   81, -1< with multiplication.

(g)  The positive integers with the operation M defined by a M b = larger of a and b.

4.  Prove that, Å⊕, defined by A Å⊕ B = HA ‹ BL - HA › BL  is an associative operation on PHUL.
5.   The following problem supplies an example of a non-abelian group. A rook matrix is a matrix that has only 0's and 1's as entries such that
each row has exactly one 1 and each column has exactly one 1. The term rook matrix is derived from the fact that each rook matrix represents
the placement of n rooks on an nµn chessboard such that none of the rooks can attack one another. A rook in chess can move only vertically or
horizontally, but not diagonally. Let Rn be the set of nµn rook matrices. There are six 3µ3  rook matrices:

  

I =
1 0 0
0 1 0
0 0 1

R1 =
0 1 0
0 0 1
1 0 0

R2 =
0 0 1
1 0 0
0 1 0

F1 =
1 0 0
0 0 1
0 1 0

F2 =
0 0 1
0 1 0
1 0 0

F3 =
0 1 0
1 0 0
0 0 1

(a)   List the 2µ2 rook matrices. They form a group, R2, under matrix multiplication. Write out the multiplication table. Is the group abelian?

(b)   Write out the multiplication table for R3 . This is another group. Is it abelian?

(c)   How many 4µ4 rook matrices are there? How many nµ n rook matrices are there?

6. For each of the following sets, identify the standard operation that results in a group. What is the identity of each group?

(a)   The set of all 2µ2 matrices with real entries and nonzero determinants.

(b)  The set of 2 µ 3 matrices with rational entries.

B Exercises
7. Let V = 8e, a, b, c<.  Let * be defined (partially) by x * x = e for all x œ V . Write a complete table for * so that @V; * D is a group.
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11.3 Some General Properties of Groups
In this section, we will present some of the most basic theorems of group theory. Keep in mind that each of these theorems tells us something
about every group. We will illustrate this point at the close of the section.

Theorem 11.3.1. The identity of a group is unique.

One difficulty that students often encounter is how to get started in proving a theorem like this. The difficulty is certainly not in the theorem's
complexity. Before actually starting the proof, we rephrase the theorem so that the implication it states is clear.

Theorem 11.3.1 (Rephrased). If G = @G; *D is a group and e is an identity of G, then no other element of G is an identity of G.

Proof  (Indirect):  Suppose  that  f œ G,  f ¹≠ e,  and f  is  an  identity  of  G.  We will  show that  f = e,  a  contradiction,  which completes  the
proof:

          f = f * e   Since e is an identity.

 = e.       Since f is an identity.      ‡

Theorem 11.3.2. The inverse of any element of a group is unique.

The same problem is encountered here as in the previous theorem. We will leave it to the reader to rephrase this theorem. The proof is also left
to the reader to write out in detail. Here is a hint: If b and c are both inverses of a, then you can prove that b = c.  lf you have difficulty with
this proof, note that we have already proven it in a concrete setting in Chapter 5.
The significance of  Theorem 11.3.2  is  that  we can refer  to  the  inverse  of  an element  without  ambiguity.  The notation for  the  inverse  of  a  is
usually a-1. (note the exception below).

Example 11.3.1.

(a)   In any group, e-1 is the inverse of the identity e, which always is e.

(b)   Ha-1L-1 is the inverse of a-1 , which is always equal to a (see Theorem 11.3.3 below).

(c)   Hx* y* zL-1 is the inverse of x * y * z.

(d)   In a concrete group with an operation that is based on addition, the inverse of a is usually written -a. For example, the inverse of k - 3
in the group @Z; +D  is  written -Hk - 3L = 3 - k.  In the group of 2 µ 2 matrices over the real numbers under matrix addition, the inverse of

K 4 1
1 -3 O is written -K 4 1

1 -3 O, which equals K -4 -1
-1 3 O.

Theorem 11.3.3. If a is an element of group G, then Ia-1M-1 = a.

Theorem 11.3.3 (Rephrased). If a has inverse b and b has inverse c, then a = c.

Proof:

         a = a * Hb * cL    because c is the inverse of b

= Ha * bL * c    why?

                         = e * c               why? 

= c.                     by the identity property of e.          ‡

Theorem 11.3.4. If a and b are elements of group G, then Ha*bL-1 = b-1 *a-1

Note: This theorem simply gives you a formula for the inverse of a * b. This formula should be familiar. In Chapter 5 we saw that if A
and B are invertible matrices, then HA BL-1 = B-1 A-1 .

Proof:  Let x = b-1 *a-1. We will prove that x inverts a * b.  Since we know that the inverse is unique, we will have prove the theorem.

    Ha * bL * x = Ha * bL * Hb-1 *a-1L
= a* Hb* Hb-1 *a-1LL
= a* HHb*b-1L*a-1L
= a * He * a-1L
= a * a-1
= e

Similarly, x * Ha * bL = e; therefore, Ha*bL-1 = x = b-1 *a-1 ‡

Theorem 11.3.5. Cancellation Laws. If a, b, and c are elements of group G, both a * b = a * c and b * a = c * a imply that b = c.

Proof: Since a * b = a * c, we can operate on both a * b and a * c on the left with a-1 :
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a-1 * Ha * bL = a-1 * Ha * cL
Applying the associative property to both sides we get

Ha-1 * aL * b = Ha-1 * aL * c

or

e * b = e * c

and finally

b = c.

This completes the proof of the left cancellation law. The right law can be proven in exactly the same way. ‡

Theorem  11.3.6.  Linear  Equations  in  a  Group.   If  G  is  a  group  and  a,  b,  œ  G,  the  equation  a * x = b  has  a  unique  solution,
x = a-1 * b.  In addition, the equation x * a = b has a unique solution, x = b * a-1 .

Proof: (for a * x = b):

 a* x = b
= e * b
= Ha* a-1L * b
= a * Ha-1 * bL

By the cancellation law, we can conclude that x = a -1 * b. 

If c and d are two solutions of the equation a * x = b, then a * c = b = a * d and, by the cancellation law, c = d. This verifies that a -1 * b
is the only solution of a * x = b.  ‡

Note: Our proof of Theorem 11.3.6 was analogous to solving 4 x = 9 in the following way: 

 4 x = 9 = I4 ÿ 1
4
M 9 = 4 I 1

4
9M

Therefore, by cancelling 4, 

x = 1
4
ÿ 9 = 9

4
.

Exponentiation in a Group
If a is an element of a group G, then we establish the notation that 

a * a = a2

a*a*a = a3
etc.

 In addition, we allow negative exponent and define, for example, a-2 = Ha2L-1
Although this should be clear, proving exponentiation properties requires a more precise recursive definition:

Definition:   Exponentiation  in  a  Group.    For  n ¥ 0,  define  an  recursively  by  a 0 = e  and  if  n > 0, an = an-1 *a.   Also,  if  n > 1,
a-n = HanL-1 .

Example 11.3.2.

(a)  In the group of positive real numbers with multiplication, 

    53 = 52 ÿ5 = H51 ÿ5L ÿ5 = HH50 ÿ5L ÿ5L ÿ5 = HH1 ÿ5L ÿ5L ÿ5 = 5 ÿ5 ÿ5 = 125.

and

5-3 = H125L-1 = 1
125

(b)   In a group with addition, we use a different form of notation, reflecting the fact that in addition repeated terms are multiples, not powers.
For  example,  in  @Z; +D,  a  +  a  is  written  as  2 a,  a + a + a  is  written  as  3 a,  etc.  The  inverse  of  a  multiple  of  a  such  as
- Ha + a + a + a + aL = -H5 aL is written as H-5L a.

Although we define, for example, a5 = a4 * a, we need to be able to extract the single factor on the left.  The following lemma justifies doing
precisely that.

Lemma.  Let G be a group.  If b œ G and n ¥ 0, then  bn+1 = b* bn, and hence  b* bn = bn *b. 
Proof (by induction):  If  n = 0, 
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b1 = b0 *b by the definition of exponentiation
= e*b basis for exponentiation
= b * e identity property
= b * b0 basis for exponentiation

Now assume the formula of the lemma is true for some n ¥ 0,

bHn+1L+1 = bHn+1L * b by the definition of exponentiation
= Hb*bnL*b by the induction hypothesis
= b* Hbn *bL associativity
= b* Hbn+1L definition of exponentiation ‡

Based on the definitions for exponentiation above, there are several properties that can be proven. They are all identical to the exponentiation
properties from elementary algebra. 

Theorem 11.3.7. Properties of Exponentiation. If a is an element of a group G, and n and m are integers,

(a)  a-n = Ia-1Mn    and hence  HanL-1 = Ia-1Mn
(b)   an+m = an *am 

(c)   HanLm = an m

We will leave the proofs of these properties to the interested reader.  All three parts can be done by induction.  For example the proof of  (b)
would start by defining the proposition  pHmL , m ¥ 0, to be  an+m = an *am for all n .   The basis is pH0L : an+0 = an *a0.
Our final theorem is the only one that contains a hypothesis about the group in question. The theorem only applies to finite groups.

Theorem 11.3.8.  If G is a finite group,  †G§ = n, and a is an element of G, then there exists a positive integer m such that am = e and
m § n.

Proof: Consider the list a, a2, …, an+1  . Since there are n + 1 elements of G in this list, there must be some duplication. Suppose that
ap = aq, with p < q. Let m = q - p.    Then

 am = aq-p = aq *a-p  = aq * HapL-1 = aq * HaqL-1 = e

Furthermore, since 1 § p < q § n + 1,   m = q - p § n.    ‡

Consider  the  concrete  group  [Z;  +].  All  of  the  theorems  that  we  have  stated  in  this  section  except  for  the  last  one  say  something  about  Z.
Among the facts that we conclude from the theorems about Z are:

Since the inverse of 5 is -5, the inverse of -5 is 5.

The inverse of -6 + 71 is -H71L + -H-6L = -71 + 6.

 The solution of 12 + x = 22 is x = -12 + 22.

-4 H6L + 2 H6L = H-4 + 2L H6L = -2 H6L = -H2L H6LL.
7 H4 H3LL = H7 ÿ4L H3L = 28 H3L  (twenty-eight 3s).

EXERCISES FOR SECTION 11.3
A Exercises
1.   Let @G; * D be a group and a be an element of G.  Define f : G Ø G by f HxL = a * x.

(a)  Prove that f is a bijection.

(b)  On the basis of part a, describe a set of bijections on the set of integers.

2.   Rephrase Theorem 11.3.2 and write out a clear proof.

3.   Prove by induction on n that if a1, a2, …, an are elements of a group G, n ¥ 2, then

Ha1 *a2 *º⋯*anL-1 = an-1 *º⋯*a2-1 *a1-1.

       Interpret this result in terms of [Z; +]  and @R;*D.
4.   True or false? If a, b, c are elements of a group G, and a * b = c * a, then b = c. Explain your answer.

5.   Prove Theorem 11.3.7.
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6.    Each of the following facts can be derived by identifying a certain group and then applying one of the theorems of this section to it.  For
each fact, list the group and the theorem that are used.

(a) I 1
3
M 5 is the only solution of 3 x = 5.

(b)  -H-H-18LL = -18.

(c)  If A, B, C are 3µ3 matrices over the real numbers, with A + B = A + C, then B = C.

(d)  There is only one subset of the natural numbers for which K Å⊕ A = A for every A Œ N.
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11.4 Greatest Common Divisors  and Zn, the Integers Modulo n
In this section introduce the greatest common divisor operation and will introduce an important family of concrete groups.   

Greatest Common Divisors
We start with a theorem about integer division that is intuitively clear.  We leave the proof as an optional exercise.

The Division Property for Integers.  If  m, n œ Z ,  n > 0, then there exist two unique integers, q (quotient) and r (remainder), such that
m = n q + r and 0 § r < n.

Note: The division property says that if m is divided by n, you will obtain a quotient and a remainder, where the remainder is less than n.
This is a fact that most elementary school students learn when they are introduced to long division. In doing the division problem 1986 ¸ 97,
you obtain a quotient of 20 and a remainder of 46.  This result could either be written 1986

97
= 20 + 46

97
  or  1986 = 97 ÿ20 + 46.  The later

form is how the division property is normally expressed.
If r = 0, i. e.,  a = b q,  then all of the following say the same thing

b divides a
a is a multiple of b
b is a factor of a
b is a divisor of a

Notation      We use the notation   b a  if  b  divides a.   For example  2 18   and 9 18 , but  4 I 18   

Caution:  Don’t confuse the “divides” symbol with the “divided by” symbol.  The former is vertical while the later is slanted.   Notice that the statement  2 18 is
related to the fact that 18 ê2 is a whole number.

Definition:  Greatest Common Divisor.  Given two integers, a and b, not both zero.  The greatest common divisor of a and b is the
integer g such that  g a,  g b, and

c a and c b c g

A little simpler way to think of gcdHa, bL  is as the largest positive integer that is a divisor of both a and b.

For  small  numbers,  a  simple  way  to  determine  the  greatest  common  divisior  is  to  use  factorization.   For  example  if  we  want  the  greatest
common divisor of 660 and 350, you can factor the two integers:  660 = 22µ3 µ 5 µ 11 and 350 = 2 µ 52µ7.     Single factors of 2 and 5 are
the only ones that appear in both factorizations, so the greatest common divisor is 2 µ 5 = 10.
Relatively  Prime  Pairs.   Some  pairs  of  integers  have  no  common  divisors  other  than  1.   Such  pairs  are  called  relatively  prime  pairs.  For
example, 128 = 27  and 135 = 33  5  are relatively prime.  Notice that neither 128 nor 135 are primes.   In general,  a and b need not be prime in
order to be relatively prime.  However, if you start with a prime, like 23, for example, it will be relatively prime to everything but its multiples.
This theorem, which we prove later generalizes this observation:

Theorem.  If p is a prime and a is any integer such that p I a  then gcdHa, pL = 1

The Euclidean Algorithm
As early as Euclid’s time it was known that factorization wasn’t  the best way to compute greatest common divisors.

The Euclidean Algorithm is based on the following properties of the greatest common divisor

gcdHa, 0L = a   for a ¹≠ 0
gcdHa, bL = gcdHb, rL if b ¹≠ 0 and a = b q + r

To compute  gcdHa, bL,  we  divide  b  into  a  and  get  a  remainder  r  such  that  0 § r < b .   By the  property  above,  gcdHa, bL = gcdHb, rL .   We
repeat  the  process  until   we get  zero for  a  remainder.   The last  nonzero number  that  is  the  second entry in  our  pairs  is  the  greatest  common
divisior.   This is inevitable because the second number in each pair is smaller than the previous one.
Here is the computation to verify that gcd(99, 53) = 1.   At each line, the value of a is divided by the value of b.   The quotient is placed on the
next line along with the new value of a, which is the previous b; and the remainder, which is the new value of b.

q a b
- 99 53
1 53 46
1 46 7
6 7 4
1 4 3
1 3 1
3 1 0

If you were allowed to pick two numbers less than 100, which would you pick in order to force Euclid to work hardest?   Here's a hint
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q a b
- 34 21
1 21 13
1 13 8
1 8 5
1 5 3
1 3 2
1 2 1
2 1 0

For fixed values of a and b, consider integers of the form a x + b y where x and y can be any two integers.  For example if a = 36 and b = 27,
some of these results are tabulated below with x values along the left column and the y values on top.

Notice any patterns?   What is the smallest positive value the you see in this table?  How is it connected to 36 and 27
y

x

* -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6 -378 -351 -324 -297 -270 -243 -216 -189 -162 -135 -108 -81 -54

-5 -342 -315 -288 -261 -234 -207 -180 -153 -126 -99 -72 -45 -18

-4 -306 -279 -252 -225 -198 -171 -144 -117 -90 -63 -36 -9 18

-3 -270 -243 -216 -189 -162 -135 -108 -81 -54 -27 0 27 54

-2 -234 -207 -180 -153 -126 -99 -72 -45 -18 9 36 63 90

-1 -198 -171 -144 -117 -90 -63 -36 -9 18 45 72 99 126

0 -162 -135 -108 -81 -54 -27 0 27 54 81 108 135 162

1 -126 -99 -72 -45 -18 9 36 63 90 117 144 171 198

2 -90 -63 -36 -9 18 45 72 99 126 153 180 207 234

3 -54 -27 0 27 54 81 108 135 162 189 216 243 270

4 -18 9 36 63 90 117 144 171 198 225 252 279 306

5 18 45 72 99 126 153 180 207 234 261 288 315 342

6 54 81 108 135 162 189 216 243 270 297 324 351 378

Theorem 11.4.1.   If  a  and b are  positive  integers,  the  smallest  positive  value of  a x + b y  is  the  greatest  common divisor  of  a  and b,
gcdHa, bL.
Proof: If  g = gcdHa, bL, then g a and g b g Ha x + b yL for any x and y, so a x + b y can't be less than g.  To show that g is exactly the
least  positive  value,  we  show  that  g  can  be  attained  by  extending  the  Euclidean  Algorithm.   Performing  the  extended  algorithm  involves
building  a  table  of  numbers.  There  are  many  variations  on  the  way  that  this  table  arranged,  so  if  your  book  has  this  algorithm  it  may  look
slightly different.  
The table for gcd(152,53) is below.   In the "r" column, you will find 152 and 53, and then the successive remainders from division.  So each
number in "r" after the first two is the remainder after dividing the number immediately above it into the next number up.  To the left of each
remainder is the quotient from the division.   So in this case the third row of the table tells us that 152 = 53 µ 2 + 46. The last nonzero value in
r is the greatest common divisor.  
The "s" and "t" columns are new.  The values of s and t in each row are maintained so that
152s + 53t is equal to the number in the "r" column.   Notice that

152 = 152 µ 1 + 53 µ 0
53 = 152 µ 0 + 53 µ 1
46 = 152 µ 1 + 53 H-2L
...
1 = 152 µ 15 + 53 H-43L
0 = 152 H-53L + 53 µ 152
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q r s t
- 152 1 0
- 53 0 1
2 46 1 -2
1 7 -1 3
6 4 7 -20
1 3 -8 23
1 1 15 -43
3 0 -53 152

The next-to-last equation is what we're looking for in the end!  The main problem is to identify how to determine these values after the first two
rows.  The first two rows in these columns will always be the same.

Let's look at the general case of computing gcd(a,b).  If the s and t values in rows i - 1 and  i - 2 are correct, we have

  HAL : a si-2 + b ti-2 = ri-2
a si-1 + b ti-1 = ri-1

In addition, we know that

ri-2 = ri-1 qi + ri ri = ri-2 - ri-1 qi

If you substitute the expressions for ri-1 and ri-2 from (A) into this last equation and then collect the a and b terms separately you get 
ri = aHsi-2 - qi si-1L + bHti-2 - qi ti-1L

or 
si = si-2 - qi si-1    and   ti = ti-2 - qi ti-1

Look closely at the equations for ri, si, and ti.  Their forms are all the same.  With a little bit of practice you should be able to compute s and t
values quickly.

Modular Arithmetic
If two numbers, a and b, share the same remainder after dividing by n. we say that they are congruent modulo n, denoted a ª b Hmod nL. For
example, 13 ª 38 Hmod 5L because 13 = 5 ÿ2 + 3 and 38= 5· + 3.

Modular Arithmetic. If n is a positive integer, we define the operations of addition modulo n H+n) and multiplication modulo n Hµn) as
follows. If a, b œ Z ,

a +n b = the remainder after a + b is divided by n

a µn b = the remainder after a ÿ b is divided by n.

Notes:

(a)   The result of doing arithmetic modulo n is always an integer between 0 and n - 1, by the Division Property. This observation implies that80, 1, ..., n - 1< is closed under modulo n arithmetic.
(b)   It is always true that a +n b ª Ha + bL Hmod nL and aµn b ª Ha ÿ bL Hmod nL.   For example, 4 +7 5 = 2 ª 9 Hmod 7L and  

4 µ7 5 ª 6 ª 20 Hmod 7L.
(c)   We will use the notation Zn to denote the set 80, 1, 2, . . ., n - 1<.
Properties of Modular Arithmetic on Zn

Addition modulo n is always commutative and associative; 0 is the identity for +n and every element of Zn has an additive inverse.

Multiplication modulo n is always commutative and associative, and 1 is the identity for µn.

Theorem 11.4.2.  If a œ Zn, a ¹≠ 0, then the additive inverse of a is n - a.

Proof: a + Hn - aL = n ª 0 Hmod nL , since  n = n ÿ1 + 0.  Therefore,  a +n Hn - aL = 0 ‡

Note: The algebraic properties of +n and µn  on Zn are identical to the properties of addition and multiplication on Z.
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The Group Zn. For each n ¥ 1, @Zn; +nD is a group. Henceforth, we will use the abbreviated notation Zn  when referring to this group. Figure
11.4.1 contains the tables for Z1 through Z6.

Figure 11.4.1
Addition tables for Zn, 1£n£6.

Example 11.4.1.

(a) We are all somewhat familiar with Z12  since the hours of the day are counted using this group, except for the fact that 12 is used in place
of 0.  Military time uses the mod 24 system and does begin at 0.  If someone started a four-hour trip at hour 21, the time at which she would
arrive  is  21 +24 4 = 1.  If  a  satellite  orbits  the  earth  every  four  hours  and starts  its  first  orbit  at  hour  5,  it  would  end its  first  orbit  at  time
5 +24 4 = 9. Its tenth orbit would end at 5 +24 7µ24 4 = 9 hours on the clock
(b) Virtually all  computers represent  unsigned integers in binary form with a fixed number of digits.  A very small  computer might reserve
seven bits to store the value of an integer. There are only 27  different values that can be stored in seven bits. Since the smallest value is 0,
represented as 0000000, the maximum value will be 27 - 1 = 127, represented as 1111111. When a command is given to add two integer
values, and the two values have a sum of 128 or more, overflow occurs. For example, if we try to add 56 and 95, the sum is an eight-digit
binary  integer  10010111.  One  common  procedure  is  to  retain  the  seven  lowest-ordered  digits.  The  result  of  adding  56  and  95  would  be
0 010 111two = 23 ª 56 + 95 Hmod 128L. Integer arithmetic with this computer would actually be modulo 128 arithmetic.

  Mathematica Note

In Mathematica you can get the gcd of two numbers using the function GCD:

GCD@660, 350D
10

A related function, ExtendedGCD, provides the x and y values guaranteed in Theorem 11.4.2.

ExtendedGCD@1001, 231D
877, 81, -4<<

Most  computer  languages  have  a  "mod"  function  that  computes  the  remainder  when  one  integer  is  divided  by  another.    Mathematica  is  no
exception.  To determine the remainder upon dividing 1986 by 97 we can evaluate

Mod@1986, 97D
46

A mod 6 addition function can be defined based on Mod with the following input:

Plus6@a_, b_D := Mod@a + b, 6D
There is a free package called AbstractAlgebra  that is available at https://sites.google.com/site/eaamhl/eaam.  It  contains a function that
will generate the operation tables, also called Cayley Tables, such you see in Figure 11.4.1.  First load the package, as instructed:

<< AbstractAlgebra`Master`

We can form a the group Z6 using the FormGroupoid function:
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G = FormGroupoid@Range@0, 5D, Plus6D
GroupoidH80, 1, 2, 3, 4, 5<, -Operation-L

Then the function called CayleyTable generates the table for the group Z6:

CayleyTable@G, BodyColored Ø False,
HeadingsColored Ø False, ShowExtraCayleyInformation Ø FalseD

TheGroup
y

x

* 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Note:  The rules BodyColored Æ False, HeadingsColored Æ False, ShowExtraCayleyInformation Æ False  are included in the input
above for easier black and white readability. They would not be normally included when using CayleyTable. 
It's actually even easier to generate these tables because the family of Zn ' s is part of the package.  Here is the table for Z9:

CayleyTable@Z@9D, BodyColored Ø False,
HeadingsColored Ø False, ShowExtraCayleyInformation Ø FalseD

Z@9D
y

x

+ 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8 0

2 2 3 4 5 6 7 8 0 1

3 3 4 5 6 7 8 0 1 2

4 4 5 6 7 8 0 1 2 3

5 5 6 7 8 0 1 2 3 4

6 6 7 8 0 1 2 3 4 5

7 7 8 0 1 2 3 4 5 6

8 8 0 1 2 3 4 5 6 7

  Sage Note

In Sage, gcd is the greatest common divisor function.  It can be used in two ways.  For the gcd of 2343 and 4319 we can evaluate the expres-
sion  gcd(2343,4319).    If  we  are  working  with  a  fixed  modulus  m  that  has  a  value  established  in  your  Sage  session,  the  expression
m.gcd(k) to compute the gcd of m and any integer value k.
Sage has some extremely powerful tool for working with groups.  The integers modulo n are represented by the expression Integers(n) and
the addition and multiplications tables can be generated as follows.
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R = Integers(6)
print R.addition_table('elements')
print R.multiplication_table('elements')

+  0 1 2 3 4 5
 +------------
0| 0 1 2 3 4 5
1| 1 2 3 4 5 0
2| 2 3 4 5 0 1
3| 3 4 5 0 1 2
4| 4 5 0 1 2 3
5| 5 0 1 2 3 4

*  0 1 2 3 4 5
 +------------
0| 0 0 0 0 0 0
1| 0 1 2 3 4 5
2| 0 2 4 0 2 4
3| 0 3 0 3 0 3
4| 0 4 2 0 4 2
5| 0 5 4 3 2 1

Once we have assigned R a value of Integers(6),  we can do calculations by wrapping R() around the integers 0 through 5.  Here is a list
containing the mod 6 sum and product, respectively, of 5 and 4:

[R(5)+R(4), R(5)*R(4)]
@3, 2D

EXERCISES FOR SECTION 11.4
A Exercises
1.  Determine the greatest common divisors of the following pairs of integers without using any computational assistance.

(a)  23 32 5   and  22 3 52 7

(b)   2 µ 3 µ 4 µ 5 µ 6 µ 7   and  3 µ 5 µ 7 µ 9 µ 11 µ 13

(c)  194  and  195

(d)  12112 and 0

2.  Find all possible values of the following, assuming that m is a positive integer.

(a)  gcd Hm + 1, mL
(b)  gcd Hm + 2, mL
(c)  gcd Hm + 4, mL

3.   Calculate:

(a)  7 +8 3

(b)  7 µ8 3

(c)  4µ8 4

(d)  10 +12 2

(e)  6µ8 2 +8 6µ8 5

(f)  6µ8 H2 +8 5L
(g)   3 µ5 3 µ5 3 µ5 3 ª 34 Hmod 5L 
(h)   2 µ11 7

(i)    2 µ14 7

4.   List the additive inverses of the following elements:
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(a)   4, 6, 9 in Z10

(b)  16, 25, 40 in Z50

5.  In the group Z11 , what are:

(a)   3(4)?

(b)   36(4)?

(c)  How could you efficiently compute m H4L, m œ Z?

6. Prove that {1, 2, 3, 4} is a group under the operation µ5.

7. A student is asked to solve the following equations under the requirement that all arithmetic should be done in Z2. List all solutions.

(a)   x2 + 1 = 0.

(b)   x2 + x + 1 = 0.

8.   Determine the solutions of the same equations as in Exercise 5 in Z5. 

B Exercises
9.   Prove the division property by induction on m.

10.   Prove that congruence modulo n is an equivalence relation on the integers. Describe the set of equivalence classes that congruence modulo
n defines.
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11.5 Subsystems
The subsystem is a fundamental concept of algebra at the universal level.

Definition: Subsystem. If @V; *1, …, *nD is an algebraic system of a certain kind and W is a subset of V, then W is a subsystem of V if@W; *1, …, *nD is an algebraic system of the same kind as V. The usual notation for "W is a subsystem of V" is W § V.
Since  the  definition  of  a  subsystem  is  at  the  universal  level,  we  can  cite  examples  of  the  concept  of  subsystems  at  both  the  axiomatic  and
concrete level.

Example 11.5.1

(a)   (Axiomatic) If @G; *D is a group, and H is a subset of G, then H is a subgroup of G if @H; *D is a group.

(b)   (Concrete) U = 8-1, 1<  is a subgroup of @R*; ÿD. Take the time now to write out the multiplication table of U and convince yourself that@U; ÿD is a group.
(c)   (Concrete) The even integers, 2 Z = 82 k : k is an integer< is a subgroup of @Z; +D. Convince yourself of this fact.

(d)   (Concrete) The set of nonnegative integers is not a subgroup of @Z; +D. All of the group axioms are true for this subset except one: no
positive integer has a positive additive inverse.  Therefore,  the inverse property is  not  true.  Note that  every group axiom must  be true for  a
subset to be a subgroup.
(e)   (Axiomatic) If M is a monoid and P is a subset of M, then P is a submonoid of M if P is a monoid.

(f)     (Concrete)  If  B*  is  the  set  of  strings  of  0's  and  1's  of  length  zero  or  more  with  the  operation  of  concatenation,  then  two  examples  of
submonoids of B* are: (i) the set of strings of even length, and (ii) the set of strings that contain no 0's. The set of strings of length less than 50
is not a submonoid because it isn't closed under concatenation. Why isn't the set of strings of length 50 or more a submonoid of B*?
For the remainder of this section, we will concentrate on the properties of subgroups. The first order of business is to establish a systematic way
of determining whether a subset of a group is a subgroup.

Theorem/Algorithm 11.5.1. To determine whether H, a subset of group @G;*D, is a subgroup, it is sufficient to prove:

(a)   H is closed under *; that is, a, b œ H a * b œ H;

(b)   H contains the identity element for *; and

(c)   H contains the inverse of each of its elements; that is,  a œ H a-1 œ H.
Proof:  Our proof consists of verifying that if the three properties above are true, then all the axioms of a group are true for @H ; *D. By Condi-
tion (a),  *  can be considered an operation on H.  The associative, identity, and inverse properties are the axioms that are needed. The identity
and  inverse  properties  are  true  by  Conditions  (b)  and  (c),  respectively,  leaving  only  the  associative  property.  Since,  @G; *D  is  a  group,
a * Hb * cL = Ha * bL * c for all a, b, c œ G. Certainly, if this equation is true for all choices of three elements from G, it will be true for all
choices of three elements from H, since H is a subset of G.  ‡
For every group with at least two elements, there are at least two subgroups: they are the whole group and 8e<. Since these two are automatic,
they are not considered very interesting and are called the improper subgroups of the group; 8e< is sometimes referred to as the trivial subgroup.
All other subgroups, if there are any, are called proper subgroups.
We can apply Theorem 11.5.1 at both the concrete and axiomatic levels.

Examples 11.5.2.

(a)     (Concrete)  We  can  verify  that  2 Z § Z,  as  stated  in  Example  11.5.1.  Whenever  you  want  to  discuss  a  subset,  you  must  find  some
convenient  way  of  describing  its  elements.  An  element  of  2 Z  can  be  described  as  2  times  an  integer;  that  is,  a œ 2 Z  is  equivalent  toH$ kLZ Ha = 2 kL.  Now  we  can  verify  that  the  three  conditions  of  Theorem  11.5.1  are  true  for  2Z.   First,  if  a, b œ 2 Z,  then  there  exist
j, k œ Z  such  that  a = 2 j  and  b = 2 k.    A common error  is  to  write  something like   a = 2 j   and  b = 2 j.   This  would  mean that  a = b,
which is not necessarily true.   That is why two different variables are needed to describe a and b.  Returning to our proof, we can add a and
b:  

 a + b = 2 j + 2 k = 2 H j + kL. 
Since  j + k  is  an  integer,  a + b  is  an  element  of  2 Z.    Second,  the  identity,  0,  belongs  to  2Z  (0 = 2 H0L).  Finally,  if  a œ 2 Z  and
a = 2 k, -a = -H2 kL = 2 H-kL, and  -k œ Z,  therefore, -a œ 2 Z. By Theorem 11.5.1, 2 Z § Z.
How would this argument change if you were asked to prove that 3 Z § Z? or n Z § Z, n ¥ 2?

(b)    (Concrete) We can prove that H = 80, 3, 6, 9<  is  a subgroup of Z12  .  First,  for each ordered pair  Ha, bL œ H µ H,  a +12 b  is  in H.
This can be checked without too much trouble since †H µH§ = 16. Thus we can conclude that H is closed under +12. Second, 0 œ H. Third,
-0 = 0, -3 = 9, -6 = 6, and -9 = 3. Therefore, the inverse of each element in H  is in H.
(c) (Axiomatic) If H and K are both subgroups of a group G, then H › K  is a subgroup of G. To justify this statement, we have no concrete
information to work with, only the facts that H § G and K §G. Our proof that H › K § G reflects this and is an exercise in applying the
definitions of intersection and subgroup, (i) If a and b are elements of H › K, then a and b both belong to H, and since H § G, a * b must be
an element of H. Similarly, a * b œ K; therefore, a * b œ H › K. (ii) The identity of G must belong to both H and K; hence it belongs to
H › K. (iii) If a œ H › K, then a œ H, and since H § G, a-1 œ H.  Similarly, a-1 œ K. Hence, by the theorem,  H › K § G.

                          
                          

                     
            Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Now that  this  fact  has  been  established,  we  can  apply  it  to  any  pair  of  subgroups  of  any  group.  For  example,  since  2 Z  and  3 Z  are  both
subgroups of @Z; +D, 2 Z › 3 Z is also a subgroup of Z. Note that if a œ 2 Z › 3 Z,  a must have a factor of 3; that is, there exists k œ Z
such that a = 3 k.  In addition, a  must be even, therefore k  must be even. There exists j œ Z  such that k = 2 j,  therefore a = 3 H2 jL = 6 j.
This shows that 2 Z› 3 Z Œ 6 Z. The opposite containment can easily be established; therefore, 2 Z › 3 Z = 6 Z.
Given a finite group, we can apply Theorem 11.3.7 to obtain a simpler condition for a subset to be a subgroup.

Theorem/Algorithm 11.5.2.  If @G; * D is a finite group, H is a nonempty subset of G, and you can verify that H is closed under * , then H
is a subgroup of G.

Proof:  In  this  proof,  we  demonstrate  that  Conditions  (b)  and  (c)  of  Theorem  11.5.1  follow  from  the  closure  of  H  under  *  ,  which  is
Condition (a).   First,  select any element of H;  call  it  b.  The powers of b  :  b1,  b2,  b3, … are all  in H by the closure property.  By Theorem
11.3.7, there exists m, m § †G§, such that bm = e; hence e œ H. To prove that (c) is true, we let a be any element of H. If a = e, then a-1 is in
H since e-1 = e. If a ¹≠ e, aq = e for some q between 2 and †G§ and

 e = aq = a q-1 * a. 

Therefore, a-1 = aq-1 , which belongs to H since q - 1 ¥ 1. ‡

Example  11.5.3  To determine  whether  H1 = 80, 5, 10<  and  H2 = 80, 4, 8, 12<  are  subgroups  of  Z15  ,  we  need only  write  out  the  addition
tables (modulo 15) for these sets.

H1 H2

y

x

+ 0 5 10

0 0 5 10

5 5 10 0

10 10 0 5

y

x

* 0 4 8 12

0 0 4 8 12

4 4 8 12 1

8 8 12 1 5

12 12 1 5 9

Note that H1 is a subgroup of Z15. Since the interior of the addition table for H2 contains elements that are outside of H2 , H2 is not a subgroup
of Z15.
One kind of subgroup that merits special mention due to its simplicity is the cyclic subgroup.

Definition: Cyclic Subgroup Generated by an Element. If G is a group and a œ G, the cyclic subgroup generated by a, HaL, is the set of
powers of a and their inverses:

HaL = 8an : n œ Z <
A subgroup H is cyclic if there exists a œ H such that H = HaL.

Definition: Cyclic Group.   A group G  is cyclic if there exists b œ G such that Hb L = G.

Note:   If the operation on G is additive, then HaL = 8HnL a : n œ Z<.  
Example 11.5.4.

(a)  In @R ; ÿD,  H2L = 82n : n œ Z< = 9…, 1
16

, 1
8

, 1
4
1
2

, 1, 2, 4, 8, 16, …=.
(b)   In Z15,  H6L = 80, 3, 6, 9, 12}.   If  G  is finite, you need list only the positive powers of a  up to the first  occurrence of the identity to
obtain all of (a).  In Z15  ,  the multiples of 6 are 6, H2L 6 = 12, H3L 6 = 3, H4L 6 = 9, and H5L 6 = 0. Note that 80, 3, 6, 9, 12<  is also H3L, H9L,
and H12L. This shows that a cyclic subgroup can have different generators.
If you want to list the cyclic subgroups of a group, the following theorem can save you some time.

Theorem 11.5.3. If a is an element of group G, then HaL = Ha-1L. This is an easy way of seeing that H9L in Z15 equals H6L, since -6 = 9.

EXERCISES FOR SECTION 11.5
A Exercises
1. Which of the following subsets of the real numbers is a subgroup of @R; +D?

(a)   the rational numbers

(b)   the positive real numbers

(c)   8k ê2 k is an integer<
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(d)   92k k is an integer=
(e)   8x -100 § x § 100<

2.   Describe in simpler terms the following subgroups of Z:

(a)  5 Z › 4 Z

(b)  4 Z › 6 Z (be careful)

(c)   the only finite subgroup of Z

3.   Find at least two proper subgroups of R3 , the set of 3µ3 rook matrices (see Exercise 5 of Section 11.2).

4.   Where should you place the following in Figure 11.5.1?

(a)   e

(b)   a-1

(c)   x * y

G
H K

a

x

y

Figure 11.5.1

5.   (a) List the cyclic subgroups of Z6 and draw an ordering diagram for

the relation "is a subset of" on these subgroups.

(b)   Do the same for Z12 .

(c)   Do the same for Z8 .

(d)   On the basis of your results in parts a, b, and c, what would you expect if you did the same with Z24?

B Exercises
6.   Subgroups generated by subsets of a group. The concept of a cyclic subgroup is a special case of the concept that we will discuss here. Let@G; * D be a group and S a nonempty subset of G. Define the set HSL recursively by:

(i) If a œ S, then a œ HSL,
(ii) If a, b œ HSL, then a * b œ HSL, and 

(iii) If a œ HSL, then a-1 œ HSL.
(a)   By its definition, HSL  has all of the properties needed to be a subgroup of G. The only thing that isn't obvious is that the identity of G is in
(S).  Prove that the identity of G is in HSL.  
(b)  What is H89, 15<L in @Z; +D?
(c)  Prove that if H § G and S Œ H, then HSL § H. This proves that HSL is contained in every subgroup of G that contains S; that is, HSL = ›

SŒH
H§G

H .

(d)  Describe H80.5, 3<L in @R+; ÿD and in [R; +] .

(e) If j, k œ Z, H8 j, k<L is a cyclic subgroup of Z. In terms of j and k, what is a generator of H8 j, k<L?
7. Prove that if H, K § G, and H ‹ K = G, then H = G or K = G. (Hint: Use an indirect argument.)
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11.6 Direct Products

Our second universal algebraic concept lets us look in the opposite direction from subsystems. Direct products allow us to create larger systems.
In the following definition, we avoid complicating the notation by not specifying how many operations the systems have.

Definition: Direct  Product.   If  @V1;*1, ù1 , …D,  @V2;*2, ù2 , …D,  …, @V1;*n, ùn , …D  are algebraic systems of  the same kind,   then the
direct  product  of  these  systems  is  V = V1µV2µº⋯µVn  ,  with  operations  defined  below.  The  elements  of  V  are  n-tuples  of  the  formHa1, a2, . . . , a n L, where ak œ Vk, k = 1, . . . , n. The systems V1, V2, …, Vn  are called the factors of V. There are as many operations on V
as there are on the factors. Each of these operations is defined componentwise:
If Ha1, a2, . . . , a n L, Hb1, b2, . . . , b n L œ V,

Ha1, a2, . . . , a n L* Hb1, b2, . . . , b n L = Ha1 *1 b1, a2 *2 b2, …, an *n bnLHa1, a2, . . . , a n Lù Hb1, b2, . . . , b n L = Ha1 ù1 b1, a2 ù2 b2, …, an ùn bnL
ª

 

Example 11.6.1.  Consider the monoids N  (the set of natural numbers with addition) and B*  (the set of finite strings of 0's and 1's with
concatenation). The direct product of N with B* is a monoid. We illustrate its operation, which we will denote by * , with examples:

H4, 001L * H3, 11L = H4 + 3, 001 <> 11L = H7, 00 111L
H0, 11 010L * H3, 01L = H3, 1 101 001L
H0, lL * H129, 00 011L = H0 + 129, l <> 00 011L = H129, 00 011L
H2, 01L * H8, 10L = H10, 0110L, and 

H8, 10L * H2, 01L = H10, 1001L.
Note that our new monoid is not commutative. What is the identity for * ?

Notes:

(a) On notation. If two or more consecutive factors in a direct product are identical, it is common to combine them using exponential notation.
For example, Z µ Z µ R can be written Z2 µ R, and R µ R µ R µ R can be written R4. This is purely a notational convenience; no exponenti-
ation is really taking place.
(b)   In our definition of a direct product, the operations are called componentwise operations, and they are indeed operations on V.  Consider *
above. If two n-tuples, a and b, are selected from V, the first components of a and b, a1  and b1  , are operated on with *1  to obtain a1 *1 b1, the
first component of a * b. Note that since *1  is an operation on V1, a1 *1 b1  is an element of V1. Similarly, all other components of a * b, as they
are defined, belong to their proper sets.
One significant fact about componentwise operations is that the components of the result can all be computed at the same time (concurrently).
The time required to compute in a direct product can be reduced to a length of time that is not much longer than the maximum amount of time
needed to compute in the factors (see Figure 11.6.1).

Given
a and b a ÿ b

a1ÿb1

a2ÿb2

ª

anÿbn

Time

Figure 11.6.1
Concurrent calculation in a direct product.

(c)   A direct product of algebraic systems is not always an algebraic system of the same type as its factors. This is due to the fact that certain
axioms that are true for the factors may not be true for the set of n-tuples. This situation does not occur with groups however. You will find that
whenever a new type of algebraic system is introduced,  call  it  type T,  one of the first  theorems that  is  usually proven, if  possible,  is  that  the
direct product of two or more systems of type T is a system of type T.

Theorem 11.6.1. The direct product of two or more groups is a group; that is, the algebraic properties of a system obtained by taking the
direct product of two or more groups includes the group axioms.
We will only present the proof of this theorem for the direct product of two groups. Some slight revisions can be made to obtain a proof for any
number of factors.
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Proof:  Stating  that  the  direct  product  of  two  groups  is  a  group  is  a  short  way  of  saying  that  if  @G1; *1D  and  @G2; *2D  are  groups,  then@G1µG2; * D is also a group, where * is the componentwise operation on G1µG2.
Associativity of * : If a, b, c œ G1µG2,

a * Hb * cL = Ha1, a2L* HHb1, b2L* Hc1, c2LL
= Ha1, a2L* Hb1 *1 c1, b2 *2 c2L
= Ha1 *1 Hb1 *1 c1L, a2 *2 Hb2 *2 c2LL
= HHa1 *1 b1L*1 c1, Ha2 *2 b2L*2 c2L
= Ha1 *1 b1, a2 *2 b2L* Hc1, c2L
= HHa1, a2L* Hb1, b2LL* Hc1, c2L
= Ha * bL*c

Notice how the associativity property hinges on the associativity in each factor.

An identity for *: As you might expect, if e1 and e2 are identities for G1 and G2, respectively, then e = He1, e 2 L is the identity for G1µG2.  If
a œ G1µG2,

a * e = Ha1, a2L* He1, e 2 L
= Ha1 *1 e1, a2 *2 e 2L
= Ha1, a2L
= a

 

Similarly, e * a = a.

Inverses in G1µG2: The inverse of an element is determined componentwise a-1 = Ha1, a2L-1 = Ha1-1, a2-1L . To verify, we compute a * a-1 :

a * a-1 = Ha1, a2L* Ha1-1, a2-1L
= Ha1 *1 a1-1, a2 *2 a2-1L
= He1, e 2 L
= e

 

Similarly, a-1 * a = e. ‡

Example 11.6.2.

(a) If n ¥ 2, Z2n , the direct product of n factors of Z2, is a group with 2n elements. We will take a closer look at Z23 = Z2 µ Z2 µ Z2. The
elements of this group are triples of zeros and ones. Since the operation on Z2 is +2, we will use the symbol + for the operation on Z23 . Two
of the eight triples in the group are a = H1, 0, 1L and b = H0, 0, 1L. Their "sum" is a + b = H1 +2 0, 0 +2 0, 1 +2 1L = H1, 0, 0L. One
interesting fact about this group is that each element is its own inverse. For example a + a = H1, 0, 1L + H1, 0, 1L = H0, 0, 0L; therefore
-a = a.  We  use  the  additive  notation  for  the  inverse  of  a  because  we  are  using  a  form  of  addition.  Note  that  8H0, 0, 0L, H1, 0, 1L<  is  a
subgroup of Z23. Write out the "addition" table for this set and apply Theorem 11.5.2. The same can be said for any set consisting of (0, 0, 0)
and another element of Z23.
(b) The direct product of the positive real numbers with the integers modulo 4, R+ µ Z4 is an infinite group since one of its factors is infinite.
The operations on the factors are multiplication and modular addition, so we will select the neutral symbol ù for the operation on R+ µ Z4. If
a = H4, 3L and b = H0.5, 2L, then 

a ù b = H4, 3L ù H0.5, 2L = H4 ÿ 0.5, 3 +4 2L = H2, 1L
b 2 = b ù b = H0.5, 2L ù H0.5, 2L = H0.25, 0L,
a-1 = H4-1 , -3L = H0.25, 1L   and 

b-1 = I0.5-1 , -2M = H2, 2L.
It would be incorrect to say that Z4  is a subgroup of R+µ Z4  , but there is a subgroup of the direct product that closely resembles Z4. It is8H1, 0L, H1, 1L, H1, 2L, H1, 3L<. Its table is

"

ù 81, 0< 81, 1< 81, 2< 81, 3<
81, 0< 81, 0< 81, 1< 81, 2< 81, 3<
81, 1< 81, 1< 81, 2< 81, 3< 81, 0<
81, 2< 81, 2< 81, 3< 81, 0< 81, 1<
81, 3< 81, 3< 81, 0< 81, 1< 81, 2<

Imagine erasing H1, L throughout the table and writing +4  in place of ù. What would you get? We will explore this phenomenon in detail in the
next section.
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The whole direct product could be visualized as four parallel half-lines labeled 0, 1, 2, and 3 (Figure 11.6.2). On the kth line, the point that lies x
units to the right of the zero mark would be Hx, kL. The set 8H2n, HnL 1L n œ Z<, which is plotted on Figure 11.6.2, is a subgroup of R+µ Z4.
What cyclic subgroup is it? 

0

1

2

3

0 1 2 3 4

Figure 11.6.2
Graph of R+ µ Z4

The answer: HH2, 1LL or HH j, 3LL.
A more conventional direct product is R2, the direct product of two factors of @R; + D. The operation on R2  is componentwise addition; hence
we  will  use  +  as  the  operation  symbol  for  this  group.  You  should  be  familiar  with  this  operation,  since  it  is  identical  to  addition  of  2 µ 1
matrices. The Cartesian coordinate system can be used to visualize R2  geometrically. We plot the pair Hs, tL  on the plane in the usual way: s
units along the x axis and t units along the y axis. There is a variety of different subgroups of R2 , a few of which are:

(1) 8Hx, 0L x œ R<, all of the points on the x axis; 

(2) 8Hx, yL 2 x - y = 0<, all of the points that are on the line 2x - y = 0; 

(3)  If  a, b œ R,  8Hx, yL a x + b y = 0<.   The  first  two  subgroups  are  special  cases  of  this  one,  which  represents  any  line  that  passes
through the origin.
(4) 8Hx, yL 2 x - y = k, k œ Z<, a set of lines that are parallel to 2 x - y = 0.

(5) 8Hn, 3 nL n œ Z<, which is the only countable subgroup that we have listed.

We will leave it to the reader to verify that these sets are subgroups. We will only point out how the fourth example, call it H, is closed under
"addition." If a = Hp, qL and b = Hs, tL and both belong to H, then 2 p - q = j and 2 s — t = k, where both j and k are integers.

 a + b = Hp, qL + Hs, tL = Hp + s, q + tL
We can determine whether a + b belongs to H by deciding whether or not 2 Hp + sL - Hq + tL is an integer:

 2 Hp + sL - Hq + tL = 2 p + 2 s - q - t
= H2 p - qL + H2 s - tL
= j + k

which is an integer. This completes a proof that H is closed under the operation of  R2.

Several useful facts can be stated in regards to the direct product of two or more groups. We will combine them into one theorem, which we
will present with no proof. Parts a and c were derived for n = 2 in the proof of Theorem 11.6.1.
Theorem 11.6.2.  If G = G1 µ G2 µ º⋯ µ Gn is a direct product of n groups and Ha1, a2 , . . . , anL œ G, then:

(a)  The identity of G is He1, e2 , . . . , enL, where ek, is the identity of Gk.

(b)  Ha1, a2 , . . . , anL -1 = Ha1-1, a2-1 , . . . , an-1L .

(c)  Ha1, a2 , . . . , anL m = Ha1m, a2m , . . . , anmL  for all m œ Z.

(d)   G is abelian if and only if each of the factors G1, G2, …, Gn is abelian.

(e)  lf H1, H2, …, Hn are subgroups of the corresponding factors, then H1 µ H2 µ º⋯ µ Hn is a subgroup of G.

Not all subgroups of a direct product are obtained as in part e of Theorem 11.6.2. For example, 8Hn, nL n œ Z< is a subgroup of Z2, but is not
a direct product of two subgroups of Z.
Example 11.6.3.  Using the identity Hx + yL + x = y,  in  Z2,  we can devise a scheme for  representing a symmetrically linked list  using only
one link field. A symmetrically linked list is a list in which each node contains a pointer to its immediate successor and its immediate predeces-
sor (see Figure 11.6.3). If the pointers are n-digit binary addresses, then each pointer can be taken as an element of Z2n. Lists of this type can be
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accomplished using cells with only one link.  In place of a left  and a right pointer,  the only "link" is the value of the sum (left  link) + (right
link). All standard list operations (merge, insert, delete, traverse, and so on) are possible with this structure, provided that you know the value of
the  nil  pointer  and  the  address,  f,  of  the  first  (i.  e.,  leftmost)  cell.  Since  first  f .left  is  nil,  we  can  recover  f .right  by  adding  the  value  of  nil:
f + nil = Hnil + f .rightL + nil = f .right, which is the address of the second item. Now if we temporarily retain the address, s, of the second
cell, we can recover the address of the third item. The link field of the second item contains the sum s.left + s.right = first + third. Therefore 

Hfirst + thirdL + first = s + s.left
= H s.left + s.rightL + s.left
= s.right = third

. 

We no longer need the address of the first cell, only the second and third, to recover the fourth address, and so forth.

AL

1001

B

1101

C

0011

D

0110

E L

1001

A

1101

B

1010

C

1011

D

1011

E

0110

L = Nil= 0000

Figure 11.6.3
Symmetric Linked List

The following more formal algorithm uses names that the timing of the visits.

Algorithm 11.6.1. Given a symmetric list represented as in Example 11.6.3, a traversal of the list is accomplished as follows, where first
is the address of the first cell.  We presume that each item has some information that is represented by item.info and a field called item.link
that is the sum of the left and right links.

(1)  yesterday =nil
(2)  today =first
(3)  While today ¹≠ nil do

(3.1) Write(today.info)
(3.2) tomorrow = today.link + yesterday
(3.3) yesterday = today
(3.4) today = tomorrow.

At  any  point  in  this  algorithm  it  would  be  quite  easy  to  insert  a  cell  between  today  and  tomorrow.  Can  you  describe  how  this  would  be
accomplished?

EXERCISES FOR SECTION 11.6
A Exercises
1. Write out the group table of Z2 µ Z3 and find the two proper subgroups of this group.

2.   List more examples of proper subgroups of R2 that are different from the ones in Example 11.6.2.

3.   Algebraic properties of the n-cube:

(a)   The four elements of Z22  can be visualized geometrically as the four corners of the 2-cube (see Figure 9.4.5).  Algebraically describe
the statements:

(i) Corers a and b are adjacent.

(ii) Corners a and b are diagonally opposite one another.

(b)   The eight elements of Z23 can be visualized as the eight corners of the 3-cube. One face contains Z2 µ Z2µ 80< and the opposite face
contains the remaining four elements so that Ha, b, 1L is behind Ha, b, 0L. As in part a, describe statements i and ii algebraically.
(c)   If you could imagine a geometric figure similar to the square or cube in n dimensions, and its comers were labeled by elements of Z2n
as in parts a and b, how would statements i and ii be expressed algebraically?
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4.   (a)  Suppose  that  you  were  to  be  given  a  group  @G; * D  and  asked  to  solve  the  equation  x * x = e.  Without  knowing  the  group,  can  you
anticipate how many solutions there will be? 
     (b) Answer the same question as part a for the equation x * x = x.

5.   Which of the following sets are subgroups of Z µ Z? Give a reason for any negative answers.

(a)   80<
(b)   8H2 j, 2 kL j, k œ Z<
(c)   8H2 j + 1, 2 kL j, k œ Z<
(d)  8Hn, n 2 L n œ Z<
(e)   8H j, kL j + k is even<

6.   Determine the following values in group Z3 µ R*:

(a)  H2, 1L* H1, 2L
(b)   the identity element

(c)  H1, 1 ê2L-1
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1.7 Isomorphisms
The following informal definition of isomorphic systems should be memorized. No matter how technical a discussion about isomorphic systems
becomes, keep in mind that this is the essence of the concept.

Definition: Isomorphic Systems/Isomorphism. Two algebraic systems are isomorphic if there exists a translation rule between them so
that any true statement in one system can be translated to a true statement in the other

Example 11.7.1. Imagine that you are an eight-year-old child who has been reared in an English-speaking family, has moved to Greece,
and  has  been  placed  in  a  Greek  school.  Suppose  that  your  new  teacher  asks  the  class  to  do  the  following  addition  problem that  has  been
written out in Greek.

  trίa sun tέss¶εra isoύtai ___
 The natural thing for you to do is to take out your Greek-English/English-Greek dictionary and translate the Greek words to English, as

outlined  in  Figure  11.7.1.  After  you've  solved  the  problem,  you  can  consult  the  same  dictionary  to  obtain  the  proper  Greek  word  that  the
teacher  wants.  Although  this  is  not  the  recommended method  of  learning  a  foreign  language,  it  will  surely  yield  the  correct  answer  to  the
problem. Mathematically, we may say that the system of Greek integers with addition (sun) is isomorphic to English integers with addition
(plus). The problem of translation between natural languages is more difficult than this though, because two complete natural languages are
not isomorphic, or at least the isomorphism between them is not contained in a simple dictionary.

trίa sun tέss¶εra isoύtai ¶εptά

three plus four equals seven
Figure 11.7.1

Solution of a Greek arithmetic problem

Example  11.7.2.  Software  Implementation  of  Sets.  In  this  example,  we  will  describe  how  set   variables  can  be  implemented  on  a
computer. We will describe the two systems first and then describe the isomorphism between them.
System  1:  The  power  set  of  {1,  2,  3,  4,  5}  with  the  operation  union,  ‹.  For  simplicity,  we  will  only  discuss  union.  However,  the  other
operations are implemented in a similar way.
System  2:  Strings  of  five  bits  of  computer  memory  with  an  OR  gate.  Individual  bit  values  are  either  zero  or  one,  so  the  elements  of  this
system can be visualized as sequences of five 0's and 1's. An OR gate, Figure 11.7.2, is a small piece of computer hardware that accepts two
bit values at any one time and outputs either a zero or one, depending on the inputs. The output of an OR gate is one, except when the two bit
values that it accepts are both zero, in which case the output is zero. The operation on this system actually consists of sequentially inputting
the values  of  two bit  strings  into  the  OR gate.  The result  will  be  a  new string of  five  0's  and 1's.  An alternate  method of  operating in  this
system is to use five OR gates and to input corresponding pairs of bits from the input strings into the gates concurrently.

 

System 1 :@PH81, 2, 3, 4, 5<; ‹D System 2 :
Strings of 5 bits with OR

Á õ

X = 81, 2< õ 11 000
Figure 11.7.2

Translation between sets and strings of bits

The Isomorphism: Since each system has only one operation, it is clear that union and the OR gate translate into one another. The translation
between sets and bit strings is easiest to describe by showing how to construct a set from a bit string. If a1 a2 a3 a4 a5, is a bit string in System
2, the set that it translates to contains the number k if and only if ak  equals 1. For example, 10 001 is translated to the set 81, 5<, while the set81, 2< is translated to 11 000. Now imagine that your computer is like the child who knows English and must do a Greek problem. To execute
a program that has code that includes the set expression 81, 2< ‹ 81, 5<, it will follow the same procedure as the child to obtain the result, as
shown in Figure 11.7.3.

81,2< ‹ 81,5< = 81,2,5<

11000 OR 10001 = 11001
Figure 11.7.3

Translation of a problem in set theory

Example 11.7.3. Multiplying without doing multiplication.  This isomorphism is between @R+ ; ÿD and [R;+].  Until the 1970s, when the
price  of  calculators  dropped,  multiplication  and  exponentiation  were  performed  with  an  isomorphism between  these  systems.  The  isomor-
phism HR+  to R) between the two groups is that ÿ  is translated into + and any positive real number a  is translated to the logarithm of a.  To
translate back from R to R+  , you invert the logarithm function. If base ten logarithms are used, an element of R, b, will be translated to 10b.
In pre-calculator days, the translation was done with a table of logarithms or with a slide rule. An example of how the isomorphism is used
appears in Figure 11.7.4.
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8 ÿ 125 = 1000

0.90309 + 2.09691 = 3.000000
Figure 11.7.4

Multiplication using logarithms

The following  definition  of  an  isomorphism between two groups  is  a  more  formal  one  that  appears  in  most  abstract  algebra  texts.  At  first
glance, it appears different, it is really a slight variation on the informal definition. It is the common definition because it is easy to apply; that
is, given a function, this definition tells you what to do to determine whether that function is an isomorphism.

Procedure for showing that two groups are isomorphic
Definition: Group Isomorphism.  If @G1 ; *1D and @G2 ; *2D are groups, f : G1 Ø G2 is an isomorphism from G1 into G2 if: 

(a) f is a bijection, and

(b) f Ha *1 bL = f HaL *2 f HbL   for all a, b œ G1  

If such a function exists, then G1 is isomorphic to G2.

Notes:

(a)   There could be several different isomorphisms between the same pair of groups. Thus, if you are asked to demonstrate that two groups
are isomorphic, your answer need not be unique.
(b)   Any application of this definition requires a procedure outlined in Figure 11.7.5.

Define a function T:G1ØG2 and
prove that T is an isomorphism.

Prove that T
is a bijection.

Prove that
THa *1 bL= THaL *2 THbL for all a,b œ G1.

Prove that T
is onto.

Prove that T
is one-to-one.

Figure 11.7.5
Steps in proving that G1and G2 are isomorphic

The first condition, that an isomorphism be a bijection, reflects the fact that every true statement in the first group should have exactly one
corresponding true statement in the second group. This is exactly why we run into difficulty in translating between two natural languages. To
see  how  Condition  (b)  of  the  formal  definition  is  consistent  with  the  informal  definition,  consider  the  Function  L : R+ Ø R  defined  by
L HxL = log10 x.  The translation diagram between R+  and R  for  the  multiplication problem a ÿ b  appears  in  Figure  11.7.6.  We arrive  at  the
same  result  by  computing  L-1 HLHaL + LHbLL  as  we  do  by  computing  a ÿ b.  If  we  apply  the  function  L  to  the  two  results,  we  get  the  same
image:
         LHa ÿ bL = LHL-1HLHaL + L HbLLL = LHaL + L HbL   (11.7a)

since LHL-1HxLL = x. Note that 11.7a is exactly Condition b of the formal definition applied to the two groups R+ and R.
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a ÿ b = L-1HLHa * bLL

LHaL + LHbL = LHaÿbL
Figure 11.7.6

Multiplication using logarithms - general situation

Example 11.7.4.  Consider  G = :K 1 a
0 1 O a œ R> with matrix multiplication.   This group @R; +D is isomorphic to G.   Our translation rule is

the function f : R Ø G  defined by f HaL = K 1 a
0 1 O.   Since groups have only one operation, there is no need to state explicitly that addition is

translated to matrix multiplication. That f is a bijection is clear from its definition. If a and b are any real numbers,

f HaL f HbL = K 1 a
0 1 O K 1 b

0 1 O
= K 1 a + b

0 1 O
= f Ha + bL

We can apply this translation rule to determine the inverse of a matrix in G. We know that a + H-aL = 0 is a true statement in R.  Using f  to
translate this statement, we get

f HaL f H-aL = f H0L
or

K 1 a
0 1 O K 1 -a

0 1 O = K 1 0
0 1 O

therefore,

K 1 a
0 1 O-1 = K 1 -a

0 1 O
Theorem 11.7.1 summarizes some of the general facts about group isomorphisms that are used most often in applications.  We leave the proof
to the reader.

Theorem 11.7.1.  If @G;*D and @H, ùD are groups with identities e and e', respectively, and T : G Ø H  is an isomorphism from G into
H, then:

(a)  T HeL = e ',
(b)  THaL-1 = TIa-1M  for all a œ G, and
(c)  If K is a subgroup of G, then T HKL = 8T HaL : a œ K< is a subgroup of H and is isomorphic to K.

"Is isomorphic to" is an equivalence relation on the set of all groups. Therefore, the set of all groups is partitioned into equivalence classes, each
equivalence class containing groups that are isomorphic to one another.

Procedures for showing groups are not isomorphic
How do you decide that two groups are not  isomorphic to one another? The negation of "G  and H  are isomorphic" is that no translation rule
between G  and  H  exists.  If  G  and  H  have  different  cardinalities,  then  no  bijection  from G  into  H  can  exist.  Hence  they  are  not  isomorphic.
Given that †G§ = †H§, it is usually impractical to list all bijections from G into H and show that none of them satisfy Condition b of the formal
definition. The best way to prove that two groups are not isomorphic is to find a true statement about one group that is not true about the other
group. We illustrate this method in the following checklist that you can apply to most pairs of non-isomorphic groups in this book.
Assume that @G;*D and @H;ùD are groups. The following are reasons for G and H to be not isomorphic.

(a)   G and H do not have the same cardinality. For example, Z12 µ Z5 can't be isomorphic to Z50 and @R; +D can't be isomorphic to @Q+ ; ÿD,
(b)   G is abelian and H is not abelian since a * b = b * a is always true in G, but T HaL ù T HbL = T HbL ù T HaL would not always be true. Two
groups  with  six  elements  each are  Z6  and the  set  of  3 µ 3 rook matrices  (see  Exercise  5  in  Section 11.2).  The second group is  non-abelian,
therefore it can't be isomorphic to Z6 .
(c)   G has a certain kind of subgroup that H doesn't have. Theorem 11.7.1(c) states that this cannot happen if G is isomorphic to H. @R* ; ÿD and@R+ ; ÿD  are not isomorphic since R*  has a subgroup with two elements,  8-1, 1<,  while the proper subgroups of R+  are all  infinite (Convince
yourself of this fact!).

(d)   The number of solutions of x * x = e in G is not equal to the number of solutions of y ù y = e ' in H.   Z8  is not isomorphic to Z23  since
x +8 x = 0 has  two solutions,  0  and 4,  while  y + y = H0, 0, 0L  is  true for  all  y œ Z2

3.  If  the operation in  G  is  defined by a  table,  then the
number of solutions of x * x = e  will  be the number of occurrences of e  in the main diagonal of the table. The equations x3 = e,  x4 = e,  …
can also be used in the same way to identify non-isomorphic groups.
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(e)   One of the cyclic subgroups of G equals G (i. e., G is cyclic), while none of H's cyclic subgroups equals H (i. e., H is noncyclic). This is a
special case of Condition c. Z and Z µ Z are not isomorphic since Z = X1\ and Z µ Z is not cyclic.

EXERCISES FOR SECTION 11.7
A Exercises
1.   State whether each pair of groups below is isomorphic. If it is, give an isomorphism; if it is not, give your reason.

(a)  Z µ R and R µ Z

(b)  Z2µZ  and Z µ Z

(c)   R and Q µ Q

(d)   PH81, 2<L with symmetric difference and Z22

(e)   Z22 and Z4

(f)    R4 and M2µ2HRL with matrix addition

(g)   R2 and R µ R+ 

(h)   Z2 and the 2 µ 2 rook matrices

(i)   Z6 and Z2µ Z3 

2.   If you know two natural languages, show that they are not isomorphic.

3.   Prove that the relation "is isomorphic to" on groups is transitive.

4.  (a) Write out the operation table for G = @81, — 1, Â, -Â<, ÿD where Â is the complex number for which Â2 = - 1. Show that G is isomor-
phic to @Z4; +4D. 
    (b) Solve x2 = -1 in G by first translating to Z4 , solving the equation in Z4 , and then translating back to G.

B Exercises
5.     It  can  be  shown  that  there  are  five  non-isomorphic  groups  of  order  eight.  You  should  be  able  to  describe  at  least  three  of  them.  Do  so
without use of tables. Be sure to explain why they are not isomorphic.
6.   Prove Theorem 11.7.1.

7.   Prove that all infinite cyclic groups are isomorphic to Z.

8.  (a) Prove that R* is isomorphic to Z2 µ R.

(b) Describe how multiplication of nonzero real numbers can be accomplished doing only additions and translations.

9.  Prove that if G is any group and g is some fixed element of G, then the function fg defined by fgHxL = g* x*g-1 is an isomorphism from G
into itself.  An isomorphism of this type is called an automorphism.

Chapter 11 - Algebraic Systems

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



11.8 Using Computers to Study Groups

Groups in Mathematica
Mathematica  has  a  wide variety  of  computable  databases  available  and one of  them is  on finite  groups.   To access  the  database you use the
function FiniteGroupData.  Extensive documentation is available at  .   Since we've only scratch the surface of group theory at this point,
most of the groups and concepts mentioned are likely to be unfamiliar to the reader.  For this reason, we well wait until Chapter 15 to discuss
that database.
The Combinatorica package that is included in all Mathematica distributions has limited abstract algebra 

<< Combinatorica`

Here is how to generate the body of the operation table for the ring @Z7; +7D.  Notice that this really an addition table even though the function
that creates the table is called MultiplicationTable.  

MultiplicationTable@Range@0, 6D, Function@8a, b<, Mod@a + b, 7DDD
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 2 3 4 5
7 1 2 3 4 5 6

An  even  more  user-friendly  package  that  you  would  need  to  download  to  use  is  available  at  Exploring  Abstract  Algebra  with  Mathematica
(http://www.central.edu/EAAM/).  The package, when installed on your computer, is loaded with the command

<< AbstractAlgebra`Master`

The group Z12 is 

G = ZG@12D
GroupoidH80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<, HÒ1 + Ò2L mod 12 &L

At this point G is an object that consists of the set 80, 1, 2, …, 11< and the binary operation +12.  Among things we can do with G is that we can

examine its subgroups.
Subgroups@GD
8GroupoidH80<, HÒ1 + Ò2L mod 12 &L, GroupoidH80, 2, 4, 6, 8, 10<, HÒ1 + Ò2L mod 12 &L,

GroupoidH80, 3, 6, 9<, HÒ1 + Ò2L mod 12 &L, GroupoidH80, 4, 8<, HÒ1 + Ò2L mod 12 &L,
GroupoidH80, 6<, HÒ1 + Ò2L mod 12 &L, GroupoidH80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<, HÒ1 + Ò2L mod 12 &L<

We can view the inverses of elements in a variety of ways.  For example, we can get them paired up.  Notice that two of the elements, 0 and 6
invert themselves.

Inverses@GD
0 0
1 11
2 10
3 9
4 8
5 7
6 6

There is a "Visual Mode" that gives us a different view of the inverses.  The boxes with "?" and "Ø" give further information in you are reading
this in a Mathematica Notebook and have the package installed.
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Inverses@G, Mode Ø VisualD
0

1

2

3

4

5
6

7

8

9

10

11

? Ø

The package was designed for teaching a first course in abstract algebra and so it  has features that are more basic than other abstract algebra
resources.   For example, we can ask  G is really a group and get quite a bit of information.
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GroupQ@G, Mode Ø TextualD
Given a set S and an operation *, we call the pair HS,*L
a group if S is closed under the operation *, there is an identity
element, every elemement has an inverse and the operation * is
associative.

We say a Groupoid G has an identity e if for all other elements g in G we have e + g = g + e = g Hwhere + indicates the operationL.
In this case, Z@12D has the identity 0.

Ø

We say that a set S is closed under an operation op if whenever we have x and y in S, we also have op@x,yD Hor x~op~yL in S.
In this case, the Groupoid Z@12D is indeed closed.

Ø

Given a Groupoid G, we say an element g in G has an inverse h if G has an identity, say e, and g + h = h + g
= e Hwhere + indicates the operationL. The Groupoid Z@12D has an inverse for every element. Here they are:

x x-1
0 0
1 11
2 10
3 9
4 8
5 7
6 6

Ø

Given a structured set S HGroupoid or RingoidL, we say the operation * is
associative if for every g, h, and k in S we have Hg*hL*k = g*Hh*kL, where * is the group operation.

In this case, Z@12D is associative. Consider the following table illustrating random
triples that associate. Pay attention to the last two columns.

i j k Hi*jL*k i*Hj*kL
2 11 4 5 5
3 1 4 8 8
8 9 8 1 1
7 5 2 2 2
8 8 2 6 6

10 6 9 1 1
4 9 7 8 8
4 5 2 11 11

11 4 1 4 4
5 10 6 9 9

Ø

This package also has much more capabilities than what we've covered so far and we will revisit it in Chapters 15 and 16.

Groups in Sage
Abstract Algebra seems to have been given a much higher priory in the design of Sage than it was in Mathematica.   Again, the capabilities far
exceed what we've touch on in the theory, but here are a few examples that you should understand.  Here is how to generate the group related to
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Z14.

G=AbelianGroup(1,[14])
G.list()

[1, f, f^2, f^3, f^4, f^5, f^6, f^7, f^8, f^9, f^10, f^11, f^12, f^13]

There is  no output  from assigning G.    The elements  of  G are  generated from the list  method.   The connection with Z14  is  that  when we
multiply powers of f, the exponents are added with +14.   Among other things we can ask whether G is abelian and what its subgroups are.

G.is_abelian()
True
G.subgroups()
[Multiplicative Abelian Group isomorphic to C2 x C7, which is the
subgroup of
Multiplicative Abelian Group isomorphic to C14
generated by [f], Multiplicative Abelian Group isomorphic to C7, which
is the subgroup of
Multiplicative Abelian Group isomorphic to C14
generated by [f^2], Multiplicative Abelian Group isomorphic to C2, which
is the subgroup of
Multiplicative Abelian Group isomorphic to C14
generated by [f^7], Trivial Abelian Group, which is the subgroup of
Multiplicative Abelian Group isomorphic to C14
generated by []]
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SUPPLEMENTARY EXERCISES FOR CHAPTER 11
Section 11.1

1.   V = {a, b, c} is a set with operations + and · defined by the following "addition" and "multiplication" tables:

+ a b c
a
b
c

a b c
b c a
c a b

  

ÿ a b c
a
b
c

a a a
a b c
a c b

      (a)  With respect to V under + determine,

             (i)   The identity (i.e., the "zero" of the addition).

             (ii)  The inverse of each element, that is, -a, -b, and -c.

      (b)  With respect to V under · determine,

             (i)   The identity (i.e., the "one" of the multiplication). 

             (ii)  The inverse of each element different from "zero."

      (c)   Is + distributive over · ? Is · distributive over + ?

2.   (a)   Determine whether the following are valid binary operations on the given sets. Explain fully.

             (i)  Matrix addition on A =  :K a b
c 0 O a, b, c œ R>

             (ii)  Matrix multiplication on the set A above.

             (iii) On Q+,  define * by a * b = Ha ÿ bL ê2.

             (iv)  Function composition on AA = {ƒ: A Ø A}, where A is {1, 2, 3}. 

             (v)   Function composition on B = 8ƒ œ AA ƒ is a bijection<. 
      (b)  For each binary operation above give the identity element if it exists. Explain.

      (c)  Determine which of the above binary operations are commutative and which are associative.

3.   Let S = set of all bijections of a set A, and let Î be function composition. Does Î have the inverse property? Does function composition have
the involution property? Explain.
4.   Does + on M2µ2HRL have the inverse property? Does  +  have the involution property? Explain.

5.    Prove that  the odd integers  are  closed under  multiplication but  not  under  addition.  Are the even integers  closed under  both addition and
multiplication? Prove your answers.
Section 11.2

6.   (a)  Show that R2  is a group under componentwise addition, that is,

                                   Ha1, a2L + Hb1, b2L = Ha1 + a2, b1 + b2L.
      (b)  Show that 8Hx, 2 xL x œ R< is a group under componentwise addition. Draw the graph of this subset. Describe                      similar
subsets of  R2  that are also groups.
7.  Prove that the set of all 2 µ 2 invertible matrices (over R) is a group under matrix multiplication. Assume, as indicated in Chapter 5, that the
associative law is true for matrices under multiplication. This group is called the general linear group of degree 2 over R, and it is denoted by
GLH2, RL. It is given this name because these matrices are matrix representations of linear motions of R2  .

8.   Prove that :A = K a b
c d O det A = 1>  is  a group under matrix multiplication. Assume that the associative law is true under matrix multi-

plication. This group is called the special linear group of degree 2 over R and it is denoted SLH2, RL.
9.   Show that R is a group under the operation * defined by a * b = a + b + 5 for a, b œ R.

10.   (a)  let B3µ3 be the set of all 3 µ 3 Boolean (adjacency) matrices discussed in Section 6.4. Is B3µ3 a monoid under Boolean addition? Is it a
group? Explain.
        (b)   Is B3µ3 a monoid under Boolean multiplication? Is it a group? Explain.

Section 11.3
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11.   Define * on Q+ by a * b = Ha bL ê2. Prove that @Q+ ; *D is a group.

12.   Let G be the group R under the operation a * b = a + b + 5 for a, b œ R. Solve the following equations for x in G.

        (a)  x * 3 = 5                              (d) x2 = 2

        (b)  2 * x * 4 = 6                        (e) 4 * x2 = 5

        (e)  x3 = 7

13.   Solve the equation A *X * B = C in GLH2, RL where

                       A = K 2 0
0 3 O,       B = K 4 2

2 2 O,    and    C = K 2 1
0 1 O.

14.   Prove that if @G; *D is a group, Ha * bLn = an * bn for all  n ¥ 1 and a, b œ G if and only if [G;*] is an abelian group.

Section 11.4

15.   Calculate the following in Z5:

        (a)   3 +5 8

        (b)  H-3L µ5 2

        (c)   H3 µ5 2L +5 H2 µ5 2L
        (d)   2 -1 (i.e., the multiplicative inverse of 2)
16.   (a)   Prove that {1, 3, 5, 7}, is a group under µ8 . Write out its group table.

        (b)   Let U HZnL  stand for the elements of Zn , which have inverses under µn. Convince yourself that UHZn L is a group under µn.

       (c)   Prove that the elements of UHZn L are those elements a œ Zn  such that gcdHa, nL = 1. You may use the fact that gcdHa, bL = 1 ñ
there exist integers s and t such that sa + tb = 1.
Section 11.5

17.   (a)   Recall from "Supplementary Exercises," Section 11.4, that UHZ8 Lis a group under µ8 . List all cyclic subgroups of this group. 

        (b)   Is UHZ8 L a cyclic group? Explain.

18.   (a)   Use Theorem 11.5.1 to prove that the set of even integers is a subgroup of the group Z (under +). 

        (b)   Is the set of odd integers a subgroup of the group Z (under +)?

19.   Prove that SLH2, RL is a subgroup of GLH2, RL. See Exercises 7 and 8 above for an explanation of this notation.

20.   Recall that M2µ2HRL is a group under addition.

        (a)  Is A = :K a b
a 0 O a, b œ R> a subgroup of M2µ2 HRL?

        (b)  Is B = :K a b
b 1 O a, b œ R> a subgroup of M2µ2 HRL?

        (c)   Are either of the subsets in parts a and b subgroups of GLH2, RL?
21.   Let B3µ3  be the monoid of all 3 µ 3 Boolean matrices, under Boolean addition. Let S be a subset of B3µ3  consisting of all 3 µ 3 matrices
that represent symmetric relations. Is S a submonoid of B3µ3 ?
Section 11.6

22.  Using the data structure in the text for doubly linked lists with six-bit addresses, what are the addresses of the records containing A and D?
Write your answer as a sum in the group Z26 and then as an address.

A

?

B

010101

011100

C

001011

000011

D

?

23.   Determine the inverse of each element in the respective group.

        (a)   (2, 3, 5) in Z3 µ Z7 µ Z25

        (b)   (1,0, 1, l) in Z4
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        (c)   (3, 2) in R+ µ Z6

        (d)   (2, 3,5) in R3

24.   Determine the identity elements in the following groups:

        (a)   R+µR+ 

        (b)   R+µZ3

        (c)   GLH2, RL µ R3

25.   Which of the following groups are abelian? Explain.

        (a)   Z2µZ24µZ75

        (b)   GLH2, RL µZ2

        (c)   Zn

26.   Is 80, 3< µ 80, 4, 8< a subgroup of Z6 µ Z8 ? Explain.

Section 11.7

27.   Prove that the cyclic subgroup (4) of Z16 is isomorphic to Z4 .

28.   Let G = 8 &, $, %<. Given that @G; *D is a group and that it is isomorphic to the group @Z3; +3D  with isomorphism T : G Ø Z3  defined
by T H &L = 1, T H$L = 2, and T H%L = 0. What are
        (a)   $ * $      (b)   The identity of @G; *D
29.     Let  U  be  a  set  and  PU  =  {propositions  over  the  set  U}.  It  can  be  shown  that  the  algebraic  system  @PU; ~, Ô , ÓD  is  isomorphic  to@PHUL; ÿ, ›, ‹D.
        (a)   Explain what this means.

        (b)   How does this help you understand the language of the algebra of propositions?

        (c)   Give the "propositional" analogue to the following statement: If A › Bc = « and A › B = « then A = «.

30.   Write out the operation tables for the following systems:

        (a)   [{0, 1}; +, ·] where + and · denote Boolean addition and multiplication.

        (b)  @8-1, 1<; Ô, ÓD where i Ô j and i Ó j denote the largest and smallest, respectively, of i and j.

        (c)   @Z2; +2, µ2D.
        Are these systems isomorphic? Explain.

31.   Prove that the group C, under +, is isomorphic to the group R2 , under + .

32.   Determine which of the following groups are isomorphic. Explain.

        (a)   R3 , the 3 µ 3 rook matrices, and Z6

        (b)   R3 and SA = 8 f œ AA : ƒ is a bijection<, where A is {1, 2, 3}.

        (c)   Z6 and UHZ7L
33.   Prove that R4 under addition, is isomorphic to M2µ2HRL, under addition.

34.   Prove that the group @UHZ8L; µ8D is isomorphic to @Z4; +4 D.
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chapter 12

MORE MATRIX ALGEBRA

GOALS
In Chapter 5 we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to
elementary  algebra.  The  reader  should  briefly  review  this  material.  In  this  chapter  we  shall  look  at  a  powerful  matrix  tool  in  the  applied
sciences—namely,  a  technique  for  solving  systems  of  linear  equations.  We  will  then  use  this  process  for  determining  the  inverse  of  nµn
matrices, n ¥ 2, when they exist. We conclude by a development of the diagonalization process, with a discussion of several of its applications.

12.1 Systems of Linear Equations
The method of solving systems of equations by matrices that we will look at is based on procedures involving equations that we are familiar
with from previous mathematics courses. The main idea is to reduce a given system of equations to another simpler system that has the same
solutions.

Definition: Solution Set. Given a system of equations involving real variables x1, x2, …, xn, the solution set of the system is the set of n-
tuples in Rn, Ha1, a2, …, anL such that the substitutions x1 = a1, x2 = a2, …, xn = an make all the equations true.

In terms of logic, a solution set is a truth set of a system of equations, which is a proposition over n-tuples of real numbers.

In general, if the variables are from a set S, then the solution set will be a subset of Sn.  For example, in number theory mathematicians study
Diophantine equations, where the variables can only take on integer values instead of real values.

Definition:  Equivalent  Systems  of  Equations.  Two  systems  of  linear  equations  are  called  equivalent  if  they  have  the  same  set  of
solutions.

Example 12.1.1. The previous definition tells us that if we know that the system

 
4 x1 + 2 x2 + x3 ‡ 1
2 x1 + x2 + x3 ‡ 4
2 x1 + 2 x2 + x3 ‡ 3

is equivalent to the system

x1 + 0 x2 + 0 x3 ‡ -1
0 x1 + x2 + 0 x3 ‡ -1
0 x1 + 0 x2 + x3 ‡ 7

then both systems have the solution set  8H-1, -1, 7L<.   In other words,  the values x1 = -1,  x2 = -1,  and x3 = 7 are the only values of  the
variables that make all three equations in either system true.

Theorem  12.1.1.  Elementary  Operations  on  Equations.  If  any  sequence  of  the  following  operations  is  performed  on  a  system  of
equations, the resulting system is equivalent to the original system:
(1) Interchange any two equations in the system.

(2) Multiply both sides of any equation by a nonzero constant.
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(3) Multiply both sides of any equation by a nonzero constant and add the result to a second equation in the system, with the sum replacing
the latter equation.
Let us now use the above theorem to work out the details of Example 12.1.1 and see how we can arrive at the simpler system..

Step 1. We will first change the coefficient of x1  in the first equation to one and then use it as a pivot to obtain 0's for the coefficients of x1  in
Equations 2 and 3.

H1.1L 4 x1 + 2 x2 + x3 ‡ 1
2 x1 + x2 + x3 ‡ 4
2 x1 + 2 x2 + x3 ‡ 3

Multiply Equation 1 by 1
4

to obtain

H1.2L x1 +
x2
2
+ x3

4
‡ 1

4
2 x1 + x2 + x3 ‡ 4
2 x1 + 2 x2 + x3 ‡ 3

Multiply Equation 1 by - 2 and

add the result to Equation 3 to obtain

H1.3L
x1 + x2

2
+ x3

4
‡ 1

4

0 x1 + 0 x2 +
x3
2

‡ 7
2

2 x1 + 2 x2 + x3 ‡ 3

Multiply Equation 1 by - 2 and add

the result to Equation 3 to obtain

H1.4L
x1 + x2

2
+ x3

4
‡ 1

4

0 x1 + 0 x2 +
x3
2

‡ 7
2

0 x1 + x2 +
x3
2

‡ 5
2

Note:  We've  explicitly  written  terms  with  zero  coefficients  such  as  0 x1  to  make  a  point  that  all  variables  can  be  thought  of  as  being
involved  in  all  equations.    After  this  example  we  will  discontinue  this  practice  in  favor  of  the  normal  practice  of  making  these  terms
"disappear."
Step 2.  We would now like to proceed in a  fashion analogous to Step 1—namely,  multiply the coefficient  of  x2  in  the second equation by a
suitable number so that the result is 1. Then use it as a pivot to obtain 0's as coefficients for x2  in the first and third equations. This is clearly
impossible (Why?),  so we will first interchange Equations 2 and 3 and proceed as outlined above.

H2.1L
x1 + x2

2
+ x3

4
‡ 1

4

0 x1 + 0 x2 +
x3
2

‡ 7
2

0 x1 + x2 +
x3
2

‡ 5
2

Interchange Equations 2 and 3 to obtain

H2.2L
x1 + x2

2
+ x3

4
‡ 1

4

0 x1 + x2 + x3
2

‡ 5
2

0 x1 + 0 x2 +
x3
2

‡ 7
2

Multiply Equation 2 by - 1
2

 and add
the result to Equation 1 to obtain

 (2.3)       

x1 + 0 x2 + 0 x3 ‡ -1

0 x1 + x2 + x3
2

‡ 5
2

0 x1 + 0 x2 + x3
2

‡ 7
2

Step 3. Next, we will change the coefficient of x3 in the third equation to one and then use it as a pivot to obtain 0's for the coefficients of x3 in
Equations 1 and 2.

(3.1)       

x1 + 0 x2 + 0 x3 ‡ -1

0 x1 + x2 + x3
2

‡ 5
2

0 x1 + 0 x2 + x3
2

‡ 7
2

  Multiply Equation 3 by 2 to obtain

 (3.2)                

x1 + 0 x2 + 0 x3 ‡ -1

0 x1 + x2 + x3
2

‡ 5
2

0 x1 + 0 x2 + x3 ‡ 7

     Multiply Equation 3 by - 1
2

and add the result
to Equation 2 to obtain
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(3.3)    
x1 + 0 x2 + 0 x3 ‡ -1

0 x1 + x2 + 0 x3 ‡ -1
0 x1 + 0 x2 + x3 ‡ 7

From the system of equations in Step 3.3, we see that the solution to the original system (Step 1.1) is x1 = -1, x2 = -1, and x3 = 7 .

In the above sequence of steps, we note that the variables serve the sole purpose of keeping the coefficients in the appropriate location. This we
can effect by using matrices. The matrix of the system given in Step 1.1 is

  
4 2 1 1
2 1 1 4
2 2 1 3

where the matrix of the first three columns is called the coefficient matrix and the complete matrix is referred to as the augmented matrix. Since
we are now using matrices to solve the system, we will translate Theorem 12.1.1 into matrix language.

Definition: Elementary Row Operations. The following operations on a matrix are called elementary row operations:

(1)   Interchange any two rows of the matrix.

(2)   Multiply any row of the matrix by a nonzero constant.

(3) Multiply any row of the matrix by a nonzero constant and add the result to a second row, with the sum replacing the second row.

Definition:  Row Equivalent.  Two  matrices,  A  and  B,  are  said  to  be  row-equivalent  if  one  can  be  obtained  from the  other  by  any  one
elementary row operation or by any sequence of elementary row operations.
If we use the notation Ri to stand for Row i of a matrix and ö to stand for row equivalence, then

A
c Ri+ R j

B
means that the matrix B is obtained from the matrix A by multiplying the Row i of A by c and adding the result to Row j.   The operation of
multiplying row i  by c is indicated by

A ö
c Ri B

while interchanging rows i and j is denoted by

A
Ri¨R j

B.
The matrix notation for the system given in Step 1.1 with the subsequent steps are:

  
4 2 1 1
2 1 1 4
2 2 1 3

ö

1

4
R1

1 1
2

1
4

1
4

2 1 1 4
2 2 1 3

ö
-2 R1+ R2

1 1
2

1
4

1
4

0 0 1
2

7
2

2 2 1 3

ö
-2 R1+ R3

1 1
2

1
4

1
4

0 0 1
2

7
2

0 1 1
2

5
2

ö
R2¨R3

1 1
2

1
4

1
4

0 1 1
2

5
2

0 0 1
2

7
2

ö
-
1

2
R2+ R1

1 0 0 -1

0 1 1
2

5
2

0 0 1
2

7
2

ö
2 R3

1 0 0 -1

0 1 1
2

5
2

0 0 1 7

ö
-
1

2
R3+ R2

1 0 0 -1
0 1 0 -1
0 0 1 7

This again gives us the solution. This procedure is called the Gauss-Jordan elimination method.

It  is  important  to  remember  when solving any system of  equations  via  this  or  any similar  approach that  at  any step in  the  procedure we can
rewrite the matrix in "equation format" to help us to interpret the meaning of the augmented matrix.
In  Example  12.1.1  we  obtained  a  unique  solution,  only  one  triple,  namely  H-1, -1, 7L,  which  satisfies  all  three  equations.  For  a  system
involving three unknowns, are there any other possible results? To answer this question, let's review some basic facts from analytic geometry.
The graph of a linear equation in three-dimensional space is a plane. So geometrically we can visualize the three linear equations as three planes
in three-space. Certainly the three planes can intersect in a unique point,  as in Example 12.1.1,  or two of the planes could be parallel.  If  two
planes are parallel, there are no common points of intersection; that is, there are no triple of real numbers that will satisfy all three equations.
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Also, the three planes could intersect along a common axis or line. In this case, there would be an infinite number of real number triples in R3
that  would  satisfy  all  three  equations.   Finally  if  all  three  equations  describe  the  same  plane,  the  solution  set  would  be  that  plane.    We
generalize;
In a system of n linear equations, n unknowns, there can be:

(1)   a unique solution,

(2)   no solution, or

(3)   an infinite number of solutions.

To illustrate these points, consider the following examples:

Example 12.1.2. Find all solutions to the system

  
x1 + 3 x2 + x3 ‡ 2
x1 + x2 + 5 x3 ‡ 4

2 x1 + 2 x2 + 10 x3 ‡ 6
The reader can verify that the augmented matrix of this system, 

 
1 3 1 2
1 1 5 4
2 2 10 6

,

reduces to 

1 3 1 2
1 1 5 4
0 0 0 -2

          (See exercise 4 of this section.)

We can row-reduce this matrix further if we wish. However, any further row-reduction will not substantially change the last row, which, in
equation form, is 0 x1 + 0 x2 + 0 x3 = -2, or simply 0 = -2. It is clear that we cannot find real numbers x1, x2, and x3   that will satisfy this
equation, hence we cannot find real numbers that will satisfy all three original equations simultaneously. When this occurs, we say that the
system has no solution, or the solution set is empty.

Example 12.1.3. Next let's attempt to find all of the solutions to:

x1 + 6 x2 + 2 x3 ‡ 1
2 x1 + x2 + 3 x3 ‡ 2
4 x1 + 2 x2 + 6 x3 ‡ 4

The augmented matrix for the system,

 
1 6 2 1
2 1 3 2
4 2 6 4

reduces to 

 

1 0 16
11

1

0 1 1
11

0
0 0 0 0

If we apply additional elementary row operations to this matrix, it will only become more complicated. In particular, we cannot get a one in
the third row, third column. Since the matrix is in simplest form, we will express it in equation format to help us determine the solution set.

x1 + 16
11

x3 ‡ 1

x2 +
1
11

x3 ‡ 0
0 = 0

Any real numbers will satisfy the last equation. However, the first equation can be rewritten as  x1 = 1 - 16
11

x3, which describes the coordi-
nate x1 in terms of x3 . Similarly, the second equation gives x1in terms of x3 . A convenient way of listing the solutions of this system is to use
set notation. If we call the solution set of the system S, then

 S = 9I1 - 16
11

x3, - 1
11

x3, x3M x3 œ R=.
What this means is that if we wanted to list all solutions, we would replace x3 by all possible numbers. Clearly, there is an infinite number of
solutions, two of which are H1, 0, 0L and H-15, -1, 11L.

A Word Of Caution: Frequently we may obtain “different-looking” answers to the same problem when a system has an infinite number
of answers. Assume a student’s solutions set to Example 12.1.3 is A = 8H1 + 16 x2, x2, -11 x3L x3 œ R<. Certainly the result described by
S looks different from that described by A. To see whether they indeed describe the same set, we wish to determine whether every solution
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produced  in  S  can  be  generated  in  A.  For  example,  the  solution  generated  by  S  when  x3 = 11  is  H-15, -1, 11L.   The  same  triple  can  be
produced by A  by taking x2 = -1.  We must  prove that  every  solution described in  S  is  described in  A  and,  conversely,  that  every solution
described in A is described in S. (See Exercise 6 of this section.)
To summarize the procedure in the Gauss-Jordan technique for solving systems of equations, we attempt to obtain 1’s along the main diagonal
of the coefficient matrix with 0’s above and below the diagonal, as in Example 12.1.1. We may find in attempting this that the closest we can
come is to put the coefficient matrix in "simplest" form, as in Example 12.1.3, or we may find that the situation of Example 12.1.1 evolves as
part  of  the  process.  In  this  latter  case,  we  can  terminate  the  process  and  state  that  the  system  has  no  solutions.  The  final  matrix  forms  of
Examples 12.1.1 and 12.1.3 are called echelon forms.
In practice, larger systems of linear equations are solved using computers. Generally, the Gauss-Jordan algorithm is the most useful; however,
slight variations of this algorithm are also used. The different approaches share many of the same advantages and disadvantages. The two major
concerns of all methods are:
(1)   minimizing inaccuracies due to rounding off errors, and

(2)   minimizing computer time.

The accuracy of the Gauss-Jordan method can be improved by always choosing the element with the largest absolute value as the pivot element,
as in the following algorithm.

Algorithm  12.1.1.  Given  a  matrix  equation  A x = b,  where  A  is  n  ×  m,  let  C  be  the  augmented  matrix  @A bD.  The  process  of  row-
reducing to echelon form involves performing the following algorithm where Ci = the ith row of C:

i = 1
j = 1
while (i § n and j § m):
  # Find pivot in column j, starting in row i:
  maxi = i
  for k = i+1 to n:
    if abs(C[k,j]) > abs(C[maxi,j]) then
      maxi := k
  if C[maxi,j] ¹≠ 0 then
    interchange rows i and maxi
    divide each entry in row i by C[i,j]
    # Now C[i,j] will have the value 1.
    for u = i+1 to n:
      subtract C@u, jD * Ci  from Cu
      # Now C[u,j] will be 0
    i := i + 1
  end if
  j = j + 1
end while

At the end of this algorithm, with the final form of C you can revert back to the equation form of the system and a solution should be clear.  In
general,
(a) If any row of C is all zeros, it can be ignored.
(b)  If any row of C has all zero entries except for the entry in the Hm + 1Lst  position, the system has no solution.   Otherwise, if a column has
no pivot, the variable corresponding to it is a free variable.  Variables corresponding to pivots are basic variables and can be expressed in
terms of the free variables.

Example 12.1.4. If we apply Algorithm 12.1.1 to the system

 
5 x1 + x2 + 2 x3 + x4 ‡ 2
3 x1 + x2 - 2 x3 ‡ 5

x1 + x2 + 3 x3 - x4 ‡ -1
the augmented matrix

  C =
5 1 2 1 2
3 1 -2 0 5
1 1 3 -1 -1

is reduced to a new value of C:

C =

1 0 0 1
2

1
2

0 1 0 - 3
2

3
2

0 0 1 0 -1
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therefore x4 is a free variable in the solution and general solution of the system is

    x =

x1
x2
x3
x4

=

1
2
- 1
2

x4
3
2
+ 3
2

x4
-1
x4

This conclusion is easy to see if you revert back to the equations that the final value matrix C represents.

  Mathematica Note

The  Mathematica  function  RowReduce  does  the  same  reduction  as  described  in  Algorithm  12.1.1.   For  example,  here  is  the  result  for  the
system in Example 12.1.4. 

RowReduceB 5 1 2 1 2
3 1 -2 0 5
1 1 3 -1 -1

F
1 0 0 1

2
1
2

0 1 0 - 3
2

3
2

0 0 1 0 -1

Options@RowReduceD
8Method Ø Automatic, Modulus Ø 0, Tolerance Ø Automatic, ZeroTest Ø Automatic<

Only one caution:  One needs to be aware that if the pivoting process continues into the last column, which Mathematica will do, there will not
be a solution to the system.  For example the system 

2 x1 - x2 ‡ 1
3 x2 - x1 ‡ 5
x1 + 5 x2 ‡ 7

has augmented matrix

 C =
2 -1 1
-1 3 5
1 5 7

.

Here is the computation to row-reduce:

RowReduceB 2 -1 1
-1 3 5
1 5 7

F
1 0 0
0 1 0
0 0 1

The last row of the final form of C is  0 = 1 and so there is no solution to the original system.

  Sage Note

Given an augmented matrix, C, there is a matrix method called eschewing_form that can be used to row reduce C.   Here is the result for
the system in Example 12.1.4.   In the assignment of a matrix value to C, notice that the first argument is QQ, which indicates that the entries
should be rational numbers.   As long as all the entries are rational, which is the case here since integers are rational, the row-reduced matrix
will be all rational. 

C = Matrix(QQ,[[5,1,2,1,2],[3,1,-2,0,5],[1,1,3,-1,-1]])
C.echelon_form()

[   1    0    0  1/2  1/2]
[   0    1    0 -3/2  3/2]
[   0    0    1    0   -1]

If we didn't specify the set from which entries are taken, it would assumed to be the integers and we would not get a fully row-reduced matrix.
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The next step would involve multiplying row 3 by 1

9
, which isn't an integer.

C2 = Matrix([[5,1,2,1,2],[3,1,-2,0,5],[1,1,3,-1,-1]])

C2.echelon_form()      
[ 1  1  3 -1 -1]
[ 0  2  2 -3  1]
[ 0  0  9  0 -9]

This is why we would avoid specifying real entries:

C3 = Matrix(RR,[[5,1,2,1,2],[3,1,-2,0,5],[1,1,3,-1,-1]])

C3.echelon_form()             
[    1.00000000000000    0.000000000000000    0.000000000000000    0.500000000000000    0.500000000000000]
[   0.000000000000000     1.00000000000000    0.000000000000000    -1.50000000000000     1.50000000000000]
[   0.000000000000000    0.000000000000000     1.00000000000000 4.93432455388958e-17    -1.00000000000000]

This is the default number of decimal places, which could be controlled and the single small number in row three column four isn't exactly zero
because of round-off and we could just set it to zero.  However, the result isn't as nice and clean as the rational output in this case.

EXERCISES FOR SECTION 12.1
A Exercises
1. Solve the following systems by describing the solution sets completely:

(a)   
2 x1 + x2 ‡ 3
x1 - x2 ‡ 1

(b)  
2 x1 + x2 + 3 x3 ‡ 5
4 x1 + x2 + 2 x3 ‡ -1
8 x1 + 2 x2 + 4 x3 ‡ -2

(c)  
x1 + x2 + 2 x3 ‡ 1
x1 + 2 x2 - x3 ‡ -1
x1 + 3 x2 + x3 ‡ 5

(d)  
x1 - x2 + 3 x3 ‡ 7
x1 + 3 x2 + x3 ‡ 4

2. Solve the following systems by describing the solution sets completely:

(a)   
2 x1 + 2 x2 + 4 x3 ‡ 2
2 x1 + x2 + 4 x3 ‡ 0
3 x1 + 5 x2 + x3 ‡ 0

(b)  
2 x1 + x2 + 3 x3 ‡ 2
4 x1 + x2 + 2 x3 ‡ -1
8 x1 + 2 x2 + 4 x3 ‡ 4

(c)  
x1 + x2 + 2 x3 + x4 ‡ 3
x1 - x2 + 3 x3 - x4 ‡ -2
3 x1 + 3 x2 + 6 x3 + 3 x4 ‡ 9

(d)  
6 x1 + 7 x2 + 2 x3 ‡ 3
4 x1 + 2 x2 + x3 ‡ -2
6 x1 + x2 + x3 ‡ 1

(e)  
x1 + x2 - x3 + 2 x4 ‡ 1
x1 + 2 x2 + 3 x3 + x4 ‡ 5
x1 + 3 x2 + 2 x3 - x4 ‡ -1

3. Given  that  the  final  augmented  matrices  below  obtained  from  Algorithm  12.1.1,  identify  the  solutions  sets.  Identify  the  basic  and  free
variables, and describe the solution set of the original system. 

(a)   
1 0 -5 0 1.2
0 1 4 0 2.6
0 0 0 1 4.5

(c)   
1 0 9 3
0 1 0 4
0 0 0 1
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(b)    
1 0 6 5
0 1 -2 1
0 0 0 0

(d)  
1 0 0 -3 1
0 1 0 2 2
0 0 1 -1 1

4. (a) Write out the details of Example 12.1.2.

(b) Write out the details of Example 12.1.3.

(c) Write out the details of Example 12.1.4.

5. Solve the following systems using only mod 5 arithmetic. Your solutions should be n - tuples from Z5.

(a)   
2 x1 + x2 ‡ 3
x1 + 4 x2 ‡ 1    (compare your solution to the system in 5(a))

(b)   
x1 + x2 + 2 x3 ‡ 1
x1 + 2 x2 + 4 x3 ‡ 4
x1 + 3 x2 + 3 x3 ‡ 0

6. (a) Use the solution set S of Example 12.1.3 to list three different solutions to the given system. Then show that each of these solutions can be
described by the set A of Example 12.1.3.
    (b) Prove that S = A.

B Exercise
7. Given a system of n linear equations in n unknowns in matrix form A x = b, prove that if b is a matrix of all zeros, then the solution set of
A x = b is a subgroup of Rn .

12.2 Matrix Inversion
In Chapter 5 we defined the inverse of an n µ n matrix. We noted that not all matrices have inverses, but when the inverse of a matrix exists, it
is  unique.  This  enables  us  to  define  the  inverse  of  an  n  ×  n  matrix  A as  the  unique  matrix  B such that  A B = B A = I,  where  I  is  the  n µ n
identity matrix. In order to get some practical experience, we developed a formula that allowed us to determine the inverse of invertible 2µ2
matrices. We will now use the Gauss-Jordan procedure for solving systems of linear equations to compute the inverses, when they exist, of nµn
matrices, n ¥ 2. The following procedure for a 3µ3 matrix can be generalized for nµn matrices, n ¥ 2.
Example 12.2.1.   Given the matrix 

 A =
1 1 2
2 1 4
3 5 1

we want to find the matrix

B =
x11 x12 x13
x21 x22 x23
x31 x32 x33

,

if it exists, such that (a) A B = I  and (b) B A = I. We will concentrate on finding a matrix that satisfies Equation (a) and then verify that B also
satisfies Equation (b).

1 1 2
2 1 4
3 5 1

x11 x12 x13
x21 x22 x23
x31 x32 x33

=
1 0 0
0 1 0
0 0 1

is equivalent to 

 
x11 + x21 + 2 x31 x12 + x22 + 2 x32 x13 + x23 + 2 x33

2 x11 + x21 + 4 x31 2 x12 + x22 + 4 x32 2 x13 + x23 + 4 x33
3 x11 + 5 x21 + x31 3 x12 + 5 x22 + x32 3 x13 + 5 x23 + x33

=
1 0 0
0 1 0
0 0 1

   (12.2.a)

By definition of equality of matrices, this gives us three systems of equations to solve. The augmented matrix of one of the 12.2a systems, the
one equating the first columns of the two matrices is:

 
1 1 2 1
2 1 4 0
3 5 1 0

  (12.2.b)
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Using the Gauss-Jordan technique of Section 12.1, we have:

 
1 1 2 1
2 1 4 0
3 5 1 0

ö
-2 R1+R2

1 1 2 1
0 -1 0 -2
3 5 1 0

ö
-3 R1+R3

1 1 2 1
0 -1 0 -2
0 2 -5 -3

ö
-1 R2

1 1 2 1
0 1 0 2
0 2 -5 -3

ö

-R2+R1
and-2 R2+R3

1 0 2 -1
0 1 0 2
0 0 -5 -7

ö
-
1

5
R3

1 0 2 -1
0 1 0 2
0 0 1 7 ê5 ö

-2 R3+R1
1 0 0 - 19

5
0 1 0 2
0 0 1 7

5

So x11 = -19 ê5, x21 = 2 and x31 = 7 ê5, which gives us the first column of the matrix B. The matrix form of the system to obtain x12, x22, and
x32 , the second column of B, is:

 
1 1 2 0
2 1 4 1
3 5 1 0

(12.2.c)

which reduces to

 

1 0 0 9
5

0 1 0 -1
0 0 1 - 2

5

(12.2.d)

The critical idea to note here is that the coefficient matrix in 12.2c is the same as the matrix in 12.2b, hence the sequence of row operations that
we used to reduce the matrix in 12.2b can be used to reduce the matrix in 12.2c. To determine the third column of B, we reduce

 
1 1 2 0
2 1 4 0
3 5 1 1

to obtain x13 = 2 ê5, x23 = 0 and x33 = -1 ê5,. Here again it is important to note that the sequence of row operations used to "solve" this system
is exactly the same as those we used in the first system. Why not save ourselves a considerable amount of time and effort and solve all three
systems simultaneously? This we can effect by augmenting the coefficient matrix by the identity matrix I. We then have

  
1 1 2 1 0 0
2 1 4 0 1 0
3 5 1 0 0 1

ö

Same sequence of row
operations as above

1 0 0 - 19
5

9
5

2
5

0 1 0 2 -1 0
0 0 1 7

5
- 2
5

- 1
5

So that

  B =

- 19
5

9
5

2
5

2 -1 0
7
5

- 2
5

- 1
5

The reader should verify that B A = I so that A -1 = B.
As the following theorem indicates, the verification that B A = I  is not necessary.  The proof of the theorem is beyond the scope of this text.
The interested reader can find it in most linear algebra texts.

Theorem 12.2.1. Let A be an n µ n matrix. If a matrix B can be found such that A B = I, then B A = I, so that  B = A-1. In fact, to find
A-1, we need only find a matrix B that satisfies one of the two conditions A B = I or B A = I.
It is clear from Chapter 5 and our discussions in this chapter that not all n µ n matrices have inverses. How do we determine whether a matrix
has an inverse using this method? The answer is quite simple: the technique we developed to compute inverses is a matrix approach to solving
several systems of equations simultaneously.
Example 12.2.2. The reader can verify that if

  A =
1 2 1
-1 -2 -1
0 5 8
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then the augmented matrix

 
1 2 1 1 0 0
-1 -2 -2 0 1 0
0 5 8 0 0 1

reduces to

 
1 2 1 1 0 0
0 0 0 1 1 0
0 5 8 0 0 1

(12.2.e)

Although this matrix can be row-reduced further, it is not necessary to do so since in equation form we have:

(i)  
x11 + 2 x21 + x31 ‡ 1

0 ‡ 1
5 x21 + 8 x31 ‡ 0

     (ii)  
x12 + 2 x22 + x32 ‡ 0

0 ‡ 1
5 x22 + 8 x32 ‡ 0

     (iii) 
x13 + 2 x23 + x33 ‡ 0

0 ‡ 0
5 x23 + 8 x33 ‡ 1

Clearly, there is no solution to Systems (i) and (ii),  therefore A-1 does not exist. From this discussion it should be obvious to the reader that the
zero row of the coefficient matrix together with the nonzero entry in the fourth column of that row in matrix 12.2e tells us that A-1  does not
exist.

EXERCISES FOR SECTION 12.2
A Exercises
1.   In order to develop an understanding of the technique of this section, work out all the details of Example 12.2.1.

2.   Use the method of this section to find the inverses of the following matrices whenever possible. If an inverse does not exist, explain why.

(a)   K 1 2
-1 3 O (b)   

0 3 2 5
1 -1 4 0
0 0 1 1
0 1 3 -1

(c)   
2 -1 0
-1 2 -1
0 -1 2

(d)   
1 2 1
-2 -3 -1
1 4 4

(e)   
6 7 2
4 2 1
6 1 1

(f)   
2 1 3
4 2 1
8 2 4

3.   Same as question 2:

(a)   
1
3

2
1
5

-1
(b)   

1 0 0 3
2 -1 0 6
0 2 1 0
0 -1 3 2

(c)   
1 -1 0
-1 2 -1
0 -1 1

(d)   
1 0 0
2 2 -1
1 -1 1

(e)   
2 3 4
3 4 5
4 5 6

(f)   

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

4.   (a) Find the inverses of the following matrices.

(i)  
2 0 0
0 3 0
0 0 5

      (ii)   

-1 0 0 0

0 5
2

0 0

0 0 1
7

0

0 0 0 3
4
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    (b) If D is a diagonal matrix whose diagonal entries are nonzero, what is D-1 ?

5.     Express  each  system  of  equations  in  Exercise  1,  Section  12.1,  in  the  form  A x = B.  Solve  each  system  by  first  finding  A-1  whenever
possible.

12.3 An Introduction to Vector Spaces
When  we  encountered  various  types  of  matrices  in  Chapter  5,  it  became  apparent  that  a  particular  kind  of  matrix,  the  diagonal  matrix,  was

much easier to use in computations. For example, if A = K 2 1
2 3 O, then A5 can be found, but its computation is tedious.  If

 D = K 1 0
0 4 O

then

D5  = K 1 0
0 4 O5 = 15 0

0 45
= K 1 0

0 1024 O
In a variety of applications it is beneficial to be able to diagonalize a matrix. In this section we will investigate what this means and consider a
few applications. In order to understand when the diagonalization process can be performed, it is necessary to develop several of the underlying
concepts of linear algebra.
By now,  you realize  that  mathematicians tend to  generalize.  Once we have found a  "good thing,"  something that  is  useful,  we apply it  to  as
many different concepts as possible. In doing so, we frequently find that the "different concepts" are not really different but only look different.
Four sentences in four different languages might look dissimilar, but when they are translated into a common language, they might very well
express the exact same idea.
Early in the development of mathematics, the concept of a vector led to a variety of applications in physics and engineering. We can certainly
picture  vectors,  or  "arrows,"  in  the  x y - plane  and  even  in  the  three-dimensional  space.  Does  it  make  sense  to  talk  about  vectors  in  four-
dimensional space, in ten-dimensional space, or in any other mathematical situation? If so, what is the essence of a vector? Is it its shape or  the
rules it follows? The shape in two- or three-space is just a picture, or geometric interpretation, of a vector. The essence is the rules, or proper-
ties, we wish vectors to follow so we can manipulate them algebraically. What follows is a definition of what is called a vector space. It is a list
of all the essential properties of vectors, and it is the basic definition of the branch of mathematics  called linear algebra.

Definition:  Vector  Space.  Let  V  be  any  nonempty  set  of  objects.  Define  on  V  an  operation,  called  addition,  for  any  two  elements
x, y œ V,  and  denote  this  operation  by  x + y.  Let  scalar  multiplication  be  defined  for  a  real  number  a œ R  and  any  element  x œ V  and
denote this operation by a x. The set V together with operations of addition and scalar multiplication is called a vector space over R  if the
following hold for all x, y, z” œ V , and a, b œ R:

(1)   x + y = y + x 

(2)  Hx + yL + z” = x + H y + z”L
(3)  There exists a vector  0 œ V, such that it x + 0 = x 

(4) For each vector  x œ V, there exists a unique vector -x œ V, such that -x + x œ V = 0 .

These are the main properties associated with the operation of addition. They can be summarized by saying that @V; +D is an abelian group.

The next five properties are associated with the operation of scalar multiplication and how it relates to vector addition.

(5)  aHx + y L = a x + a y 

(6)  Ha + bL x = a x + b x 

(7)  a Hb xL = Ha bL x

(8)   1 x = x.

In a vector space it  is  common to call  the elements  of  V  vectors and those from R  scalars.   Vector spaces over the real  numbers are also
called real vector spaces.
Example 12.3.1.  Let  V = M2µ3HRL  and let  the operations of  addition and scalar  multiplication be the usual  operations of  addition and scalar
multiplication  on  matrices.  Then  V  together  with  these  operations  is  a   real  vector  space.  The  reader  is  strongly  encouraged  to  verify  the
definition for this example before proceeding further (see Exercise 3 of this section).  Note we can call  the elements of M2µ3HRL  vectors even
though they are not arrows.
Example  12.3.2.  Let  R2 = 8Ha1, a2 L a1, a2 œ R<.  If  we  define  addition  and  scalar  multiplication  the  natural  way,  that  is,  as  we  would  on
1µ2 matrices, then R2 is a vector space over R. (See Exercise 4 of this section.
In this example, we have the "bonus" that we can illustrate the algebraic concept geometrically. In mathematics, a "geometric bonus" does not
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always  occur  and  is  not  necessary  for  the  development  or  application  of  the  concept.  However,  geometric  illustrations  are  quite  useful  in
helping us understand concepts and should be utilized whenever available.

Let's consider some illustrations of the vector space R2 . Let  x = H1, 4L and y = H3, 1L.\
We illustrate the vector Ha1, a2L as a directed line segment, or "arrow," from the point H0, 0L to the point Ha1, a2L.  The vectors x and y are as
pictured  in  Figure  12.3.1  together  with  x + y = H1, 4L + H3, 1L = H4, 5L,  which  also  has  the  geometric  representation  as  pictured  in  Figure
12.3.1. The vector 2 x = 2 H1, 4L = H2, 8L is a vector in the same direction as x, but with twice its length.

H3,1L

H4,5<

H1,4L

1 2 3 4 5

1

2

3

4

5

Figure 12.3.1
Addition in R2

Remarks:

(1)     We  will  henceforth  drop  the  arrow above  a  vector  name  and  use  the  common convention  that  boldface  letters  toward  the  end  of  the
alphabet are vectors, while letters early in the alphabet are scalars.
(2)  The vector Ha1, a2, …, anL œ Rn is referred to as an n-tuple.

(3)   For  those  familiar  with  vector  calculus,  we  are  expressing  the  vector  x = a1 i + a2 j + a3 k œ R3  as  Ha1, a2, a3L.  This  allows  us  to
discuss vectors in Rn in much simpler notation.
In many situations a vector space V is given and we would like to describe the whole vector space by the smallest number of essential reference
vectors. An example of this is the description of R2  , the xy plane, via the x and y axes. Again our concepts must be algebraic in nature so we
are not restricted solely to geometric considerations.

Definition: Linear Combination. A vector y  in vector space V (over R) is a linear combination of the vectors x1, x2, …, xn if there exist
scalars a1, a2, …, an in R such that y = a1 x1 + a2 x2 + … + an xn

Example 12.3.3 The vector H2, 3L in R2 is a linear combination of the vectors H1, 0L and H0, 1L since H2, 3L = 2 H1, 0L + 3 H0, 1L.
Example 12.3.4.  Prove that the vector (5, 4) is a linear combination of the vectors (4, 1) and (1, 3).  By the definition we must show that

there exist scalars a1 and a2 such that:
H5, 4L = a1H4, 1L + a2 H1, 3L, 

which reduces to

H5, 4L = H4 a1 + a2 , a1 + 3 a2L, 
which gives us the system of linear equations

 4 a1 + a2 = 5
a1 + 3 a2 = 4

which has solution  a1 = 1, a2 = 1.

Another way of looking at the above example is if we replace a1 and a2 both by 1, then the two vectors (4, 1) and (1, 3) produce, or generate,
the vector (5,4). Of course, if we replace a1 and a2 by different scalars, we can generate more vectors from R2 . If a 1 = 3 and a2 = -2, then 

a1H4, 1L + a2 H1, 3L = 3 H4, 1L + H-2L H1, 3L
= H12, 3L + H-2, -6L
= H12 - 2, 3 - 6L = H10, -3L
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Example 12.3.5.   Will the vectors H4, 1L and H1, 3L generate any vector we choose in R2?  To see if this is so,  we let Hb1, b2L be an arbitrary
vector  in  R2  and  see  if  we  can  always  find  scalars  a1  and  a2  such  that  a1H4, 1L + a2 H1, 3L = Hb1, b2L.  This  is  equivalent  to  solving  the
following system of equations:
 4 a1 + a2 = b1

a1 + 3 a2 = b2
which always has solutions for a1 and a2  regardless of the values of the real numbers b1 and b2. Why?   We formalize in a definition:

Definition: Generate. Let 8x1, x2, …, xn< be a set of vectors in a vector space V over R. This set is said to generate, or span, V if, for any
given vector y œV, we can always find scalars a1, a2, …, an  such that y = a1 x1 + a2 x2 + … + an xn .  A set that generates a vector space is
called a generating set.
We now give a geometric interpretation of the above.

We know that the standard coordinate system, x axis and y axis, were introduced in basic algebra in order to describe all points in the xy plane
geometrically. It is also quite clear that to describe any point in the plane we need exactly two axes. Form a new coordinate system the follow-
ing way:
Draw the vector H4, 1L and an axis from the origin through (4, 1) and label it the x ' axis. Also draw the vector H1, 3L and an axis from the origin
through H1, 3L to be labeled the y ' axis. Draw the coordinate grid for the axis, that is, lines parallel, and let the unit lengths of this "new" plane
be the lengths of the respective vectors, H4, 1L and H1, 3L, so that we obtain Figure 12.3.2.
From Example 12.3.5 and Figure 12.3.2, we see that any vector on the plane can be described using the old (standard xy) axes or our new x'y'
axes. Hence the position which had the name H4, 1L in reference to the standard axes has the name H1, 0L with respect to the x ' y ' axes, or, in the
phraseology of linear algebra, the coordinates of the point H1, 3L with respect to the x ' y ' axes are (1, 0).

H1,0L
H2,0L

H1,1<

H1,2<

H0,1L

-3 -2 -1 1 2 3 4 5 6 7

-3

-2

-1

1

2

3

4

5

6

7

Figure 12.3.2

Example 12.3.6. From Example 12.3.4 we found that if we choose a1 = 1 and a2 = 1, then the two vectors H4, 1L and H1, 3L generate the vectorH5, 4L.  Another  geometric  interpretation of  this  problem is  that  the  coordinates  of  the  position H5, 4L  with  respect  to  the  x ' y '  axes  of  Figure
12.3.2 is H1, 1L. In other words, a position in the plane has the name H5, 4L in reference to the xy axes and the same position has the name H1, 1L
in reference to the x ' y ' axes.
From the above, it is clear that we can use different axes to describe points or vectors in the plane. No matter what choice we use, we want to be
able to describe each position in a unique manner. This is not the case in Figure 12.3.3. Any point in the plane could be described via the x ' y '
axes, the x ' z ' axes or the y ' z ' axes. Therefore, in this case, a single point would have three different names, a very confusing situation.
We formalize the above discussion in two definitions and a theorem.
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Definition: Linear Independence/Linear Dependence. The set of vectors 8x1, x2, …, xn<  a vector space V (over R) is linearly indepen-
dent  if  the  only  solution  to  the  equation  a1 x1 + a2 x2 + … + a3 x3 = 0  is   a1 = a2 = … = an = 0.  Otherwise  the  set  is  called  a  linearly
dependent set.

Definition: Basis. A set of vectors B = 8x1, x2, …, xn< is a basis for a vector space V (over R) if:
(1)   B generates V, and
(2)   B is linearly independent.

Theorem  12.3.1.  If  8x1, x2, …, xn<  is  a  basis  for  a  vector  space  V  over  R,  then  any  vector  y œ V  can  be  uniquely  expressed  as  a  linear
combination of the xi ' s.
Proof: Assume that 8x1, x2, …, xn< is a basis for V over R. We must prove two facts:

(1)   each vector y œ V  can be expressed as a linear combination of the xi ' s, and

(2)   each such expression is unique.

Part (1) is trivial since a basis, by its definition, must be a generating set for V. 

The proof of (2) is a bit  more difficult.  We follow the standard approach for any uniqueness facts.  Let y  be any vector in V and assume that
there are two different ways of expressing y, namely

y = a1 x1 + a2 x2 + … + an xn

and

y = b1 x1 + b2 x2 + … + bn xn

where at least one ai is different from the corresponding bi.   Then equating these two linear combinations we get

a1 x1 + a2 x2 + … + an xn = b1 x1 + b2 x2 + … + bn xn

so that 

Ha1 - b1L x1 + Ha2 - b2L x2 + … + Han - bnL xn = 0  

Now a crucial observation: since the xi ' s form a linearly independent set, the only solution to the previous equation is that each of the coeffi-
cients  must  equal  zero,  so  ai - bi = 0  for  i = 1, 2, … , n.    Hence  ai = bi,  for  all  i.  This  contradicts  our  assumption  that  at  least  one  ai  is
different from the corresponding bi, so each vector y œ V  can be expressed in one and only one way.     ‡
Theorem 12.3.1, together with the previous examples, gives us a clear insight into the meaning of linear independence, namely uniqueness.

Example 12.3.7. Prove that 8H1, 1L, H-1, 1L< is a basis for R2  over R and explain what this means geometrically. First we must show that the
vectors H1, 1L  and H-1, 1L  generate all of R2.  This we can do by imitating Example 12.3.5 and leave it  to the reader (see Exercise 10 of this
section). Secondly, we must prove that the set is linearly independent.
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Let a1  and a2  be scalars such that a1H1, 1L + a2 8-1, 1L = H0, 0L. We must prove that the only solution to the equation is that a1  and a2  must
both equal zero. The above equation becomes Ha1 - a2 , a1 + a2 L = H0, 0L which gives us the system

a1 - a2 = 0
a1 + a2 = 0

The augmented matrix of this system reduces in such way that the only solution is the trivial one of all zeros:

      K 1 -1 0
1 1 0 Oö K 1 0 0

0 1 0 O a1 = a2 = 0

Therefore, the set is linearly independent. 

To explain the results geometrically, note through Exercise 12, part a, that the coordinates of each vector y œ R2  can be determined uniquely
using  the  vectors  (1,1)  and  (-1,  1).  The  concept  of  dimension  is  quite  obvious  for  those  vector  spaces  that  have  an  immediate  geometric
interpretation.  For example, the dimension of R2  is two and that of R3  is three. How can we define the concept of dimension algebraically so
that the resulting definition correlates with that of R2 and R3 ? First we need a theorem, which we will state without proof.
Theorem 12.3.2. If V is a vector space with a basis containing n elements, then all bases of V contain n elements. 

Definition:  Dimension.  Let  V  be  a  vector  space  over  R  with  basis  8x1, x2, …, xn<.  Then  the  dimension  of  V  is  n.    We  use  the  notation
dim V = n to indicate that V is n-dimensional

EXERCISES FOR SECTION 12.3
A Exercises
1.  If a = 2, b = -3,

 A = K 1 0 -1
2 3 4 O,    B = K 2 -2 3

4 5 8 O,  and C = K 1 0 0
3 2 -2 O

verify that all properties of the definition of a vector space are true for M2µ3 (R)  with these values.

2.  Let a = 3, b = 4, x = H-1, 3L, y = H2, 3L,and z = H1, 0L. Verify that all properties of the definition of a vector space are true for R2  for
these values.
3.   (a) Verify that M2µ3 (R)  is a vector space over R.

(b) Is Mmµn (R)  a vector space over R?

4.   (a) Verify that R2 is a vector space over R.

(b) Is Rn a vector space over R for every positive integer n?

5.   Let P3 = 8a0 + a1 x + a2 x2 + a3 x3 a0, a1, a2, a3 œ R<; that is, P3  is the set of all polynomials in x having real coefficients with degree
less than or equal to 3. Verify that P3 is a vector space over R.
6.   For each of the following, express the vector y as a linear combination of the vectors x1 and x2.

(a)  y = H5, 6L,  x1 = H1, 0L, and x2 = H0, 1L
(b)  y = H2, 1L,  x1 = H2, 1L, and  x2 = H1, 1L
(c)  y = H3, 4L,   x1 = H1, 1L, and  x2 = H-1, 1L

7. Express the vector  K 1 2
-3 3 O œ M2µ2HRL, as a linear combination of

K 1 1
1 1 O,   K -1 5

2 1 O,  K 0 1
1 1 O  and K 0 0

0 1 O
8.   Express the vector x^3 - 4 x2 + 3 œ P3 as a linear combination of the vectors 1, x, x2 , and x3.

9. (a) Show that the set 8x1, x2< generates R2 for each of the parts in Exercise 6 of this section.

(b)   Show that 8x1, x2, x3< generates R2 where x1 = H1, 1L, x2 = H3, 4L, and x3 = H-1, 5L.
(c)   Create a set of four or more vectors that generates R2 .

(d)   What is the smallest number of vectors needed to generate R2?   Rn?

(e)   Show that the set of matrices containing
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K 1 0
0 0 O, K 0 1

0 0 O, K 0 0
1 0 O and K 0 0

0 1 O
generates M2µ2HRL

(f) Show that 81, x, x2 , x3< generates P3.

10.   Complete Example 12.3.7 by showing that 8H1, 1L, H-1, 1L< generates R2

11.  (a) Prove that 8H4, 1L, H1, 3L< is a basis for R2 over R.

(b)   Prove that 8H1, 0L, H3, 4L< is a basis for R2 over R.

(c)  Prove that 8H1, 0, -1L, H2, 1, 1L, H1, -3, -1L< is a basis for R3 over R.

(d)   Prove that the sets in Exercise 9, parts e and f, form bases of the respective vector spaces.

12.   (a) Determine the coordinates of the points or vectors H3, 4L, H-1, 1L, and H1, 1L with respect to the basis 8H1, 1L, H-1, 1L< of R3. Interpret
your results geometrically, 
(b)  Determine  the  coordinates  of  the  points  or  vector  H3, 5, 6L  with  respect  to  the  basis  8H1, 0, 0L, H0, 1, 0L, H0, 0, 1L<.  Explain  why  this
basis is called the standard basis for R3 .
13.  (a) Let y1 = H1, 3, 5, 9L,  y2 = H5, 7, 6, 3L, and c = 2.  Find y1 + y2 and c y1.

(b)  Let  f1HxL = 1 + 3 x + 5 x2 + 9 x3 , f2HxL = 5 + 7 x + 6 x2 + 3 x3 and c = 2. Find f1HxL + f2HxL and c f1HxL.
(c)   Let A = K 1 3

5 9 O, B = K 5 7
6 3 O, and c = 2 . Find A + B and c A.

(d)   Are the vector spaces R4 , P3 and M2µ2HRL isomorphic to each other? Discuss with reference to parts a, b, and c. 
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12.4 The Diagonalization Process
We now have the background to understand the main ideas behind the diagonalization process.

Definition:  Eigenvalue,  Eigenvector.  Let  A  be  an  nµ n  matrix  over  R.   l  is  an  eigenvalue  of  A  if  for  some  nonzero  column  vector
x œ Rn we have A x = l x.  x is called an Eigenvectors corresponding to the eigenvalue l.

Example 12.4.1. Find the eigenvalues and corresponding eigenvectors of the matrix A = K 2 1
2 3 O.  We want to find nonzero vectors  x = K x1

x2
O

and real numbers l such that

A X = l X ñ K 2 1
2 3 O K x1

x2
O = l K x1

x2
O

ñ K 2 1
2 3 O K x1

x2
O - l K x1

x2
O = K 0

0 O
ñ K 2 1

2 3 O K x1
x2

O - l K 1 0
0 1 O K x1

x2
O = K 0

0 O
ñ K K 2 1

2 3 O - l K 1 0
0 1 O O K x1

x2
O = K 0

0 O
ñ K 2 - l 1

2 3 - l
O K x1

x2
O = K 0

0 O H12.4 aL
The last matrix equation will have nonzero solutions if and only if

det K 2 - l 1
2 3 - l

O = 0

or  H2 - lL H3 - lL - 2 = 0, which simplifies to l 2 - 5 l + 4 = 0.   Therefore, the solutions to this quadratic equation, l1 = 1 and l2 = 4,
are the eigenvalues of A. We now have to find eigenvectors associated with each eigenvalue.
Case 1. For l1 = 1,  Equation 12.4a  becomes:

 K 2 - 1 1
2 3 - 1 O K x1

x2
O = K 0

0 O
K 1 1

2 2 O K x1
x2

O = K 0
0 O

which reduces to the single equation, x1 + x2 = 0.  From this, x1 = -x2. This means the solution set of this equation is (in column notation)

E1 = : K -c
c O c œ R> 

So any column vector  of  the  form K -c
c O  where  c  is  any nonzero real  number  is  an  eigenvector  associated with   l1 = 1.    The reader  should

verify that, for example, 

K 2 1
2 3 O

2
3

- 2
3

= 1
2
3

- 2
3

 so that 
2
3

- 2
3

 is an eigenvector associated with eigenvalue 1.

Case 2.  For l2 = 4 equation 12.4.a becomes:

  K 2 - 4 1
2 3 - 4 O K x1

x2
O = K 0

0 O
K -2 1

2 -1 O K x1
x2

O = K 0
0 O

which reduces to the single equation -2 x1 + x2 = 0, so that x2 = 2 x1. The solution set of the equation is

E2 = :K c
-2 c O c œ R>
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Therefore, all eigenvectors of A associated with the eigenvalue l2 = 4 are of the form K c
-2 c O, where c can be any nonzero number.

The following theorems summarize the more important aspects of this example:

Theorem 12.4.1. Let A be any nµ n matrix over R. Then l œ R is an eigenvalue of A if and only if detHA - l IL = 0.

The equation detHA - l IL = 0 is called the characteristic equation and the left side of this equation is called the characteristic polynomial of
A.

Theorem 12.4.2. Nonzero eigenvectors corresponding to distinct eigenvalues are linearly independent.

The solution space of HA - l IL x = 0 is called the eigenspace of A corresponding to l. This terminology is justified by Exercise 2 of this section.

We now consider the main aim of this section. Given an nµn (square) matrix A, we would like to "change" A into a diagonal matrix D, perform
our tasks with the simpler matrix D, and then describe the results in terms of the given matrix A.

Definition:  Diagonalizable  Matrix.  An  nµ n  matrix  A  is  called  diagonalizable  if  there  exists  an  invertible  nµ n  matrix  P  such  that
P-1 A P is a diagonal matrix D. The matrix P is said to diagonalize the matrix A.

Example 12.4.2.  We will now diagonalize the matrix A  of Example 12.4.1.  Form the matrix P  as follows: Let PH1L  be the first column of P.

Choose for PH1L  any eigenvector from E1. We may as well choose a simple vector in E1  so PH1L = K 1
-1 O is our candidate. Similarly, let PH2L   be

the second

column of P, and choose for PH2L any eigenvector from E2. The vector PH2L = K 1
2 O  is a  reasonable choice, thus 

P = K 1 1
-1 2 O    and    P-1 = 1

3
K 2 -1

1 1 O =
2
3

- 1
3

1
3

1
3

So that   

P-1 A P = 1
3
K 2 -1

1 1 O K 2 1
2 3 O K 1 1

-1 2 O = K 1 0
0 4 O

Notice that the elements on the main diagonal of D are the eigenvalues of A, where Di i is the eigenvalue corresponding to the eigenvector PHiL .
Remarks:

(1)   The first step in the diagonalization process is the determination of the eigenvalues. The ordering of the eigenvalues is purely arbitrary. If

we designate l1 = 4  and l2 = 1, the columns of P would be interchanged and D would be K 4 0
0 1 O (see Exercise 3b of this section).  Nonethe-

less, the final outcome of the application to which we are applying the diagonalization process would be the same.

(2)  If A is an nµn matrix with distinct eigenvalues, then P is also an nµn matrix whose columns PH1L, PH2L, …, PHnL are n linearly independent
vectors.
Example 12.4.3. Diagonalize the matrix

A =
1 12 -18
0 -11 18
0 -6 10

.

  detHA - l IL = det
1 - l 12 -18

0 -l - 11 18
0 -6 10 - l

= H1 - lL det K -l - 11 18
-6 10 - l

O
= H1 - lL HH-l - 11L H10 - lL + 108L
= H1 - lL Hl2 + l - 2L

Hence, the equation detHA - l IL = 0 becomes

H1 - lL Hl2 + l - 2L = - Hl - 1L2 Hl + 2L
Therefore,  our  eigenvalues  for  A  are  l1 = -2  and  l2 = 1.  We  note  that  we  do  not  have  three  distinct  eigenvalues,  but  we  proceed  as  in  the
previous example.
Case 1.  For l1 = -2 the equation HA - l IL x = 0  becomes
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3 12 -18
0 -9 18
0 -6 12

x1
x2
x3

=
0
0
0

Using Mathematica, we can row reduce the matrix:

RowReduceB 3 12 -18
0 -9 18
0 -6 12

F
1 0 2
0 1 -2
0 0 0

In equation form, the matrix equation is then equivalent to 

x1 = -2 x3
x2 = 2 x3

Therefore, the solution, or eigenspace, corresponding to l1 = -2 consists of vectors of the form 

-2 x3
2 x3
x3

= x3
-2
2
1

Therefore 
-2
2
1

 is an eigenvector corresponding to the eigenvalue l1 = -2, and can be used for our first column of P:

PH1L =
-2
2
1

Before we continue we make the observation: E2 is a subspace of R3 with basis 8PH1L< and  dim E1 = 1.
Case 2. If l2 = 1, then the equation HA - l IL x = 0  becomes

 
0 12 -18
0 -12 18
0 -6 9

x1
x2
x3

=
0
0
0

Without the aid of any computer technology, it should be clear that all three equations that correspond to this matrix equation are equivalent to
2 x2 - 3 x3 = 0, or x2 =

3
2

x3.    Notice that x1 can take on any value, so any vector of the form

x1
3
2

x3
x3

= x1
1
0
0

+ x3

0
3
2
1

will solve the matrix equation.

We note that the solution set contains two independent variables, x1  and x3. Further, note that we cannot express the eigenspace E2  as a linear
combination of a single vector as in Case 1.   However, it can be written as 

 E2 = :x1
1
0
0

+ x3

0
3
2
1

x1, x3 œ R>.

We can replace any vector in a basis is with a nonzero multiple of that vector.  Simply for aesthetic reasons, we will multiply the second vector

that generates E2 by 2.  Therefore, the eigenspace E2 is a subspace of R3 with basis : 1
0
0

,
0
3
2

> and so  dim E2 = 2.

What  this  means with respect  to  the diagonalization process  is  that  l2 = 1  gives us  both Column 2 and Column 3 the diagonalizing matrix.
The order is not important.  Let  

PH2L =
1
0
0

  and  PH3L =
0
3
2

   and so   P =
-2 1 0
2 0 3
1 0 2
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The reader can verify (see Exercise 5 of this section) that

 P-1 =
0 2 -3
1 4 -6
0 -1 2

   and   P-1 A P =
-2 0 0
0 1 0
0 0 1

In doing Example 12.4.3, the given 3µ3 matrix A  produced only two, not three, distinct eigenvalues, yet we were still able to diagonalize A.
The reason we were able to do so was because we were able to find three linearly independent eigenvectors. Again, the main idea is to produce
a  matrix  P  that  does  the  diagonalizing.  If  A  is  an  n µ n  matrix,  P  will  be  an  nµn  matrix,  and  its  n  columns  must  be  linearly  independent
eigenvectors. The main question in the study of diagonalizability is “When can it be done?” This is summarized in the following theorem.

Theorem 12.4.3. Let A be an n µ n matrix.   Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Outline of a proof: (ì) Assume that A has linearly independent eigenvectors, PH1L, PH2L, …, PHnL, with corresponding eigenvalues l1, l2, …, ln.
We want to prove that A is diagonalizable. Column i of the n µn matrix A P is  A PHiL  (see Exercise 7 of this section). Then, since the PHiL  is an
eigenvector of A  associated  with the eigenvalue li  we have A PHiL = li PHiL  for i = 1, 2, . . . , n. But this means that A P = P D, where D  is
the diagonal matrix with diagonal entries  l1, l2, …, ln.   If we multiply both sides of the equation by P-1 we get the desired P-1 A P = D.
(ï)  The  proof  in  this  direction  involves  a  concept  that  is  not  covered  in  this  text  (rank  of  a  matrix);  so  we  refer  the  interested  reader  to
virtually any linear algebra text for a proof.     ‡
We now give an example of a matrix which is not diagonalizable.

Example 12.4.4. Let us attempt to diagonalize the matrix A =
1 0 0
0 2 1
1 -1 4

A =
1 0 0
0 2 1
1 -1 4

1 0 0
0 2 1
1 -1 4

 detHA - l IL = det
1 - l 0 0

0 2 - l 1
1 -1 4 - l

= H1 - lL det K 2 - l 1
-1 4 - l

O
= H1 - lL HH2 - lL H4 - lL + 1L
= H1 - lL Hl2 - 6 l + 9L
= H1 - lL Hl - 3L2

detHA - l IL = 0 l = 1 or l = 3

Therefore there are two eigenvalues, l1 = 1 and l2 = 3.  Since l1  is an eigenvalue of degree it will have an eigenspace of dimension 1.  Since
l2 is a double root of the characteristic equation, the dimension of its eigenspace must be 2 in order to be able to diagonalize.
Case 1. For l1 = 1,  the equation HA - l IL x = 0 becomes

0 0 0
0 1 1
1 -1 3

x1
x2
x3

=
0
0
0

A quick Mathematica evaluation make the solution to this system obvious

RowReduce@A - IdentityMatrix@3DD
1 0 4
0 1 1
0 0 0

There is one free variable, x3, and 

Chapter 12 - More Matrix Algebra

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlikes 3.0 United States License.



x1
x2
x3

=
-4 x3
-x3
x3

= x3
-4
-1
1

Hence,  : -4
-1
1

> is a basis for the eigenspace of l1 = 1.  

Case 2.  For l2 = 3,  the equation HA - l IL x = 0 becomes

  
-2 0 0
0 -1 1
1 -1 1

x1
x2
x3

=
0
0
0

RowReduce@A - 3 IdentityMatrix@3DD
1 0 0
0 1 -1
0 0 0

Once again there is only one free variable in the row reduction and so the dimension of the eigenspace will be one:

 
x1
x2
x3

=
0
x3
x3

= x3
0
1
1

Hence,  : 0
1
1

> is a basis for the eigenspace of l2 = 3.  This means that l2 = 3 produces only one column for P. Since we began with only two

eigenvalues,  we  had  hoped  that  one  of  them would  produce  a  vector  space  of  dimension  two,  or,  in  matrix  terms,  two  linearly  independent
columns of P. Since A does not have three linearly independent eigenvectors  A cannot be diagonalized.

  Mathematica Note

Diagonalization can be easily done with a few built-in functions of Mathematica.   Here is a 3 µ 3 matrix we've selected because the eigenval-
ues are very simple, and could be found by hand with a little work.

A =
4 1 0
1 5 1
0 1 4

;

The set of linearly independent eigenvectors of A can be computed: 

Eigenvectors@AD
1 2 1
-1 0 1
1 -1 1

The rows of this matrix are the eigenvectors, so we transpose the result to get our diagonalizing matrix P whose columns are eigenvectors.

P = Transpose@Eigenvectors@ADD
1 -1 1
2 0 -1
1 1 1

We then use P to diagonalize.  The entries in the diagonal matrix are the eigenvalues of A.

Inverse@PD.A.P
6 0 0
0 4 0
0 0 3

We could have gotten the eigenvalues directly this way:
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Eigenvalues@AD
86, 4, 3<

Most matrices that are selected at random will not have "nice" eigenvalues.   Here is a new matrix A that looks similar to the one above.

A =
8 1 0
1 5 1
0 1 7

;

Asking for the eigenvalues first, we see that the result is returned symbolically as the three roots to a cubic equation.  The default for Mathemat-
ica is to leave these non-computed.  Since the entries of A are exact numbers, Mathematica is capable of giving an exact solution, but it's very
messy.   The easiest way around the problem is to make the entries in A approximate.  The following expression redefines A as approximate. 

A = N@AD
8. 1. 0.
1. 5. 1.
0. 1. 7.

Now we can get approximate eigenvalues, and the approximations are very good for most purposes.

Eigenvalues@AD
88.3772, 7.27389, 4.34891<

We can verify that the matrix can be diagonalized although due to round-off error some of the off-diagonal entries of the "diagonal" matrix are
nonzero.

P = Transpose@Eigenvectors@ADD
0.906362 -0.341882 0.248244
0.341882 0.248244 -0.906362
0.248244 0.906362 0.341882

Inverse@PD.A.P
8.3772 2.22045µ10-16 6.66134µ10-16

0. 7.27389 4.44089µ10-16

1.66533µ10-15 -4.44089µ10-16 4.34891

The Chop function will set small numbers to zero.  The default thresh hold for "small" is 10-10 but that can be adjusted, if desired.
Diag = Chop@Inverse@PD.A.PD

8.3772 0 0
0 7.27389 0
0 0 4.34891

We can't use the name D here because Mathematica reserves it for the differentiation function.

If  you  experiment  with  more  matrices,  you  will  undoubtedly  encounter  situations  where  some  eigenvalues  are  complex.   The  process  is  the
same, although we've avoided these just for simplicity.

  Sage Note

We start by defining the same matrix as we did in Mathematica.  We also declare D and P to be variables.

A = Matrix (QQ, [[4, 1, 0], [1, 5, 1], [0, 1, 4]]);A
[4 1 0]
[1 5 1]
[0 1 4]

var (' D, P')
(D, P)

We have been working with "right  eigenvectors" since the x  in  A x = l x  is  a  column vector  to the right  of  A.  It's  not  so common but  still
desirable in some situations to consider "left eigenvectors," so Sage allows either one.   The right_eigenmatrix method returns a pair of
matrices.   The  diagonal  matrix,  D,  with  eigenvalues  and  the  diagonalizing  matrix,  P,  which  is  made  up  of  columns  that  are  eigenvectors
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corresponding to the eigenvectors of D.

(D,P)=A.right_eigenmatrix();(D,P)

     
(

[6 0 0]  [ 1  1  1]
[0 4 0]  [ 2  0 -1]
[0 0 3], [ 1 -1  1]
)

We should note here that P is not unique because even if an eigenspace has dimension one, any nonzero vector in that space will serve as an
eigenvector.   For that reason, the P generated by Sage isn't identical to the one generated by Mathematica, but they both work.  Here we verify
the result for our Sage calculation.  Recall that an asterisk is used for matrix multiplication in Sage.

P.inverse()*A*P
= [6 0 0]

[0 4 0]
[0 0 3]     

Here is a second matrix, again the same as we used with Mathematica.

A2=Matrix(QQ,[[8,1,0],[1,5,1],[0,1,7]]);A2  
[8 1 0]
[1 5 1]
[0 1 7]

Here  we've  already  specified  that  the  underlying  system is  the  rational  numbers.   Since  the  eigenvalues  are  not  rational,  Sage  will  revert  to
approximate  number  by default.  We'll  just  pull  out  the  matrix  of  eigenvectors  this  time and display rounded entries.   Here  the  diagonalizing
matrix looks very different from the result from Mathematica, but this is because he eigenvalues are not in the same order in the two calcula-
tions.   They both diagonalize but with a different diagonal matrix.

P=A2.right_eigenmatrix()[1]
P.numerical_approx(digits=3)
       

[  1.00   1.00   1.00]
[ -3.65 -0.726  0.377]
[  1.38  -2.65  0.274]

D=(P.inverse()*A2*P);D.numerical_approx(digits=3)
[ 4.35 0.000 0.000]
[0.000  7.27 0.000]
[0.000 0.000  8.38]

EXERCISES FOR SECTION 12.4
A Exercises

1. (a) List three different eigenvectors of A = K 2 1
2 3 O, the matrix of Example 12.4.1, associated with the two eigenvalues 1 and 4.   Verify your

results.
((b)     Choose  one  of  the  three  eigenvectors  corresponding  to  1  and  one  of  the  three  eigenvectors  corresponding  to  4,  and  show that  the  two
chosen vectors are linearly independent.
2.   (a) Verify that E1 and E2 in Example 12.4.1 are vector spaces over R.  Since they are also subsets of R2, they are called subvector-spaces, or
subspaces for short, of R2. Since these are subspaces consisting of eigenvectors, they are called eigenspaces. 

(b)  Use  the  definition  of  dimension  in  the  previous  section  to  find  dim E1  and  dim E2  .  Note  that  dim E1+ dim E2 = dim R2 .  This  is  not  a
coincidence.

3.  (a) Verify that P-1 A P is indeed equal to K 1 0
0 4 O,  as indicated in Example 12.4.2.

(b)  Choose PH1L = K 1
2 O and PH2L = K 1

-1 O and verify that the new value of P satisfies P-1 A P = K 1 0
0 4 O

(c)   Take any two linearly independent eigenvectors of the matrix A of Example 12.4.2 and verify that P-1 A P is a diagonal matrix.
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4.   (a)  Let  A be  the  matrix  in  Example  12.4.3  and P =
0 1 0
1 0 1
1 0 2

.   Without  doing any actual  matrix  multiplications,  determine  the  value  of

P-1 A P

(b)  If you choose the columns of P in the reverse order, what is P-1 A P?

5.   Diagonalize the following, if possible:

(a)    K 1 2
3 2 O (b)   K -2 1

-7 6 O   (c)  K 3 0
0 4 O

(d)    
1 -1 4
3 2 -1
2 1 -1

(e)   
6 0 0
0 7 -4
9 1 3

(f)  
1 -1 0
-1 2 -1
0 -1 1

6.   Diagonalize the following, if possible:

(a)    K 0 1
1 1 O (b)   K 2 1

4 2 O   (c)  K 2 -1
1 0 O

 (d)   
1 3 6
-3 -5 -6
3 3 6

  (e)   
1 1 0
1 0 1
0 1 1

(f)  
2 -1 0
-1 2 -1
0 -1 2

B Exercise
7.  Let A and P be as in Example 12.4.3. Show that the columns of the matrix A P can be found by computing A PH1L, A PH2L, …, A PHnL. 
8.  Prove that if P is an nµn matrix and D is a diagonal matrix with diagonal entries d1, d2, …, dn, then P D is the matrix obtained from P, but
multiplying column i of P by di, i = 1, 2, …, n .

C Exercise
9.  (a)  There is an option to the Mathematica functions Eigenvectors and Eigenvalues called Cubics that will use the cubic equation

to find exact eigenvalues of a matrix like 
8 1 0
1 5 1
0 1 7

.   Use that option to find the exact eigenvalues of the matrix.  Diagonalize the matrix using

the  Cubics  option  and  then  convert  the  result  to  a  matrix  of  approximate  numbers  to  compare  your  result  with  the  approximate  result  we
found in the Mathematica Note.

12.5 Some Applications
A large and varied number of applications involve computations of powers of matrices. These applications can be found in science, the social
sciences,  economics,  the  analysis  of  relationships  with  groups,  engineering,  and,  indeed,  any  area  where  mathematics  is  used  and,  therefore,
where programs are to be developed. We will consider a few diverse examples here. 
To aid your understanding of the following examples, we develop a helpful technique to compute Am,  m > 1.  If A can be diagonalized, then
there is a matrix P such that P-1 A P = D,  where D is a diagonal matrix and 

Am = P Dm P-1  for all m ¥ 1.                        (12.5 a)

You are asked to prove this equation in Exercise 9 of Section 5.4.  The condition that D be a diagonal matrix is not necessary but when it is, the
calculation on the right side is particularly easy to perform.  Although the formal proof of equation 12.4a is done by induction, the reason why it
is true is easily seen by writing out an example such as m = 3:

Am = HP D P-1Lm To get this, solve P-1 A P = D for A and substitute
= HP D P-1L HP D P-1L HP D P-1L
= P D HP-1 PL D HP-1 P L D P-1 by associativity of matrix mult.
= P D I D I D P-1

= P D D D P-1

= P D3 P-1

Example 12.5.1:  Recursion.  Consider the computation of terms of the Fibonacci sequence, which we examined in  Example 8.1.5:

F0 = 1, F1 = 1

Fk = Fk-1 + Fk-2  for k ¥ 2.
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In order to formulate the calculation in matrix form, we introduced the "dummy equation" Fk-1 = Fk-1 so that now we have two equations

Fk = Fk-1 + Fk-2
Fk-1 = Fk-1

These two equations can be expressed in matrix form as

 K Fk
Fk-1

O = K 1 1
1 0 O K Fk-1

Fk-2
O if k ¥ 2

= A K Fk-1
Fk-2

O if A = K 1 1
1 0 O

= A2K Fk-2
Fk-3

O if k ¥ 3

etc. if k is large enough
We can use induction to prove that if k ¥ 2, 

K Fk
Fk-1

O = Ak-1 K 1
1 O

Next, by diagonalizing A and using the fact that Am = P Dm P-1. we can show that

Fk =
1

5

1+ 5
2

k

-
1- 5
2

k

See Exercise la of this section.

Comments:

(1)     An  equation  of  the  form  Fk = a Fk-1 + b Fk-2  ,  where  a  and  b  are  given  constants,  is   referred  to  linear  homogeneous  second-order
difference  equation.  The  conditions  F0 = c0  and  F1 = c1  ,  where  c1  and  c2  are  constants,  are  called  initial  conditions.  Those  of  you who are
familiar  with  differential  equations  may  recognize  that  the  this  language  parallels  what  is  used  in  differential  equations.  Difference  (AKA
recurrence)  equations  move  forward  discretely—that  is,  in  a  finite  number  of  positive  steps—while  a  differential  equation  moves  continu-
ously—that is, takes an infinite number of infinitesimal steps.
(2)   A recurrence relationship of the form Fk = a Fk-1 + b, where a and b are constants, is called a first-order difference equation. In order to
write out the sequence, we need to know one initial condition.  Equations of this type can be solved similarly to the method outlined in Example
12.5.1 by introducing the superfluous equation 1 = 0 Fk-1 + 1 to obtain in matrix equation:

K Fk
1 O = K a b

0 1 O K Fk-1
1 O K Fk

1 O = K a b
0 1 Ok K F0

1 O
Example 12.5.2: Graph Theory. Consider the graph in Figure 12.5.1.

a b c

Figure 12.5.1

 From the procedures outlined in Section 6.4, the adjacency matrix of this graph is

A =
1 1 0
1 0 1
0 1 1

Recall that Ak  is the adjacency matrix of the relation rk  , where r is the relation 8Ha, aL, Ha, bL, Hb, aL, Hb, cL, Hc, bL, Hc, cL< of the above
graph. Also recall that in computing Ak, we used Boolean arithmetic. What happens if we use "regular" arithmetic? For example,

A =
2 1 1
1 2 1
1 1 2

How can we interpret this? We note that A33 = 2 and that there are two paths of length two from c (the third node) to c.  Also, A13 = 1, and
there is one path of length 2 from a to  c. The reader should verify these claims from the graph in Figure 12.5.1.

Theorem 12.5.1. The entry IAkMi j  is the number of paths, or walks, of length k from node vi, to node v j .

Chapter 12 - More Matrix Algebra

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlikes 3.0 United States License.



How do we find Ak  for  possibly large values of  k? From the discussion at  the beginning of  this  section,  we know that  Ak = P Dk P-1  if  A  is
diagonalizable. We leave to the reader to show that l = 1, 2, and - 1 are eigenvalues of A with eigenvectors

 
1
0
-1

,
1
1
1

, and
1
-2
1

respectively, so that

 Ak = P
1 0 0
0 2k 0
0 0 H-1Lk

P-1

where  P =
1 1 1
0 1 -2
-1 1 1

  and   P-1 =

1
2

0 - 1
2

1
3

1
3

1
3

1
6

- 1
3

1
6

See Exercise 5 of this section for the completion of this example.

Example  12.5.3:  Matrix  Calculus.  Those  who  have  studied  calculus  recall  that  the  Maclaurin  series  is  a  useful  way  of  expressing  many
common functions. For example,

 ‰x =
k=0

¶ xk

k!

Indeed, calculators and computers use these series for calculations. Given a polynomial f HxL, we defined the matrix-polynomial f HAL for square
matrices in Chapter 5. Hence, we are in a position to describe ‰A for an n µ n matrix A as a limit of polynomial.   Formally, we write

 ‰A = I + A + A2

2!
+ A3

3!
+ º⋯ =

k=0

¶ Ak

k!

Again we encounter the need to compute high powers of a matrix.  Let A be an nµn diagonalizable matrix. Then there exists an invertible nµn
matrix P such that P-1 A P = D, a diagonal matrix, so that

 ‰A = ‰PDP
-1

=
k=0

¶ IPDP-1Mk
k!

= P
k=0

¶ Dk

k!
P-1

The infinite sum in the middle of this final expression can be easily evaluated if D is diagonal.  All entries of powers off the diagonal are zero
and the ith entry of the diagonal is 

k=0

¶ Dk

k!
i i
=

k=0

¶ Di i
k

k!
= ‰Di i

For example, if A = K 2 1
2 3 O, the first matrix we diagonalized in Section 12.3, we found that P = K 1 1

-1 2 O  and D = K 1 0
0 4 O .  Therefore, 

 ‰A = K 1 1
-1 2 O ‰ 0

0 ‰4

2
3

- 1
3

1
3

1
3

=

2 ‰
3
+ ‰4

3
- ‰

3
+ ‰4

3

- 2 ‰
3
+ 2 ‰4

3
‰

3
+ 2 ‰4

3

º K 20.0116 17.2933
34.5866 37.3049 O

Comments on Example 12.5.3:

(1)   Many of the ideas of calculus can be developed using matrices.  For example, if 

AHtL = t3 3 t2 + 8 t
et 2
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then

d AHtL
d t

=
3 t2 6 t + 8
et 0

(2)   Many of the basic formulas in calculus are true in matrix calculus. For example,

d HAHtL+BHtLL
d t

= d AHtL
d t

+ d BHtL
d t

  

and if A is a constant matrix, 

  d ‰
A t

d t
= A ‰A t

(3)  Matrix calculus can be used to solve systems of differential equations in a similar manner   to the procedure used in ordinary differential
equations. 

  Mathematica Note

Mathematica's matrix exponential function is MatrixExp.

MatrixExpBK 2 1
2 3

OF
1
3
H2 ‰ + ‰4L 1

3
H-‰ + ‰4L

2
3
H-‰ + ‰4L 1

3
H‰ + 2 ‰4L

  Sage Note

Sage's matrix exponential method is called exp.

A=Matrix(QQ,[[2,1],[2,3]]);
A.exp()
    [ 2/3*e + 1/3*e^4 -1/3*e + 1/3*e^4]

[-2/3*e + 2/3*e^4  1/3*e + 2/3*e^4]

EXERCISES FOR SECTION 12.5
A Exercises
1.   (a) Write out all the details of Example 12.5.1 to show that the formula for Fk given in the text is correct.

 (b) Use induction to prove the assertion made in Example 12.5.1 that

K Fk
Fk-1

O = Ak-1 K 1
1 O

2.     (a)  Do  Example  8.3.8  of  Chapter  8  using  the  method  outlined  in  Example  12.5.1.  Note  that  the  terminology  characteristic  equation,
characteristic polynomial, and so on, introduced in Chapter 8, comes from the language of matrix algebra, 
(b) What is the significance of Algorithm 8.3.1, part c, with respect to this section?

3.   Solve S HkL = 5 S Hk - 1L + 4, with S H0L = 0, using the method of this section.

4.   How many paths are there of length 6 between vertex 1 and vertex 3 in Figure 12.5.2? How many paths from vertex 2 to vertex 2 of length
6 are there? Hint: The characteristic polynomial of the adjacency matrix is l4.

Chapter 12 - More Matrix Algebra

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlikes 3.0 United States License.



12

3 4

Figure 12.5.2

5. Use the matrix A of Example 12.5.2 to:

(a) Determine the number of paths of length 1 that exist from vertex a to each of the vertices in Example 12.5.2. Verify using the graph.
Do the same for vertices b and c.
(b)  Verify all the details of Example 12.5.2.

(c)     Use Example 12.5.2 to determine the number of  paths of  length 4 there are from each node in the graph of Figure 12.5.1 to every
node in the graph. Verify your results using the graph.

6.   Let A = K 2 -1
-1 2 O

 (a)   Find ‰A

 (b) Recall that sin x =
k=0

¶ H-1Lk xk
H2 k+1L!   and compute sin A.

 (d) Formulate a reasonable definition of the natural logarithm of a matrix and compute ln A.

7.     We noted in Chapter 5 that since matrix algebra is not commutative under multiplication, certain difficulties arise.   Let A = K 1 1
0 0 O  and

B = K 0 0
0 2 O. 

(a)    Compute   ‰A, ‰B , and ‰A+B.   Compare ‰A‰B , ‰B‰A and ‰A+B .

(b)  Show that if 0 is the 2µ2 zero matrix, then ‰0 = I.

(c)  Prove that if A and B are two matrices that do commute, then  ‰A+B = ‰A ‰B, thereby proving that ‰A and ‰B commute.

(d)  Prove that for any matrix A,  H‰AL-1 = ‰-A. 
8.   Another observation for adjacency matrices: For the matrix in Example 12.5.2, note that the sum of the elements in the row corresponding
to the node a (that is, the first row) gives the outdegree of a. Similarly, the sum of the elements in any given column gives the indegree of the
node corresponding to that column.

1

2

3

4

Figure 12.5.3

(a)   Using the matrix A of Example 12.5.2, find the outdegree and the indegree of each node. Verify by the graph.

(b)   Repeat part (a) for the directed graphs in Figure 12.5.3.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 12

Section 12.1
1.    Find all solutions of the following systems:

       (a)   2 x1 - 2 x2 + x3 = 1
x2 - x3 = 0

x1 + x2 + x3 = 3

       (b)    x1 - x3 = 0
2 x1 - 4 x2 = 1
-x1 + x2 - x3 = -1

2.    Find all solutions of

                                        x1 - x2 + 2 x3 = 1
3 x1 + x3 = 2
2 x1 + x2 - x3 = 1

Section 12.2
3.    Determine A-1 using the method of the text if

                                        A =
1 2 1
-2 -3 -1
1 4 4

.

4.    Find the inverse of the matrix

                                            

0 -4 1 0
1 0 0 0
0 1 0 0
0 0 0 4

.

Section 12.3
5.    In this exercise, write elements of R2 in column form. Let 8x1, x2< be a basis in R2. Prove that 8Ax1, Ax2 < is a basis for R2 if and only if A
has an inverse.
6.    Let V = 8f : X Ø R<, where X is any nonempty set. Show that V is a vector space under the operations:

H f + gL HxL = f HxL + gHxL  for f , g œ V , and x œ X

                        Hc f L HxL = c f HxL for f œ V , c œ R, and x œ X.

7.    (a)   Convince yourself that M2µ3HZ2L is a vector space over Z2 (i.e., allow only scalars from Z2 and use mod 2 arithmetic).

       (b)   What is the vector –X, for any X œ M2µ3HZ2L?
       (c)   What is M2µ3HZ2L ?

8.    (a)   Define operations on R so that R is a vector space over R.

       (b)   What is a basis for the vector space part a? What is its dimension?

Section 12.4

9.    Employ the diagonalization process to approximate the 100th power of A, where A = B 0.6 0.2
0.4 0.8 F.

10.   Let B =

0 - 3
5

0
5
3

0 - 5
3

0 6 -6

   and   C =
4 2 2
2 4 2
2 2 4

        (a)   Find all of the eigenvalues of B.

       (b)   Given that 2 and 8 are the only eigenvalues of C, find invertible matrix P and diagonal matrix D such that C = PDP-1 .
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11.   Let   A =
0 1 0
1 0 1
0 1 0

   and  B =
4 0 0
0 4 1
0 0 2

       (a)   Find all of the eigenvalues of A.

       (b)   Given that 4 and 2 are the only eigenvalues of B, find invertible matrix P and diagonal matrix D such that B = PDP-1.

12.   Find all eigenvalues and associated eigenvectors of the matrix A, and write A in the form A = PDP-1.

                                                A = B 3 1
0 2 F

Section 12.5
13.   For a multigraph we can define its matrix representation as follows: Aij = the number of different edges e from vertex ai to vertex a j.

       (a)   Draw the digraph that is described by the following matrix:

A =
2 1 0
1 0 3
1 1 0

       (b)   Determine A2 and interpret the result using Theorem 12.5.1. 
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Chapter 13 

BOOLEAN ALGEBRA

George Boole, 1815 - 1864

George Boole

George Boole wasn't idle a lot.
He churned out ideas on the spot,
Making marvellous use of
Inclusive/exclusive
Expressions like AND, OR, and NOT

- limerick by Andrew Robinson from the Omnificent English Dictionary In Limerick Form

GOALS
In this chapater we will develop an algebra that is particularly important to computer scientists, as it is the mathematical foundation of computer
design, or switching theory. The similarities of Boolean algebra and the algebra of sets and logic will be discussed, and we will discover special
properties of finite Boolean algebras.
   In order to achieve these goals, we will recall the basic ideas of posets introduced in Chapter 6 and develop the concept of a lattice, which has
applications in finite-state machines.  The reader should view the development of the topics of this chapter as another example of an algebraic
system. Hence, we expect to define first the elements in the system, next the operations on the elements, and then the common properties of the
operations in the system.
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13.1 Posets Revisited
From Chapter 6, Section 3, we recall the following definition:

Definition:   Poset. A set L on which a partial ordering relation (reflexive, antisymmetric, and transitive) r is defined is called a partially
ordered set, or poset, for short.
   We recall a few examples of posets:

   (1)  L = R and r is the relation §.

   (2)  L = PHAL where A = 8a, b< and r is the relation Œ.

   (3)   L = 81, 2, 3, 6<  and  r  is  the  relation  |  (divides).  We  remind  the  reader  that  the  pair  Ha, bL  as  an  element  of  the  relation  r  can  be
expressed as Ha, bL œ r, or a r b, depending on convenience and readability.
   The posets we will concentrate on in this chapter will be those which have maxima and minima. These partial orderings resemble that of § on
R, so the symbol § is used to replace the symbol r in the definition of a partially ordered set. Hence, the definition of a poset becomes:

Definition: Poset.  A set on which a partial ordering, §  , is defined is called a partially ordered set, or, in brief, a poset. Here, § is a
partial ordering on L if and only if for all a, b, c œ L:
   (1)  a § aHreflexivityL,
   (2)  a § b and b § a a = b (antisymmetry), and

   We now proceed to introduce maximum and minimum concepts. To do this, we will first define these concepts for two elements of the poset
L, and then define the concepts over the whole poset L.

Definition:   Lower Bound, Upper Bound. Let a, b œ L, a poset. Then c œ L is a lower bound of a and b if c § a and c § b. d œ L is
an upper bound of a and b if a § d and b § d.

Definition:    Greatest  Lower Bound.  Let  L be a poset  and §   be the partial  ordering on L.    Let  a, b œ L, then g œ L is  a greatest
lower bound of a and b, denoted glbHa, bL,  if and only if 

Ë g § a ,

Ë g § b,  and

Ë if g ' œ L such that if g ' § a and g ' § b, then g ' § g.  

The last condition says, in other words, that if g ' is also a lower bound, then g is "greater" than g ', so g is a greatest lower bound.

The definition of a least upper bound is a mirror image of a greatest lower bound:

Definition:  Least Upper Bound.  Let L be a poset and § be the partial ordering on L.   Let a, b œ L, then { œ L is a least upper bound
of a and b, denoted lubHa, bL,  if and only if 

Ë a § {  ,

Ë b § { ,  and

Ë if { ' œ L such that if a § { ' and b § { ', then { § { '.  

Notice that the two definitions above refer to "...a greatest lower bound"  and "a least upper bound."  Any time you define an object like these
you need to have an open mind as to whether more than one such object can exist.  In fact, we now can prove that there can't be two greatest
lower bounds or two least upper bounds.

Theorem 13.1.1.   Let L be a poset and § be the partial ordering on L, and a, b œ L.  If a greatest lower bound of a and b exists, then it
is unique.  The same is true of a least upper bound, if it exists.

Proof:   Let g and g' be greatest lower bounds of a and b.   We will prove that g = g '. 

(1)  g a greatest lower bound of a and b g is a lower bound of a and b.

(2)  g ' a greatest lower bound of a and b and  g a lower bound of a and b g § g ' by the definition of greatest lower bound.

(3)  g ' a greatest lower bound of a and b g ' is a lower bound of a and b.

(4)  g a greatest lower bound of a and b and  g' a lower bound of a and b g ' § g by the definition of greatest lower bound.

(5)   g § g ' and g ' § g g = g '  by the antisymmetry property of a partial ordering. 

The proof of the second statement in the theorem is almost identical to the first and is left to the reader.  ‡

Definition:    Greatest  Element,  Least  Element.  Let  L  be  a  poset.     M œ L  is  called  the  greatest  (maximum)  element  of  L  if,  for  all
a œ L, a § M. In addition, m œ L is called the least (minimum) element of L if for all a œ L, m § a.

Note: The greatest and least elements, when they exist, are frequently denoted by 1 and 0 respectively.
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Example 13.1.1.   Let L = 81, 3, 5, 7, 15, 21, 35, 105< and let § be the relation | (divides) on L. Then L is a poset. To determine the
lub  of  3  and  7,  we  look  for  all  { œ L,  such  that  3 {  and  7 {.  Certainly,  both  { = 21  and  { = 105  satisfy  these  conditions  and  no  other
element of L does. Next, since 21 105, then 21 = lubH3, 7L. Similarly, the lubH3, 5L = 15. The greatest element of L is 105 since a 105 for
all  a œ L.  To find the glb  of 15 and 35, we first  consider all  elements g  of L  such that g  |  15 and g  |  35. Certainly, both g = 5 and g = 1
satisfy these conditions. But since 1 5, then  glb H15, 35L = 5. The least element of L is 1 since 1 a for all a œ L.
   Henceforth,  for  any  positive  integer  n,  Dn  will  denote  the  set  of  all  positive  integers  which  are  divisors  of  n.  For  example,  the  set  L  of
Example 13.1.1 is D105.

Example  13.1.2.    Consider  the  poset  PHAL,  where  A = 8a, b, c<,  with  the  relation  Œ  on  PHAL.  The  glb  of  the  8a, b<  and  8a, c<  is
g = 8a<.  For any other element g' of M  which is a subset of 8a, b<  and 8a, c<  (there is only one; what is it?),  g ' Œ g.  The least element of
PHAL is « and the greatest element of P(A) is A = 8a, b, c<. The Hasse diagram of P(A) is shown in Figure 13.1.1.

«

81< 82< 83<

81, 2< 81, 3< 82, 3<

81, 2, 3<

Figure 13.1.1
Example 13.1.2

   With a little practice, it is quite easy to find the least upper bounds and greatest lower bounds of all possible pairs in P HAL directly from the
graph of the poset.
   The previous examples and definitions indicate that the lub and glb are defined in terms of the partial ordering of the given poset. It is not yet
clear whether all posets have the property such every pair of elements has both a lub and a glb. Indeed, this is not the case (see Exercise 3).

EXERCISES FOR SECTION 13.1
A Exercises
1.    Let D30 = 81, 2, 3, 5, 6, 10, 15, 30< and let the relation | be a partial ordering on D30.

       (a)    Find all lower bounds of 10 and 15.

       (b)    Find the glb of 10 and 15.

       (c)    Find all upper bounds of 10 and 15.

       (d)    Determine the lub of 10 and 15.

       (e)     Draw the Hasse diagram for D30  with |. Compare this Hasse diagram with that of Example 13.1.2. Note that the two diagrams are
structurally the same.
2.     List the elements of the sets D8, D50, and D1001. For each set, draw the Hasse diagram for "divides."

3.     Figure 13.1.2 contains Hasse diagrams of posets.

       (a)   Determine the lub and glb of all pairs of elements when they exist. Indicate those pairs that do not have a lub (or a glb).    

       (b)   Find the least and greatest elements when they exist.
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Figure 13.1.2
Exercise 3

4.    For the poset HN, §L, what are glbHa, bL and lubHa, bL? Are there least and/or greatest elements?

5.   (a)  Prove the second part of Theorem 13.1.1, the least upper bound of two elements in a poset is unique, it one exists. 

      (b) Prove that if a poset L has a least element, then that element is unique.

6.     We  naturally  order  the  numbers  in  Am = 81, 2, . . . , m<  with  "less  than  or  equal  to,"  which  is  a  partial  ordering.  We  may  order  the
elements of Am µ An  by Ha, bL § Ha ', b 'L Í a § a ' and b § b '.
       (a)  Prove that this defines a partial ordering of Am µ An.

       (b)  Draw the ordering diagrams for § on A2 µ A2 , A2µ A3, and A3 µ A3 .

    (c)  What are glb HHa, bL, Ha ', b ' LL and lubHHa, bL, Ha ', b ' LL? 

(d)Are there least and/or greatest elements in Am µAn?

13.2 Lattices 
In this  section,  we restrict  our  discussion to lattices,  those posets  where every pair  of  elements  has a  lub  and a  glb.  We first  introduce some
notation.
Definitions:   Join, Meet. Let L be a poset under an ordering § . Let a, b œ L. We define:

   a Í b (read "a join b") as the least upper bound of a and b, and 

   a Ï b (read "a meet b") as greatest lower bound of a and b.

Since the join and meet operations produce a unique result  in all cases where they exist, by Theorem 13.1.1, we can consider them as binary
operations on a set if they aways exist.   Thus the following definition:

Definition: Lattice. A lattice is a poset L (under § ) in which every pair of elements has a lub and a glb. Since a lattice L is an algebraic
system with binary operations  and  , it is denoted by @L; Í, ÏD.
   In Example 13.1.2, the operation table for the lub  operation is easy, although admittedly tedious, to do.  We can observe that every pair of
elements in this poset has a least upper bound. In fact, A Í B = A ‹ B.
   The reader is encouraged to write out the operation table for the glb operation and to note that every pair of elements in this poset also has a
glb, so that PHAL together with these two operations is a lattice. We further observe that:
   (1)  @PHAL; Í , Ï D is a lattice (under Œ ) for any set A, and

  (2)  the join operation is the set operation of union and the meet operation is the operation intersection; that is, Í =‹ and Ï =› .

It  can  be  shown  (see  the  exercises)  that  the  commutative  laws,  associative  laws,  idempotent  laws,  and  absorption  laws  are  all  true  for  any
lattice. An example of this is clearly @PHAL; ‹, ›D, since these laws hold in the algebra of sets.  This lattice is also distributive in that join is
distributive over meet and meet is distributive over join. This is not always the case for lattices in general however.
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Definition:   Distributive Lattice.  Let @L; Í , ÏD be a lattice (under §). @L; Í , Ï < is called a distributive lattice if and only if the distribu-
tive laws hold; that is, for all a, b, c œ L, we have:
                         a Í Hb Ï cL = Ha Í bL Ï Ha cL and 

                         a Ï Hb Í cL = Ha Ï bL Í Ha cL.
Example 13.2.1.   If A is any set, the lattice @PHAL; ‹, ›D  is distributive.

Example 13.2.2.   We now give an example of a lattice where the distributive laws do not hold. Let L = 81, 2, 3, 5, 30<. Then L is a poset
under the relation divides. The operation tables for  and  on L are:

   

Í 1 2 3 5 30
1
2
3
5

30

1 2 3 5 30
2 2 30 30 30
3 30 3 30 30
5 30 30 5 30
30 30 30 30 30

   

Ï 1 2 3 5 30
1
2
3
5

30

1 1 1 1 1
1 2 1 1 2
1 1 3 1 3
1 1 1 5 5
1 2 3 5 30

   Since every pair of elements in L has both a join and a meet, @L; Í , ÏD  is a lattice (under divides). Is this lattice distributive? We note that:

                          2 Í H5 Ï 3L = 2 Í 1 = 2 and

                          H2 Í 5L Ï H2 Í 3L = 30 Ï 30 = 30,

so that a Í Hb Ï cL ¹≠ Ha Í bL Ï Ha cL for some values of a, b, c œ L. Hence L is not a distributive lattice.

   It can be shown that a lattice is nondistributive if and only if it contains a sublattice isomorphic to one of the lattices in Figure 13.2.1.

0

a

c

1

b

0

ab c

1

Figure 13.2.1
Nondistributive lattices

   It is interesting to note that for the relation "divides" on P, if a, b œ P we have:

   a Í b = lcm Ha, bL, the least common multiple of a and b; that is, the smallest integer (in P) that is divisible by both a and b;    

   a Ï b = gcdHa, bL, the greatest common divisor of a and b; that is, the largest integer that divides both a and b.

EXERCISES FOR SECTION 13.2
A Exercises
1.    Let L be the set of all propositions generated by p and q.  What are the meet and join operations in this lattice.   What are the maximum and
minimum elements?
2.   Which of the posets in Exercise 3 of Section 13.1 are lattices? Which of the lattices are distributive?
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B Exercises
3.    (a)   State the commutative laws, associative laws, idempotent laws, and absorption laws for lattices.

       (b) Prove these laws.

4.    Let @L; Í , ÏD be a lattice based on a partial ordering §.   Prove that if a, b, c œ L,  

       (a)   a Í b ¥ a.

       (b)   a Ï b § a.

       (c)  a ¥ b and a ¥ c a ¥ b Í c.

13.3 Boolean Algebras
In order to define a Boolean algebra, we need the additional concept of complementation.

Definition:  Complemented Lattice. Let @L; Í, ÏD be a lattice that contains a least element, 0, and a greatest element, 1. @L; Í, ÏD is called a
complemented lattice if and only if for every element a œ L, there exists an element a in L such that a a = 0 and a a = 1. Such an element a
is called a complement of the element a.

Example 13.3.1.   Let L = PHAL, where A = 8a, b, c<. Then @L; ‹, ›D is a bounded lattice with 0 = « and 1 = A. Then, to find if it
exists, the complement, B, of, say B = 8a, b< œ L, we want B such that

                           8a, b< › B = « and 8a, b< ‹ B = A .

Here,  B = 8c<,  and since it  can be shown that each element of L  has a complement (see Exercise 1),  @L; ‹, ›D  is  a complemented lattice.
Note that if A is any set and L = PHAL, then @L; ‹, ›D is a complemented lattice where the complement of B œ L is B = B c = A - B.
   In Example 13.3.1, we observe that the complement of each element of L is unique. Is this always the case? The answer is no. Consider the
following.

Example 13.3.2.   Let L = 81, 2, 3, 5, 30< and consider the lattice @L; Í , ÏD (under "divides"). The least element of L is 1 and the
greatest element is 30. Let us compute the complement of the element a = 2. We want to determine a such that 2 Ï a = 1 and 2 Í a = 30.
Certainly, a = 3 works, but so does a = 5, so the complement of a = 2 in this lattice is not unique. However, @L; Í , ÏD is still a comple-
mented lattice since each element does have at least one complement.
   The following theorem gives us an insight into when uniqueness of complements occurs.

Theorem 13.3.1.   If @L; Í , ÏD is a complemented and distributive lattice, then the complement a of any element a œ L is unique.

   Proof: Let a œ L and assume to the contrary that a has two complements, namely a1 and a2. Then by definition of complement,

                            a a1 = 0 and a a1 = 1, 

Also,

                            a a2 = 0 and a a2 = 1. 

So that

                                  a1 = a1 Ï 1 = a1 Ha a2L
= Ha1 aL Ha1 a2L
= 0 Í Ha1 a2L
= a1 a2.

On the other hand,

                                   a2 = a2 Ï 1 = a2 Ha a1L
= Ha2 aL Ha2 a1L
= 0 Í Ha2 a1L
= a2 a1.

Hence a1 = a2 , which contradicts the assumption that a has two different complements, a1 and a2.  ‡

Definition:    Boolean  Algebra.   A  Boolean  algebra  is  a  lattice  that  contains  a  least  element  and  a  greatest  element  and  that  is  both
complemented and distributive.
   Since the complement of each element in a Boolean algebra is unique (by Theorem 13.3.1), complementation is a valid unary operation over
the set under discussion, and we will list it together with the other two operations to emphasize that we are discussing a set together with three
operations. Also, to help emphasize the distinction between lattices and lattices that are Boolean algebras, we will use the letter B as the generic
symbol for the set of a Boolean algebra; that is, @B; -, Í , ÏD will stand for a general Boolean algebra.
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Example  13.3.3.    Let  A  be  any  set,  and  let  B = PHAL.  Then  @B; c, ‹ , ›D  is  a  Boolean  algebra.  Here,  c  stands  for  the  complement  of  an
element of B with respect to A, A - B.
   This is a key example for us since all finite Boolean algebras and many infinite Boolean algebras look like this example for some A. In fact, a
glance at the basic Boolean algebra laws in Table 13.3.1, in comparison with the set laws of Chapter 4 and the basic laws of logic of Chapter 3,
indicates that all three systems behave the same; that is, they are isomorphic.
   The "pairing" of the above laws reminds us of the principle of duality, which we state for a Boolean algebra.

Definition:   Principle of Duality for Boolean Algebras. Let @B; -, Í , ÏD be a Boolean algebra (under §), and let S be a true statement for@B; -, Í , ÏD. If S* is obtained from S by replacing § by ¥ (this is equivalent to turning the graph upside down),  by ,  by , 0 by 1, and
1 by 0, then S*  is also a true statement.

TABLE 13.3.1 

Basic Boolean Algebra Laws

_________________________________________________________________

Commutative Laws

1.   a Í b = b Í a                                     1.'  a Ï b = b Ï a 

_________________________________________________________________

Associative Laws

2.   a Í Hb Í cL = Ha Í bL Í c               2.' a Ï Hb Ï cL = Ha Ï bL Ï c

_________________________________________________________________

Distributive Laws

3.   a Ï Hb Í cL = Ha Ï bL Í Ha cL    3.' a Í Hb Ï cL = Ha Í bL Ï Ha cL
_________________________________________________________________

Identity Laws

4.   a Í 0 = 0 Í a = a                              4.'   a Ï 1 = 1 Ï a = a

_________________________________________________________________

Complement Laws

5.  a a = 1                                             5.'     a a = 0

_________________________________________________________________

Idempotent Laws

6.  a a = a                                             6.'   a a = a

_________________________________________________________________

Null Laws

7.   a Í 1 = 1                                            7.'   a Ï 0 = 0 

_________________________________________________________________

Absorption Laws

8.   a Í Ha Ï bL = a                                 8.'   a Ï Ha Í bL = a 

_________________________________________________________________

DeMorgan's Laws

9.   a Í b = a b                                   9.'   a Ï b = a b 
_________________________________________________________________

Involution Law 

10.   a = a
Example 13.3.4. The laws 1' through 9' are the duals of the Laws 1 through 9 respectively. Law 10 is its own dual.
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   We close this section with some comments on notation. The notation for operations in a Boolean algebra is derived from the algebra of logic.
However, other notations are used. These are summarized in the following chart;

  

Notation used in this textHMathematics notationL Set Notation Logic DesignHCS êEE notationL Read as
Í ‹ Å⊕ join
Ï › Ä⊗ meet

c complement
§ Œ § underlying partial ordering

   Mathematicians most frequently use the notation of the text, and, on occasion, use set notation for Boolean algebras. Thinking in terms of sets
may  be  easier  for  some  people.  Computer  designers  traditionally  use  the  arithmetic  and  notation.   In  this  latter  notation,  DeMorgan's  Laws
become:

(9)   a Å⊕ b = a Ä⊗ b 
and

(9')   a Ä⊗ b = a Å⊕ b.

EXERCISES FOR SECTION 13.3
       A Exercises
1.    Determine the complement of each element B œ L in Example 13.3.1. Is this lattice a Boolean algebra? Why?

2.    (a) Determine the complement of each element of D6 in @D6; Í, ÏD.
       (b)  Repeat part a using the lattice in Example 13.2.2.

       (c)  Repeat part a using the lattice in Exercise 1 of Section 13.1.

       (d)  Are the lattices in parts a, b, and c Boolean algebras? Why?

3.    Determine which of the lattices of Exercise 3 of Section 13.1 are Boolean algebras.

4.    Let A = 8a, b< and B = PHAL.
       (a)   Prove that @B; c, ‹, ›D is a Boolean algebra.

       (b)   Write out the operation tables for the Boolean algebra.

5.   It can be shown that the following statement, S, holds for any Boolean algebra @B; -, Í , ÏD : Ha Ï bL = a if a § b.

       (a)  Write the dual, S*, of the statement S.

       (b)  Write the statement S and its dual, S*, in the language of sets.

       (c)  Are the statements in part b true for all sets?

       (d)  Write the statement S and its dual, S*, in the language of logic.

       (e)  Are the statements in part d true for all propositions?

6.    State the dual of:

       (a)   a Í Hb Ï aL = a.

       (b)   a Î HIb aM Ì bL = 1.

       (c)   Ha bL Ì b = a Í b.
       B Exercises

7.    Formulate a definition for isomorphic Boolean algebras.

13.4 Atoms of a Boolean Algebra
In this section we will look more closely at previous claims that every finite Boolean algebra is isomorphic to an algebra of sets. We will show
that every finite Boolean algebra has 2n elements for some n with precisely n generators, called atoms.
   Consider the Boolean algebra @B; -, Í , ÏD, whose graph is:
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0

a1 a2 a3

b1 b3b2

1

Figure 13.4.1
Illustration of the atom concept

   We  note  that  1 = a1 a2 a3,  b1 = a1 a2,  b2 = a1 a3,  and  b3 = a2 a3;  that  is,  each  of  the  elements  above  level  one  can  be
described completely and uniquely in terms of the elements on level one. The ai s have uniquely generated the nonzero elements of B much like
a  basis  in  linear  algebra  generates  the  elements  in  a  vector  space.  We  also  note  that  the  ai s  are  the  immediate  successors  of  the  minimum
element,  0.  In  any  Boolean  algebra,  the  immediate  successors  of  the  minimum element  are  called  atoms.  Let  A  be  any  nonempty  set.  In  the
Boolean algebra @PHAL; c, ‹, ›D (over Œ), the singleton sets are the generators, or atoms, of the algebraic structure since each element P HAL
can be described completely and uniquely as the join or union of singleton sets.

Definition:  Atom.  A  nonzero  element  a  in  a  Boolean  algebra  @B; -, , D  is  called  an  atom  if  for  every  x œ B,  x a = a  or
x a = 0.
   The condition that x a = a tells us that x is a successor of a; that is, a § x, as depicted in Figure 13.4.2a.

   The condition x a = 0 is true only when x and a are "not connected." This occurs when x is another atom or if x is a successor of atoms
different from a, as depicted in Figure 13.4.2b.

HaL HbL
a 0

a

x

x

Figure 13.4.2

Example 13.4.1.    The set  of  atoms of  the  Boolean algebra  @D30; -, Í , ÏD  is  M = 82, 3, 5<.  To see  that  a = 2 is  an atom,  let  x  be  any
nonzero  element  of  D30  and  note  that  one  of  the  two  conditions  x Ï 2 = 2  or  x Ï 2 = 1  holds.  Of  course,  to  apply  the  definition  to  this
Boolean algebra, we must remind ourselves that in this case the 0-element is 1, the operation  is gcd, and the poset relation § is "divides." So
if  x = 10,  we  have  10 Ï 2 = 2  (or  2  |  10),  so  Condition  1  holds.  If  x = 15,  the  first  condition  is  not  true.  (Why?)  However,  Condition  2,
15 Ï 2 = 1, is true. The reader is encouraged to show that each of the elements 2, 3, and 5 satisfy the definition (see Exercise 13.4.1). Next, if
we compute the join (lcm in this case) of all possible combinations of the atoms 2, 3, and 5, we will generate all nonzero elements of D30. For
example, 2 Í 3 Í 5 = 30 and 2 Í 5 = 10. We state this concept formally in the following theorem, which we give without proof.

Theorem 13.4.1.   Let @B; -, , D be any finite Boolean algebra. Let A = 8a1, a2, . . . , an< be the set of all n atoms of @B; -, , D.
Then every nonzero element in B can be expressed uniquely as the join of a subset of A.
   We now ask ourselves if we can be more definitive about the structure of different Boolean algebras of a given order. Certainly, the Boolean
algebras @D30; -, Í , ÏD and @PHAL; c, ‹, ›D have the same graph (that of Figure 13.4.1), the same number of atoms, and, in all respects,
look  the  same  except  for  the  names  of  the  elements  and  the  operations.  In  fact,  when  we  apply  corresponding  operations  to  corresponding
elements,  we  obtain  corresponding  results.  We  know  from  Chapter  11  that  this  means  that  the  two  structures  are  isomorphic  as  Boolean
algebras.  Furthermore,  the  graphs  of  these  examples  are  exactly  the  same  as  that  of  Figure  13.4.1,  which  is  an  arbitrary  Boolean  algebra  of
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order 8 = 23 .
   In these examples of a Boolean algebra of order 8, we note that each had 3 atoms and 23 = 8 number of elements, and all were isomorphic to@PHA L; c, ‹, ›D, where A = 8a, b, c<. This leads us to the following questions:
   (1)  Are there any other different (nonisomorphic) Boolean algebras of order 8?

   (2)  What is the relationship, if any, between finite Boolean algebras and their atoms?

  (3)  How many different (nonisomorphic) Boolean algebras are there of order 2? Order 3? Order 4? And so on.

   The answers  to  these questions are  given in the following theorem and corollaries.  We include the proofs  of  the corollaries  since they are
instructive.
Theorem  13.4.2.    Let  @B; -, , D  be  any  finite  Boolean  algebra,  and  let  A  be  the  set  of  all  atoms  in  this  Boolean  algebra.  Then@B; -, , D is isomorphic to @P HAL; c, ‹, ›D.
Corollary 13.4.1.   Every finite Boolean algebra @B; -, , D has 2n elements for some positive integer n.

   Proof:  Let  A  be  the  set  of  all  atoms  of  B  and  let  †A§ = n.  Then  there  are  exactly  2n  elements  (subsets)  in  PHAL,  and  by  Theorem 13.4.2,@B; -, Í , ÏD is isomorphic to @PHAL; c, ‹, ›D.  ‡
Corollary 13.4.2.    All Boolean algebras of order 2n are isomorphic to each other. (The graph of the Boolean algebra of order 2n is the n-cube).

   Proof:   By Theorem 13.4.2, every Boolean algebra of order 2n  is isomorphic to @PHAL; c, ‹, ›D when †A§ = n. Hence, they are all isomor-
phic to one another.  ‡
   The  above  theorem and  corollaries  tell  us  that  we  can  only  have  finite  Boolean  algebras  of  orders  21, 22, 23, . . . , 2n,  and  that  all  finite
Boolean algebras  of  any given order  are  isomorphic.  These are  powerful  tools  in  determining the structure  of  finite  Boolean algebras.  In  the
next section, we will try to find the easiest way of describing a Boolean algebra of any given order.
EXERCISES FOR SECTION 13.4

       A Exercises

1.    (a) Show that a = 2 is an atom of the Boolean algebra @D30; -, Í , ÏD.
       (b)  Repeat part a for the elements 3 and 5 of D30.

       (c)  Verify Theorem 13.4.1 for the Boolean algebra @D30; -, Í , ÏD.
2.    Let A = 8a, b, c<.
       (a)  Rewrite the definition of atom for @PHAL; c, ‹, ›D. What does a § x mean in this example?

       (b)  Find all atoms of @PHAL; c, ‹, ›D.
       (c)  Verify Theorem 13.4.1 for @PHAL; c, ‹, ›D.
3.    Verify Theorem 13.4.2 and its corollaries for the Boolean algebras in Exercises 1 and 2 of this section.

4.   Give a description of all Boolean algebras of order 16. (Hint: Use Theorem 13.4.2.) Note that the graph of this Boolean algebra is given in
Figure 9.4.5.
5.    Corollary 13.4.1 states that there do not exist Boolean algebras of orders 3, 5, 6, 7, 9, etc. (orders different from 2n). Prove that we cannot
have a Boolean algebra of order 3. (Hint: Assume that @B; -, Í , ÏD is a Boolean algebra of order 3 where B = 80, x, 1< and show that this
cannot happen by investigating the possibilities for its operation tables.)
6.    (a)  There are many different, yet isomorphic, Boolean algebras with two elements. Describe one such Boolean algebra that is derived from
a power set, PHAL, under Œ. Describe a second that is described from Dn, for some n œ P, under "divides." 
       (b)  Since the elements of a two-element Boolean algebra must be the greatest and least elements, 1 and 0, the tables for the operations on
{0, 1} are determined by the Boolean algebra laws. Write out the operation tables for @80, 1<; -, Í , ÏD.
       B Exercises

7.    Find a Boolean algebra with a countably infinite number of elements.

8.     Prove that the direct product of two Boolean algebras is a Boolean algebra. (Hint: "Copy" the corresponding proof for groups in Section
11.6.)
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13.5 Finite Boolean Algebras as n-tuples of 0's and 1's
From the  previous  section  we know that  all  finite  Boolean algebras  are  of  order  2n,  where  n  is  the  number  of  atoms in  the  algebra.  We can
therefore completely describe every finite Boolean algebra by the algebra of power sets. Is there a more convenient, or at least an alternate way,
of  defining  finite  Boolean  algebras?  In  Chapter  11  we  found  that  we  could  produce  new groups  by  taking  Cartesian  products  of  previously
known groups. We imitate this process for Boolean algebras.
The  simplest  nontrivial  Boolean  algebra  is  the  Boolean  algebra  on  the  set  B2 = 80, 1<.  The  ordering  on  B2  is  the  natural  one,
0 b 0, 0 b 1, 1 b 1.  If  we  treat  0  and  1  as  the  truth  values  "false"  and  "true,"  respectively,  we  see  that  the  Boolean  operationsÍ HjoinL and Ï HmeetL are nothing more than the logical connectives Í HorL and Ï HandL. The Boolean operation, -, (complementation) is the
logical Ÿ (negation). In fact, this is why the symbols -, Í , and Ï were chosen as the names of the Boolean operations. The operation tables
for @B2; -, Í , ÏD  are simply those of "or," "and," and "not," which we repeat here:

Í 0 1
0
1

0 1
1 1

       
Ï 0 1
0
1

0 0
0 1

       
u u

-

0
1

1
0

By Theorem 13.4.2 and its corollaries, all Boolean algebras of order 2 are isomorphic to this one.

We  know  that  if  we  form  B2 äB2 = B22  we  obtain  the  set  8H0, 0L, H0, 1L, H1, 0L, H1, 1L<,  a  set  of  order  4.  We  define  operations  on  B22  the
natural way, namely, componentwise, so that H0, 1L Í H1, 1L = H0 Í 1, 1 Í 1L = H1, 1L, H0, 1L Ï H1, 1L = H0 Ï 1, 1 Ï 1L = H0, 1L and H0, 1L =I0, 1M = H1, 0L. We claim that B22  is a Boolean algebra under the componentwise operations. Hence, @B22; -, Í , ÏD is a Boolean algebra of
order 4. Since all Boolean algebras of order 4 are isomorphic to each other, we have found a simple way of describing all Boolean algebras of
order 4.
It  is quite clear that we can describe any Boolean algebra of order 8 by considering B2 äB2 äB2 = B23  and, in general,  any Boolean algebra of
order 2n— that is, all finite Boolean algebras—by B2n = B2 äB2 äº⋯B2 Hn factorsL.
EXERCISES FOR SECTION 13.5
A Exercises
1. (a) Write out the operation tables for @B22; -, Í , ÏD.
(b) Draw the Hasse diagram for @B22; -, Í , ÏD and compare your results with Figure 9.4.6.

(c) Find the atoms of this Boolean algebra.

2. (a) Write out the operation table for @B23; -, Í , ÏD.
    (b) Draw the Hasse diagram for @B23; -, Í , ÏD and compare the results with Figure 9.4.6.

3.  (a) List all atoms of B24.

     (b) Describe the atoms of B2n n r 1.

B Exercise
4. Theorem 13.4.2 tells us we can think of any finite Boolean algebra in terms of sets. In Chapter 4, Section 3, we defined the terms minset and
minset normal form. Rephrase these definitions in the language of Boolean algebra. The generalization of minsets are called minterms.

13.6 Boolean Expressions
In this section, we will use our background from the previous sections and set theory to develop a procedure for simplifying Boolean expres-
sions. This procedure has considerable application to the simplification of circuits in switching theory or logical design.

Definition:  Boolean Expression.  Let  @B; -, , D  be  any  Boolean algebra.  Let  x1, x2, …, xk  be  variables  in  B;  that  is,  variables
that can assume values from B. A Boolean expression generated by x1, x2, …, xk  is  any valid combination of  the xi  and the elements of  B
with the operations of meet, join, and complementation.
This definition, as expected, is the analog of the definition of a proposition generated by a set of propositions, presented in Section 3.2.

Each Boolean expression generated by k variables, eHx1, …, xkL, defines a function f : Bk Ø B where f Ha1, …, akL = eHa1, …, akL. If B is a
finite  Boolean  algebra,  then  there  are  a  finite  number  of  functions  from  Bk  into  B.  Those  functions  that  are  defined  in  terms  of  Boolean
expressions are called Boolean functions. As we will see, there is an infinite number of Boolean expressions that define each Boolean function.
Naturally,  the "shortest"  of  these expressions will  be preferred.  Since electronic circuits  can be described as  Boolean functions with B = B2  ,
this economization is quite useful.
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Example  13.6.1.  Consider  any  Boolean  algebra  @B; -, Í , ÏD  of  order  2.  How  many  functions  f : B2 Ø B  are  there?  First,  all

Boolean algebras of order 2 are isomorphic to @B2; -, Í , ÏD so we want to determine the number of functions f : B22 Ø B2. If we consider
a Boolean function of two variables, x1  and x2, we note that each variable has two possible values 0 and 1, so there are 22  ways of assigning
these two values to the k = 2 variables. Hence, the table below has 22 = 4 rows. So far we have a table such as that labeled 13.6.1.

x1 x2 f Hx1, x2L
0
0
1
1

0
1
0
1

?
?
?
?

Table 13.6.1
General Form Of Boolean Function f Hx1, x2L of Example 13.6.1

How  many  possible  different  function  values  f Hx1, x2L  can  there  be?  To  list  a  few: f1Hx1, x2L = x1,  f2Hx1, x2L = x2,  f3Hx1, x2L = x1 x2,
f4Hx1, x2L = Hx1 x2L Í x2 , f5Hx1, x2L = x1 x2 x2,  etc. Each of these will give a table like that of Table 13.6.1. The tables for f1 , and f3
appear in Table 13.6.2.

x1 x2 f1Hx1, x2L
0
0
1
1

0
1
0
1

0
0
1
1

x1 x2 f3Hx1, x2L
0
0
1
1

0
1
0
1

0
1
1
1

Table 13.6.2
Boolean Functions f1 and f3 of Example 13.6.1

Two functions are different if and only if their tables (values) are different for at least one row.  Of course by using the basic laws of Boolean
algebra we can see that f3 = f4. Why? So if we simply list by brute force all "combinations" of x1 and x2  we will obtain unnecessary duplica-
tion. However, we note that for any combination of the variables x1, and x2  there are only two possible values for f Hx1, x2L, namely 0 or 1.
Thus, we could write 24 = 16 different functions on 2 variables.
Now  let's  count  the  number  of  different  Boolean  functions  in  a  more  general  setting.  We  will  consider  two  cases:  first,  when  B = B2  ,  and
second, when B is any finite Boolean algebra with 2n elements.

Let  B = B2.  Each  function  f : Bk Ø B  is  defined  in  terms  of  a  table  having  2k  rows.  Therefore,  since  there  are  two  possible  images  for  each
element of Bk, there are 2 raised to the 2k, or  22k  different functions.  We claim that every one of these functions is a Boolean function.

Now suppose  that  †B§ = 2n > 2.  A  function  from Bk  into  B  can  still  be  defined  in  terms  of  a  table.  There  are  †B§k  rows  to  each  table  and  †B§
possible images for each row. Therefore, there are 2n  raised to the power 2nk  different functions. If n > 1, then not every one of these functions
is a Boolean function.  Notice that in counting the numbers of functions we are applying the result of  Exercise 5 of Section 7.1. 
Since all Boolean algebras are isomorphic to a Boolean algebra of sets, the analogues of statements in sets are useful in Boolean algebras.

Definition: Minterm. A Boolean expression generated by x1, x2, …, xk that has the form

i=1

k
yi,

where each yi may be either xi or xi is called a minterm generated by x1, x2, …, xk.

By a direct application of the Product Rule we see that there are 2k different minterms generated by x1, …, xk.

Definition:  Minterm  Normal  Form.  A  Boolean  expression  generated  by  x1, …, xk  is  in  minterm  normal  form  if  it  is  the  join  of
expressions of the form a m, where a œ B and m is a minterm generated by x1, …, xk. That is, it is of the form

j=1

p Ia j Ï m jM,
where p = 2k and m1, m2, …, mp are the minterms generated by x1, …, xk
If B = B2, then each a j in a minterm normal form is either 0 or 1. Therefore, a j Ï m j is either 0 or m j.

Theorem 13.6.1.  Let eHx1, …, xkL be a Boolean expression over B. There exists a unique minterm normal form MHx1, …, xkL that is
equivalent to eHx1, …, xkL in the sense that e and M define the same function from Bk into B.
The uniqueness in this  theorem does not  include the possible ordering of the minterms in M  (commonly referred to as "uniqueness up to the
order of minterms"). The proof of this theorem would be quite lengthy, and not very instructive, so we will leave it to the interested reader to
attempt. The implications of the theorem are very interesting, however.

If  †B§ = 2n,  then  there  are  2n  raised  to  the  2k  different  minterm normal  forms.  Since  each  different  minterm normal  form  defines  a  different
function, there are a like number of Boolean functions from Bk  into B.  If  B = B2,  there are as many Boolean functions (2 raised to the 2k) as
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there are functions from Bk  into B, since there are 2 raised to the 2n functions from Bk  into B.  The significance of this result is that any desired
function can be obtained using electronic circuits having 0 or 1 (off or on, positive or negative) values, but more complex, multivalued circuits
would not have this flexibility.
We  will  close  this  section  by  examining  minterm  normal  forms  for  expressions  over  B2  ,  since  they  are  a  starting  point  for  circuit
economization.
Example 13.6.2. Consider the Boolean expression f Hx1, x2L = x1 x2. One method of determining the minterm normal form of f is to think
in terms of sets. Consider the diagram with the usual translation of notation in Figure 13.6.1. Then f Hx1, x2L = Hx1 x2L Í Hx1 x2L Í Hx1 x2L.

x1 x2 x1 x2x1 x2 x1 x2

x2x1

Figure 13.6.1

Example 13.6.3. Consider the function f : B23 Ø B2  defined by Table 13.6.3. The minterm normal form for f can be obtained by taking the
join of minterms that correspond to rows that have an image value of 1. If f Ha1, a2, a3L = 1, then include the minterm y1 Ï y2 Ï y3 where

y j =
x j if a j = 1

x j
—

if a j = 0

TABLE 13.6.3
Boolean Function of f Ha1, a2, a3L Of Example 13.6.3

a1 a2 a3 f Ha1, a2, a3L
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 0 1

1
0
0
1
0
0
1
0

Therefore,

f Hx1, x2, x3L = Hx1 x2 x3L Í Hx1 x2 x3L Í Hx1 x2 x3L.
The minterm normal form is a first  step in obtaining an economical way of expressing a given Boolean function. For functions of more than
three variables, the above set theory approach tends to be awkward. Other procedures are used to write the normal form. The most convenient is
the Karnaugh map, a discussion of which can be found in any logical design/switching theory text (see, for example, Hill and Peterson).
EXERCISES FOR SECTION 13.6
A Exercises

1.  (a) Write the 16 possible functions of Example 13.6.1. (Hint: Find all possible joins of minterms generated by x1 and x2 .)

(b)  Write out the tables of several of the above Boolean functions to show that they are indeed different.

(c)  Determine the minterm normal form of

f1Hx1, x2L = x1 x2,

f2Hx1, x2L = x1 x2

f3Hx1, x2L = 0, f4Hx1, x2L = 1.

2.  Consider the Boolean expression f Hx1, x2, x3L = Hx3 x2L Hx1 x3L Hx2 x3L on @B2; -, Í , ÏD.
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(a)  Simplify this expression using basic Boolean algebra laws.

(b)  Write this expression in minterm normal form.

(c)  Write out the table for the given function defined by f and compare it to the tables of the functions in parts a and b.

(d)  How many possible different functions in three variables on @B2; -, Í , ÏD are there?

B Exercise

3.  Let @B; -, Í , ÏD be a Boolean algebra of order 4, and let f be a Boolean function of two variables on B.

(a)  How many elements are there in the domain of f ?

(b)  How many different Boolean functions are there of two, variables? Three variables?

(c)  Determine the minterm normal form of f Hx1, x2L = x1 x2.

(d)  If B = 80, a, b, 1<, define a function from B2 into B that is not a Boolean function.

13.7 A Brief Introduction to the Application of Boolean Algebra to Switching Theory
The algebra of switching theory is Boolean algebra. The standard notation used for Boolean algebra operations in most logic design/switching 
theory texts is + for  and  for . Complementation is as in this text. Therefore, Hx1 x2L Í Hx1 x2L Í Hx1 x2L becomes 
x1 x2 + x1 x2 + x1 x2, or simply x1 x2 + x1 x2 + x1 x2 . All concepts developed previously for Boolean algebras hold. The only change is 
purely notational. We make the change in this section solely to introduce the reader to another frequently used notation. Obviously, we could 
have continued the discussion with our previous notation.
The simplest switching device is the on-off switch. If the switch is closed, on, current will pass through it; if it is open, off, current will not pass
through it. If we designate on by true or the logical, or Boolean, 1, and off by false, the logical, or Boolean, 0, we can describe electrical circuits
containing  switches  by  logical,  or  Boolean,   expressions.  The  expression  x1 x2  represents  the  situation  in  which  a  series  of  two  switches
appears in a circuit (see Figure 13.7. 1a). In order for current to flow through the circuit, both switches must be on, that is, have the value 1.

Similarly, a pair of parallel switches, as in Figure 13.7.1b, is described algebraically by x1 + x2. Many of the concepts in Boolean algebra can
be  thought  of  in  terms  of  switching  theory.  For  example,  the  distributive  law  in  Boolean  algebra  (in  +,  notation)  is:x1 Hx2 + x3L  =
x1 x2 + x1 x3.  Of course, this says the expression on the left is always equivalent to that on the right. The switching circuit analogue of the
above statement is that Figure 13.7.2a is equivalent (as an electrical circuit) to Figure 13.7.2b.
The circuits in a digital computer are composed of large quantities of switches that can be represented as in Figure 13.7.2 or can be thought of
as boxes or gates with two or more inputs (except for the NOT gate) and one output. These are often drawn as in Figure 13.7.3. For example,
the OR gate, as the name implies, is the  logical/Boolean OR function. The on-off switch function in Figure 13.7.3a in gate notation is Figure
13.7.3b.
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Either diagram indicates that the circuit will conduct current if and only if f Hx1, x2, x3L is true, or 1. We list the gate symbols that are widely
used in switching theory in Figure 13.7.4 with their names. The names mean, and are read, exactly as they appear. For example, NAND means
"not x1 and x2" or algebraically, x1 x2, or x1 x2.
The  circuit  in  Figure  13.7.5a  can  be  described  by  gates.  To  do  so,  simply  keep  in  mind  that  the  Boolean  function  f Hx1, x2L = x1 x2  of  this
circuit contains two operations. The operation of complementation takes precedence over that of "and," so we have Figure 13.7.5b.
Example 13.7.1. The switching circuit in Figure 13.7.6a can be expressed through the logic, or gate, circuit in Figure 13.7.6b.
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We leave  it  to  the  reader  to  analyze  both  figures  and  to  convince  him-  or  herself  that  they  do  describe  the  same  circuit.  The  circuit  can  be
described algebraically as

f Hx1, x2, x3L = HH x1 + x2L + Hx1 + x3LL x1 x2.

We can use basic Boolean algebra laws to simplify or minimize this Boolean function (circuit):

f Hx1, x2, x3L = HHx1 + x2L + Hx1 + x3LL x1 x2  

= Hx1 + x2 + x3L x1 x2
= Hx1 x1 x2 + x2 x1 x2 + x3 x1 x2

 

= x1 x2 + 0 x1 + x3 x1 x2
= x1 x2 + x3 x1 x2
= x1 Hx2 + x2 x3L
= x1 x2 H1 + x3L
= x1 x2 .

The circuit for f may be described as in Figure 13.7.5. This is a less expensive circuit since it involves considerably less hardware.
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The table for f is:

x1 x2 x3 f Hx1, x2, x3L
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
0
0
0
1
1
0
0

The Venn diagram that represents f is the shaded portion in Figure 13.7.7. From this diagram, we can read off the minterm normal form of f:

f Hx1, x2, x3L = x1 x2 x3 + x1 x2 x3.
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x2

x3

x1

Figure 13.7.7

The circuit (gate) diagram appears in Figure 13.7.8.

How  do  we  interpret  this?  We  see  that  f Hx1, x2, x3L = 1  when  x1 = 1, x2 = 0,  and  x3 = 0  or  x3 = 1.  Current  will  be  conducted  through  the
circuit when switch x1 is on, switch x2 is off, and when switch x3 is either off or on.

We close  this  section with  a  brief  discussion of  minimization,  or  reduction,  techniques.  We have discussed two in  this  text:  algebraic  (using
basic  Boolean rules)  reduction  and the  minterm normal  form technique.  Other  techniques  are  discussed  in  switching theory  texts.  When one
reduces a given Boolean function, or circuit, it is possible to obtain a circuit that does not look simpler, but may be more cost effective, and is,
therefore, simpler with respect to time. We illustrate with an example.

Example 13.7.2. Consider the Boolean function of Figure 13.7.9a is f Hx1, x2, x3, x4L = IIx1 x2L x3L x4, which can also be diagrammed
as in Figure 13.7.9b.
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Is Circuit b simpler than Circuit a? Both circuits contain the same number of gates, so the hardware costs (per gate) would be the same. Hence,
intuitively, we would guess that they are equivalent with respect to simplicity. However, the signals x3  and x4  in Circuit a pass through three
levels of gating before reaching the output. All signals in Circuit b go through only two levels of gating (disregard the NOT gate when counting
levels). Each level of logic (gates) adds to the time delay of the development of a signal at the output. In computers, we want the time delay to
be as small as possible. Frequently, speed can be increased by decreasing the number of levels in a circuit.  However, this frequently forces a
larger  number  of  gates  to  be  used,  thus  increasing  costs.  One  of  the  more  difficult  jobs  of  a  design  engineer  is  to  balance  off  speed  with
hardware costs (number of gates).
One final remark on notation: The circuit in Figure 13.7.10a can be written as in Figure 13.7.10b, or simply as in Figure 13.7.10c.

EXERCISES FOR SECTION 13.7
A Exercises

1. (a) Write all inputs and outputs from Figure 13.7.11 and show that its Boolean function is f Hx1, x2, x3L = HHx1 + x2L x3L Hx1 + x2L.
(b)   Simplify f  algebraically.

(c)   Find the minterm normal form of f.

(d)   Draw and compare the circuit (gate) diagram of parts b and c above.

(e)   Draw the on-off switching diagram of f in part a. 
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(f) Write the table of the Boolean function f in part a and interpret the results.

2. Given Figure 13.7.12:

(a)   Write the Boolean function that represents the given on-off circuit.

(b)     Show that  the  Boolean  function  obtained  in  answer  to  part  a  can  be  reduced  to  f Hx1, x2L = x1.  Draw the  on-off  circuit  diagram of  this
simplified representation.
(c)   Draw the circuit (gate) diagram of the given on-off circuit diagram.

(d)   Determine the minterm normal of the Boolean function found in the answer to part a or given in part b; they are equivalent.

(e)  Discuss the relative simplicity and advantages of the circuit gate diagrams found in answer to parts c and d.

3.  (a) Write the circuit (gate) diagram of

f Hx1, x2, x3L = Hx1 x2 + x3L Hx2 + x3L + x3.

(b)   Simplify the function in part a by using basic Boolean algebra laws.

(c)  Write the circuit (gate) diagram of the result obtained in part b.

(d)  Draw the on-off switch diagrams of parts a and b.

4.  Consider the Boolean function

f Hx1, x2, x3, x4L = x1 + Hx2 Hx1 + x4L + x3 Hx2 + x4LL.
(a)  Simplify f algebraically.

(b)  Draw the switching (on-off) circuit of f and the reduction of f obtained in part a.

(c)  Draw the circuit (gate) diagram of f and the reduction of f obtained in answer to part a.

Chapter 13 - Boolean Algebra

Applied Discrete Structures by A. Doerr & K. Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



SUPPLEMENTARY EXERCISES FOR CHAPTER 13
Section 13.1
1.  (a) Draw the Hasse diagram of the relation divides on the set A = 81, 2, 3, …, 12<.
(b) For the same set A draw the Hasse diagram for the relation § on A.

2.   (a) For the poset A = 81, 2, 3, …, 12< under the relation divides find the lub and glb of the following pairs of numbers if possible: 4 and 6,
2 and 3, 10 and 4, 6 and 9.
 (b) Repeat part a for the set A, but use the relation  §.

Section 13.2
3.   Consider the poset P under the relation "divides."

(a)  Compute: 4 Í 8, 3 Í 15, 3 Í 5, 4 Ï 8, 3 Ï 15, 3 Ï 5 for @P, Í , ÏD.
(b)   Is @P, Í , ÏD a distributive lattice? Explain.

(c)  Does @P, Í , ÏD have a least element? Does it have a greatest element? If so, what are they?

4. Let @L, \ê . ÏD be a lattice and a, b œ L. Prove:

(a)   a Í b = b if and only if a § b.

(b)   a Ï b = a if and only if a § b.

5. Let L = 80, 1< and define § on L by 0 § 0 § 1 § 1.

(a)   Draw the Hasse diagram of this poset.

(b)   Write out the operation table for   and  on L observing that they are essentially the standard logical connectives.

(c)   Define the operations on L2 componentwise and draw the Hasse diagram for L2 .

(d)   Repeat part (c) for L3.

6. (a) Let @L1, Í , ÏD and @L2, Í , ÏD be lattices. Prove that @L1µL2, Í , ÏD is a lattice when the operations are defined componentwise as
we did for algebraic systems in Section 11.6. 

(b) Let L1 and L2 be lattices whose posets have the following Hasse diagrams respectively. List the elements in the lattice L1µL2.

(c) Compute:

 H0, aL Í H0, bL
H0, aL Ï H0, bL 
H1, aL Í H1, bL
 H1, aL Ï H1, bL
H0, 1L Í H1, 0L 

      and H0, 1L Ï H1, 0L. 
  Use this information as an aid to draw the Hasse diagram for L1µL2.

7. (a) Is A = 81, 2, 3, …, 12< a lattice under the relation “divides”?  Explain.

    (b) Is the set A above a lattice under the relation “less than or equal to”?  Explain.
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Section 13.3
8.   Using the rules of Boolean algebra, reduce the expression Hx1 x2L Í Hx1 x2L Í Hx1 x2L to the equivalent expression x1 x2.  Justify each
step.
9.   Using the rules of Boolean algebra, reduce the expression Hx + yL ÿ Hx + yL to a simpler expression.

10.  Even  a  cursory  examination  of  the  basic  laws  for  Boolean  algebra  (Table  13.3.1),  for  logic  (Table  3.4.1),  and  for  sets  (Section  4.2)  will
indicate that they are the same in three different languages: they are isomorphic to one another as Boolean algebras.
(a) Fill out the following table to illustrate the above concept:

 

comparable
connectives

Sets
Logic

Boolean Algebraa

‹
Ï Ÿ

§

(b)  Since  the  above  algebras  are  isomorphic  as  Boolean  algebras,  any  theorem  true  in  one  is  true  in  the  other  two.  Translate  each  of  the
following statements into the language of the other two.

(i) p Ø q if and only if   Ÿ q Ø Ÿ p.

(ii) If A Œ B and A Œ C then A Œ B › C

(iii) If a ¥ b and a ¥ c then a ¥ b \ê c.

11. (a) Determine the complements of each element described by the following Hasse diagram:

(b) Is the above lattice a Boolean algebra?

12.   (a) Determine the complement of each element in the lattice D50. 

        (b) Is D50 a Boolean algebra? Explain.

Section 13.4
13.   (a) Use the Theorem 13.4.2 and its Corollaries to determine which of the following are Boolean algebras:

(a) D20   (b)  D27   (c) D35    (d)  D210

(b) Notice that Dn is a Boolean algebra if and only if n is a product of distinct primes. Such an integer is called square free. What are the atoms
of Dn if n is square free?
14.   Let @B, -, . D be any Boolean algebra of order 8. Find a Boolean algebra of sets that is isomorphic to B.  How many atoms must B
have?

Section 13.5
15.   (a) List all sub-Boolean algebras of order 4 in B23

(b)  How many sub-Boolean algebras of order 4 are there in B2n , n ¥ 4?

(c)  Discuss how the selection of atoms in a sub-Boolean algebra can be used to answer questions such as the one in part (b).

16.  Prove that Boolean algebras  B2mµB2n and  B2m+n are isomorphic.

Section 13.6
17  Find the minterm normal form of the Boolean expression  Hx1 x2L Ï x3

18. Find the minterm normal form of the Boolean expression
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 x4 Hx3 x2 x1L x3 Hx2 x1L x2 x1

19.  Let B be a Boolean algebra of order 2.

(a) How many rows are there in the table of a Boolean function of 3 variables? Of n variables?

(b) How many different Boolean functions of 3 variables and of n variables are there?

20. Let B be a Boolean algebra of order 2.

(a) How many different minterm normal forms are there for Boolean expressions of 2 variables over B?   List them.

(b) How many different minterm normal forms are there for Boolean expressions of 3 variables over B?

Section 13.7
21. Consider the following Boolean expression:

 f Hx1, x2, x3L = HHx1 + x2 + x3L ÿ x1 + x1 + x2L ÿ x1 ÿ x3
(a) Draw the switching circuit of f.

(b) Draw the gate diagram of f.

(c) Simplify f algebraically and draw the switching circuit and gate diagrams of this simplified version of f.

22. Assume that each of the three members of a committee votes yes or no on a proposal by pressing a button that closes a switch for yes and
does  nothing for  no.  Devise  as  simple  a  switching-circuit  as  you can that  will  allow current  to  pass  when and only  when at  least  two of  the
members vote in the affirmative.
23. (a) Find the Boolean function of this network:

(b)  Draw an equivalent 

24.   Given the switching  circuit

(a)   Express the switching circuit algebraically.

(b)   Draw the gate diagram of the expression obtained in part a.

(c)   Simplify the expression in part a and draw the switching-circuit and gate diagram for the simplified expression.
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chapter 14

Monoids and Automata

GOALS
At first glance, the two topics that we will discuss in this chapter seem totally unrelated. The first is monoid theory, which we touched upon in
Chapter  11.  The second is  automata  theory,  in  which computers  and other  machines  are  described in  abstract  terms.  After  short  independent
discussions  of  these  topics,  we  will  describe  how  the  two  are  related  in  the  sense  that  each  monoid  can  be  viewed  as  a  machine  and  each
machine has a monoid associated with it.

14.1 Monoids

Recall the definition of a monoid:

Definition: Monoid. A monoid is a set M together with a binary operation * with the properties
   (a) * is associative: Ha*bL*c = a* Hb*cL for all a, b, c œ M, and
   (b) * has an identity: there exists e œ M such that for all a œ M, a*e = e*a = a .

Note: Since the requirements for a group contain the requirements for a monoid, every group is a monoid.

Example 14.1.1.

(a)   The power set of any set together with any one of the operations intersection, union, or symmetric difference is a monoid.

(b)   The set of integers, Z, with multiplication, is a monoid. With addition, Z is also a monoid.

(c)   The set of nµn matrices over the integers, MnHZL, n ¥ 2, with matrix multiplication, is a monoid. This follows from the fact that matrix
multiplication is associative and has an identity, In.  This is an example of a noncommutative monoid since there are matrices, A  and B,  for
which A B ¹≠ B A.
(d)  @Zn, µnD, n r 2, is a monoid with identity 1. 

(e)   Let X be a nonempty set. The set of all functions from X into X, often denoted XX  , is a monoid over function composition. In Chapter 7,
we  saw that  function  composition  is  associative.  The  function  i : X Ø X  defined  by  iHaL = a  is  the  identity  element  for  this  system.  This  is
another example of a noncommutative monoid, provided †X§ is greater than 1.

If  X  is  finite,  †XX§ = †X§†X§  .  For example,  if  B = 80, 1<, †BB§ = 4. The functions z, u, i, and t,  defined by the graphs in Figure 14.1.1,  are the
elements of BB . This monoid is not a group. Do you know why?

 One reason that BB is noncommutative is that tz ¹≠ zt, since HtzL H0L = 1 and HztL H0L = 0.
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Figure 14.1.1

The four elements of BB

GENERAL CONCEPTS AND PROPERTIES OF MONOIDS

Virtually all of the group concepts that were discussed in Chapter 11 are applicable to monoids. When we introduced subsystems, we saw that a
submonoid of monoid M is a subset of M —that is, it itself is a monoid with the operation of M. To prove that a subset is a submonoid, you can
apply the following algorithm.

Theorem/Algorithm 14.1.1. Let @M; *D be a monoid and K is a nonempty subset of M, K is a submonoid of M if and only if:
(a)  If a, b œ K, then a*b œ K Hi. e., K is closed under *L, and
(b)   the identity of M belongs to K.

Often we will  want to discuss the smallest submonoid that includes a certain subset S  of a monoid M.  This submonoid can be defined recur-
sively by the following definition.

Definition: Submonoid Generated by a Set. If S is a subset of monoid @M;*D, the submonoid generated by S, XS\, is defined by:

(a)   (Basis) (i) a œ S a œ XS\ , and (ii) the identity of M belongs to XS\;
(b)  (Recursion), a, b œ XS\ a*b œ XS\.
Note: If S = 8a1, a2, …, an<, we write Xa1, a2, …, an\ in place of X8a1, a2, …, an<\.
Example 14.1.2.

(a)  In @Z; +D, X2\ = 80, 2, 4, 6, 8, …<.
(b)     The  power  set  of  Z, PHZL,  over  union  is  a  monoid  with  identity  «.  If  S = 881<, 82<, 83<<,  then  XS\  is  the  power  set  of  81, 2, 3<.  If
S = 88n< : n œ Z<, then XS\ is the set of finite subsets of the integers.

MONOID ISOMORPHISMS

Two monoids are isomorphic if and only if there exists a translation rule between them so that any true proposition in one monoid is translated
to a true proposition in the other.

Example 14.1.3.  M = @P 81, 2, 3<, ›D is isomorphic to M2 = @Z23; ÿD, where the operation in M2  is componentwise mod 2 multiplication.

A translation rule is that if A Œ 81, 2, 3<, then it is translated to Hd1, d2, d3L where di = : 1 if i œ A
0 if i – A .   Two cases of how this translation rule

works are:
81, 2, 3< is the identity for M1,      and  81, 2< › 8 2, 3< = 82<
     ò    ò         ò    ò              ò

H1, 1, 1L is the identity for M2,        and H1, 1, 0L H0, 1, 1L = H0, 1, 0L.
A more precise definition of a monoid isomorphism is identical to the definition of a group isomorphism (see Section 11.7).

EXERCISES FOR SECTION 14.1
 A Exercises
1.   For each of the subsets of the indicated monoid, determine whether the subset is a sub monoid.

(a) S1 = 80, 2, 4, 6< and S2 = 81, 3, 5, 7< in @Z8;µ8D.
(b) 8 f œ NN : f HnL b n, "n œ N< and 8 f œ NN : f H1L = 2< in NN.
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(c) 8A Œ Z : A is finite< and 8A Œ Z : Ac is finite< in @PHZL; ‹D.
2.   For each subset, describe the submonoid that it generates.

(a)   83< and 80< in @Z12;µ12D
(b)   85< in @Z25;µ25D
(c)   the set of prime numbers and 82< in @P; ÿD
(d)  83, 5< in @N; +D
B Exercises

3.   Definition: Stochastic Matrix.  An  nän  matrix of  real numbers is  called stochastic if  and only if  each entry is  nonnegative and the sum of
entries in each column is 1. Prove that the set of stochastic matrices is a monoid over matrix multiplication.
4. Prove Theorem 14.1.1.

14.2 Free Monoids and Languages
In  this  section,  we  will  introduce  the  concept  of  a  language.  Languages  are  subsets  of  a  certain  type  of  monoid,  the  free  monoid  over  an
alphabet.  After defining a free monoid,  we will  discuss languages and some of the basic problems relating to them. We will  also discuss the
common ways in which languages are defined.
Let A be a nonempty set, which we will call an alphabet. Our primary interest will be in the case where A is finite; however, A could be infinite
for  most  of  the  situations  that  we  will  describe.  The  elements  of  A  are  called  letters  or  symbols.  Among  the  alphabets  that  we  will  use  are
B = 80, 1<, ASCII = the set of ASCII characters, and PAS = the Pascal character set Hwhichever one you useL.

Definition: Strings over an Alphabet. A string of length n, n r 1, over A is a sequence of n letters from A : a1 a2 …an. The null string, l,
is defined as the string of length zero containing no letters. The set of strings of length n over A is denoted by An. The set of all strings over A.
is denoted A*.
Notes:

(a)  If the length of string s is n, we write †s§ = n.

(b)  The null string is not the same as the empty set, although they are similar in many ways.

(c)  A* = A0 ‹ A1 ‹ A2 ‹ A3 ‹º⋯and if i ¹≠ j, Ai › A j = «; that is, 8A0, A1, A2, A3, …< is a partition of A*.

(d)   An element of A can appear any number of times in a string.

Theorem 14.2.1. If A is countable, then A* is countable.

Proof:   Case 1.  Given the alphabet B = 80, 1<,  we can define a bijection from the positive integers into B*.  Each positive integer has a
binary  expansion  dk dk-1º⋯ d1 d0,  where  each  d j  is  0  or  1  and  dk = 1.  If  n  has  such  a  binary  expansion,  then  2k b n < 2k+1.  We  define
f : P Ø B* by f HnL = f Hdk dk-1º⋯ d1 d0L = dk-1º⋯ d1 d0, where f H1L = l. Every one of the 2k  strings of length k are the images of exactly one
of the integers between 2k and 2k+1 - 1. From its definition, f  is clearly a bijection; therefore, B* is countable.
Case 2: A is Finite. We will describe how this case is handled with an example first and then give the general proof. If A = 8a, b, c, d, eL, then
we  can  code  the  letters  in  A  into  strings  from  B3.  One  of  the  coding  schemes  (there  are  many)  is
a ¨ 000, b ¨ 001, c ¨ 010, d ¨ 011, and e ¨ 100. Now every string in A* corresponds to a different string in B*; for example, ace would
correspond with  000 010 100.  The cardinality  of  A*  is  equal  to  the  cardinality  of  the  set  of  strings  that  can be  obtained from this  encoding
system. The possible coded strings must be countable, since they are a subset of a countable set HB*L; therefore, A* is countable.

If  †A§ = m,  then  the  letters  in  A  can  be  coded  using  a  set  of  fixed-length  strings  from B*.  If  2k-1 < m b 2k,  then  there  are  at  least  as  many
strings of length k in Bk  as there are letters in A. Now we can associate each letter in A with an element of Bk. Then any string in A* corre-
sponds to a string in B*. By the same reasoning as in the example above, A* is countable.
Case 3: A is Countably Infinite. We will leave this case as an exercise. ‡

FREE MONOIDS OVER AN ALPHABET
The set of strings over any alphabet is a monoid under concatenation.

Definition:  Concatenation.  Let  a = a1 a2º⋯ am and b = b1 b2º⋯ bn  be  strings  of  length  m  and  n,  respectively.  The  concatenation  of  a  with  b,
a <> b, is the string of length m + n : a1 a2º⋯ am b1 b2º⋯ bn.
Notes:

(a)   The null string is the identity element of [A*; concatenation]. Henceforth, we will denote the monoid of strings over A by A*.

(b)  Concatenation is noncommutative, provided †A§ > 1.
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(c)     If  †A1§ = †A2§ ,  then  the  monoids  A1*  and  A2*  are  isomorphic.  An  isomorphism  can  be  defined  using  any  bijec-
tion f : A1 Ø A2. If a = a1 a2º⋯ an œ A1*, f *HaL = f Ha1L f Ha2Lº⋯ f HanL  defines  a  bijection  from  A1*  into  A2*.  We  will  leave  it  to  the  reader  to
convince him or herself that for all a, b, œ A1*, f *Ha <> bL = f *HaL <> f *HbL.
LANGUAGES

The  languages  of  the  world—English,  German,  Russian,  Chinese,  and  so  forth—are  called  natural  languages.  In  order  to  communicate  in
writing in any one of them, you must first know the letters of the alphabet and then know how to combine the letters in meaningful ways. A
formal language is an abstraction of this situation.
Definition: Formal Language. If A is an alphabet, a formal language over A is a subset of A*.

Example 14.2.1.

(a)   English  can  be  thought  of  as  a  language  over  the  set  of  letters  A, B, º⋯Z  (upper  and  lower  case)  and  other  special  symbols,  such  as
punctuation marks and the blank. Exactly what subset of the strings over this alphabet defines the English language is difficult to pin down
exactly. This is a characteristic of natural languages that we try to avoid with formal languages.
(b)   The set of all ASCII stream files can be defined in terms of a language over ASCII. An ASCII stream file is a sequence of zero or more
lines followed by an end-of-file symbol. A line is defined as a sequence of ASCII characters that ends with the two characters CR (carriage
return) and LF (line feed). The end-of-file symbol is system-dependent; for example, CTRL/C is a common one.
(c)   The set of all syntactically correct expressions in Mathematica is a language over the set of ASCII strings.  

(d)  A few languages over B are

 L1 = 8s œ B* s has exactly as many 1 ' s as it has 0 ' s<, 
L2 = 81 <> s <> 0 : s œ B*<, and 

L3 = X0, 01\ = the submonoid of B* generated by 80, 01<.

TWO FUNDAMENTAL PROBLEMS: RECOGNITION AND GENERATION
The generation and recognition problems are basic to computer programming. Given a language, L,  the programmer must know how to write
(or  generate)  a  syntactically  correct  program that  solves  a  problem.  On the  other  hand,  the  compiler  must  be  written  to  recognize  whether  a
program contains any syntax errors.
The Recognition Problem:  Design an algorithm that determines the truth of s œ L  in a finite number of steps for all  a œ A*.  Any such algo-
rithm is called a recognition algorithm.

Definition: Recursive Language. A language is recursive if there exists a recognition algorithm for it.

Example 14.2.2.

(a)   The language of syntactically correct Mathematica expressions is recursive. 

(b)   The three languages in Example 14.2.1 (d)  are all recursive. Recognition algorithms for L1  and L2  should be easy for you to imagine.
The reason a recognition algorithm for L3  might not be obvious is that L3 ' s definition is more cryptic. It doesn't tell us what belongs to L3,
just what can be used to create strings in L3. This is how many languages are defined. With a second description of L3, we can easily design a
recognition algorithm. L3 = 8s œ B*; s = l or s starts with a 0 and has no consecutive 1’s}.
Algorithm 14.2.1: Recognition Algorithm for L3. Let s = s1 s2º⋯ sn œ B*. This algorithm determines the truth value of s œ L3. The truth value is
returned as the value of Word.
(1)  Word := true
(2)  If n > 0 then

If s1 = 1 then Word := false
  else for i := 3 to n 

if si-1 = 1 and si = 1 then Word := false
The Generation Problem. Design an algorithm that generates or produces any string in L. Here we presume that A is either finite or countably
infinite; hence, A* is countable by Theorem 14.2.1, and L Œ A*  must be countable. Therefore, the generation of L amounts to creating a list of
strings in L. The list may be either finite or infinite, and you must be able to show that every string in L appears somewhere in the list.
Theorem 14.2.2.

(a)   If A is countable, then there exists a generating algorithm for A*.

(b)   If L is a recursive language over a countable alphabet, then there exists a generating algorithm for L.

Proof:

(a)   Part a follows from the fact that A* is countable; therefore, there exists a complete list of strings in A*.

(b)   To generate all strings of L, start with a list of all strings in A* and an empty list, W, of strings in L. For each string s, use a recognition
algorithm (one exists since L  is recursive) to determine whether s œ L.  If  s  is in L,  add it  to W;  otherwise "throw it out." Then go to the next
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string in the list of A*. ‡
Example 14.2.3. Since all of the languages in Example 14.2.2 are recursive, they must have generating algorithms. The one given in the proof
of Theorem 14.2.2 is not generally the most efficient. You could probably design more efficient generating algorithms for L2  and L3; however,
a better generating algorithm for L1 is not quite so obvious.
The recognition and generation problems can vary in difficulty depending on how a language is defined and what sort of algorithms we allow
ourselves to use. This is not to say that the means by which a language is defined determines whether it is recursive. It just means that the truth
of  "L  is  recursive" may be more difficult  to  determine with one definition than with another.  We will  close this  section with a  discussion of
grammars, which are standard forms of definition for a language. When we restrict ourselves to only certain types of algorithms, we can affect
our ability to determine whether s œ L is true. In defining a recursive language, we do not restrict ourselves in any way in regard to the type of
algorithm that will be used. In Section 14.3, we will consider machines called finite automata, which can only perform simple algorithms.

PHRASE STRUCTURE GRAMMARS AND LANGUAGES
One common way of defining a language is  by means of  a  phrase structure grammar  (or  grammar,  for  short).  The set  of  strings that  can be
produced using the grammar rules is called the phrase structure language (of the grammar).
Example 14.2.4. We can define the set of all strings over B for which all 0s precede all 1s as follows. Define the starting symbol S and establish
rules that S can be replaced with any of the following: l, 0S, or S1. These replacement rules are usually called production (or rewriting) rules
and are usually written in the format S Ø l, S Ø 0 S, and S Ø S1. Now define L to be the set of all strings that can be produced by starting with
S and applying the production rules until S no longer appears. The strings in L are exactly the ones that are described above.

Definition: Phrase Structure Grammar. A phrase structure grammar consists of four components:

(1)   A nonempty finite set of terminal characters, T. If the grammar is defining a language over A, T is a subset of A*.
(2)   A finite set of nonterminal characters, N.
(3)   A starting symbol, S œ N.
(4)   A finite set of production rules, each of the form X Ø Y, where X and Y are strings over A ‹ N such that X ¹≠ Y  and X contains at least
one nonterminal symbol.
If G is a phrase structure grammar, L(G) is the set of strings that can be obtained by starting with S and applying the production rules a finite
number of times until no nonterminal characters remain. If a language can be defined by a phrase structure grammar, then it is called a phrase
structure language.
Example  14.2.5.  The  language  over  B  consisting  of  strings  of  alternating  0s  and  1s  is  a  phrase  structure  language.  It  can  be  defined  by  the
following grammar:
(1)   Terminal characters: l, 0, and 1,

(2)   Nonterminal characters: S, T, and U,

(3)   Starting symbol: S,

(4) Production rules:

 S Ø T, S Ø U, S Ø l, S Ø 0, S Ø 1, S Ø 0 T,
S Ø 1 U, T Ø 10 T, T Ø 10, U Ø 01 U, U Ø 01

     These rules can be visualized more easily with a graph:
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Figure 14.2.1
Production rules for the language of alternating 0’s and 1’s.

We can verify that a string such as 10101 belongs to the language by starting with S  and producing 10101 using the production rules a finite
number of times: S Ø 1 U Ø 101 U Ø 10 101.

Example 14.2.6. Let G be the grammar with components:

(1)   Terminal symbols = all letters of the alphabet (both upper and lower case) and the digits 0 through 9,

(2)  Nonterminal symbols ={I, X},

(3)   Starting symbol: I

(4)   Production rules: I Ø a, where a is any letter, I Ø aX for any letter a, X Ø bX for any letter or digit b, and X Ø b for any letter or digit
b.
There are a total of 176 production rules for this grammar. The language L HGL consists of all valid Mathematica names.

Backus-Naur  form  (BNF),  A  popular  alternate  form  of  defining  the  production  rules  in  a  grammar  is  BNF.  If  the  production  rules
A Ø B1, A Ø B2, … A Ø Bn  are part of a grammar, they would be written in BNF as A :: = B1 †B2§º⋯ †Bn. The symbol » in BNF is read as "or,"
while the :: = is read as "is defined as." Additional notations of BNF are that 8x<, represents zero or more repetitions of x and [y] means that y is
optional.

Example 14.2.7. A BNF version of the production rules for a Mathematica name is

letter õ = a †b †c º⋯ z A B º⋯ Z

 digit õ = 0 1 º⋯ 9

I õ = letter 8letter digit<
Example  14.2.8.  An  arithmetic  expression  can  be  defined  in  BNF.  For  simplicity,  we  will  consider  only  expressions  obtained  using

addition and multiplication of integers. The terminal symbols are H, L, +, * , -, and the digits 0 through 9. The nonterminal symbols are E (for
expression), T (term), F (factor), and N (number). The starting symbol is E.

E õ = E + T T  
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T õ = T * F F 

F õ = HEL N 

N õ = @-D digit 8digit<.
One particularly simple type of phrase structure grammar is the regular grammar.

Definition:  Regular  Grammar.  A  regular  (right-hand  form)  grammar  is  a  grammar  whose  production  rules  are  all  of  the  form  A Ø t  and
A Ø tB,  where  A  and  B  are  nonterminal  and  t  is  terminal.  A  left-hand  form grammar  allows  only  A Ø t  and  A Ø Bt,  A  language  that  has  a
regular phrase structure language is called a regular language.

Example 14.2.9.

(a)   The set of Mathematica names is a regular language since the grammar by which we defined the set is a regular grammar.

(b)   The language of all strings for which all 0s precede all 1s (Example 14.2.4) is regular; however, the grammar by which we defined this
set is not regular. Can you define these strings with a regular grammar?
(c)   The language of arithmetic expressions is not regular.

EXERCISES FOR SECTION 14.2

A Exercises
1.     (a)  If  a  computer  is  being designed to  operate  with  a  character  set  of  350 symbols,  how many bits  must  be  reserved for  each character?
Assume each character will use the same number of bits. 
(b) Do the same for 3,500 symbols.

2.   It was pointed out in the text that the null string and the null set are different. The former is a string and the latter is a set, two different kinds
of objects. Discuss how the two are similar.
3.   What sets of strings are defined by the following grammar?

(a)   Terminal symbols: l, 0 and 1

(b)   Nonterminal symbols: S and E

(c)   Starting symbol: S 

(d)   Production rules: S Ø 0 S0, S Ø 1 S1, S Ø E, E Ø l, E Ø 0, E Ø 1.

4.   What sets of strings are defined by the following grammar?

(a)   Terminal symbols: l, a, b, and c

(b) Nonterminal symbols: S, T, U and E

(c) Starting symbol: S

(d) Production rules: S Ø aS, S Ø T, T Ø bT, T Ø U, U Ø cU, U Ø E, E Ø l.

5.   Define the following languages over B with phrase structure grammars.

 Which of these languages are regular?

(a)   The strings with an odd number of characters.

(b)   The strings of length 4 or less.

(c)   The palindromes, strings that are the same backwards as forwards.

6.   Define the following languages over B with phrase structure grammars. Which of these languages are regular? 

(a)   The strings with more 0s than 1s.

(b)   The strings with an even number of 1s.

(c)  The strings for which all 0s precede all 1s.

7.   Prove that if a language over A is recursive, then its complement is also recursive.

8.  Use BNF to define the grammars in Exercises 3 and 4.
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 B Exercise

9.  (a)Prove that if X1, X2, … is a countable sequence of countable sets, the union of these sets, ‹
i=1

¶
Xi, is countable.

(b) Using the fact that the countable union of countable sets is countable, prove that if A is countable, then A* is countable.

14.3 Automata, Finite-State Machines
In this section, we will introduce the concept of an abstract machine. The machines we will examine will (in theory) be capable of performing
many of the tasks associated with digital computers. One such task is solving the recognition problem for a language. We will concentrate on
one class of machines, finite-state machines (finite automata). And we will see that they are precisely the machines that are capable of recogniz-
ing strings in a regular grammar.

Given an alphabet X, we will imagine a string in X* to be encoded on a tape that we will call an input tape. When we refer to a tape, we
might imagine a strip of material that is divided into segments, each of which can contain either a letter or a blank.

The typical abstract machine includes an input device, the read head, which is capable of reading the symbol from the segment of the
input tape that is currently in the read head. Some more advanced machines have a read/write head that can also write symbols onto the tape.
The movement of the input tape after reading a symbol depends on the machine. With a finite-state machine, the next segment of the input tape
is always moved into the read head after a symbol has been read. Most machines (including finite-state machines) also have a separate output
tape  that  is  written  on  with  a  write  head.  The  output  symbols  come  from  an  output  alphabet,  Z,  that  may  or  may  not  be  equal  to  the  input
alphabet. The most significant component of an abstract machine is its memory structure. This structure can range from a finite number of bits
of memory (as in a finite-state machine) to an infinite amount of memory that  can be sorted in the form of a tape that  can be read from and
written on (as in a Turing machine).

Definition: Finite-State Machine. A finite-state machine is defined by a quintet HS, X, Z, w, tL where

(1)    S = 8s1, s2, … , sr<  is the state set, a finite set that corresponds to the set of memory configurations that the machines can have at any
time.
(2)  X = 8x1, x2, … , xm< is the input alphabet.

(3)  Z = 8z1, z2, … , zn< is the output alphabet.

(4) w : Xµ S Ø Z is the output function, which specifies which output symbol wHx, sL œ Z is written onto the output tape when the machine is
in state s and the input symbol x is read.
(5)   t : Xµ S Ø S is the next-state (or transition) function, which specifies which statetHx, sL œ S the machine should enter when it is in state s
and it reads the symbol x.
Example  14.3.1.  Many  mechanical  devices,  such  as  simple  vending  machines,  can  be  thought  of  as  finite-state  machines.  For  simplicity,
assume that a vending machine dispenses packets of gum, spearmint (S), peppermint (P), and bubble (B), for 25¢ each. We can define the input
alphabet  to  be  8deposit 25 ¢, press S, press P, press B<  and  the  state  set  to  be  8Locked, Select<,  where  the  deposit  of  a  quarter  unlocks  the
release mechanism of the machine and allows you to select a flavor of gum. We will leave it to the reader to imagine what the output alphabet,
output  function,  and next-state function would be.  You are also invited to let  your imagination run wild and include such features as  a  coin-
return lever and change maker.
Example 14.3.2. The following machine is called a parity checker. It recognizes whether or not a string in B* contains an even number of 1s.
The memory structure of this machine reflects the fact that in order to check the parity of a string, we need only keep track of whether an odd or
even number of 1s has been detected.
(1)   The input alphabet is B = 80, 1<.
(2)   The output alphabet is also B.

(3)   The state set is {even, odd}.

(4, 5) The following table defines the output and next-state functions:

x s wHx, sL tHx, sL
0
0
1
1

even
odd
even
odd

0
1
1
0

even
odd
odd
even

Note how the value of the most recent output at any time is an indication of the current state of the machine. Therefore, if we start in the even
state and read any finite input tape, the last output corresponds to the final state of the parity checker and tells us the parity of the string on the
input tape. For example, if the string 11001010 is read from left to right, the output tape, also from left to right, will be 10001100. Since the last
character is a 0, we know that the input string has even parity.
An alternate method for  defining a  finite-state  machine is  with a  transition diagram. A transition diagram  is  a  directed graph that  contains a
node for each state and edges that indicate the transition and output functions. An edge Isi, s jM  that is labeled x ê z  indicates that in state si  the
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input  x  results  in  an  output  of  z  and  the  next  state  is  s j.  That  is,  wHx, siL = z  and  tHx, siL = s j.  The  transition  diagram for  the  parity  checker
appears in Figure 14.3.1. In later examples, we will see that if different inputs, xi  and x j, while in the same state, result in the same transitions
and outputs, we label a single edge xi, x j ë z instead of drawing two edges with labels xi ê z and x j ë z.

One of the most significant features of a finite-state machine is that it  retains no information about its past states that can be accessed by the
machine itself. For example, after we input a tape encoded with the symbols 01101010 into the parity checker, the current state will be even,
but we have no indication within the machine whether or not it has always been in even state. Note how the output tape is not considered part of
the machine’s memory. In this case, the output tape does contain a "history" of the parity checker's past states. We  assume that the finite-state
machine has no way of recovering the output sequence for later use.

0ê01ê11ê00ê1 EvenOdd

Figure 14.3.1
Transition Diagram for a parity checker

Example 14.3.3. Consider the following simplified version of the game of baseball. To be precise, this machine describes one half-inning of a
simplified baseball game. Suppose that in addition to home plate, there is only one base instead of the usual three bases. Also, assume that there
are only two outs per inning instead of the usual three. Our input alphabet will consist of the types of hits that the batter could have: out (O),
double play (DP), single (S), and home run (HR). The input DP is meant to represent a batted ball that would result in a double play (two outs),
if possible. The input DP can then occur at any time. The output alphabet is the numbers 0, 1, and 2 for the number of runs that can be scored as
a result of any input. The state set contains the current situation in the inning, the number of outs, and whether a base runner is currently on the
base. The list of possible states is then 00 (for 0 outs and 0 runners), 01, 10, 11, and end (when the half-inning is over). The transition diagram
for this machine appears in Figure 14.3.2.
Let's concentrate on one state. If the current state is 01, 0 outs and 1 runner on base, each input results in a different combination of output and
next-state. If the batter hits the ball poorly (a double play) the output is zero runs and the inning is over (the limit of two outs has been made). A
simple out also results in an output of 0 runs and the next state is 11, one out and one runner on base. If the batter hits a single, one run scores
(output = 1) while the state remains 01. If a home run is hit, two runs are scored (output = 2) and the next state is 00. If we had allowed three
outs per inning,  this  graph would only be marginally more complicated.  The usual  game with three bases would be quite a bit  more compli-
cated, however.

HRê1
O,DPê0

Sê0 Sê0

HRê1

O,DPê0

Sê1

HRê2

Oê0

DPê0

Sê1

HRê2

OêDPê0

Start

00 10

01 11

End

Figure 14.3.2
Transition Diagram for a simplified game of baseball

RECOGNITION IN REGULAR LANGUAGES

As we mentioned at the outset of this section, finite-state machines can recognize strings in a regular language. Consider the language L over8a, b, c< that contains the strings of positive length in which each a is followed by b and each b is followed by c. One such string is bccabcbc.
This  language is  regular.  A grammar for  the  language would be nonterminal  symbols  8A, B, C<  with  starting symbol  C  and production rules
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A Ø bB, cC, C Ø aA, C Ø cC and C Ø c.  A  finite-state  machine  (Figure  14.3.3)  that  recognizes  this  language  can  be  constructed  with  one
state for each nonterminal symbol and an additional state (Reject) that is entered if any invalid production takes place. At the end of an input
tape that encodes a string in 8a, b, c<*, we will know when the string belongs to L based on the final output. If the final output is 1, the string
belongs  to  L  and  if  it  is  0,  the  string  does  not  belong to  L.  In  addition,  recognition  can  be  accomplished  by  examining  the  final  state  of  the
machine. The input string belongs to the language if and only if the final state is C.

The construction of this machine is quite easy: note how each production rule translates into an edge between states other than Reject.
For example, C Ø bB indicates that in State C, an input of b places the machine into State B. Not all sets of production rules can be as easily
translated  to  a  finite-state  machine.  Another  set  of  production  rules  for  L  is  A Ø aB, B Ø bC, C Ø cA, C Ø cB, C Ø cC  and  C Ø c.  Tech-
niques for constructing finite-state machines from production rules is not our objective here. Hence we will only expect you to experiment with
production rules until appropriate ones are found.

bê0
a,cê0

cê1

a,bê0

cê1
aê0

bê0

a,b,cê0

A

B

C

Reject

Figure 14.3.3

Example  14.3.4.  A  finite-state  machine  can  be  designed  to  add  positive  integers  of  any  size.  Given  two  integers  in  binary  form,
a = an an-1º⋯ a1 a0 and b = bn bn-1º⋯ b1 b0, the machine will read the input sequence, which is obtained from the digits of a and b reading from
right to left,

a0 b0Ha0 +2 b0L , … , an bnHan +2 bnL,
followed by the  special  input  111.  Note  how all  possible  inputs  except  the  last  one must  even parity  (contain  an even number  of  ones).  The
output sequence is the sum of a  and b,  starting with the units digit, and comes from the set 80, 1, l<.  The transition diagram for this machine
appears in Figure 14.3.4.

000ê0
101,011ê1 110ê0

111êl

000ê0
011,101ê1

110ê0
111êl

101,011ê0
110ê1000ê1

111ê1
Anythingêl

Start

No Carry Carry

Stop

Figure 14.3.4
Transition Diagram for a binary adder

EXERCISES FOR SECTION 14.3
A Exercises

1.   Draw a transition diagram for the vending machine described in Example
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14.3.1.

2.   Construct finite-state machines that recognize the regular languages that you identified in Section 14.2.

3.   What is the input set for the machine in Example 14.3.4?

4.   What input sequence would be used to compute the sum of 1101 and 0111 (binary integers)? What would the output sequence be?

B Exercise

5.     The  Gray  Code  Decoder.  The  finite-state  machine  defined  by  the  following  figure  has  an  interesting  connection  with  the  Gray  Code
(Section 9.4).

0ê1
1ê0
1ê1

0ê0 ComplementCopy

Figure 14.3.5
Gray Code Decoder

 Given a string x = x1 x2º⋯ xn œ Bn, we may ask where x appears in Gn. Starting in Copy state, the input string x will result in an output string
z œ Bn, which is the binary form of the position of x in Gn Positions are numbered from 0 to 2n - 1.
(a)   In what positions H0 - 31L do 10110, 00100, and 11111 appear in G5?

(b)   Prove that the Gray Code Decoder always works.

14.4 The Monoid of a Finite-State Machine
In  this  section,  we will  see  how every  finite-state  machine  has  a  monoid  associated  with  it.  For  any finite-state  machine,  the  elements  of  its
associated monoid correspond to certain input sequences.  Because only a finite number of combinations of states and inputs is possible for a
finite-state  machine  there  is  only  a  finite  number  of  input  sequences  that  summarize  the  machine  This  idea  is  illustrated  best  with  a  few
examples.

Example 14.4.1. Consider the parity checker. The following table summarizes the effect on the parity checker of strings in B1  and B2  .
The row labeled "Even" contains the final state and final output as a result of each input string in B1  and B2  when the machine starts in the
even state. Similarly, the row labeled "Odd" contains the same information for input sequences when the machine starts in the odd state.

Input String 0 1 00 01 10 11
Even HEven, 0L HOdd, 1L HEven, 0L HOdd, 1L HOdd, 1L HEven, 0L
Odd HOdd, 1L HEven, 1L HOdd, 1L HEven, 1L HEven, 0L HOdd, 1L

Same Effect as 0 1 1 0

Note how, as indicated in the last row, the strings in B2  have the same effect as certain strings in B1. For this reason, we can summarize the
machine in terms of how it is affected by strings of length 1. The actual monoid that we will now describe consists of a set of functions, and
the operation on the functions will be based on the concatenation operation.
Let  T0  be  the  final  effect  (state  and  output)  on  the  parity  checker  of  the  input  0.  Similarly,  T1  is  defined  as  the  final  effect  on  the  parity
checker of the input 1.   More precisely,

T0HevenL = Heven, 0L  and T0HoddL = Hodd, 1L , 
while

T1HevenL = Hodd, 1L and T1HoddL = Heven, 0L.
In general, we define the operation on a set of such functions as follows: if s, t are input sequences and Ts and Tt, are functions as above, then
Ts *Tt = Tst, that is, the result of the function that summarizes the effect on the machine by the concatenation of s with t. Since, for example,
01 has the same effect on the parity checker as 1, T0 *T1 = T01 = T1. We don't stop our calculation at T01  because we want to use the shortest
string of inputs to describe the final result. A complete table for the monoid of the parity checker is

 
* T0 T1
T0
T1

T0 T1
T1 T0

What is the identify of this monoid? The monoid of the parity checker is isomorphic to the monoid @Z2, +2].
This operation may remind you of the composition operation on functions, but there are two principal differences. The domain of Ts is not the
codomain of Tt and the functions are read from left to right unlike in composition, where they are normally read from right to left.
You may have noticed that the output of the parity checker echoes the state of the machine and that we could have looked only at the effect
on the machine as the final state. The following example has the same property, hence we will only consider the final state.

Example  14.4.2.  The  transition  diagram for  the  machine  that  recognizes  strings  in  B*  that  have  no  consecutive  1’s  appears  in  Figure
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14.4.1. Note how it is similar to the graph in Figure 9.1.1. Only a "reject state" has been added, for the case when an input of 1 occurs while
in State a. We construct a similar table to the one in the previous example to study the effect of certain strings on this machine. This time, we
must include strings of length 3 before we recognize that no "new effects" can be found.

1ê1

0ê1
0ê1

1ê0
1ê1

0ê1

0,1ê0
s

a

b

r

Figure 14.4.1

 

Inputs 0 1 00 01 10 11 000 001 010 011 100 101 110 111
s b a b a b r b a b r b a r r
a b r b a r r b a b r r r r r
b b a b a b r b a b r b a r r
r r r r r r r r r r r r r r r

Same as 0 0 01 0 11 10 1 11 11
The following table summarizes how combinations of the strings 0, 1, 01, 10, and 11 affect this machine.

 

* T0 T1 T01 T10 T11
T0
T1
T01
T10
T11

T0 T1 T01 T10 T11
T10 T11 T1 T11 T11
T0 T11 T01 T11 T11
T10 T1 T1 T10 T11
T11 T11 T11 T11 T11

All the results in this table can be obtained using the previous table. For example,

T10 *T01 = T1001 = T100 *T1 = T10 *T1 = T101 = T1
and

T01 *T01 = T0101 = T010 T1 = T0 T1 = T01.

 

Note that none of the elements that we have listed in this table serves as the identity for our operation. This problem can always be remedied
by including the function that corresponds to the input of the null string, Tl. Since the null string is the identity for concatenation of strings,
Ts Tl = Tl Ts = Ts for all input strings s.

Example 14.4.3.  A finite-state machine called the unit-time delay machine does not echo its current state, but prints its previous state.
For this reason, when we find the monoid of the unit-time delay machine, we must consider both state and output. The transition diagram of
this machine appears in Figure 14.4.2.

0ê1
1ê0
0ê1

1ê10 1

Figure 14.4.2
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Input 0 1 00 01 10 11
100
or
000

101
or
001

110
or
101

111
or
011

0
1

Same as

H0, 0L H1, 0L H0, 0L H1, 0L H0, 1L H1, 1L H0, 0L H1, 0L H0, 1L H1, 1LH0, 1L H1, 1L H0, 0L H1, 0L H0, 1L H1, 1L H0, 0L H1, 0L H0, 1L H1, 1L
00 01 10 11

Again,  since  no  new  outcomes  were  obtained  from  strings  of  length  3,  only  strings  of  length  2  or  less  contribute  to  the  monoid  of  the
machine. The table for the strings of positive length shows that we must add Tl to obtain a monoid.

 

* T0 T1 T00 T01 T10 T11
T0
T1
T00
T01
T10
T11

T00 T01 T00 T01 T10 T11
T10 T11 T00 T01 T10 T11
T00 T01 T00 T01 T10 T11
T10 T11 T00 T01 T10 T11
T00 T01 T00 T01 T10 T11
T10 T11 T00 T01 T10 T11

EXERCISES FOR SECTION 14.4

A Exercise
1.   For each of the transition diagrams in Figure 14.4.3, write out tables for their associated monoids. Identify the identity in terms of a string of
positive length, if possible. (Hint: Where the output echoes the current state, the output can be ignored.)

a b

c

b

a

c

a,b,c

1 2

3

HaL

2

1

2

1

1

2

1

2

A

B

C

D

HbL

Figure 14.4.3

B Exercise
2.   What common monoids are isomorphic to the monoids obtained in the previous exercise?

C Exercise
3.   Can two finite-state machines with nonisomorphic transition diagrams have isomorphic monoids?

14.5 The Machine of a Monoid
Any  finite  monoid  @M , *D  can  be  represented  in  the  form  of  a  finite-state  machine  with  input  and  state  sets  equal  to  M.  The  output  of  the
machine will be ignored here, since it would echo the current state of the machine. Machines of this type are called state machines.  It can be
shown that  whatever  can  be  done  with  a  finite-state  machine  can  be  done  with  a  state  machine;  however,  there  is  a  trade-off.  Usually,  state
machines that perform a specific function are more complex than general finite-state machines.
Definition:  Machine of a Monoid.  If  @M , *D  is  a finite monoid,  then the machine of  M, denoted m(M), is  the state machine with state set  M,
input set M, and next-state function t : M µM Ø M defined by t Hs, xL = s * x.

Example 14.5.1. We will construct the machine of the monoid @Z2; +2D. As mentioned above, the state set and the input set are both Z2.
The next state function is defined by t Hs, xL = s +2 x. The transition diagram for mHZ2L appears in Figure 14.5.1. Note how it is identical to
the transition diagram of the parity checker, which has an associated monoid that was isomorphic to @Z2, +2D.
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0

1

1
00 1

Figure 14.5.1

Example 14.5.2. The transition diagram of the monoids @Z2, µ2D and @Z3, µ3D appear in Figure 14.5.2.

0,1 0 10 1

HaL
0,1,2

0

2

1

0

1

2

0 1

2

HbL

Figure 14.5.2

Example  14.5.3.  Let  U  be  the  monoid  that  we  obtained  from  the  unit-time  delay  machine  (Example  14.4.3).  We  have  seen  that  the
machine of the monoid of the parity checker is essentially the parity checker. Will we obtain a unit-time delay machine when we construct the
machine of U? We can't expect to get exactly the same machine because the unit-time delay machine is not a state machine and the machine
of a monoid is a state machine. However, we will see that our new machine is capable of telling us what input was received in the previous
time period. The operation table for the monoid serves as a table to define the transition function for the machine. The row headings are the
state values, while the column headings are the inputs. If we were to draw a transition diagram with all possible inputs, the diagram would be
too difficult to read. Since U is generated by the two elements, T0  and T1, we will include only those inputs. Suppose that we wanted to read
the  transition  function  for  the  input  T01.  Since  T01 = T0 T1,  in  any  state  s, tHs, T01L = t HtHs, T0L, T1L.  The  transition  diagram  appears  in
Figure 14.5.3.

T0 T1

T0

T1

T1

T0

T1

T0

T0

T1

T0

T1

T1

T0

Tl

T0 T1

T00 T11

T01 T10

Figure 14.5.3

If we start reading a string of 0s and 1s while in state Tl  and are in state Tab at any one time, the input from the previous time period (not the
input that sent us into Tab, the one before that) is a. In states Tl, T0 and T1, no previous input exists.

EXERCISES FOR SECTION 14.5
A Exercise
1.   Draw the transition diagrams for the machines of the following monoids:

(a)   @Z4; +4D
(b)   The direct product of   @Z2;µ2D with itself.
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B Exercise
2.   Even though a monoid may be infinite, we can visualize it as an infinite-state machine provided that it is generated by a finite number of
elements. For example, the monoid B* is generated by 0 and 1. A section of its transition diagram can be obtained by allowing input only from
the  generating  set  (Figure  14.5.4a).  The  monoid  of  integers  under  addition  is  generated  by  the  set  {-1,  1}.  The  transition  diagram  for  this
monoid can be visualized by drawing a small portion of it, as in Figure 14.5.4b.
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Figure 14.5.4

(a)   Draw a transition diagram for {a, b, c}*.

(b)   Draw a transition diagram for @ZµZ, componentwise additionD .
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SUPPLEMENTARY EXERCISES FOR CHAPTER 14

Section 14,1
1.    Let B  be a Boolean algebra and M  the set of all Boolean functions on B.  Let *  be defined on M  by H f * gL HaL = f HaL Ï gHaL.  Prove that@M , *D is a monoid. Construct the operation table of @M , *D for the case of B = B2.
2.   A semigroup is an algebraic system @S, *D with the only axiom that * be associative on S. Prove that if S is a finite set, then there must exist
an idempotent element, that is, an a œ S such that a * a = a.

Section 14.2
3.   What language does the following grammar define? The start symbol is S, the terminal symbols are a and b, and the nonterminal symbols
are S and B. The production rules are S Ø a, S Ø b B, B Ø b,  B Ø b S.
4.     What  language  does  the  following  grammar  define?  Start  symbol  =  S.  nonterminal  symbols:  T,  R.   Production  rules:  S Ø T,  S Ø R,
T Ø b R, R Ø a T, T Ø b, R Ø a.
5.   Write a regular grammar for the language L over the alphabet 8a, b< where L is the set of all strings with exactly two b's.

6.     Write  a  regular  grammar  to  describe  the  strings  of  0’s  and  1’s  that  consist  of  a  positive  number  of  0’s  surrounded  by  single  1’s.   For
example,  100001 is one such string.

Section 14.3
7.  Draw a finite-state machine to recognize the language in Exercise 5.  Have the last output be 1 if the input word is in L, and 0 it is not in L.

8.  Draw a transition diagram for a finite-state machine that recognizes strings in the language of Exercise 6.

9. A finite-state machine moves once every time unit between one of four states called Right, Middle, Left,  and Down. The input alphabet is
X = 800, 01, 10, 11< and the output alphabet is Y = 81, 0<.

(i) If the machine is in the Middle, Right, or Left, 00 means that it stays where it is;  01  means that it moves one state to the right (e.g.
Left to Middle.)—if it can't move any farther to the right, it stays where it is;
10 means that it moves one state to the left.

(ii) Input of 11 means that the machine stays where it is except if it is in the Middle, in which case it enters the Down state.

(iii) If the machine is in the Down state, it stays in that state forever.

(iv) Output is 1 if the state of the machine changes, 0 otherwise.

(a)  Construct the transition diagram for this finite-state machine.

(b)  If s H0L = Middle and sH3L = Down, list the possible output sequences that could have occurred for t = 0, 1, 2.

Section 14.4
10.   Write out the operation table for the monoid of the machine in Exercise 9. Section 14.5

11.   Draw the transition diagram of the machine of @M , *D in Exercise 1 of these supplementary exercises. 
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Chapter 15

GROUP THEORY AND APPLICATIONS

Abelian Group

In Abelian groups, when computing,
With operands there's no refuting:
The expression bc
Is the same as cb.
Not en route to your job, yet commuting.

- limerick by Howard Spindel in The Omnificent English Dictionary In Limerick Form

GOALS
In  Chapter  11,   groups  were  introduced  as  a  typical  algebraic  system.  The  associated  concepts  of  subgroup,  group  isomorphism,  and  direct
products of groups were also introduced. Groups were chosen for that chapter because they are among the simplest types of algebraic systems.
Despite  this  simplicity,  group  theory  abounds  with  interesting  applications,  many  of  which  are  of  interest  to  the  computer  scientist.  In  this
chapter we will introduce some more important concepts in elementary group theory, and some of their applications.
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15.1 Cyclic Groups
Groups are classified according to their size and structure. A group's structure is revealed by a study of its subgroups and other properties (e.g.,
whether it is abelian) that might give an overview of it. Cyclic groups have the simplest structure of all groups.

Definitions: Cyclic Group, Generator.  Group G is cyclic if there exists a œ G such that the cyclic subgroup generated by a, HaL, equals
all of G. That is, G = 8n a n œ Z<, in which case a is called a generator of G. The reader should note that additive notation is used for G.

Example 15.1.1. Z12 = @Z12 , +12 D,  where +12  is addition modulo 12, is a cyclic group. To verify this statement, all we need to do is
demonstrate that some element of Z12  is a generator. One such element is 5; that is, (5) = Z12 . One more obvious generator is 1. In fact, 1 is
a generator of every @Zn; +nD. The reader is asked to prove that if an element is a generator, then its inverse is also a generator. Thus, -5 = 7
and -1 = 11 are the other generators of Z12.

HaL

0
1

2

3

4

5
6

7

8

9

10

11

HbL

0
1

2

3

4

5
6

7

8

9

10

11

Figure 15.1.1
Examples of "string art"

Figure 15.1.1(a) is an example of "string art" that illustrates how 5 generates Z12.  Twelve tacks are placed along a circle and numbered. A
string is tied to tack 0, and is then looped around every fifth tack. As a result, the numbers of the tacks that are reached are exactly the ordered
multiples of 5 modulo 12: 5, 10, 3, ... , 7, 0.  Note that if every seventh tack were used, the same artwork would be obtained. If every third
tack were connected, as in Figure 15.1.1(b), the resulting loop would only use four tacks; thus 3 does not generate Z12 .

Example 15.1.2. The group of additive integers, [Z; +], is cyclic:

Z = H1L = 8n ÿ 1 n œ Z<.
This observation does not mean that every integer is the product of an integer times 1. It means that

Z = 80< ‹ :1 + 1 + º⋯ + 1
n terms

n œ P> ‹ :H-1L + H-1L + º⋯ + H-1Ln terms

n œ P>
Theorem 15.1.1. If @G *D is cyclic, then it is abelian.

Proof: Let a be any generator of G and let b, c œ G. By the definition of the generator of a group, there exists integers m and n such that
b = m a and c = n a. Thus

b * c = Hm aL* Hn aL
= Hm + nL a   by Theorem 11.3.7(ii)

= Hn + mL a

= Hn aL* Hn bL
= c * b ‡

One of the first steps in proving a property of cyclic groups is to use the fact that there exists a generator. Then every element of the group can
be expressed as some multiple of the generator. Take special note of how this is used in theorems of this section.
Up to now we have used only additive notation to discuss cyclic groups. Theorem 15.1.1 actually justifies this practice since it is customary to
use additive notation when discussing abelian groups. Of course, some concrete groups for which we employ multiplicative notation are cyclic.
If one of its elements, a, is a generator,
 HaL = 8an n œ Z<

Example 15.1.3. The group of positive integers modulo 11 with modulo 11 multiplication, @Z11* ; µ11 D, is cyclic. One of its generators is
6:  61 = 6, 62 = 3, 63 = 7,… , 69 = 2, and 610 = 1, the identity of the group.
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Example 15.1.4. The real numbers with addition, @R; +D is a noncyclic group. The proof of this statement requires a bit more generality
since we are saying that for all  r œ R, HrL is a proper subset of R. If r is nonzero, the multiples of r are distributed over the real line, as in
Figure 15.1.2. It is clear then that there are many real numbers, like r ê2, that are not in HrL.

-3r -2r -1r 0r 1r 2r 3r

Figure 15.1.2
Elements of Hr L, r >0

The following theorem shows that a cyclic group can never be very complicated.

Theorem 15.1.2. If G is a cyclic group, then G is either finite or countably infinite. If G is finite and †G§ = n, it is isomorphic to @Zn, +nD.
If G is infinite, it is isomorphic to @Z , +D.

Proof:  Case 1: †G§ < ¶. If a is a generator of G and †G§ = n, define f : Zn Ø G by

  fHkL = k a for all k œ Zn

Since HaL is finite, we can use the fact that the elements of HaL are the first n nonnegative multiples of a. From this observation, we see that f
is a surjection. A surjection between finite sets of the same cardinality must be a bijection. Finally, if p, q œ Zn,

fHpL + fHqL = p a + q a
= Hp + qL a
= Hp +n qL a see exercise 10
= fHp +n qL

 

Therefore f is an isomorphism.

Case 2; †G§ = ¶. We will leave this case as an exercise. ‡

The proof  of  the  next  theorem makes  use  of  the  division  property  for  integers,  which  was  introduced  in   Section  11.4:  If  m, n  are  integers,
m > 0, there exist unique integers q (quotient) and r (remainder) such that n = qm + r  and 0 § r < m.

Theorem 15.1.3. Every subgroup of a cyclic group is cyclic.

Proof: Let G be cyclic with generator a and let H § G. If H = 8e<, H has e as a generator. We may now assume that †H§ ¥ 2 and a ¹≠ e.
Let m be the least positive integer such that m a belongs to H. (This is the key step. It lets us get our hands on a generator of H.) We will now
show that c = m a generates H.  Suppose that HcL ¹≠ H. Then there exists b œ H  such that b – HcL. Now, since b is in G, there exists n œ Z
such that b = n a. We now apply the division property and divide n by m.

b = n a = Hq m + rL a = Hq mL a + r a,

where 0 § r < m.  We note that r cannot be zero for otherwise we would have  b = n a = qHm aL = q c œ HcL.   Therefore, 

r a = n a - Hq mL a œ H

This contradicts our choice of m because 0 < r < m.   ‡ 

Example 15.1.5. The only proper subgroups of Z10  are H1 = 80, 5<  and H2 = 80, 2, 4, 6, 8<.   They are both cyclic: H1 = H5L,  while
H2 = H2L = H4L = H6L = H8L. The generators of Z10 are 1, 3, 7, and 9.

Example 15.1.6. With the exception of 80<, all subgroups of Z are isomorphic to Z.  If H § Z, then H is the cyclic subgroup generated
by the least positive element of H.  It is infinite and so by theorem 15.1.2 it is isomorphic to Z.
We now cite a useful theorem for computing the order of cyclic subgroups of a cyclic group:

Theorem 15.1.4.  If  G is  a cyclic group of  order n and a is  a generator of  G, the order of  k a is  n êd, where d is  the greatest  common
divisor of n and k.
The proof of this theorem is left to the reader.

Example 15.1.7. To compute the order of H18L in Z30, we first observe that 1 is a generator of Z30  and 18 = 18(1). The greatest common
divisor of 18 and 30 is 6. Hence, the order of (18) is 30/6, or 5.

APPLICATION: FAST ADDERS
At this point, we will introduce the idea of a fast adder, a relatively modern application (Winograd, 1965) to an ancient theorem, the Chinese
Remainder  Theorem.  We  will  present  only  an  overview  of  the  theory  and  rely  primarily  on  examples.  The  interested  reader  can  refer  to
Dornhoff and Hohn for details.
Out of necessity, integer addition with a computer is addition modulo n, for n some larger number. Consider the case where n is small, like 64.
Then addition involves the addition of six-digit binary numbers. Consider the process of adding 31 and 1. Assume the computer’s adder takes
as input two bit strings  a = 8a0, a1, a2, a3, a4, a5<  and b = 8b0, b1, b2, b3, b4, b5<  and outputs s = 8s0, s1, s2, s3, s4, s5<,  the sum of a and b.
Then, if  a = 31 = H1, 1, 1, 1, 1, 0L  and b = 1 = H1, 0, 0, 0, 0, 0L,  s  will  be (0, 0,  0,  0,  0,  1),  or 32. The output s5 = 1 cannot be deter-
mined until all other outputs have been determined. If addition is done with a finite-state machine, as in Example 14.3.5, the time required to
obtain s  will  be six time units,  where one time unit  is  the time it  takes to get  one output  from the machine.   In general,  the time required to
obtain s will be proportional to the number of bits   Theoretically, this time can be decreased, but the explanation would require a long digres-
sion and our relative results would not change that much. We will use the rule that the number of time units needed to perform addition modulo
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n is proportional to  `log2 np.
Now we will introduce a hypothetical problem that we will use to illustrate the idea of a fast adder. Suppose that we had to add many numbers
modulo  27 720 = 8 ÿ 9 ÿ 5 ÿ 7 ÿ 11.  By  the  rule  above,  since  214 < 27 720 < 215,  each  addition  would  take  15  time  units.  If  the  sum  is
initialized to zero,  1,000 additions would be needed; thus,  15,000 time units  would be needed to do the additions.  We can improve this time
dramatically by applying the Chinese Remainder Theorem.

The Chinese Remainder Theorem (CRT). Let n1, n2, …, np  be integers that have no common factor greater than one between any pair
of them; i. e., they are relatively prime.  Let n = n1 n2º⋯ np. Define

 q : Zn Ø Zn1 µZn2 µ º⋯µZnp

by   

q HkL = Ik1, k2, …, kpM
where for 1 § i § p,   0 § ki < ni   and  k ª kiHmod niL.  Then q  is an isomorphism from Zn into Zn1 µZn2 µ º⋯µZnp .

This theorem can be stated in several different forms, and its proof can be found in many abstract algebra texts.

Example  15.1.8.  As  we  saw  in  Chapter  11,  Z6  is  isomorphic  to  Z2 µ Z3  .  This  is  the  smallest  case  to  which  the  CRT can  be  applied.  An
isomorphism between Z6 and Z2 µ Z3 is

q H0L = H0, 0L qH3L = H1, 0L 
q H1L = H1, 1L q H4L = H0, 1L 
q H2L = H0, 2L q H5L = H1, 2L

Let’s consider a somewhat larger case.  We start by selecting a modulus that can be factored into a produce to relatively prime integers.  

n = 25 33 52

21 600

In this case the factors are 25 = 32, 33 = 27, and 52 = 25.  They need not be powers of primes, but it is easy to break the factors into this form to
assure relatively prime numbers.  To add in Zn, we need `log2 np = 15 time units.  Let G = Z32µZ27µZ25.   The CRT gives us an isomorphism
between Z21600 and G. The basic idea behind the fast adder, illustrated in Figure 15.1.3, is to make use of this isomorphism. 

Assume we have several integers a1, …, am to be added.  Here, we assume m = 20.

a = 81878, 1384, 84, 2021, 784, 1509, 1740, 1201,
2363, 1774, 1865, 33, 1477, 894, 690, 520, 198, 1349, 1278, 650<;

After each of the si ' s is initialized to zero, each summand t is decomposed into a triple qHtL = Ht1, t2, t3L œ G.  For our example we first define q
as a Mathematica function and then map it over the list of summands.

q@n_D := 8Mod@n, 32D, Mod@n, 27D, Mod@n, 25D<
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distributedSummands = Map@q, aD
22 15 3
8 7 9
20 3 9
5 23 21
16 1 9
5 24 9
12 12 15
17 13 1
27 14 13
14 19 24
9 2 15
1 6 8
5 19 2
30 3 19
18 15 15
8 7 20
6 9 23
5 26 24
30 9 3
10 2 0

 Addition in G can be done in parallel so that each new subtotal in the form of the triple Hs1, s2, s 3 L  takes only as long to compute as it takes to
add in the largest modulus, log2 32 = 5 time units, if calculations are done in parallel. By the time rule that we have established, the addition of
20 numbers can be done in 20 µ 5 = 100 time units, as opposed to 15 µ 20 = 300  time units if we do the calculations in Zn.
The result of adding the distributed summands in the three different moduli for our example would be the following.

distributedSum =
Fold@8Mod@Ò1@@1DD + Ò2@@1DD, 32D, Mod@Ò1@@2DD + Ò2@@2DD, 27D, Mod@Ò1@@3DD + Ò2@@3DD, 25D< &,80, 0, 0<, distributedSummandsD

812, 13, 17<
Two more factors must still be considered, however. How easy is it to determine qHaL and q-1Hs1, s2, s3L? We must compute qHaL  twenty times,
and,  if  it  requires  a  sizable amount  of  time,  there may not  be any advantage to the fast  adder.  The computation of  an inverse is  not  as  time-
critical since it must be done only once, after the final sums are determined in G.
The  determination  of  qHaL  is  not  a  major  problem.  If  the  values  of  qH1L,  q H10L,  qH100L,  qH1000L,  and  qH10 000L  are  stored,
a = d0 + 10 d1 + 100 d2 + 1000 d3 + 10 000 d4, then

 qHaL = d0 qH1L + d1 qH10L + d2 qH100L + d3 qH1000L + d4 qH10 000L
by the  fact  that  q  is  an  isomorphism.  The components  of  qHaL  can  be  computed economically  using this  formula  so  as  not  to  slow down the
actual adding process. 
The  computation  of  q-1Hs1, s2, s3L  is  simplified  by  the  fact  that  q-1  is  also  an  isomorphism.  The  final  sum  is
s1 q-1H1, 0, 0L + s2 q-1H0, 1, 0L + s3 q-1H0, 0, 1L.  The arithmetic in  this  expression is  in  Z21600  and is  more time consuming.  However,  as  was
noted above, it need only be done once. This is why the fast adder is only practical in situations where many additions must be performed to get
a single sum.
For our example, we can use Mathematica’s built-in function for inverting q:

ChineseRemainder@distributedSum, 832, 27, 25<D
2092

The result we get is exactly what we get by directly adding in the larger modulus.

Fold@Mod@Ò1 + Ò2, 32 µ 27 µ 25D &, 0, aD
2092

Notice that if we wanted the conventional sum of integers our list, the result we just arrived at would not be correct.   The relationship between
the integer sum and the modular sum is that they differ by a multiple of the modulus:
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Total@aD
23 692

Mod@Total@aD - Fold@Mod@Ò1 + Ò2, 32 µ 27 µ 25D &, 0, aD, 32 µ 27 µ 25D
0

To further illustrate the potential of fast adders, consider the problem of addition modulo 

n = 25 33 52 72 11 ÿ 13 ÿ 17 ÿ 19 ÿ 23 ÿ 29 ÿ 31 ÿ 37 ÿ 41 ÿ 43 ÿ 47 º 3.1 µ 1021

Each  addition  using  the  usual  modulo  n  addition  with  full  adders  would  take  72  time  units.  By  decomposing  each  summand  into  15-tuples
according to the CRT, the time is reduced to `log2 49p = 6 time units per addition.

EXERCISES FOR SECTION 15.1
A Exercises
1.  What generators besides 1 does @Z, +D have?

2.   Without doing any multiplications, determine the number of generators of  @Z11, +11D.
3.  Prove that if †G§ > 2 and G is cyclic, G has at least two generators.

4.   If you wanted to list the generators of Zn you would only have to test the first n ê2 positive integers. Why?

5.   Which of the following groups are cyclic? Explain.

(a)  @Q, +D
(b)  @R+, ÿD
(c)  @6 Z, +D where 6 Z = 86 n n œ Z<
(d)  Z µ Z

(e)  Z2µ Z3 µ Z25

6.   For each group and element, determine the order of the cyclic subgroup generated by the element:

(a)   Z25 , 15

(b)  Z4µZ9 , H2, 6L (apply Exercise 8)

(c)   Z64 , 2

B Exercises
7.   How can Theorem 15.1.4 be applied to list the generators of Zn? What are the generators of Z25? Of Z256?

8.   Prove that if the greatest common divisor of n and m is 1, then (1, 1) is a generator of Zn µZm, and, hence, Zn µZm is isomorphic to  Zn m.

9.   (a) Illustrate how the fast adder can be used to add the numbers 21, 5, 7, and 15 using the isomorphism between Z77 and Z7µZ11. 

(b) If the same isomorphism is used to add the numbers 25, 26, and 40, what would the result be, why would it be incorrect, and how
would the answer differ from the answer in part a?

10.   Prove that if G is a cyclic group of order n with generator a, and p, q œ 80, 1, …, n - 1<, then   

Hp + qL a = Hp +n qL a

15.2 Cosets and Factor Groups
Consider the group @Z12, +12D. As we saw in the previous section, we can picture its cyclic properties with the string art of Figure 15.1.1. Here
we will be interested in the non-generators, like 3. The solid lines in Figure 15.2.1 show that only one-third of the tacks have been reached by
starting at zero and jumping to every third tack. The numbers of these tacks correspond to H3L = 80, 3, 6, 9<. 
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Figure 15.2.1

What  happens  if  you start  at  one  of  the  unused tacks  and again  jump to  every  third  tack?  The two broken paths  on  Figure  15.2.1  show that
identical  squares  are  produced.  The  tacks  are  thus  partitioned  into  very  similar  subsets.  The  subsets  of  Z12  that  they  correspond  to  are80, 3, 6, 9<,  81, 4, 7, 10<,  and  82, 5, 8, 11<.These  subsets  are  called  cosets.  In  particular,  they  are  called  cosets  of  the  subgroup80, 3, 6, 9<. We will see that under certain conditions, cosets of a subgroup can form a group of their own. Before pursuing this example any
further we will examine the general situation.

Definition: Coset.  If @G, *D is a group, H § G and a œ G, the left coset  of H generated by a is

 a*H = 8 a*h h œ H<. 
The right coset of H generated by a is 

  H *a = 8h*a h œ H<.
Notes:

(a)   H itself is both a left and right coset since e * H = H * e = H.

(b)     If  G  is  abelian,  a * H = H * a  and  the  left-right  distinction  for  cosets  can  be  dropped.  We  will  normally  use  left  coset  notation  in  that
situation.

Definition: Coset Representative. Any element of a coset is called a representative of that coset.

One might wonder whether a is in any way a special representative of a * H since it seems to define the coset. It is not, as we shall see.

Theorem 15.2.1.  If b œ a*H, then a*H = b*H, and if b œ H *a, then H *a = H *b.

Remark: A Duality Principle. A duality principle can be formulated concerning cosets because left and right cosets are defined in such
similar ways. Any theorem about left and right cosets will yield a second theorem when "left" and "right" are exchanged for "right" and "left."
Proof of Theorem 15.2.1: In light of the remark above, we need only prove the first part of this theorem. Suppose that x œ a * H.  We need only
find a way of expressing x as “b times an element of H.” Then we will have proven that a * H Œ b * H.  By the definition of a * H, since b and x
are in a * H, there exist h1 and h2 in H such that b = a * h1 and x = a * h2. Given these two equations, a = b h1-1 and

x = a * h 2 = Ib * h1-1 M* h2 = b * Ih1-1 * h2 M.
Since h1, h2 œ H,   h1-1 * h2 œ H, and we are done with this part of the proof.  In order to show that b * H C a * H, one can follow essentially the
same steps, which we will let the reader fill in. ‡

Example 15.2.1.   In Figure 15.2.1, you can start at either 1 or 7 and obtain the same path by taking jumps of three tacks in each step.
Thus,

1 +12 80, 3, 6, 9< = 7 +12 80, 3, 6, 9< = 81, 4, 7, 10<.
The set of left (or right) cosets of a subgroup partition a group in a special way:

Theorem 15.2.2.  If @G, *D is a group and H § G, the set of left cosets of H is a partition of G. In addition, all of the left cosets of H have
the same cardinality. The same is true for right cosets.
Proof: That every element of G belongs to a left coset is clear because a œ a * H  for all a œ G. If a * H  and b * H  are left cosets, they are either
equal or disjoint. If two left cosets a * H  and b * H  are not disjoint, a * H › b * H  is nonempty and some element c belongs to the intersection.
Then by Theorem 15.2.1,
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 c œ a * H a * H = c * H and

c œ b * H b * H = c * H. 

Hence  a * H = b * H.

We  complete  the  proof  by  showing  that  each  left  coset  has  the  same  cardinality  as  H.  To  do  this,  we  simply  observe  that  if  a œ G,
r : H Ø a * H defined by rHhL = a * h is a bijection and hence †H§ = †a * H§.  We will leave the proof of this statement to the reader. ‡
The function r has a nice interpretation in terms of our opening example.  If a œ Zn, the graph of 80, 3, 6, 9< is rotated 30 a° to coincide with
one of the three cosets of 80, 3, 6, 9<.

A Counting Formula.  If †G§ < ¶ and H § G, the number of distinct left cosets of H equals †G§†H § . For this reason we use G êH  to denote
the set of left cosets of H in G.

Example  15.2.2.  The  set  of  integer  multiples  of  four,  4 Z,  is  a  subgroup  of  @Z, +D.  Four  distinct  cosets  of  4 Z  partition  the  integers.
They are 4 Z, 1 + 4 Z, 2 + 4 Z, and 3 + 4 Z, where, for example, 1 + 4 Z = 81 + 4 k k œ Z<.   4 Z can also be written 0 + 4 Z.
Distinguished Representatives.  Although we have seen that any representative can describe a coset, it is often convenient to select a distin-
guished representative from each coset. The advantage to doing this is that there is a unique name for each coset in terms of its distinguished
representative. In numeric examples such as the one above, the distinguished representative is usually the smallest nonnegative representative.
Remember, this is purely a convenience and there is absolutely nothing wrong in writing -203 + 4 Z, 5 + 4 Z, or 621 + 4 Z in place of 1 + 4 Z
because  -203, 5, 621 œ 1 + 4 Z.
Before  completing  the  main  thrust  of  this  section,  we  will  make  note  of  a  significant  implication  of  Theorem 15.2.2.  Since  a  finite  group is
divided into cosets of a common size by any subgroup, we can conclude:

Lagrange's Theorem. The order of a subgroup of a finite group must divide the order of the group.

One immediate implication of Lagrange's Theorem is that if p is prime, Zp  has no proper subgroups.

We  will  now  describe  the  operation  on  cosets  which  will,  under  certain  circumstances,  result  in  a  group.  For  most  of  this  section,  we  will
assume that G is an abelian group. This is one condition that guarantees that the set of left cosets will form a group.

Definition: Operation on Cosets. Let C and D be left cosets of H, a subgroup of G with representatives c and d, respectively. Then 

C Ä⊗D = c*H Ä⊗d *H = Hc*dL*H

 The operation Ä⊗ is called the operation induced on left cosets by *.

In  Theorem 15.2.3,  later  in  this  section,  we  prove  that  if  G  is  an  abelian  group,  Ä⊗  is  indeed  an  operation.  In  practice,  if  the  group  G  is  an
additive group, the symbol Ä⊗ is replaced by +, as in the following example.

Example 15.2.3. Consider the cosets described in Example 15.2.2.  For brevity, we rename 0 + 4 Z, 1 + 4 Z, 2 + 4 Z, and 3 + 4 Z with
the symbols 0, 1, 2, and 3.   Let’s do a typical calculation, 1 + 3.  We will see that the result is always going to be 0 , no matter what represen-
tatives we select.  For example, 9 œ 1 ,   7 œ 3, and 9 + 7 = 16 œ 0. Our choice of the representatives 1 and 3 were completely arbitrary.  If
you are reading this as a Mathematica Notebook, you can try out this demonstration that lets you select representatives of the two cosets by
moving the sliders and see how the result is consistent.

k1

k2

Your selection of a representative of 1 :9 Good Choice!

Your selection of a representative of 3 : 7 Good Choice!

The sum of representatives is 16 The sum is in 0

Since C Ä⊗ D (or 1 + 3 in this case) can be computed in many ways, it is necessary to show that the choice of representatives does not affect
the  result.  When  the  result  we  get  for  C Ä⊗ D  is  always  independent  of  our  choice  of  representatives,  we  say  that  "Ä⊗  is  well  defined."
Addition of cosets is a well-defined operation on the left cosets of 4Z and is summarized in Table 15.2.1. Do you notice anything familiar?

Chapter 15 - Group Theory and Applications

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Example 15.2.4. Consider the real numbers. @R; +D, and its subgroup of integers, Z. Every element of R êZ has the same cardinality as
Z. Let s, t œ R. s œ t + Z if s can be written t + n for some n œ Z.  Hence s and t belong to the same coset if they differ by an integer. (See
Exercise 6 for a generalization of this fact.)
Now consider the coset 0.25 + Z. Real numbers that differ by an integer from 0.25 are 1.25, 2.25, 3.25, ... and -0.75, -1.75, -2.75… .   If any
real number is selected, there exists a representative of its coset that is greater than or equal to 0 and less than 1. We will call that representa-
tive the distinguished representative of the coset. For example, 43.125 belongs to the coset represented by 0.125; -6.382 + Z has 0.618 as its
distinguished representative. The operation on R/Z is commonly called addition modulo 1. A few typical calculations in R êZ are

H0.1 + ZL + H0.48 + ZL = 0.58 + Z ,

H0.7 + ZL + H0.31 + ZL = 0.01 + Z,

and  -H0.41 + ZL = -0.41 + Z = 0.59 + Z.

In general, -Ha + ZL = H1 - aL + Z.

Example  15.2.5.   Consider  F = HZ4µ Z2 L êH,  where  H = 8H0, 0L, H0, 1L<.  Since  Z4µ Z2  is  of  order  8,  each  element  of  F  is  a  coset
containing two ordered pairs. We will leave it to the reader to verify that the four distinct cosets are

H0, 0L + H,  H1, 0L + H, H2, 0L + H, and H3, 0L + H.

The reader can also verify that F is isomorphic to Z4 , since F is cyclic. An educated guess should give you a generator.

Example 15.2.6. Consider the group Z24 = Z2µZ2µZ2µZ2 . Let H be XH1, 0, 1, 0L\, the cyclic subgroup of Z24 generate by (1,0,1,0).
Since 

H1, 0, 1, 0L + H1, 0, 1, 0L = H1 +2 1, 0 +2 0, 1 +2 1, 0 +2 0L = H0, 0, 0, 0L
The order of H is 2 and , Z24 ëH has †Z24 êH§ =

°Z24†H § = 16
2

= 8 elements. A typical coset is 

    C = H0, 1, 1, 1L + H = 8H0, 1, 1, 1L, H1, 1, 0, 1L<.
Since 2 H0, 1, 1, 1L = H0, 0, 0, 0L, 2 C = H, the identity for the operation Z24 ëH. The orders of all non-identity elements of Z24 ëH  are
all 2, and it can be shown that the factor group is isomorphic to Z23 .

Theorem 15.2.3.  If G is an abelian group, and H § G, the operation induced on cosets of H by the operation of G is well defined.

Proof: Suppose that a, b, and a', b' are two choices for representatives of cosets C and D. That is to say that a, a ' œ C, b, b ' œ D. We
will show that a * b and a ' * b ' are representatives of the same coset. Theorem 15.2.1 implies that C = a * H and D = b * H, thus we have

a ' œ a * H and b ' œ b * H. 

Then there exists h1, h2 œ H such that  a ' = a * h1   and b ' = b * h2  and so

a ' * b ' = Ha * h1L* Hb * h2 L
= Ha * bL* Hh1 * h 2 L

by various group properties and the assumption that H is abelian, which lets us reverse the order in which b and h1appear.  This last expres-
sion for a ' * b’ implies that a ' * b ' œ Ha * bL* H since h1 * h 2 œ H because H is as subgroup of G. ‡

Theorem 15.2.4. Let G be a group and H § G. If the operation induced on left cosets of H by the operation of G is well defined, then the
set of left cosets forms a group under that operation.

Proof:  Let  C1, C2,  and  C3  be  the  left  cosets  with  representatives  r1,  r2,  and  r3,  respectively.   The  values  of  C1 Ä⊗ HC2 Ä⊗ C3L  andHC1 Ä⊗ C2 ) Ä⊗ C3  are  determined by  r1 * Hr2 * r3L  and  Hr1 * r2 ) * r3  .  By the  associativity  of  *  in  G,  these  two group elements  are
equal  and  so   the  two  coset  expressions  must  be  equal.  Therefore,  the  induced  operation  is  associative.  As  for  the  identity  and  inverse
properties, there is no surprise. The identity coset is H  , or e * H, the coset that contains G's identity. If C is a coset with representative a, that
is, if, C = a * H, then C-1 is a-1 * H.

Ha * HLÄ⊗ Ha-1 * HL = Ha * a-1L* H = e * H = identity coset.

Definition: Factor Group. Let G be a group and H § G. If the set of left cosets of H forms a group, then that group is called the factor
group of G modulo H.   It is denoted G êH.
Note: If  G  is  abelian, then every subgroup of G  yields a factor group. We will  delay further consideration of the non-abelian case to Section
15.4.
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Remark on Notation: It is customary to use the same symbol for the operation of G êH  as for the operation on G.  The reason we used distinct
symbols in this section was to make the distinction clear between the two operations.

EXERCISES FOR SECTION 15.2
A Exercises
1.     Consider  Z10  and  the  subsets  of  Z10  ,  {0,  1,  2,  3,  4}  and  {5,  6,  7,  8,  9}.  Why is  the  operation  induced  on  these  subsets  by  modulo  10
addition not well defined?
2.   Can you think of a group G, with a subgroup H such that †H§ = 6 and †G êH§ = 6? Is your answer unique?

3.   For each group and subgroup, what is G êH isomorphic to?

(a)   G = Z4 µ Z2  and  H = XH2, 0L\.   Compare to Example 15.2.5.

(b)   G = @C, +D   and H = R.

(c)   G = Z20  and   H = X8\ .

4.   For each group and subgroup, what is G/H isomorphic to?

(a)   G = ZµZ and  H = 88a, aL a œ Z<.
(b)   G = @R*, ÿD  and  H = 81, -1<.
(c)   G = Z2

5  and  H = XH1, 1, 1, 1, 1L\.
B Exercises
5.   Prove that if G is a group, H § G and a, b œ G, a * H = b * H  if and only if  b-1 * a œ H.

6.     (a) Real addition modulo r,  r > 0, can be described as the operation induced on cosets of Xr\  by ordinary addition. Describe a system of
distinguished representatives for the elements of R ê Xr\.
(b) Consider the trigonometric function sine. Given that sin Hx + 2 p kL = sin x for all x œ R and k œ Z, show how the distinguished representa-
tives of R ê X2 p\ can be useful in developing an algorithm for calculating the sine of a number.

15.3 Permutation Groups
At the risk of boggling the reader's mind, we will now examine groups whose elements are functions. Recall that a permutation on a set A is a
bijection from A into A. Suppose that A = 81, 2, 3<. There are 3 ! = 6 different permutations on A. We will call the set of all 6 permutations
S3.   They are listed in Table 15.3.1. The matrix form for describing a function on a finite set is to list the domain across the top row and the
image of each element directly below it. For example r1H1L = 2.

  

i = K 1 2 3
1 2 3 O f1 = K 1 2 3

1 3 2 O
r1 = K 1 2 3

2 3 1 O f2 = K 1 2 3
3 2 1 O

r2 = K 1 2 3
3 1 2 O f3 = K 1 2 3

2 1 3 O
             

Table 15.3.1
Elements of S3

The operation that will give 8i, r1, r2, f1, f2, f3< a group structure is function composition. Consider the "product" r1 Î f3:

r1 Î f3H1L = r1H f3H1LL = r1H2L = 3
r1 Î f3H2L = r1H f3H2LL = r1H1L = 2
r1 Î f3H3L = r1H f3H3LL = r1H3L = 1

The  images  of  1,  2,  and  3  under  r1 Î f3  and  f2are  identical.  Thus,  by  the  definition  of  equality  for  functions,  we  can  say  r1 Î f3 = f2  .  The
complete table for the operation of function composition is given in Table 15.3.2. We don't even need the table to verify that we have a group:
(a)   Function composition is always associative (see Chapter 7).

(b)   The identity for the group is i. If g is any one of the permutations on A and  x œ A,

g Î iHxL = gHiHxLL = gHxL
and
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i ÎgHxL = iHgHxLL = gHxL.
Therefore   g Î i = i Îg = g.

(c) A permutation, by definition, is a bijection.  In Chapter 7 we proved that this implies that it must have an inverse and the inverse itself is a
bijection and hence a permutation.    Hence all elements of S3 have an inverse in S3. If a permutation is displayed in matrix form, its inverse can
be obtained by exchanging the two rows and rearranging the columns so that the top row is in order. The first step is actually sufficient to obtain
the inverse, but the sorting of the top row makes it easier to recognize the inverse.
Example 15.3.1. Lets consider a typical permutation on 81, 2, 3, 4, 5<, 

f = K 1 2 3 4 5
5 3 2 1 4 O.

f -1 = K 5 3 2 1 4
1 2 3 4 5 O = K 1 2 3 4 5

4 3 2 5 1 O
Note from Table 15.3.2 that this group is non-abelian. Remember, non-abelian is the negation of abelian. The existence of two elements that
don't  commute  is  sufficient  to  make  a  group  non-abelian.  In  this  group,  r1  and  f3  is  one  such  pair:  r1 Î f3 = f2   while    f3 Îr1 = f1,  so
r1 Î f3 ¹≠ f3 Îr1.   Caution:  Don’t take this to mean that every pair of elements has to have this property.  There are several pairs of elements in S3
that do commute.   In fact, the identity, i, must commute with everything.  Also every element must commute with its inverse.   

   

Î i r1 r2 f1 f2 f3
i

r1
r2
f1
f2
f3

i r1 r2 f1 f2 f3
r1 r2 i f3 f1 f2
r2 i r1 f2 f3 f1
f1 f2 f3 i r1 r2
f2 f3 f1 r2 i r1
f3 f1 f2 r1 r2 i

Table 15.3.2
Operation Table for S3

Definition: Symmetric Group. Let A be a nonempty set. The set of all permutations on A with the operation of function composition is
called the symmetric group on A, denoted SA. 
Our  main  interest  will  be  in  the  case  where  A  is  finite.  The  size  of  A  is  more  significant  than  the  elements,  and  we  will  denote  by  Sk  the
symmetric group on any set of cardinality k, k ¥ 1.

Example 15.3.2. Our opening example, S3, is the smallest non-abelian group. For that reason, all of its proper subgroups are abelian: in
fact, they are all cyclic. Figure 15.3.1 shows the Hasse diagram for the subgroups of S3.

i

Xr1\ X f1\ X f2\ X f3\

S3

Figure 15.3.1
Lattice diagram of subgroups of S3

Example 15.3.3. The only abelian symmetric groups are S1 and S2 , with 1 and 2 elements, respectively. The elements of S2 are

i = K 1 2
1 2 O    and  a = K 1 2

2 1 O
S2 is isomorphic to Z2.

Theorem 15.3.1.  For k ¥ 1, †Sk§ = k !  and for k ¥ 3, Sk is non-abelian.

Proof: The first part of the theorem follows from the extended rule of products (see Chapter 2). We leave the details of proof of the second part
to the reader after the following hint.   Consider f  in Sk  where f H1L = 2, f H2L = 3, f H3L = 1, and f H jL = j for 3 < j § n.  Now define g in a
similar manner so that when you compare f HgH1LL and gH f H1LL you get different results. ‡
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Cycle Notation
A second way of describing a permutation is by means of cycles, which we will introduce first with an example. Consider  f œ S8 :

f = K 1 2 3 4 5 6 7 8
8 2 7 6 5 4 1 3 O

Consider the images of 1 when f  is applied repeatedly. The images f H1L,  f H f H1LL,  f H f H f H1LLL,  … are 8, 3, 7, 1, 8, 3, 7, ...  .  If j ¥ 1,  In Figure
15.3.2(a), this situation is represented by the component of the graph that consists of 1, 8, 3, and 7 and shows that the values that you get by
repeatedly applying f  cycle through those values.   This is why we refer to this part of f as a cycle of length 4.  Of course starting at 8, 3, or 7
also produces the same cycle with only the starting valued changing. 

8

3

7

1

H8,3,7,1LH3,7,1,8LH7,1,8,3L
orH1,8,3,7L

HaL HbL
Figure 15.3.2

Representations of cycles of length 4.

Figure 15.3.2(a) illustrates how the cycle can be represented in a visual manner, but it is a bit awkward to write.. Part (b) of the figure presents a
more  universally  recognized  way  to  write  a  cycle.   In  (b),  a  cycle  is  represented  by  a  list  where  the  image  of  any  number  in  the  list  is  its
successor.  In addition, the last number in the list has as its image the first number. 
The other elements of the domain of f, are never reached if you start in the cycle H1, 8, 3, 7L, and so looking at image of these other numbers
will produce numbers that are disjoint from the set 81, 8, 3, 7<.   The other disjoint cycles of f  are  (2), (4, 6), and (5).  We can express f as a
product of disjoint cycles:

f = H1, 8, 3, 7L H2L H4, 6L H5L
or

f = H1, 8, 3, 7L H4, 6L
where the absence of 2 and 5 implies that f H2L = 2 and f H5L = 5.

Disjoint Cycles. We say that two cycles are disjoint if no number appears in both cycles, as is the case in our expressions for / above. Disjoint
cycles can be written in any order. Thus, we could also say that

f = H4, 6L H1, 8, 3, 7L.
Composing Permutations. We will now consider the composition of permutations written in cyclic form, again by an example. Suppose that
f = H1, 8, 3, 7L H4, 6L and g = H1, 5, 6L H8, 3, 7, 4L are elements of S8. To calculate f Îg, we start with simple concatenation:

  f Îg = H1, 8, 3, 7L H4, 6L H1, 5, 6L H8, 3, 7, 4L.                                         (P)

Although this is a valid expression for f Îg , our goal is to express the composition as a product of disjoint cycles as f and g were individually
written. We will start by determining the cycle that contains 1. When combining any number of cycles, they are always read from right to left.
The first cycle  in (P) does not contain 1; thus we move on to the second. The image of 1 under that cycle is 5. Now we move on to the next
cycle, looking for 5, which doesn't appear. The fourth cycle does not contain a 5 either; so f ÎgH1L = 5. At this point, we would have written

f Îg = H1, 5

on  paper.  We  repeat  the  steps  to  determine  f ÎgH5L.  This  time  the  second  cycle  of  (P)  moves  5  to  6  and  then  the  third  cycle  moves  6  to  4.
Therefore,  f ÎgH5L = 4.  We continue until  the  cycle  (1,  5,  4,  3)  is  completed by determining that  f ÎgH3L = 1.  The process  is   then repeated
starting with any number that does not appear in the cycle(s) that have already obtained. The final result for our example is

f Îg = H1, 5, 4, 3L H6, 8, 7L.
Since f H2L = 2  and g H2L = 2, f ÎgH2L = 2 and we need not include the one-cycle (2).
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Video:  For a video that illustrates this process, go to http://faculty.uml.edu/klevasseur/ads2/videos/cyclecomposition/.

Example 15.3.4.

(a)  H1, 2, 3, 4L H1, 2, 3, 4L = H1, 3L H2, 4L.
(b)  H1, 4L H1, 3L H1, 2L = H1, 2, 3, 4L.

Note that the cyclic notation does not indicate the set which is being permuted. The examples above could be in S5, where the image of 5 is 5.
This ambiguity is usually overcome by making the context clear at the start of a discussion.

Definition: Transposition. A transposition is a cycle of length 2,

Example 15.3.5.   f = H1, 4L  and g = H4, 5L are transpositions in S5.   f Îg = H1, 4, 5L  and g Î f = H1, 5, 4L  are not transpositions;
thus, the set of transpositions is not closed under composition. Since f 2 = f Î f  and g2 = g Îg are both equal to the identity permutation,  f and
g are their own inverses. In fact, every transposition is its own inverse.

Theorem 15.3.2. Every cycle of length greater than 2 can be expressed as a product of transpositions.

Instead of a formal proof, we will indicate how the product of transpositions can be obtained. The key fact needed is that if Ha1, a2, a3, …, akL
is a cycle of length k, it is equal to the following product of k - 1 cycles.

Ha1, akLº⋯Ha1, a3L Ha1, a2L
Example 11.3.4 (b) illustrates this fact. Of course, a product of cycles can be written as a product of transpositions just as easily by applying the
rule above to each cycle. For example,

H1, 3, 5, 7L H2, 4, 6L = H1, 7L H1, 5L H1, 3L H2, 6L H2, 4L.
Unlike the situation with disjoint cycles, we are not free to change the order of these transpositions.

The proofs of the following two theorems appear in many abstract algebra texts.

Theorem  15.3.3.  Every  permutation  on  a  finite  set  can  be  expressed  as  the  product  of  an  even  number  of  transpositions  or  an  odd
number of transpositions, but not both.
Theorem 15.3.3 suggests that Sn can be partitioned into its "even" and "odd" elements.

Example 15.3.6. The even permutations of S3 are i , r1 = and r2 = .  They form a subgroup, 8i, r1, r2< of S3. 

In general:

Theorem 15.3.4.  Let n ¥ 2. The set of even permutations in Sn  is a proper subgroup of Sn  called the alternating group on 81, 2, . . . n<,
denoted An. The order of An is n!

2
.

Proof: In this proof, the letters s and t stand for transpositions and p, q are even nonnegative integers.

If  f , g œ An,  we can write the two permutations as products of even numbers of transpositions:

f Îg = s1 s2º⋯ sp t1 t2º⋯ tq

Since p + q  is  even,  f Îg œ An.    Since An  is  closed With respect  to function composition,  we have proven that  An  is  a subgroup of Sn.  by
Theorem 11.5.2.  To prove the final assertion, let Bn  be the set of odd permutations and let t = H1, 2L. Define q : An Ø Bn  by q H f L = f Ît.
Suppose that q H f L = q HgL. Then fÎt = gÎt and by the cancellation law,  f = g. Hence, q is an injection.  Next we show that q is also a surjec-
tion.  If h œ Bn, h is the image of an element of An.  Specifically, h is the image of h Ît.

qHh ÎtL = Hh ÎtL Ît      Why?
= h Î Ht ÎtL      Why?

= h Î i              Why?
= h             Why?

Since q is a bijection,   †An§ = †Bn§ = n!
2

.   ‡

Example 15.3.8. Consider the sliding-tile puzzles pictured in Figure 15.3.3. Each numbered square is a tile and the dark square is a gap.
Any tile that is adjacent to the gap can slide into the gap. In most versions of this puzzle, the tiles are locked into a frame so that they can be
moved only in the manner described above. The object of the puzzle is to arrange the tiles as they appear in Configuration a.  Configurations
b and c are typical starting points. We propose to show why the puzzle can be solved starting with b, but not with c.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

HaL

5 6 7 8

3 4 1 2

10 9 14 11

12 13 15

HbL

5 6 7 8

3 4 15 2

10 9 14 11

12 13 1

HcL
Figure 15.3.3

Configurations of the tile puzzle.

We will associate any configuration of the puzzle with an element of S16. Imagine that a tile numbered 16 fills in the gap. If f is any configura-
tion of the puzzle, i is Configuration a, and for 1 § k § 16,
      f HkL = the number that appears in the position of k of i.

If we call Configurations b and c by the names f1 and f2 respectively,

f1 = H1, 5, 3, 7L H2, 6, 4, 8L H9, 10L H11, 14, 13, 12L H15L H16L
and

f2 = H1, 5, 3, 7, 15L H2, 6, 4, 8L H9, 10L H11, 14, 13, 12L H16L.
How can we interpret the movement of one tile as a permutation? Consider what happens when the 12 tile of i slides into the gap. The result
is a configuration that we would interpret as H12, 16L,  a single transposition. Now if we slide the 8 tile into the 12 position, the result  is orH8, 16, 12L. Hence, by "exchanging" the tiles 8 and 16, we have obtained H8, 16L H12, 16L = H8, 16, 12L.

1 2 3 4

5 6 7

9 10 11 8

13 14 15 12

Figure 15.3.4
The configuration H8, 16, 12L.

Every time you slide a tile into the gap, the new permutation is a transposition composed with the old permutation. Now observe that to start
with i and terminate after a finite number of moves with the gap in its original position, you must make an even number of moves. Thus, any
permutation that leaves 16 fixed, such as f1  or f2,  cannot be solved if it is odd.  Note that f2  is an odd permutation; thus, Puzzle c can't be
solved. The proof that all even permutations, such as  f1, can be solved is left to the interested reader to pursue.
Realizations of  Groups.   By now we’ve seen several  instances a  group can appear  through an isomorphic copy of  itself  in  various settings.
The simplest such example is the cyclic group of order 2.   When this group is mentioned, we might naturally think of the group @Z2, +2D, but
the groups @8-1, 1<, ÿD  and @S2, ÎD are isomorphic to it.  None of these groups are necessarily more natural or important than the others.  Which
one you use depends on the situation you are in and all are referred to as realizations of the cyclic group of order 2.   The next family of groups
we will study has two natural realizations, first as permutations and second as geometric symmetries. 
Example 15.3.9. Dihedral Groups.  The dihedral groups can realized in several ways and we will  concentrate on two of them.  They can be
visualized as symmetries of a regular polygon — this is probably the easiest way to understand the groups.  In order to represent the groups on a
computer, it is convenient to represent the groups as  subgroups of the symmetric groups.   If k ¥ 3, the dihedral group, Dk , is a subgroup of Sk.
It is the subgroup of Sk generated by the k-
Realization as symmetries of regular polygons.

We can describe Dn in terms of symmetries of a regular n-gon (n = 3: equilateral triangle, n = 4: square, n = 5: a regular pentagon, …).  Here
we will  only  concentrate  on  the  case  of  D4.  If  a  square  is  fixed  in  space,  there  are  several  motions  of  the  square  that  will,  at  the  end of  the
motion, not change the apparent position of the square. The actual changes in position can be seen if the corners of the square are labeled. In
Figure 15.3.5, the initial labeling scheme is shown, along with the four axes of symmetry of the square.
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12

3 4
{2

{4
{1

{3

Figure 15.3.5
Axes of symmetry of the square.

It might be worthwhile making a square like this with a sheet of paper. Be careful to label the back so that the numbers match up. Two motions
of the square will be considered equivalent if the square is in the same position after performing either motion. There are eight distinct motions.
The first four are 0 °, 90 °, 180 °, and 270 ° clockwise rotations of the square, and the other four are the 180° flips along the axes l1, l2, l3, and l4.
We 
will call the rotations i, r1, r2, and r3, respectively, and the flips f1, f2, f3, and f4, respectively. Figure 15.3.6 illustrates r1  and f1.  For future
reference we also include the permutations to which they will correspond.

14

3 2

43

2 1

14

3 2

41

2 3

r1

f1

r1=
1 2 3 4
2 3 4 1

f1=
1 2 3 4
4 3 2 1

90°

Figure 15.3.6
Two elements of D4

What is the operation on this set of symmetries?   We will call the operation “followed by” and use the symbol *  to represent it.  The operation
will be combine motions,  apply motions from right to left, as with functions.  We will illustrate how * is computed by finding  r1 * f1.    Starting
with the initial configuration, if you perform the f1 motion, and then immediately perform r1  on the result, we get the same configuration as if
we just performed f4, which is to flip the square along the line l4.   Therefore,   r1 * f1 = f4 .
Realization as permutations.

We can also realize the dihedral groups as permutations.  For any symmetric motion of the square we can associate with it a permutation.   In
the case of D4, the images of each of the numbers 1 through 4 are the positions on the square that each of the corners 1 through 4 are moved to.
For example, since corner 4 moves to position 1 when you perform r1,  the corresponding function will map 4 to 1.   In addition, 1 gets mapped
to 2, 2 to 3 and 3 to 4.  Therefore, r1 is the cycle H1, 2, 3, 4L .   The flip f1transposed two pairs of corners and corresponds to H1, 4L H2, 3L.  If we
want to combine these two permutations, using the same names as with motions, we get
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r1 Î f1 = H1, 2, 3, 4L Î H1, 4L H2, 3L = H1L H2, 4L H3L = H2, 4L.   
Notice that this permutation is corresponds withe flip f4.

Although D4 isn’t cyclic (since it isn’t abelian), it can be generated from the two elements r1 and f1:

D4 = Xr1, f1\ = 8i, r1, r12, r13, f1, r1 Î f1, r12 Î f1, r13 Î f1< 
It is quite easy to describe any of the dihedral groups in a similar fashion.   Let

r = H1, 2, …, nL,    an n-cycle,   and

f = H1, nL H2, n - 1L …

Then Dn = Xr, f \ = 8i, r, r2, … , rn-1, f , r Î f , r2 Î f , …, rn-1 Î f <
An  application  of  D4.   One  application  of  D4  is  in  the  design  of  a  letter-facing  machine.   Imagine  letters  entering  a  conveyor  belt  to  be
postmarked. They are placed on the conveyor belt at random so that two sides are parallel to the belt. Suppose that a postmarker can recognize a
stamp in the top right corner of the envelope, on the side facing up. In Figure 15.3.7,  a sequence of machines is shown that will  recognize a
stamp on any letter, no matter what position in which the letter starts. The letter P stands for a postmarker. The letters R and F stand for rotating
and flipping machines that perform the motions of r1 and f1 .

P R P R P R P F P R P R P R P Reject

Deliver

Letters

Figure 15.3.7
A letter facer

The arrows pointing up indicate that if a letter is postmarked, it is taken off the conveyor belt for delivery. If a letter reaches the end, it must not
have a stamp. Letter-facing machines like this have been designed (see Gallian’s paper). One economic consideration is that R-machines tend to
cost more than F-machines. R-machines also tend to damage more letters. Taking these facts into consideration, the reader is invited to design a
better letter-facing machine. Assume that R-machines cost $800 and F-machines cost $500. Be sure that all corners of incoming letters will be
examined as they go down the conveyor belt.

EXERCISES FOR SECTION 15.3
A Exercises
1.   Given

 f = K 1 2 3 4
2 1 4 3 O, g = K 1 2 3 4

2 3 4 1 O, and h = K 1 2 3 4
3 2 4 1 O,

compute

(a)   f Îg   

(b)   g Îh  

(c)   H f ÎgL Îh  

(d)   f Î Hg ÎhL
(e)    h-1

(f)   h-1 g Îh

(g)    f -1

2.   Write f, g, and h from Exercise 1 as products of disjoint cycles and determine whether each is odd or even.

3.    Do the left cosets of A3 = 8i, r1, r2<  over S3  form a group under the induced operation on left cosets of A3? What about the left cosets ofX f1\?
4.   In its realization as permutations, the dihedral group D3  is equal to S3. Can you give a geometric explanation why?   Why isn’t D4  equal to
S4?

B Exercises
5.   (a) Complete the list of elements of D4 and write out a table for the group in its realization as symmetries. 
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(b) List the subgroups of D4 in a lattice diagram. Are they all cyclic? To what simpler groups are the subgroups of D4 isomorphic?

6.   Design a better letter-facing machine (see Example 15.3.9). How can you verify that a letter-facing machine does indeed check every corner
of a letter? Can it be done on paper without actually sending letters through it?
7.  Prove by induction that if r ¥ 1 and each ti, is a transposition, then

  Ht1 Î t2 Îº⋯ Î trL-1 = tr Îº⋯ Î t2 Î t1
8.   How many elements are there in D5 ? Describe them geometrically.

9.   Complete the proof of Theorem 15.3.1.

10.   How many left cosets does An, n ¥ 2 have?

11.    Prove that in Dn,  f Îr = rn-1 Î f

C Exercise
12.   (a) Prove that the tile puzzles corresponding to A16 › 8 f œ S16 f H16L = 16< are solvable. 

        (b) If  f H16L ¹≠ 16, how can you determine whether  f 's puzzle is solvable?

13.  (a) Prove that S3 is isomorphic to R3,  the group of 3 µ 3 rook matrices (see Section 11.2 exercises).

       (b) Prove that for each n ¥ 2, Rn is isomorphic to Sn.
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15.4 Normal Subgroups and Group Homomorphisms
Our goal in this section is to answer an open question and introduce a related concept. The question is: When are left cosets of a subgroup a
group under the induced operation? This question is open for non-abelian groups. Now that we have some examples to work with, we can try a
few experiments.

NORMAL SUBGROUPS
Example 15.4.1  A3 = 8i, r1, r2< is a subgroup of S3, and its left cosets are A3  itself and B3 = 8 f1, f2, f3< . Whether 8A3 , B3 < is a group

boils down to determining whether the induced operation is well defined.   Consider the operation table for S3in Figure 15.4.1.

Figure 15.4.1
Shaded operation table for S3

We have shaded in all occurrences of the elements of B3  in gray. We will call these elements the gray elements and the elements of A3  the
white ones.
Now consider  the process  of  computing the coset  product  A3 ÎB3.  The  "product"  is  obtained by selecting one white  element  and one gray
element.  Note  that  white  "times"  gray  is  always  gray.  Thus,  A3 ÎB3  is  well  defined.  Similarly,  the  other  three  possible  products  are  well
defined. The table for the factor group S3 êA3 is

   
Î A3 B3

A3
B3

A3 B3
B3 A3

Clearly, S3 êA3 is isomorphic toe Z2.   Note that A3 and B3 are also the right cosets of A3.  This is significant.

Example 15.4.2. Now let's try the left cosets of X f1\ in S3. There are three of them. Will we get a complicated version of Z3  ? The left
cosets are
 C0 = X f1\ , C1 = r1 X f1\ = 8r1, f3<,  and C2 = r2 X f1\ = 8r2, f2<
The  reader  might  be  expecting  something  to  go  wrong  eventually,  and  here  it  is.  To  determine  C1 ÎC2  we  can  choose  from  four  pairs  of
representatives:

r1 œ C1, r2 œ C2    ö r1 Îr2 = i œ C0

r1 œ C1, f2 œ C2    ö r1 Î f2 = f œ C0

f3 œ C1, r2 œ C2    ö f3 Îr2 = f2 œ C2

f3 œ C1, f2 œ C2    ö f3 Î f2 = r2 œ C2

This  time,  we don't  get  the  same coset  for  each  pair  of  representatives.  Therefore,  the  induced  operation  is  not  well  defined  and  no  factor
group is obtained.
Commentary: This last development changes our course of action. If we had gotten a factor group from 8C0, C1, C2<, we might have hoped to
prove that every collection of left cosets forms a group. Now our question is: How can we determine whether we will get a factor group? Of
course,  this  question is  equivalent  to:  When is  the induced operation well  defined? There was only one step in the proof of  Theorem 15.2.3,
where we used the fact that G was abelian. We repeat the equations here:

a ' * b ' = Ha * h1L* Hb * h2 L = Ha * bL* Hh1 * h2L,
since G was abelian.

The last step was made possible by the fact that h1 * b = b * h1.  As the proof continued, we used the fact that h1 * h2  was in H  and so a ' * b '  isHa * bL* h for some h in H. All that we really needed in the "abelian step" was that
h1 * b = b * Hsomething in HL = b * h3 .

Then,  since  H  is  closed  under  G's  operation,  h3 * h2  is  an  element  of  H.  The  consequence  of  this  observation  is  included  in  the  following
theorem, the proof of which can be found in any abstract algebra text.

Theorem 15.4.1.  If H § G, then the operation induced on left cosets of H by the operation of G is well defined if and only if  any one of
the following conditions is true:
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(a)  If h œ H, a œ G, then there exists h ' œ H such that h*a = a*h '.

(b)  If h œ H, a œ G, then a-1 *h*a œ H.
(c)  Every left coset of H is equal to a right coset of H.

Corollary 15.4.2.    If H § G, then the operation induced on left cosets of H by the operation of G is well defined if either of the follow-
ing two conditions is true.

(a) G is abelian.

(b)  †H§ = †G§
2

.

Example  15.4.3.  The  right  cosets  of  X f1\ § S3  are  8i, f1<,  8r1 f2 <,  and  8r2 , f3<.  These  are  not  the  same  as  the  left  cosets  of  X f1\.  In
addition, f2-1 f1 f2 = f2 f1 f2 = f3 –X f1\ .  

Definition: Normal Subgroup. If G is a group, H § G, then H is called a normal subgroup of  G, denoted H 0 G, if it satisfies any of
the conditions of Theorem 15.4.1.

Example 15.4.4. The improper subgroups 8e< and G of any group G are normal subgroups.  G ê 8e< is isomorphic to G.  All other normal
subgroups of a group, if they exist are called proper normal subgroups.

Example 15.4.5. By Condition b of Corollary 15.4.2, An is a normal subgroup of Sn and Sn êAn  is isomorphic to Z2.

Example 15.4.6.  A5, a group in its own right with 60 elements, has many proper subgroups, but none are normal. Although this could be
done by brute force, the number of elements in the group would make the process tedious.  A far more elegant way to approach the verifica-
tion of this statement is to use the following fact about the cycle structure of permutations.    If f œ Sn  is a permutation with a certain cycle
structure,   s1 s2º⋯sk,  where  the  length  of  si  is  {i,  then  for  any  g œ Sn,    g-1 Î f Îg  ,  which  is  the  conjugate  of  f  by  g,   will  have  a  cycle
structure  with  exactly  the  same  cycle  lengths.    For  example  if  we  take  f = H1, 2, 3, 4L H5, 6L H7, 8, 9L œ S9  and  conjugate  by
g = H1, 3, 5, 7, 9L,

g-1 Î f Îg = H1, 9, 7, 5, 3L Î H1, 2, 3, 4L H5, 6L H7, 8, 9L Î H1, 3, 5, 7, 9L
= H1, 4, 9, 2L H3, 6L H5, 8, 7L

Notice that the condition for normality of a subgroup H of G is that the conjugate of any element of H  by an element of G must be remain in H.

To verify that  A5  has  no proper  normal  subgroups,  you can start  by cataloging the different  cycle  structures  that  occur  in  A5  and how
many elements have those structures.   Then consider what happens when you conjugate these different cycle structures with elements of A5.
An outline of the process is in the exercises.

Example 15.4.7.  Let G be the set of two by two invertible matrices of real numbers.  That is,

G = :K a b
c d O a, b, c, d œ R, a d - b c ¹≠ 0>

We saw in Chapter 11 that G is a group with matrix multiplication.

H1 = :K a 0
0 a O a ¹≠ 0>   and H2 = :K a 0

0 d O a d ¹≠ 0>
are both subgroups of G.   H1 a normal subgroup of G, while H2 is not normal.

Homomorphisms
Think of the word isomorphism. Chances are, one of the first images that comes to mind is an equation something like

 qHx * yL = qHxL ù qHyL  (H)

An isomorphism must be a bijection, but equation (H) is the algebraic feature of an isomorphism. Here we will examine functions that satisfy
equations of this type.
Many homomorphisms are useful since they point out similarities between the two groups (or,  on the universal level,  two algebraic systems)
involved.
Consider the groups @R3 , +D and @R2, +D. Every time you use a camera, you are trying to transfer the essence of something three-dimensional
onto a photograph—that is, something two-dimensional.  If you show a friend a photo you have taken, that person can appreciate much of what
you saw, even though a dimension is lacking. The "picture-taking" map is a function f : R3 Ø R2  defined by f Hx1, x2 , x3 L = Hx1, x2L. This
function is not a bijection, but it does satisfy the equation f Hx + yL = f HxL + f HyL for x = Hx1, x2, x3L and y = Hy1, y2, y3L. Such a function is
called a homomorphism, and when a homomorphism exists between two groups, the groups are called homomorphic that is, they are similar.  A
question that arises with groups, or other algebraic structures, that we claim are homomorphic, or similar, is: How similar are they? When we
say  that  two  groups  are  isomorphic—that  is,  identical—the  map  that  we  use  to  prove  this  is  unimportant.  However,  when  we  say  that  two
groups are homomorphic, the map used gives us a measure of the group's similarities (or dissimilarities). For example, the maps:

f1 : R3 Ø R3 defined by f1Hx1, x2, x3L = Hx1, x2, x3L ,

f2 : R3 Ø R3 defined by f2Hx1, x2, x3L = Hx1, x2, 0L , and
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f3 : R3 Ø R3 defined by f3Hx1, x2, x3L = H0, 0, 0L
are  all  homomorphisms.  Think  of  them  all  as  “picture-taking”  maps,  or  cameras.  The  first  camera  gives  us  a  three-dimensional  picture,  the
ideal,  actually  an  isomorphism.  The  second  gives  us  the  usual  two-dimensional  picture,  certainly  something  quite  worthwhile.  The  third
collapses the whole scene onto a point, a "black dot," which gives no idea of the original structure. Hence, the knowledge that two groups are
homomorphic doesn’t give complete information about the similarities in the structures of the two groups.  For this reason, the term homomor-
phic is rarely used (unlike isomorphic), and the functions, the homomorphisms, are studied.
Definition: Homomorphism. Let @G, *D and @G ', ùD be groups. q : G Ø G ' is a homomorphism if qHx * yL = qHxL ù qHyL for all x, y œ G.

Example  15.4.8.   Define  a : Z6 Ø Z3  by  aHnL = nH1L,  where  n œ Z6  and  n H1L  is  the  sum  of  n  ones  in  Z3.  Therefore,  aH0L = 0,  aH1L = 1,
a H2L = 2, a H3L = 1 + 1 + 1 = 0, a H4L = 1, and a H5L = 2. If n, m œ Z6,

aHn +6 mL = Hn +6 mL H1L
= nH1L +3 mH1L
= aHnL +3 aHmL

Theorem 15.4.2. A few properties of homomorphisms are that if q : G Ø G ' is a homomorphism, then:

(a)   qHeL = qHidentity of GL = identity of G ' = e '.

(b)   qHa -1L = qHaL-1 for all a œ G.

(c) If H § G, then q HHL = 8qHhL h œ H< § G '.

Proof:

(a) Let a be any element of G. Then q HaL œ G '.

qHaLù e ' = qHaL                by the definition of e '
= q Ha * eL by the definition of e
= qHaLù qHeL by the fact that q is a homomorphism

By cancellation, e ' = q HeL.
(b) Again, let a œ G.

e ' = q HeL = qHa * a-1 L = qHaLù qHa-1L.
Hence, by the uniqueness of inverses,  qHaL -1 = qHa-1L.
(c) Let b1, b2 œ q HHL. Then there exists a1, a2 œ H  such that qHa1L = b1, qHa2L = b2. Recall that a compact necessary and sufficient condition
for H § G is that x * y-1 œ H  for all x, y œ H.  Now we apply the same fact in G' :

 b1 ù b2-1 = qHa1Lù qHa2L-1
= qHa1Lù qHa2-1L
= qHa1 * a2-1L œ qHHL

since  a1 * a2-1 œ H, and so we can conclude that  qHHL § G '. ‡

Corollary.  Since a homomorphism need not be a surjection and part (c) of Theorem 15.4.2 is true for the case of H = G, the range of q ,
q HGL, is a subgroup of G '

Example 15.4.9.  If  we define p : Z Ø Z ê4 Z  by p HnL = n + 4 Z.  then p  is  a homomorphism. The image of the subgroup 4 Z  is  the
single  coset  0 + 4 Z,  the  identity  of  the  factor  group.  Homomorphisms  of  this  type  are  called  natural  homomorphisms.  The  following
theorems will  verify that  p  is  a  homomorphism and also show the connection between homomorphisms and normal subgroups.  The reader
can find more detail and proofs in most abstract algebra texts.

Theorem  15.4.3.  If  H 0 G,  then  the  function  p : G Ø G êH  defined  by  p HaL = a H  is  a  homomorphism,  called  the  natural
homomorphism.
Based on Theorem 15.4.3, every normal subgroup gives us a homomorphism.

Definition: Kernel.  Let  q : G Ø G' be a homomorphism, and let e' be the identity of G'. The kernel of q  is the set 

ker q = 8a œ G q HaL = e '<
Theorem 15.4.4. Let q : G Ø G' be a homomorphism from G into G'. The kernel of q is a normal subgroup of G.

Based on Theorem 15.4.4, every homomorphism gives us a normal subgroup.

Theorem 15.4.5 : Fundamental Theorem of Group Homomorphisms.  Let  q : G Ø G' be a homomorphism.  Then q HGL is isomorphic
to G êker q .

Example  15.4.10.  Define   q : Z Ø Z10  by  q HnL =  the  remainder  from  dividing  n  by  10.  The  three  previous  theorems  imply  the
following:

(15.4.3)  p : Z Ø Z ê10 Z defined by pHnL = n + 10 Z is a homomorphism.
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(15.4.4)   8n œ Z qHnL = 0< = 810 n n œ Z< = 10 Z 0 Z.

(15.4.5)    Z ê10 Z is isomorphic to Z10 .

Example  15.4.11.   Let  G  be  the  same  group  of  two  by  two  invertible  real  matrices  as  in  Example  15.4.6.   Define  F : G Ø G  by
FHAL = A

†det A§ . We will let the reader verify that F is a homomorphism. The theorems above imply:

(15.4.4)   ker F = 8A FHAL = I< = : K a 0
0 a O a œ R, a ¹≠ 0> 0 G.   This verifies our statement in Example 15.4.6.  As in that  example,

let ker F = H1.
(15.4.5)  G êH1 is isomorphic to 8A œ G det A = ±1<.
(15.4.3)  p : G — > G êH1 defined, naturally, by pHAL = A H1  is a homomorphism.

For  the  remainder  of  this  section,  we  will  be  examining  certain  kinds  of  homomorphisms  that  will  play  a  part  in  our  major  application  to
homomorphisms, coding theory.

Example 15.4.12. Consider  F : Z22 Ø Z2
3 defined by FHa, bL = Ha, b, a +2 bL.   If Ha1, b1L, Ha 2 , b2 L œ Z2

2,
FHHa1, b1L + Ha 2 , b2 LL = FHa1 +2 a2, b1 +2 b2 L

= Ha1 +2 a2, b1 +2 b2 , a1 +2 a2 +2 b1 +2 b2L
= Ha1, b1 , a1 +2 b1L + Ha2, b2 , a2 +2 b2L
= FHa1, b1L + FHa 2 , b2 L

Since  F Ha, bL = H0, 0, 0L  implies  that  a = 0  and  b = 0,  the  kernel  of  F  is  8H0, 0L<.  By  previous  theorems,
FIZ22M = 8H0, 0, 0L, H1, 0, 1L, H0, 1, 1L, H1, 1, 0L< is isomorphic to Z22 .

We can generalize the previous example as follows: If n, m ¥ 1 and A an m µ n matrix of 0’s and 1’s (elements of Z2), then F : Z2m Ø Z2
n

defined by
FHa1, a2 , . . . , a m L = Ha1, a2 , . . . , a mL A

is  a  homomorphism. This  is  true because matrix  multiplication is  distributive over  addition.  The only new idea here is  that  computation is
done in Z2  where 1 +2 1 = 0.   If  a = Ha1, a2 , . . . , a mL  and b = Hb1, b2 , . . . , b mL,  Ha + bL A = a A + b A  is  true by basic matrix laws.
Therefore, F Ha + bL = F HaL + F HbL.
EXERCISES FOR SECTION 15.4
A Exercises
1.  Which of the following functions are homomorphisms? What are the kernels of those functions that are homomorphisms?

(a)   q1 : R* Ø R+ defined by q1HaL = †a§.
(b)   q2 : Z8 Ø Z2 where q2HnL = : 0 if n is even

1 if n is odd  .

(c)   q3 : R µ R Ø R, where q3Ha, bL = a + b.

(d)   q4 : S4 Ø S4 defined by q4H f L = f Î f = f 2 .

2. Which of the following functions are homomorphisms? What are the kernels of those functions that are homomorphisms?

(a)   a1 : M2µ2HRL Ø R, defined by a1HAL = A11 A22 + A12 A21 ß.

(b)   a2 : HR*L2 -> R* defined by a2 Ha, bL = a b.

(c)   a3 : 8A œ M2µ2HRL det A ¹≠ 0< Ø R*, where a3HAL = det A.

(d)   a4 : S4 Ø S4  defined by a4H f L = f -1.

3.   Show that D4 has one proper normal subgroup, but that XH1, 4L H2, 3L\ is not normal.

4.   Prove that the function F in Example 15.4.11 is a homomorphism.

5.  Define the two functions  a : Z2
3 Ø Z2

4  and b : Z24 Ø Z2 by
aHa1, a2, a3 L = Ha1, a2, a3 , a1 +2 a2 +2 a3L, and

 bHb1, b2, b3, b4L = b1 + b2 + b3 + b4

    Describe the function b Îa. Is it a homomorphism?

6.   Express F in Example 15.4.12 in matrix form.
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B Exercises
7.  Prove that if G is an abelian group, then q HxL = x2 defines a homomorphism from G into G.  Is q ever an isomorphism?

8.  Prove that if q : G Ø G ' is a homomorphism, and H 0 G, then q HHL 0 q HGL. Is it also true that q HHL 0 G '?

9.  Prove that if q : G Ø G ' is a homomorphism, and H ' § q HGL, then q-1HH 'L = 8a œ G qHaL œ H '< § G.

C Exercises
10.  Following up on Example 11.4.6,  prove that A5 is a simple group; i. e., it has no proper normal subgroups.

(a) Make a list of  the different cycle structures that occur in A5 and how many elements have those structures.  

(b)  Within each set of permutations with different cycle structures, identify which subsets are closed with respect to the conjugation operation.
With this you will have a partition of A5 into conjugate classes where for each class C, 

f , g œ C   if and only if   $ f œ A5  such that  f-1 Î f Î f = g

(c)   Use the fact that a normal subgroup of A5 needs to be a union of conjugate classes and verify that no such union exists.

15.5 Coding Theory—Group Codes
In this section, we will introduce the basic ideas involved in coding theory and consider solutions of a coding problem by means of group codes.

A Transmission Problem. Imagine a situation in which information is being transmitted between two points. The information takes the form
of high and low pulses (for example, radio waves or electric currents), which we will label 1 and 0, respectively.  As these pulses are sent and
received, they are grouped together in blocks of fixed length.   The length determines how much information can be contained in one block.  If
the length is r,  there are 2r  different values that a block can have. If the information being sent takes the form of text, each block might be a
character.  In  that  case,  the length of  a  block may be seven,  so that  27 = 128 block values  can represent  letters  (both upper  and lower  case),
digits, punctuation, and so on.   Figure 15.5.1 illustrates the problem that can be encountered if information is transmitted between two points.
During the transmission of data, noise can alter the signal so that what is received differs from what is sent.

001101
is sent Noise 0001001

is received

Figure 15.5.1
A noisy transmission

Noise.    Noise is a fact of life for anyone who tries to transmit information.  Fortunately, in most situations, we could expect a high percentage
of the pulses that are sent to be received properly. However, when large numbers of pulses are transmitted, there are usually some errors due to
noise.  For  the  remainder  of  the  discussion,  we  will  make  assumptions  about  the  nature  of  the  noise  and  the  message  that  we  want  to  send.
Henceforth, we will refer to the pulses as bits.

Figure 15.5.2
The Coding Process

Binary Symmetric Channels
We will assume that our information is being sent along a binary symmetric channel. By this we mean that any single bit that is transmitted will
be received improperly with a certain fixed probability, p.   The value of p is usually quite small. To illustrate the process, we will assume that
p = 0.001,  which,  in  the  real  world,  would  be  considered  somewhat  large.  Since  1 - p = 0.999,  we  can  expect  99.9%  of  all  bits  to  be
properly received.
Suppose  that  our  message  consists  of  3,000  bits  of  information,  to  be  sent  in  blocks  of  three  bits  each.  Two  factors  will  be  considered  in
evaluating a method of transmission. The first is the probability that the message is received with no errors. The second is the number of bits
that will be transmitted in order to send the message. This quantity is called the rate of transmission:

Rate =
Message length

Number of bits transmitted
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As you might expect, as we devise methods to improve the probability of success, the rate will decrease.

Case 1: Raw information. Suppose that we ignore the noise and transmit the message “as is.” The probability of success is

0.9993000 = 0.0497124
Therefore we only successfully receive the message totally correct less than 5% of the time.  The rate of 3000 ê3000 = 1 certainly doesn't offset
this poor probability.

The Coding Process
Our strategy  for improving our chances of success will be to send an encoded message across the binary symmetric channel. The encoding will
be done in such a way that small errors can be identified and corrected. This idea is illustrated in Figure 15.5.2.
In  our  examples,  the  functions  that  will  correspond  to  our  encoding  and  decoding  devices  will  all  be  homomorphisms  between  Cartesian
products of Z2.
Case 2: An Error-Detecting Code. Suppose that each block of three bits a = Ha 1, a 2 , a 3 L is encoded according to the function

e : Z2
3 Ø Z2

4 4 ,
where

e HaL = Ha 1, a 2 , a 3, a1 +2 a2 +2 a3 L.
When the encoded block is received, the first three bits are probably part of the message (it is correct approximately 99.7% of the time), but the
added bit that is sent will make it possible to detect single errors in the block. Note that when e HaL is transmitted, the sum of its components is
 a 1 +2 a 2 +2 a 3 +2 H a1 +2 a2 +2 a3L = 0

since   ai + ai = 0 in Z2.

If any single bit is garbled by noise, the sum of the received bits will be 1. The last bit of e HaL is called the parity bit. A parity error occurs if the
sum of the received bits is 1. Since more than one error is unlikely when p is small, a high percentage of all errors can be detected.
At the receiving end, the decoding function acts on the four-bit block b = Hb1, b 2 , b3, b4 L according to

d HbL = Hb1, b 2 , b3, b1 +2 b 2 +2 b3 +2 b4 L.
The fourth bit  is called the parity-check bit.  If  no parity error occurs,  the first  three bits are recorded as part  of the message. If  a parity error
occurs, we will assume that a retransmission of that block can be requested. This request can take the form of automatically having the parity-
check  bit  of  d HbL  sent  back  to  the  source.  If  1  is  received,  the  previous  block  is  retransmitted;  if  0  is  received,  the  next  block  is  sent.  This
assumption of two-way communication is significant, but it is necessary to make this coding system useful. It is reasonable to expect that the
probability of a transmission error in the opposite direction is also 0.001.  Without going into the details, we will report that the probability of
success is approximately 0.990 and the rate is approximately 3/5. The rate includes the transmission of the parity-check bit to the source.
Case 3: An Error-Correcting Code. For our final case, we will consider a coding process that can correct errors at the receiving end so that only
one-way communication is  needed.  Before we begin,  recall  that  every element of  Z2n,  n ¥ 1,  is  its  own inverse;  that  is,  -b = b.  Therefore,
a - b = a + b.

The three-bit message blocks are difficult to transmit because they are so similar to one another. If a and b are in Z23, their difference, a +2 b,
can be thought of as a measure of how close they are. If a  and b  differ in only one bit position, one error can change one into the other. The
encoding that we will introduce takes a block a = Ha1, a2, a3 L and produces a block of length 6 called the code word of a. The code words are
selected so that they are farther from one another than the messages are. In fact, each code word will differ from each other code word by at
least  three  bits.  As  a  result,  any  single  error  will  not  push  a  code  word  close  enough to  another  code  word  to  cause  confusion.  Now for  the
details.  Let

G =
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

be the generator matrix for the code, and

a = Ha1, a2, a3 L
Define e : Z2

3 Ø Z2
6  by

e HaL = a G = Ha1, a2, a3, a4, a5, a6L
where

a4 = a1 +2 a2
a5 = a1 +2 a3
a6 = a2 +2 a3
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Notice that e is a homomorphism. If a and b are distinct elements of Z23, then c = a + b has at least one coordinate equal to 1. Now consider
the difference between e HaL and e HbL:

e HaL + e 8bL = e Ha + bL
= eHcL
= Hc1, c2, c3, c4, c5, c6L

Whether c has 1, 2, or 3 ones, e HcL must have at least three ones; therefore e HaL and e HbL differ in at least three bits.

Now  consider  the  problem  of  decoding  the  code  words.  Imagine  that  a  code  word,  e HaL,  is  transmitted,  and  b = Hb1, b2, b3, b4, b5, b6L  is
received. At the receiving end, we know the formula for e HaL, and if no error has occurred in transmission,

 

b1 = a1
b2 = a2
b3 = a3

b4 = a1 +2 a2
b2 = a1 +2 a3
b2 = a2 +2 a3

b1 +2 b2 +2 b4 = 0
b1 +2 b3 +2 b5 = 0
b2 +2 b3 +2 b6 = 0

The three equations on the right are called parity-check equations. If any of them is not true, an error has occurred. This error checking can be
described in matrix form. Let

 P =

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

P is called the parity-check matrix for this code. Now define p : Z2
6 Ø Z2

3  by p HbL = b P.  We call p HbL the syndrome of the received block.
For example,

pH0, 1, 0, 1, 0, 1L = H0, 0, 0L  and   pH1, 1, 1, 1, 0, 0L = H1, 0, 0L
Note that p is also a homomorphism. If the syndrome of a block is H0, 0, 0L, we can be almost certain that the message block is Hb1, b2, b3L.  
Next we turn to the method of correcting errors. Despite the fact that there are only eight code words, one for each three-bit block value, the set
of possible received blocks is Z26, with 64 elements. Suppose that b is not a code word, but that it differs from a code word by exactly one bit.
In other words, it is the result of a single error in transmission. Suppose that w is the code word that b is close to and that they differ in the first
bit. Then

b + w = H1, 0, 0, 0, 0, 0L
and

pHbL = p HbL + pHwL since p HwL = H0, 0, 0L
= pHb + wL since p is a homomorphism
= pH1, 0, 0, 0, 0, 0L
= H1, 1, 0L

Note that we haven't specified b or w, only that they differ in the first bit. Therefore, if b is received and p HbL = H1, 1, 0L, the transmitted code
word was probably b + H1, 0, 0, 0, 0, 0L and the message block was Hb1 +2 1, b2, b3L.   The same analysis can be done if b and w differ in
any of the other five bits.

This process can be described in terms of cosets. Let W be the set of code words; that is, W = eIZ23 M. W is a subgroup of Z26. Consider the
factor group Z26 ëW:

°Z26 ëW =
°Z26
†W § = 64

8
= 8.

Suppose that b1 and b2 are representatives of the same coset. Then b1 = b2 + w for some w in W.  Therefore,

pHb 1L = pHb1L + p HwL since p HwL = H0, 0, 0L
= pHb1 + wL
= pHb2 L

and so b1 and b2 have the same syndrome.

Finally, suppose that d1  and d2  are distinct and both have only a single coordinate equal to 1. Then d1 + d2  has exactly two ones. Note that the
identity of Z26,  (0, 0, 0, 0, 0, 0), must be in W. Since d1 + d2  differs from the identity by two bits, d1 + d2 – W.   Hence d1  and d2  belong to
distinct cosets. The reasoning above serves as a proof of the following theorem.
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Theorem 15.5.1. There is a system of distinguished representatives of Z2
6 ëW such that each of the six-bit blocks having a single 1 is a

distinguished representative of its own coset.
Now we  can  describe  the  error-correcting  process.  First  match  each  of  the  blocks  with  a  single  1  with  its  syndrome.  In  addition,  match  the
identity of W with the syndrome (0, 0, 0) (see Table 15.5.1). Since there are eight cosets of W, select any representative of the eighth coset to be
distinguished. This is the coset with syndrome (1, 1, 1).

   

Syndrome
0 0 0
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1
1 1 1

Error Correction
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 1

Table 15.5.1
Error Correction Table

When block b is received, you need only:

(1)   Compute the syndrome, p HbL, and

(2)   Add to b the error correction that matches p HbL.
We will conclude this example by computing the probability of success for our hypothetical situation. It is

I0.9996 + 6 µ 0.9995 µ 0.001M1000 = 0.985151 .

The rate for this method is 1
2

.

EXERCISES FOR SECTION 15.5
A Exercises
1.  If the error-detecting code is being used, how would you act on the following received blocks?

(a)  H1, 0, 1, 1L
(b)  H1, 1, 1, 1L
(c)  H0, 0, 0, 0L

2.   Express the encoding and decoding functions for the error-detecting code using matrices.

3.   If the error-correcting code is being used, how would you decode the following blocks? Expect a problem with one of these. Why?

(a)  H1, 0, 0, 0, 1, 1L
(b)  H1, 0, 1, 0, 1, 1L
(c)  H0, 1, 1, 1, 1, 0L
(d)  H0, 0, 0, 1, 1, 0L

4.     Describe how the triple-repetition code with encoding function,  e : Z2 Ø Z2
3,  where eHa1L = Ha1, a1, a1L  can allow us to correct  a  single

error. What is the probability of success for the p = 0.001, 3000-bit situation?  What are the generator and parity-check matrices for this code?

B Exercise
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5.  Consider the  linear code defined the generator matrix

G = K 1 0 1 0
0 1 1 1 O

(a)  What size blocks does this code encode and what is the length of the code words?

(b)  What are the code words for this code?

(c)  With this code, can you detect single bit errors?  Can you correct all, some, or no single bit errors?  

6.   Rectangular codes.    To build a  rectangular  code,  you partition your  message into blocks of  length m  and then factor  m  into k1 ÿ k2   and
arrange the bits in a  k1 by k2  rectangular array as in the figure below (read "digit" as "bit").   Then you add parity bits along the right side and
bottom of the rows and columns.   The code word is read row by row.

  

‡ ‡ ‡ º⋯ ‡ ·
‡ ‡ ‡ º⋯ ‡ ·

ª ª ª ª ª

‡ ‡ ‡ º⋯ ‡ ·
· · · º⋯ ·

         
‡ = message bit
· = parity bit

For example, if m is 4, then our only choice is a 2 by 2 array.  The message 1101 would be encoded as so

And the code word is the string 11001110.   
(a)   Suppose that you were sent four bit messages using this code and your received the following strings.  What were the messages.

(i)    11011000
(ii)     01110010
(iii)   10001111

(b)  If you encoded n2 bits in this manner, what would be the rate of the code?

(c)  Rectangular codes are linear codes for the 3 by 2 rectangular code, what are the generator and parity check matrices?
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SUPPLEMENTARY EXERCISES FOR CHAPTER 15

Section 15.1
1.  How does one find all subgroups of any cyclic group? Can this same process be used to determine all subgroups of noncyclic groups?

2.   Exercise 8 of Section 15.1 tells us that Z2µZ5 is isomorphic to Z10. Use the Chinese Remainder Theorem to find an isomorphism between
these two groups,
3.  Use the Chinese Remainder Theorem to add 74 and 85 in Z120.

Section 15.2
4. Let G be a group and assume †G§ = 10. Can G have subgroups of order 2? ...of order 3? ... of order 4? Explain.

5.  List all left cosets of H = 80, 4, 8< in the group Z12 and write out the table for Z12 êH.

6.  Let G be a finite group of order n. Then for any a œ G, an = e, where e is the identity of G.   Interpret this statement for the groups @Z6, +6D
and  @UHZ6L, µ6D
7. (a) Consider Z8 ê X2\.  How many distinct left cosets of X2\ in Z8 are there? List them.

(b)  Repeat part a for Z12 ê X2\.
(c)  Is Z8 ê X2\ isomorphic to Z12 ê X2\? Explain.

Section 15.3
8.   Determine all proper subgroups of the symmetric group S3  and draw a Hasse diagram for the relation "is a subset of."

9.  Let  f œ Sn.    Prove that f is even if and only if f -1 is even.

10.  (a) By analogy with the motions of a square, how many motions of a cube are there? 

       (b) Design a "package-facing" machine using the group of motions of the cube.

Section 15.4
11.  (a) Let @B1, -1, 1 , 1D and  @B2, -2, 2 , 2D  be Boolean algebras.  Define a Boolean algebra homomorphism based on the definition of
a group homomorphism. 

(b) Your definition in part a should result in properties similar to the ones of a group homomorphism.  Let f : B1 Ø B2  be a Boolean
algebra homomorphism. Prove: 

(i) f H01L = 02  and f H11L = 12 

(ii)  a § b f HaL § f HbL " a, b œ B1 and

(iii) f HB1L is a Boolean subalgebra of B2.

12.  (a) Prove the contentions of example 15.4.6 that H1 is a normal subgroup of GLH2, RL but that H2 is not. 

(b) In order to get a clearer picture of what GL H2, RL êSL H2, RL is, prove that the determinant function det : GLH2, RL Ø R* is an onto
homomorphism, and apply Theorem 15.4.5.
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Section 15.5
13.  This exercise concerns a code called the Hamming (7, 4) code, an error-correcting code with rate 4 ê7. A four by seven generator matrix G
encodes message blocks of length 4 according to the rule e HaL = a G, so that the parity check matrix for the code is

P =

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

That is, b is a code word iff b P = H 0 0 0 L.
(a)  Find G.

(b)  Encode 1111 and 1001.

(c)  Compute the syndrome of the following received message blocks and correct them, if necessary:

(i) 0100000   (ii) 1010101   (iii) 1011011.

(d)  Prove that this code does indeed correct all single bit errors.

14. Given a code with parity check matrix P whose transpose is given below, identify the generator matrix, and the rate of the code. Prove that
the code corrects all single errors.

P =

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Chapter 16

An Introduction to Rings and Fields

GOALS
In our early elementary school days we began the study of mathematics by learning addition and multiplication on the set of positive integers.
We then extended this to operations on the set of all integers. Subtraction and division are defined in terms of addition and multiplication. Later
we  investigated  the  set  of  real  numbers  under  the  operations  of  addition  and  multiplication.  Hence,  it  is  quite  natural  to  investigate  those
structures on which we can define these two fundamental operations, or operations similar to them. The structures similar to the set of integers
are called rings, and those similar to the set of real numbers are called fields.
In coding theory, highly structured codes are needed for speed and accuracy. The theory of finite fields is essential in the development of many
structured codes. We will discuss basic facts about finite fields and introduce the reader to polynomial algebra.

16.1 Rings—Basic Definitions and Concepts
As mentioned in our goals, we would like to investigate algebraic systems whose structure imitates that of the integers.

Definition: Ring. A ring is a set R together with two binary operations, addition and multiplication, denoted by the symbols + and · such
that the following axioms are satisfied:
(1)   @R, +D  is an abelian group.

(2)   Multiplication is associative on R.

(3)   Multiplication is distributive over addition; that is, for all a, b, c œ R, the left distributive law, a(b + c) = ab + ac, and the right distribu-
tive law, (b + c)a - ba + ca, hold.
Comments:

(1)   A ring is designated as @R, +, ÿD or as just plain R if the operations are understood.

(2)     The  symbols  +  and ·  stand  for  arbitrary  operations,  not  just  "regular"  addition  and multiplication.  These  symbols  are  referred  to  by  the
usual names. For simplicity, we will write a b instead of a ÿb if it is not ambiguous.
(3)   For the abelian group @R, +D, we use additive notation. In particular, the group identity is designated by 0 rather than by e and is customar-
ily called the "zero" of the ring. The group inverse is also written in additive notation: -a rather than a-1 .
We now look at some examples of rings. Certainly all the additive abelian groups of Chapter 11 are likely candidates for rings.

Example  16.1.1.  @Z, +, ÿD  is  a  ring,  where  +  and  ·  stand  for  regular  addition  and  multiplication  on  Z.  From Chapter  11,  we  already
know that [Z, +] is an abelian group, so we need only check parts 2 and 3 of the definition of a ring. From elementary algebra, we know that
the associative law under multiplication and the distributive laws are true for Z. This is our main example of an infinite ring.

Example 16.1.2. @Zn, +n, µnD is a ring. The properties of modular arithmetic on Zn were described in Section 11.4, and they give us the
information we need to  convince  ourselves  that  @Zn, +n, µnD  is  a  ring.  This  example  is  our  main example  of  finite  rings  of  different
orders.
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Definition: Commutative Ring.  A ring in which the commutative law holds under the operation of multiplication is called a commuta-
tive ring.
It is common practice to use the word abelian when referring to the commutative law under addition and the word commutative when referring
to the commutative law under the operation of multiplication.

Definition: Unity. A ring @R, + , ÿD that has a multiplicative identity is called a ring with unity. The multiplicative identity itself is called
the unity of the ring. More formally, if there exists an element in R, designated by 1, such that for all x œ R, x ÿ1 = 1 ÿ x = x, then R is called
a ring with unity.

Example 16.1.3. The rings in Examples 16.1.1 and 16.1.2 are commutative rings with unity, the unity in both cases being the number 1.

The ring @M2µ2HRL, + , ÿD is a noncommutative ring with unity, the unity being the identity matrix I = K 1 0
0 1 O.

DIRECT PRODUCTS OF RINGS
Let R1, R2, …, Rn be rings under the operations  +1, +2 , … , +n and  ÿ1, ÿ2 , … , ÿn  respectively.  Let

P = µ
i=1

n
Ri

and a = 8a1, a2 , . . . , anL, b = Hb1, b2 , . . . , b nL œ P .

From Chapter 11 we know that P is an abelian group under the operation of componentwise addition:

a + b = Ha1 +1 b1, a2 +2 b2 , . . . , an +n bnL.
We also define multiplication on P componentwise:

a ÿ b = Ha1 ÿ1 b1, a2 ÿ2 b2 , . . . , an ÿn bnL.
To show that P is a ring under the above operations, we need only show that the (multiplicative) associative law and the distributive laws hold.
This is indeed the case, and we leave it as an exercise. If each of the Ri  is commutative, then P  is commutative, and if each contains a unity,
then P is a ring with unity, which is the n - tuple consisting of the unities of each of the Ri ' s.

Example 16.1.4. Since @Z4, +4, µ4D  and @Z3, +3, µ3D are rings, then Z4µZ3 is a ring, where, for example,

H2, 1L + H2, 2L = H2 +4 2, 1 +3 2L = H0, 0L
and

H3, 2L ÿ H2, 2L = H3 µ4 2, 2 µ3 2L = H2, 1L.
To determine the unity, if it exists, in the ring Z4µZ3, we look for the element Hm, nL such that for all elements Hx, yL œ Z4µZ3, 

Hx, yL = Hx, yL ÿ Hm, nL = Hm, nL ÿ Hx, yL,
or, equivalently,

 Hx µ4 m, y µ3 nL = Hm µ4 x, n µ3 yL = Hx, yL.
So we want m  such that xµ4m = mµ4 x = x  in the ring Z4.  The only element m  in Z4  that satisfies this equation is m = 1. Similarly, we
obtain a value of 1 for n. So the unity of  Z4 µ Z3  , which is unique by Exercise 15 of this section, is H1, 1L. We leave to the reader to verify
that this ring is commutative.
Hence,  products  of  rings  are  analogous to  products  of  groups  or  products  of  Boolean algebras.   We now consider  the  extremely important
concept  of  multiplicative  inverses.  Certainly  many  basic  equations  in  elementary  algebra  (e.g.,  2 x = 3)  are  solved  with  this  concept.  We
introduce the main idea here and develop it more completely in the next section.

Example 16.1.5. The equation 2 x = 3 has a solution in the ring @R, +, ÿD but does not have a solution in @Z, +, ÿD, since, to solve this
equation, we  multiply both sides of the equation 2 x = 3 by the multiplicative inverse of 2. This number, 2-1 exists in R but does not exist in
Z. We formalize this important idea in a definition which by now should be quite familiar to you.

Definition:  Multiplicative  Inverses.   Let  @R, +, ÿD  be  a  ring  with  unity,  1.   If  u  œ  R  and  there  exists  an  element  v œ R  such  that
u ÿv = v ÿu = 1, then u is said to have a multiplicative inverse, v. We call a ring element that possesses a multiplicative inverse a unit of the
ring. The set of all units of a ring R is denoted by U(R).

By Theorem 11.3.2,  the  multiplicative  inverse  of  a  ring  element  is  unique,  if  it  exists.    For  this  reason,  we can use  the  notation u-1  for  the
multiplicative inverse of u, if it exists.  

Example 16.1.6. In the rings [R, +, ·] and [Q, +, ·] every nonzero element has a multiplicative inverse. The only elements in Z that have
multiplicative inverses are -1 and 1. That is, U HRL = R*, U HQL = Q*, and U HZL = 8-1, 1<.

Example 16.1.7. Let us find the multiplicative inverses, when they exist, of each element of the ring @Z6 +6 , µ6D. If u = 3, we want an
element v such that uµ6 v = 1. We do not have to check whether vµ6 u = 1 since Z6  is commutative. If we try each of the six elements, 0, 1,
2,  3,  4,  and 5,  of Z6,  we find that  none of them satisfies the above equation, so 3 does not have a multiplicative inverse in Z6  .  However,
since 5µ6 5 = 1, 5 does have a multiplicative inverse in Z6 , namely itself:  5-1 = 5. The following table summarizes all results for Z6 .
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u u-1

0 does not exist
1 1
2 does not exist
3 does not exist
4 does not exist
5 5

It shouldn’t be a surprise that the zero of a ring is never going to have a multiplicative inverse except in the trivial case of R = 80<.
Isomorphism is a universal concept that is important in every algebraic structure. Two rings are isomorphic as rings if and only if they have the
same cardinality and if  they behave exactly the same under corresponding operations.  They are essentially the same ring. For this to be true,
they must behave the same as groups (under + ) and they must behave the same under the operation of multiplication.

Definition:  Ring  Isomorphism.  Let  @R, + , ÿD  and  @R', + ', ÿ 'D  be  rings.  Then   R  is  isomorphic  to    R'  if  and  only  if  there  exists  a
map, f : R Ø R', called a ring isomorphism, such that

(1) f is one-to-one and onto,

(2)   f Ha + bL = f HaL + ' f HbL for all a, b œ R, and

(3)   f Ha ÿ bL = f HaL ÿ ' f HbL  for all a, b œ R.

Conditions 1 and 2 tell us that f is a group isomorphism.  Therefore, to show that two rings are isomorphic, we must produce a map, called an
isomorphism, that satisfies the definition. Sometimes it is quite difficult to find a map that works. This does not necessarily mean that no such
isomorphism exists, but simply that we cannot find it.
This leads us to the problem of how to show that two rings are not isomorphic. This is a universal concept. It is true for any algebraic structure
and was discussed in Chapter 11. To show that two rings are not isomorphic, we must demonstrate that they behave differently under one of the
operations. We illustrate through several examples.

Example 16.1.8.   Consider the rings @Z, +, ÿD  and @2 Z, +, ÿD.  In Chapter 11 we showed that as groups, the two sets Z  and 2Z  with
addition were isomorphic.  The group isomorphism that proved this was the map f : Z Ø 2 Z,  defined by f HnL = 2 n.   Is  f  a ring isomor-
phism? We need only check whether f Hm ÿnL = f HmL ÿ f HnL for all m, n œ Z:

f Hm ÿnL = 2 ÿm ÿn and 

f HmL ÿ f HnL = 2 m ÿ2 n = 4 ÿm ÿn

Therefore,  f is not a ring isomorphism. This does not necessarily mean that the two rings Z and 2Z are not isomorphic, but simply that the f
doesn’t satisfy the conditions.  We could imagine that some other function does. We could proceed and try to determine another function f to
see  whether  it  is  a  ring  isomorphism,  or  we  could  try  to  show that  Z  and  2Z  are  not  isomorphic  as  rings.  To  do  the  latter,  we  must  find
something different about the ring structure of Z and 2Z.
We already know that they behave identically under addition, so if they are different as rings, it  must have something to do with how they
behave under the operation of multiplication. Let's begin to develop a checklist of how the two rings could differ:
(1)   Do they have the same cardinality? Yes, they are both countable.

(2)   Are they both commutative? Yes.

(3)   Are they both rings with unity? No.

Z is a ring with unity, namely the number 1.   2Z is not a ring with unity, 1 – 2 Z.  Hence, they are not isomorphic as rings.

Example 16.1.9. Next consider whether @2 Z, +, ÿD and @3 Z, +, ÿD are isomorphic. Because of the previous example, we might  guess
that they are not.   However, checklist items 1 through 3 above do not help us. Why? We add another checklist item:
(4)   Find an equation that makes sense in both rings, which is solvable in one and not the other.

The equation x + x = x ÿ x,  or 2 x = x2, makes sense in both rings. However, this equation has a nonzero solution, x = 2, in 2 Z, but does
not  have  a  nonzero  solution  in  3 Z.  Thus  we  have  an  equation  solvable  in  one  ring  that  cannot  be  solved  in  the  other,  so  they  cannot  be
isomorphic.
Another universal concept that applies to the theory of rings is that of a subsystem. A subring of a ring @R, +, ÿD is any nonempty subset S of R
that is a ring under the operations of R. First, for S to be a subring of the ring R, S must be a subgroup of the group @R, +D. Also, S must be
closed under ·, satisfy the associative law (under ·), and satisfy the distributive laws. But since R is a ring, the associative and distributive laws
are true for every element in R, and, in particular, for all elements in S, since S Œ R. We have just proven the following theorem:

Theorem 16.1.1. A subset S of a ring [R, + , ·] is a subring of R if and only if:

(1)   [5, +] is a subgroup of the group [R, +], which by Theorem 11.5.1, means we must show:

(a) If a, b œ S, then a + b œ S,

(b)  0 œ S, and
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(c)) If a œ S, then -a œ S.

(2)   S is closed under multiplication: if a, b œ S, then a ÿ b œ S.

Example 16.1.10.  The set of even integers, 2 Z, is a subring of the ring @Z, +, ÿD since @2 Z, +D is a subgroup of the group @Z, +D and
since it is also closed with respect to multiplication:

 2 m, 2 n œ 2 Z H2 mL ÿ H2 nL = 2 H2 ÿm ÿnL œ 2 Z.

Several of the basic facts that we are familiar with are true for any ring. The following theorem lists a few of the elementary properties of rings.

Theorem 16.1.2. Let [R, +, -] be a ring, with a, b œ R.   Then

(1)    a ÿ 0 = 0 ÿ a = 0

(2)   a ÿ H-bL = H-aL ÿb = -Ha ÿbL
(3)   H-aL ÿ H-bL = a ÿb

Proof of Part 1:

a ÿ 0 = a ÿ H0 + 0L
= a ÿ 0 + a ÿ 0 by the left distributive law.

Hence if we add -Ha ÿ 0L to both sides of the above, we obtain a ÿ 0 = 0. Similarly, we can prove that  0 ÿ a = 0.

Proof of Part 2: Before we begin the proof of part 2, recall that the inverse of each element of the group @R, +D is unique. Hence the inverse
of the element a ÿ b is unique and it is denoted  -Ha ÿ bL.
Therefore, to prove that a ÿ H—bL = -Ha ÿ bL, we need only show that a ÿ H—bL inverts a ÿb.

a ÿ H-bL + a ÿb = a ÿ H-b + bL by the distributive axiom
= a ÿ 0 since - b inverts b
= 0 by part 1 of this theorem

Similarly, it can be shown that H-aL ÿ b = -Ha ÿ bL. This completes the proof of part 2. 

We leave the proof of part 3 to the reader (see Exercise 16 of this section). ‡

Example 16.1.11. We will compute 2 ÿ H-2L in the ring @Z6, +6, µ6D.
2 µ6 H-2L = -H2µ6 2L = -4 = 2, 

since the additive inverse of 4 (mod 6) is 2. Of course, we could have done the calculation directly as

2 µ6 H-2L = 2 µ6 4 = 2.

As  the  example  above  illustrates,  Theorem  16.1.2  is  a  modest  beginning  in  the  study  of  which  algebraic  manipulations  are  possible  in  the
solution of problems in rings. A fact in elementary algebra that is used frequently in problem solving is the cancellation law. We know that the
cancellation laws are true under addition for any ring (Theorem 11.3.5).
Are the cancellation laws true under  multiplication? More specifically,  let  @R, +, ÿD  be  a  ring and let  a, b, c œ R  with  a  ¹≠  0.  When can we
cancel the a's in the equation a ÿ b = a ÿ c? We can certainly do so if a-1  exists, but we cannot assume that a has a multiplicative inverse. The
answer to this question is found with the following definition and Theorem 16.1.3.

Definition: Divisors of Zero.  Let @R, +, ÿD  be a ring.  If  a and b are two nonzero elements of R such that a ÿ b = 0, then a and b are
called divisors of zero.

Example 16.1.12  (a) In the ring @Z8, +8, µ8D, the numbers 4 and 2 are divisors of zero since 4 µ8 2 = 0.  In addition, 6 is  a divisor of
zero because 6µ8 4 = 0.

(b)   In the ring @M2µ2HRL, +, ÿD the matrices  A = K 0 0
0 1 O and B = K 0 1

0 0 O are divisors of zero since A B = 0.

Example 16.1.13.  [Z, +, ·] has no divisors of zero.

Now here is why divisors of zero are related to cancellation.

Theorem 16.1.3. The (multiplicative) cancellation law holds in a ring @R, +, ÿD if and only if R has no divisors of zero.

We  prove  the  theorem  using  the  left  cancellation  law,  namely  that  if  a ¹≠ 0  and  a ÿ b = a ÿ c,  then  b = c  for  all  a, b, c œ R.  The  proof  is
similar using the right cancellation law.
Proof: ( ) Assume the left cancellation law holds in R and assume that a and b are two elements in R such that a ÿ b = 0. We must show that
either a = 0 or b = 0. To do this, assume that a ¹≠ 0 and show that b must be 0.

a ÿb = 0 a ÿb = a ÿ0 by Theorem 16.2. 1, part 1
b = 0 by the cancellation law

Chapter 16 - An Introduction to Rings and Fields

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



(›) Conversely, assume that R has no divisors of 0 and we will prove that the cancellation law must hold. To do this, assume that a, b, c œ R,
a ¹≠ 0, such that a ÿ b = a ÿ c and show that b = c.

a ÿ b = a ÿ c a ÿ b - a ÿ c = 0 Why?
a ÿ Hb - cL = 0 Why?

b - c = 0 Why
b = c ‡

Hence, the only time that the cancellation laws hold in a ring is when there are no divisors of zero. The commutative rings with unity in which
the above is true are given a special name.

Definition: Integral Domain. A commutative ring with unity containing no divisors of zero is called an integral domain. 

In this chapter, Integral domains will be denoted generically by the letter D.

We state the following two useful facts without proof.

Theorem 16.1.4.  The element m in the ring Zn  is a divisor of zero if and only if m is not relatively prime to n (i.e., gcdHm, nL ¹≠ 1).

Corollary.  If p is a prime, then Zp has no divisors of zero.

Example  16.1.14.   @Z, +, ÿD,  AZp , +p , µp E  with  p  a  prime,  @Q, +, ÿD,  @R, +, ÿD,  and  @C, +, ÿD  are  all  integral  domains.  The  key
example of an infinite integral domain is @Z, +, ÿD. In fact, it is from Z that the term integral domain is derived. The main example of a finite
integral domain is AZp , +p , µp E, when p is prime.

We close this  section with the verification of  an observation that  was made in Chapter  11,  namely that  the product  of  two algebraic systems
may not be an algebraic system of the same type.

Example 16.1.15. Both @Z2 , +2 , µ2 D and @Z3 , +3 , µ3 D are integral domains. Consider the product Z2µZ3. It’s true that  Z2µZ3  is
a commutative ring with unity (see Exercise 13).  However, H1, 0L ÿ H0, 2L = H0, 0L,  so Z2µZ3  has divisors of zero and is therefore not an
integral domain.

EXERCISES FOR SECTION 16.1
A Exercises
1.  Review the  definition  of  rings  to  show that  the  following  are  rings.  The  operations  involved  are  the  usual  operations  defined  on  the  sets.
Which
of these rings are commutative? Which are rings with unity? For the rings with unity, determine the unity and all units.

(a)   @Z, +, ÿD 
(b)   @C, +, ÿD  
(c)   @MnµnHRL, +, ÿD  
(d)   @Q, +, ÿD
(e)   @M2µ2HRL, +, ÿD
(f) @Z2, +2, µ2D 

2. Follow the instructions for Exercise 1 and the following rings:

(a)   @Z6, +6, µ6D  
(b)   @Z5, +5, µ5D   
(c)    AZ23, +, ÿE 
(d)    @Z8 , +8 , µ8 D
(e)    @Z µ Z, +, ÿD
(f)     @R2, +, ÿD

3. Show that the following pairs of rings are not isomorphic:

(a)  @Z, +, ÿD and @M2µ2HZL, +, ÿD
(b)  @3 Z, +, ÿD and @4 Z, +, ÿD.

4. Show that the following pairs of rings are not isomorphic:
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(a) @R, +, ÿD and @Q, +, ÿD.
(b) @Z2 µ Z2 , +, ÿDand @Z4 , +, ÿD.

5. (a) Show that 3Z is a subring of the ring [Z, +, ·]

(b) Find all subrings of Z8.

(c) Find all subrings of Z2 × Z2 .

6. Verify the validity of Theorem 16.1.3 by finding examples of elements a, b, and c (a ¹≠ 0) in the following rings, where a ÿ b = a ÿ c and yet
b ¹≠ c:

(a)  Z8   

(b) M2µ2HRL  
(c) Z22

7. (a)  Determine  all  solutions  of  the  equation  x2 - 5 x + 6 = 0  in  Z.   Can  there  be  any  more  than  two  solutions  to  this  equation  (or  any
quadratic equation) in Z?
   (b)  Find all solutions of the equation in part a in Z12. Why are there more than two solutions?

8. Solve the equation x2 + 4 x + 4 = 0 in the following rings. Interpret 4 as 1 + 1 + 1 + 1, where 1 is the unity of the ring.

(a) in  Z8  

(b) in M2µ2HRL   
(c) in  Z

(d) in  Z3

B Exercises
9. The relation “is isomorphic to” on rings is an equivalence relation. Explain the meaning of this statement.

10. Let R1, R2, …, Rn be rings. Prove the multiplicative, associative, and distributive laws for the ring

R = µ
i=1

n
Ri

(a) If each of the Ri is commutative, is R commutative? 

(b) Under what conditions will R be a ring with unity? 

(c) What will the units of R be when it has a unity?

11.   (a) Prove that the ring Z2 x Z3 is commutative and has unity.

(b)   Determine all divisors of zero for the ring Z2 x Z3 .

(c)     Give  another  example  illustrating  the  fact  that  the  product  of  two integral  domains  may not  be  an  integral  domain.  Is  there  an
example where the product is an integral domain?

12.   Boolean Rings. Let U be a nonempty set. 

(a)  Verify that @PHUL, Å⊕, ›D is a commutative ring with unity. 

(b)  What are the units of this ring?

13.  (a) For any ring @R, +, ÿD, expand Ha + bL Hc + dL for a, b, c, d œ R. 

       (b) If R is commutative, prove that Ha + bL2 = a2 + 2 a b + b2   for all a, b œ R.

14.   (a) Let R be a commutative ring with unity. Prove by induction that for n ¥ 1,

Ha + bLn =
k=0

n K n
k O ak bn-k

(b)   Simplify Ha + bL5 in Z5 .

(c)   Simplify Ha + bL10 in Z10.
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15.   Prove: If R is a ring with unity then this unity is unique.

16.   Prove part 3 of Theorem 16.1.2.

17.   Prove the Corollary to Theorem 16.1.4.

18.  Let U be a finite set. Prove that the Boolean ring @PHUL, Å⊕, ›D is isomorphic to the ring @Z2n, +, ÿD. where n = †U§
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16.2 Fields
Although the algebraic structures of rings and integral domains are widely used and play an important part in the applications of mathematics,
we still cannot solve the simple equation ax = b, a ¹≠ 0 in all rings or in all integral domains. Yet this is one of the first equations we learn to
solve in elementary algebra and its solubility is basic to innumerable questions.  Certainly, if  we wish to solve a wide range of problems in a
system we need at least all of the laws true for rings and the cancellation laws together with the ability to solve the equation ax = b, a =£ 0. We
summarize the above in a definition and list several theorems without proof that will place this concept in the context of the previous section.

Definition: Field. A field is a commutative ring with unity such that each nonzero element has a multiplicative inverse. 

In this chapter, we denote a field generically by the letter F.  The letters k, K and L are also conventionally used for fields.

Example16.2.1. @Q, +, ÿD, @R, +, ÿD,  and @C, +, ÿD  are all fields.

Reminder: Since every field is a ring, all facts and concepts that are true for rings are true for any field.

Theorem 16.2.1. Every field is an integral domain. 

Of course the converse of Theorem 16.2.1 is not true.  Consider @Z, +, ÿD.
Theorem 16.2.2. Every finite integral domain is a field.

Theorem 16.2.3. If p is a prime, then Zp is a field. 

Theorem 16.2.3  is immediate from Theorem 16.2.2.

Theorem 16.2.1 reminds us that the cancellation laws must be true for any field. Theorem 16.2.3 gives us a large number of finite fields, but we
must be cautious. This theorem does not tell us that all finite fields are of the form Zp  , p a prime. To see this, let's try to construct a field of
order 4.

Example 16.2.2: a field of order 4.   First the field must contain the additive and multiplicative identities, 0 and 1, so, without loss of
generality, we can assume that the field we are looking for is of the form F = 80, 1, a, b<.  Since there are only two nonisomorphic groups
of  order  4,  we  have  only  two  choices  for  the  group  table  for  @F, +D.    If  the  additive  group  is  isomorphic  to  Z4  then  two  of  the  nonzero
elements of F would not be their own additive inverse (as are 1 and 3 in Z4).   Lets assume b œ F is one of those elements and b + b = g ¹≠ 0.
An  isomorphism  between  the  additive  groups  F  and   Z4  would  require  that  g  in  F   correspond  with  2  in   Z4.   We  could  continue  our
argument  and  infer  that  g ÿg = 0,  producing  a  zero  divisor,  which  we  need  to  avoid  if  F  is  to  be  a  field.    We  leave  the  remainder  of  the
argument to the reader.   We can thus complete the addition table so that @F, +D  is isomorphic to Z22:

   

+ 0 1 a b
0
1
a
b

0 1 a b
1 0 b a
a b 0 1
b a 1 0

Next, by Theorem 16.1.2, Part 1, and since 1 is the unity of F, the table for multiplication must look like:

   

ÿ 0 1 a b
0
1
a
b

0 0 0 0
0 1 a b
0 a - -
0 b - -

Hence, to complete the table,  we have only four entries to find,  and,  since F  must  be commutative,  this  reduces our task to filling in three
entries. Next, each nonzero element of F must have a unique multiplicative inverse. The inverse of a must be either a itself or b. If a-1 = a,
then b-1 = b. (Why?) But
 a-1 = a a ÿ a = 1.  And if a ÿ a = 1,  then  a ÿ b  is  equal  to  a  or  b.  In  either  case,  by  the  cancellation  law,  we obtain  a = 1 or  b = 1,
which is impossible. Therefore we are forced to conclude that a-1 = b and b-1 = a. To determine the final two products of the table, simply
note that, a ÿ a ¹≠ a because the equation x2 = x has only two solutions, 0 and 1 in any field. We also know that a ÿa cannot be 1 because a
doesn’t  invert  itself  and  cannot  be  0  because  a  can’t  be  a  zero  divisor.  This  leaves  us  with  one  possible  conclusion,  that   a ÿ a = b  and
similarly b ÿ b = a.  Hence, our multiplication table for F is:

   

ÿ 0 1 a b
0
1
a
b

0 0 0 0
0 1 a b
0 a b 1
0 b 1 a

The table listing the multiplicative inverse of each nonzero element is:
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u u-1

1
a
b

1
b
a

We leave it to the reader to convince him- or herself, if it is not already clear, that @F, +, ÿD, as described above, is a field. Hence, we have
produced a field of order 4 and 4 is not a prime.
This construction would be difficult to repeat for larger fields.  In section 16.4 we will introduce a different approach to constructing fields that
will be far more efficient.
Even though not all finite fields are isomorphic to Zp, for some prime p it can be shown that every field F must have either:

(1)   a subfield isomorphic to Zp for some prime p, or

(2)   a subfield isomorphic to Q.

In particular, if F is a finite field, a subfield of F must exist that is isomorphic to Zp. One can think of all fields as being constructed from either
Zp or Q.

Example 16.2.3.  [R, +, · ] is a field, and it contains a subfield isomorphic to [Q, +, ·], namely Q itself.

Example 16.2.4.  The field F that we constructed in Example 16.2.2 should have a subfield isomorphic to Zp  for some prime p.  From
the tables, we note that the subset 80, 1< of 80, 1, a, b< under the given operations of F behaves exactly like @Z2, +2, µ2D.  Hence, the field
in Example 16.2.2 has a subfield isomorphic to Z2. Does it have a subfield isomorphic to a larger field, say Z3? We claim not and leave this
investigation to the reader (see Exercise 3 of this section).
We close this section with a brief discussion of isomorphic fields. Again, since a field is a ring, the definition of isomorphism of fields is the
same as that of rings. It can be shown that if f is a field isomorphism, then f Ha-1 L = f HaL-1; that is, inverses are mapped onto inverses under
any field isomorphism. A major question to try to solve is: How many different non-isomorphic finite fields are there of any given order? If p is
a prime, it  seems clear from our discussions that all  fields of order p  are isomorphic to Zp.  But how many nonisomorphic fields are there, if
any, of order 4, 6, 8, 9, etc? The answer is given in the following theorem, whose proof is beyond the scope of this text.

Theorem 16.2.4.

(1)   Any finite field F has order pn for a prime p and a positive integer n.

(2)   For any prime p and any positive integer n there is a field of order pn .

(3)     Any  two  fields  of  order  pn  are  isomorphic.  This  field  of  order  pn  is  frequently  referred  to  as  the  Galois  field  of  order  pn  and  it  is
designated by GFHpn).
Evariste Galois (1811-32) was a pioneer in the field of abstract algebra.

A French stamp honoring Evariste Galois (1811-32)

Theorem 16.2.4 tells us  that there is a field of order 22= 4 , and there is only one such field up to isomorphism.   That is, all such fields of order
4 are isomorphic to F, which we constructed in Example 16.2.2.

EXERCISES FOR SECTION 16.2
A Exercises
1.   Write out the addition, multiplication, and "inverse" tables for each of the following fields'.
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(a)  @Z2, +2 , µ2D
(b)  @Z3, +3 , µ3D
(c)  @Z5, +5 , µ5D

2.   Show that the set of units of the fields in Exercise 1 form a group under the operation of the multiplication of the given field. Recall that a
unit is an element which has a multiplicative inverse.
3.   Complete the argument in Example 16.2.2 to show that if @F, +D is isomorphic to Z4, then F would have a zero divisor.

4.  Write out the operation tables for Z22.   Is Z22 a ring? An integral domain? A field? Explain.
5.   Determine all values x from the given field that satisfy the given equation: 

(a) x + 1 = -1  over Z2 , Z3 and Z5

(b)  2 x + 1 = 2 over Z3 and Z5

(c)  3 x + 1 = 2 over Z5

6.  (a) Prove that if p and q are prime, then Zp µ Zq, is never a field. 

     (b) Can Zp
n be a field for any prime p and any positive integer n ¥ 2?

7.   The following are equations over Z2 . Their coefficients come solely from Z2 . Determine all solutions over Z2 ; that is, find all numbers in
Z2 that satisfy the equations:

(a)   x2 + x = 0

(b)   x2 + 1 = 0

(c)   x3 + x2 + x + 1 = 0

(d)   x3 + x + 1 = 0

8.  Determine the number of different fields, if any, of all orders 2 through 15. Wherever possible, describe these fields via a known field.

B Exercise

9.  Let QJ 2 N = :a + b 2 a, b œ Q>. 

(a) Prove that BQJ 2 N, +, ÿF is a field.

(b)  Show that Q is a subfield of QJ 2 N. For this reason, QJ 2 N is called an extension field of Q.

(c)   Show that all the roots of the equation x2 - 2 = 0 lie in the extension field QJ 2 N.
(d)   Do the roots of the equation x2 - 3 = 0 lie in this field? Explain.
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16.3 Polynomial Rings
In the previous sections we examined the solutions of a few equations over different rings and fields. To solve the equation x2 - 2 = 0 over the
field of the real numbers means to find all solutions of this equation that are in this particular field R. This statement can be replaced as follows:
Determine all a œ R such that the polynomial f HxL = x2 - 2 is equal to zero when evaluated at x = a.  In this section, we will concentrate on
the theory of polynomials. We will develop concepts using the general setting of polynomials over rings since results proven over rings are true
for fields (and integral domains). The reader should keep in mind that in most cases we are just formalizing concepts that he or she learned in
high school algebra over the field of reals.

Definition: Polynomial over R. Let @R, +, ÿD be a ring.  A polynomial, f HxL, over R is an expression of the form 

 f HxL =
i=0

n
ai xi = a0 + a1 x + a2 x2 + º⋯ + an xn  ,  n ¥ 0,

where a0, a1 , a2 , … , an œ R.  If  an ¹≠ 0,  then the degree of f HxL is n,  If f(x) = 0, then the degree of f(x) is undefined and we assign the
value -¶ to the degree.  If the degree of f(x) is n, we write deg f HxL = n.

Comments:

(1) The symbol x is an object called an indeterminate, which is not an element of the ring R.   

(2) The set of all polynomials in the indeterminate x with coefficients in R is denoted by R@xD.
(3) Note that R Œ R@xD, The elements of R are called constant polynomials, with the nonzero elements of R being the polynomials of degree 0.

(4)  R is called the ground ring for R@xD.
(5)  In the definition above, we have written the terms in increasing degree starting with the constant.  The ordering of terms can be reversed
without changing the polynomial.  For example,  1 + 2 x - 3 x4 and  -3 x4 + 2 x + 1 are the same polynomial. 

(6)   A term of the form xk in a polynomial is understood to be 1 xk,  

Example  16.3.1.  f HxL = 3,  g HxL = 2 - 4 x + 7 x2  ,  and  h HxL = 2 + x4  are  all  polynomials  in  Z@xD.  Their  degrees  are  0,  2,  and  4,
respectively.
Addition and multiplication of polynomials are performed as in high school algebra. However, we must do our computations in the ground ring
over which we are considering the polynomials.

Example 16.3.2. In Z3@xD, if f HxL = 1 + x and  g HxL = 2 + x, then

f HxL + g HxL = H1 + xL + H2 + xL
= H1 +3 2L + H1 +3 1L x
= 0 + 2 x
= 2 x

 

and

f HxL g HxL = H1 + xL ÿ H2 + xL
= H1 + xL ÿ 2 + H1 + xL ÿ x
= 1µ3 2 + 2 x + 1 x + x ÿ x
= 2 + H2 +3 1L x + x2

= 2 + x2

.

However, for the same polynomials as above, f HxL and g HxL in Z[x], we have

f HxL + g HxL = H1 + xL + H2 + xL
= H1 + 2L + H1 + 1L x
= 3 + 2 x

 

and

f HxL g HxL = H1 + xL ÿ H2 + xL
= H1 + xL ÿ 2 + H1 + xL ÿ x
= 1 ÿ2 + 2 x + 1 x + x ÿ x
= 2 + H2 + 1L x + x2

= 2 + 3 x + x2

.

The important fact to keep in mind is that addition and multiplication in R@xD depends on addition and multiplication in R. The x’s merely serve
the purpose of “place holders.” All computations are done over the given ring.  We summarize in the following theorem:

Theorem 16.3.1. Let [R, +, ·] be a ring. Then:

(1) R[x] is a ring under the operations of polynomial addition and multiplication, which depend on (are induced by) the operations in R.
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(2) If R is a commutative ring, then R[x] is a commutative ring.

(3) If R is a ring with unity, 1, then R[x] is a ring with unity (the unity in R[x] is 1 + 0 x + 0 x2 + º⋯).
(4) If R is an integral domain, then R[x] is an integral domain.

(5) If F is a field, then F[x] is not a field. However, F[x] is an integral domain.

The proofs  for  Parts  1  through 4 are  not  difficult  but  rather  long,  so we omit  them. For  those inclined to  prove them, we include the formal
definitions of addition and multiplication in R@xD below.
Proof Of Part 5: F@xD is not a field since for x œ F@xD,  x-1 = 1 ê x – F@xD. Hence not all nonzero elements in F@xD have multiplicative inverses
in F@xD. Every field F is an integral domain. By Part 4, F@xD is an integral domain. ‡

Definition: Addition in R@xD. Let f HxL = a0 + a1 x + a2 x2 + º⋯ + am xm  and gHxL = b0 + b1 x + b2 x2 + º⋯ + bn xn  be elements in R[x]
so that ai œ R and bi œ R  for all i. Let k be the maximum of m and n.  Then

f HxL + gHxL = c0 + c1 x + c2 x2 + º⋯ + ck xk 
where ci = ai + bi for i = 0, 1, 2, . . . , k.

Definition: Multiplication in R@xD. Let f HxL and g HxL be as above. Then

f HxL ÿ g 8xL = d0 + d1 x + d2 x2 + º⋯ + dp xp where

p = m + n, and 

ds =
i=0

s
ai bs-i

= a0 bs + a1 bs-1 + a2 bs-2 +º⋯ + as-1 b1 + as b0

 

for 0 § s § p.

Example 16.3.3. Let f HxL = 2 + x2  and g HxL = -1 + 4 x + 3 x2. We will compute f HxL ÿ g HxL in Z@xD. Of course this product can be
obtained by the usual methods of high school algebra. We will, for illustrative purposes, use the above definition. Using the notation of the
above definition,  a0 = 2, a1 = 0, a2 = 1, b0 = -1, b1 = 4, and b2 = 3. We want to compute the coefficients d0,  d1,  d2,  d3,  and d4  .  We will
compute d3  ,  the coefficient of the x3  term of the product, and leave the remainder to the reader (see Exercise 2 of this section).  Since the
degrees of both factors is 2, ai = bi = 0  for i ¥ 3.
 d3 = a0 b3 + a1 b2 + a2 b1 + a3 b0

= 2 ÿ0 + 0 ÿ3 + 1 ÿ4 + 0 ÿ H-1L = 4
From high school algebra we all learned the standard procedure for dividing a polynomial f HxL by a second polynomial g HxL. This process of
polynomial long division is referred to as the division property for polynomials. Under this scheme we continue to divide until the result is a
quotient q HxL and a remainder r HxL whose degree is strictly less than that of the divisor g HxL. This property is valid over any field.

Example 16.3.4. Let f HxL = 1 + x + x3 and g HxL = 1 + x be two polynomials in Z2@xD. Let us divide f HxL by g HxL. Keep in mind that
we are in Z2@xD and that, in particular, -1 = 1 in Z2 .  This is a case where reordering the terms in decreasing degree is preferred.

Therefore,

x3 + x + 1
x+ 1

= x2 + x + 1
x+ 1

or equivalently,

x3 + x + 2 = H x2 + xL ÿ Hx + 1L + 1

That  is  f HxL = gHxL ÿqHxL + rHxL  where  qHxL = x2 + x  and  rHxL = 1.   Notice  that    deg Hr HxLL = 0,  which  is  strictly  less  than  the
deg Hg HxLL = 1.

Example 16.3.5.  Let  f HxL = 1 + x4 and g HxL = 1 + x be polynomials in Z2@xD.  Let us divide f(x) by g(x):
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Thus x4 + 1 = Hx3 + x2 + x + 1L Hx + 1L .

Since we have 0 as a remainder, x + 1 must be a factor of x4 + 1, as in high school algebra. Also, since x + 1 is a factor of x4 + 1,  1 is a
zero (or root) of x4 + 1.   Of course we could have determined that 1 is a root of f HxL simply by computing   f H1L = 14 +2 1 = 1 +2 1 = 0.
Before we summarize the main results suggested by the previous examples, we should probably consider what could have happened if we had
performed divisions of polynomials in the ring Z[x] rather than over the field Z2 . For example, f HxL = x2 - 1 and g HxL = 2 x - 2 are both
elements of the ring Z[x], yet 

 x2+ 1
2 x-1

= 1
2

x + 1
2

The quotient is not a polynomial over Z but a polynomial over the field Q. For this reason it would be wise to describe all results over a field
F rather than over an arbitrary ring R.

Theorem 16.3.2. Division Property for F@xD. Let @F, +, ÿD be a field and let f HxL and g HxL be two elements of F@xD with gHxL ¹≠ 0. Then
there exist unique polynomials q HxL and r HxL in F@xD such that f HxL = g HxL q HxL + r HxL, where deg rHxL < deg gHxL.
Theorem 16.3.2 can be proven by induction on deg f HxL.

Theorem 16.3.3. Let @F, +, ÿD be a field. An element a œ F is a zero of f HxL œ F@xD if and only if x - a is a factor of f HxL in F@xD.
Proof: ( ) Assume that a œ F  is a zero of f HxL œ F@xD.  We wish to show that x - a  is a factor of f HxL.  To do so, apply the division

property to f HxL  and g HxL = x - a.  Hence,  there exist  unique polynomials q HxL  and r HxL  from F@xD  such that  f HxL = Hx - aL ÿqHxL + rHxL
and  the  deg rHxL < deg Hx - aL = 1,  so  r HxL = c œ F,  that  is,  rHxL  is  a  constant.  Also  a  is  a  zero  of  f HxL  mean  f HaL = 0.     So
f HxL = Hx - aL ÿ qHxL + c   becomes 0 = f HaL = Ha - aL qHaL + c.  Hence c = 0, so f HxL = Hx - aL ÿ q HxL,  and x - a  is  a factor of f HxL.
The  reader  should  note  that  a  critical  point  of  the  proof  of  this  half  of  the  theorem  was  the  part  of  the  division  property  that  stated  that
deg rHxL < deg gHxL.
(›)  We leave this half to the reader, exercise 6. ‡

Theorem 16.3.4. A nonzero polynomial f HxL œ F@xD of degree n can have at most n zeros.

Proof: Let a œ F  be a zero of f HxL. Then f HxL = Hx - aL ÿ q1HxL, q1HxL œ F@xD, by Theorem 16.3.3. If b œ F  is a zero of q1HxL, then again by
Theorem 16.3.3, f HxL = Hx - aL Hx - bL q2HxL, q2HxL œ F@xD. Continue this process, which must terminate in at most n steps since the degree of
qkHxL would be n - k. ‡
From Theorem 16.3.3  we can  obtain  yet  another  insight  into  the  problems associated  with  solving  polynomial  equations;  that  is,  finding  the
zeros of a polynomial. The theorem states that an element a œ F  is a zero of f HxL œ F@xD if and only if x - a is a factor of f HxL. The initial
important idea here is that the zero a is from the ground field F. Second, a is a zero only if Hx - aL is a factor of f HxL in F@xD —that is, only
when f HxL can be factored (or reduced) to the product of Hx - aL times some other polynomial in F@xD.

Example 16.3.6.  Consider the polynomial f HxL = x2 - 2 taken as being in Q[x]. From high school algebra we know that f HxL  has two
zeros (or roots), namely ± 2 , and x2 - 2 can be factored (reduced) as Jx - 2 N Jx + 2 N.  However, we are working in Q@xD, these two

factors are not in the set of polynomials over the rational numbers, Q  since 2 – Q .   Therefore, x2 - 2 does not have a zero in Q since it
cannot be factored over Q. When this happens, we say that the polynomial is irreducible over Q.
The  problem of  factoring  polynomials  is  tied  hand-in-hand  with  that  of  the  reducibility  of  polynomials.  We  give  a  precise  definition  of  this
concept.

Definition: Irreducible over F. Let[F, +, ·] be a field and let f(x) œ F[x] be a nonconstant polynomial, f(x)) is  irreducible over F if and
only if  f(x) cannot be expressed as a product of two (or more) polynomials, both from F[x] and both of degree lower than that of f(x).
A polynomial is reducible over F if it is not irreducible over F.

Example 16.3.7. The polynomial f HxL = x4 + 1 of Example 16.3.5 is reducible over Z2 since x4 + 1 = Hx + 1L Hx3 + x2 + x - 1L.
Example  16.3.8.   Is  the  polynomial  f HxL = x3 + x + 1  of  Example  16.3.4  reducible  over  Z2  ?  From Example  16.3.4  we  know that

x + 1 is not a factor of x3 + x + 1, and from high school algebra we realize that a cubic (also second-degree) polynomial is reducible if and
only if it has a linear (first-degree) factor. (Why?) Does f HxL = x3 + x + 1 have any other linear factors? Theorem 16.3.1 gives us a quick
way  of  determine  this  since  x - a  is  a  factor  of  x3 + x + 1  over  Z2  if  and  only  if  a  œ  Z2  is  a  zero  of  x3 + x + 1.  So  x3 + x + 1  is
reducible over Z2 if and only if it has a zero in Z2 . Since Z2 has only two elements, 0 and 1, this is easy enough to check. 

Chapter 16 - An Introduction to Rings and Fields

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



 f H0L = 03 +2 0 +2 1 = 1   and 

 f H1L = 13 +2 1 +2 1 = 1

so neither 0 nor 1 is a zero of f HxL over Z2 . Hence, x3 + x + 1 is irreducible over Z2.

From  high  school  algebra  we  know  that  x3 + x + 1  has  three  zeros  from  some  field.  Can  we  find  this  field?  To  be  more  precise,  can  we
construct (find) the field which contains Z2 and all zeros of x3 + x + 1? We will consider this task in the next section.
We close this section with a final analogy. Prime numbers play an important role in mathematics. The concept of irreducible polynomials (over
a field) is analogous to that of a prime number. Just think of the definition of a prime number. A useful fact concerning primes is: If p is a prime
and if p a b, then p a or p b. We leave it to the reader to think about the veracity of the following: If p HxL is an irreducible polynomial over
F, aHxL, bHxL œ F@xD and p HxL a HxL b HxL, then p HxL a HxL or p HxL b HxL.
EXERCISES FOR SECTION 16.3
A Exercises
1.  Let f HxL = 1 + x and g HxL = 1 + x + x2 . Compute the following sums and products in the indicated rings.

(a)   f HxL + g HxL and f HxL ÿ g HxL in Z@xD
(b)   f HxL + g HxL and f HxL ÿ g HxL in Z2@xD
(c)   H f HxL ÿ gHxLL ÿ f HxL  in Z[x]

(d)   H f HxL ÿgHxLL ÿ f HxL in Z2@xD
(e)   f HxL ÿ f HxL + f HxL ÿ gHxL in Z2@xD

2.   Complete Example 16.3.3.

3.   Prove that:

(a)  The ring R is a subring of the ring R@xD.
(b)  The ring Z@xD is a subring of the Q@xD.
(c)  The ring Q@xD is a subring of the ring R@xD.

4.  (a) Find all zeros of x4 + 1 in Z3 . (b) Find all zeros of x5 + 1 in Z5 .
5.   Determine which of the following are reducible over Z2 . Explain.

(a)   f HxL = x3 + 1

(b)   g HxL = x3 + x2 + x.

(c)   h HxL = x3 + x2 + 1.

(d)   k HxL = x4 + x2 + 1. (Be careful.)

6.   Prove the second half of Theorem 16.3.3.

7.   Give an example of the contention made in the last paragraph of this section.

8.  Determine all zeros of x4 + 3 x3 + 2 x + 4 in Z5@xD 
9.   Show that x2 - 3 is irreducible over Q but reducible over the field of real numbers.

B Exercises
10.   The definition of a vector space given in Chapter 13 holds over any field F, not just over the field of real numbers, where the elements of F
are called scalars.

(a)   Show that F@xD is a vector space over F.

(b)  Find a basis for F@xD over F.

(c)  What is the dimension of F[x] over F?

11.   Prove Theorem 16.3.2.

(a)   Show that the field R of real numbers is a vector space over R. Find a basis for this vector space. What is dim R over R?
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(b)   Repeat part a for an arbitrary field F.

(c)   Show that R is a vector space over Q.
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16.4 Field Extensions
From  high  school  algebra  we  realize  that  to  solve  a  polynomial  equation  means  to  find  its  roots  (or,  equivalently,  to  find  the  zeros  of  the
polynomials).  From Example 16.3.5  of  the  previous section we know that  the  zeros  may not  lie  in  the  given ground field.  Hence,  to  solve a
polynomial really involves two steps: first, find the zeros, and second, find the field in which the zeros lie. For economy’s sake we would like
this field to be the smallest field that contains all the zeros of the given polynomial. To illustrate this concept, let us reconsider Example 16.3.5.

Example 16.4.1. Let f HxL = x2 - 2 œ Q@xD. It is important to remember that we are considering x2 - 2 over Q, no other field. We would
like  to  find  all  zeros  of  f HxL  and  the  smallest  field,  call  it  S  for  now,  that  contains  them.  The  zeros  are  x = ± 2 ,  neither  of  which  is  an
element of Q. The set S we are looking for must satisfy the conditions:

(1)   S be a field.

(2)   S must contain Q as a subfield,

(3)   S must contain all zeros of f HxL = x2 - 2, and

By condition (3),  2  must be an element of S, and, if S is to be a field, the sum, product, difference, and quotient of elements in S must be
in S. So 2 , J 2 N2  , J 2 N3, … , 2 + 2  , 2 - 2  , and 2 í 2   must all be elements of S.   Further, since S contains Q as a

subset,  any  element  of  Q  combined  with  2  under  any  field  operation  must  be  an  element  of  S.  Hence,  every  element  of  the  form
a + b 2 , where a and b can be any elements in Q, is an element of S. We leave to the reader to show that S is a field (see Exercise 1 of this
section). We note that the second zero of x2 - 2, namely  - 2 , is an element of S. To see this, simply take a = 0 and b = -1. The field S
is  frequently  denoted  as  QJ 2 N,  and  it  is  referred  to  as  an  extension  field  of  Q.   Note  that  the  polynomial  x2 - 2 = Jx - 2 N Jx + 2 N
factors into linear factors, or splits, in QJ 2 N@xD; that is, all coefficients of both factors are elements of the field QJ 2 N.

Example  16.4.2.  Consider  the  polynomial  g HxL = x2 + x + 1 œ Z2@xD.  Let's  repeat  the  previous  example  for  g HxL  over  Z2.  First,
g H0L = 1 and g HlL = 1, so none of the elements of Z2  are zeros of g HxL.  Hence, the zeros of g HxL  must lie in an extension field of Z2.  By
Theorem 16.3.3,  g HxL = x2 + x + 1  can  have  at  most  two  zeros.  Let  a  be  a  zero  of  g HxL.  Then  the  extension  field  S  of  Z2  must  contain
a ÿa = a2, a3  , a + a,  a + 1, and so on. But, since g HaL = 0, we have a2 + a + 1 = 0, or, equivalently, a2 = -Ha + 1L = a + 1 (remember,
we are working in an extension of Z2).   Note the recurrence relation we can use to reduce powers of a.
So far our extension field S  of Z2  is the set 80, 1, a, a + 1<.  For S  to be a field, all possible sums, products, differences, and quotients of
elements in S must be in S. Let's try a few: 

a + a = aH1 +2 1L = a ÿ0 = 0 œ S

Since a + a = 0,  -a = a, which is in S.  Adding three a's together doesn't give us anything new: a + a + a = a œ S   In fact, n a is in S for
all possible positive integers n.  Next, 

a3 = a2 ÿ a
= Ha + 1L ÿa
= a2 + a
= Ha + 1L + a
= 1 œ S

Therefore,  a-1 = a + 1   and Ha + 1L-1 = a.

It  is  not  difficult  to  see  that  an  is  in  S  for  all  positive  n.   Does  S  contain  all  zeros  of  x2 + x + 1? Remember,  g HxL  can  have  at  most  two
distinct zeros and we called one of them a, so if there is a second, it must be a + 1. To see if a + 1 is indeed a zero of g HxL, simply compute
f Ha + 1L: 

f Ha + 1L = Ha + 1L2 + Ha + 1L + 1
= a 2 + 1 + a + 1 + 1
= a2 + a + 1
= 0

Therefore, a + 1 is also a zero of x2 + x + 1 . Hence, S = 80, 1, a, a + 1< is the smallest field that contains Z2 = 80, 1< as a subfield and
all zeros of x2 + x + 1. This extension field is denoted by Z2HaL. Note that x2 + x + 1 splits in Z2HaL; that is, it factors into linear factors in
Z2HaL. We also observe that Z2HaL is a field containing exactly four elements. By Theorem 16.2.4, we expected that Z2HaL would be of order
p2  for some prime p and positive integer n. Also recall that all fields of order pn  are isomorphic. Hence, we have described all fields of order
22 = 4 by finding the extension field of a polynomial that is irreducible over Z2.
The reader might feel somewhat uncomfortable with the results obtained in Example 16.4.2. In particular, what is a? Can we describe it through
a known quantity? All we know about a  is that it is a zero of g HxL  and that a2 = a + 1. We could also say that a Ha + 1L = 1, but we really
expected more. However, should we expect more? In Example 16.4.1, 2  is a number we are more comfortable with, but all we really know
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about  it  is  that  a = 2  is  the  number  such  that  a2 = 2.  Similarly,  the  zero  that  the  reader  will  obtain  in  Exercise  2  of  this  section  is  the
imaginary number Â. Here again, this is simply a symbol, and all we know about it is that Â2 = -1. Hence, the result obtained in Example 16.4.2
is not really that strange.
The reader should be aware that we have just scratched the surface in the development of topics in polynomial rings. One area of significant
applications is in coding theory.

EXERCISES FOR SECTION 16.4
A Exercises

1.  (a) Use the definition of a field to show that Q( 2 ) is a field.

(b)   Use the definition of vector space to show that QJ 2 N is a vector space over Q.

(c)   Prove that :1, 2 > is a basis for the vector space QJ 2 N  over Q, and, therefore, the dimension of  Q( 2 ) over Q is 2.

2.   (a) Determine the splitting field of f HxL = x2 + 1 over R. This means consider the polynomial f HxL = x2 + 1 œ R@xD and find the smallest
field that contains R and all the zeros of f HxL.  Denote this field by RHÂL.
 (b)   R(Â) is more commonly referred to by a different name. What is it?

 (c)   Show that 81, Â< is a basis for the vector space RHÂL over R. What is the dimension of this vector space (over R)?

3.  Determine the splitting field of x4 - 5 x2 + 6 over Q.

4.   (a) Factor x2 + x + 1 into linear factors in Z2HaL.
(b)   Write out the field tables for the field Z2HaL and compare the results to the tables of Example 16.2.2.

(c)   Cite a theorem and use it to show why the results of part b were to be expected.

5.  (a) Show that x3 + x + 1 is irreducible over Z2.

(b)  Determine the splitting field of x3 + x + 1 over Z2.

(c)   Use Theorem 16.2.4 to illustrate that you have described all fields of order 23 .

6.  (a) List all polynomials of degree 1, 2, 3, and 4 over Z2 = GFH2L.
(b)  Use your results in part a and list all irreducible polynomials of degree 1, 2, 3, and 4.

(c)   Determine the splitting fields of each of the polynomials in part b.

(d)   What is the order of each of the splitting fields obtained in part c? Explain your results using Theorem 16.2.4.

16.5 Power Series
In Section 16.3 we found that a polynomial of degree n over a ring R  is an expression of the form

 f HxL =
i=0

n
ai xi = a0 + a1 x + a2 x2 + º⋯ + an xn  ,  n ¥ 0,

where each of the ai  are elements of R and an ¹≠ 0. In Section 8.5 we defined a generating function of a sequence s with terms s0, s1, s2, …  as
the infinite sum

GHs, zL =
i=0

¶
si zi = s0 + s1 z + s2 z2 + º⋯

The main difference between these two expressions, disregarding notation, is that the latter is an infinite expression and the former is a finite
expression. In this section we will extend the algebra of polynomials to the algebra of infinite expressions like G Hs, zL,  which are called power
series.

Definition: Power Series. Let @R; +, ÿD be a ring. A power series over R is an expression of the form

 f HxL =
i=0

¶
ai xi = a0 + a1 x + a2 x2 + º⋯  

where a1, a2, a3, … œ R.   The set of all such expressions is denoted by R@@xDD.
Our first observation in our comparison of R@xD and R@@xDD is that every polynomial is a power series and so R@xD Œ R@@xDD.  This is true because
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a polynomial a0 + a1 x + a2 x2 + º⋯ + an xn of degree n in R@xD, can be thought of as an infinite expression where ai = 0 for i > n.  In addition,
we will see that R@@xDD is a ring with subring R@xD. 
R@@xDD is given a ring structure by defining addition and multiplication on power series as we did in R@xD, with the modification that, since we
are dealing with infinite expressions, the sums and products will remain infinite expressions that we can determine term by term, as was done in
Section 16.3. 

Definition:  Power Series Addition and Multiplication.   Given power series

 f HxL =
i=0

¶
ai xi = a0 + a1 x + a2 x2 + º⋯  

and

 gHxL =
i=0

¶
bi xi = b0 + b1 x + b2 x2 + º⋯  

their sum is 

 f HxL + gHxL =
i=0

¶ Hai + biL xi  

and their product is 

 f HxL ÿgHxL =
i=0

¶
di xi  

where

di =
j=0

i
a j bi- j

Let's look at an example.

Example 16.5.1. (Example 8.5.3, Revisited.) Let

 f HxL =
i=0

¶
i xi = 0 + 1 x + 2 x2 + 3 x3 + º⋯  

and

 gHxL =
i=0

¶
2i xi = 1 + 2 x + 4 x2 + 8 x3 + º⋯  

be elements in Z@@xDD.  Let us compute f HxL + g HxL and f HxL ÿg HxL.  First the sum:

 f HxL + gHxL =
i=0

¶
i xi +

i=0

¶
2i xi =

i=0

¶ Hi + 2iL xi

= 1 + 3 x + 6 x2 + 11 x3 + º⋯

The product is a bit more involved:

 f HxL ÿgHxL =
i=0

¶
i xi

i=0

¶
2i xi

= H0 + 1 x + 2 x2 + 3 x3 + º⋯L H1 + 2 x + 4 x2 + 8 x3 + º⋯L
= 0 ÿ1 + H0 ÿ2 + 1 ÿ1L x + H0 ÿ4 + 1 ÿ2 + 2 ÿ1L x2 + º⋯

=
i=0

¶
di xi

where

di =
j=0

i
a j bi- j =

j=0

i
j 2i- j

For example,

d3 = 0 ÿ 23 + 1 ÿ22 + 2 ÿ21 + 3 ÿ20
= 0 + 4 + 4 + 3
= 11

Hence,
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f HxL ÿg HxL = x + 4 x2 + 11 x3 + º⋯

The First few terms of the product do not suggest a pattern but with Mathematica, we can get a closed form expression for the coefficients.

SimplifyB‚
j=0

i

j 2i- jF
-i + 2i+1 - 2

Therefore,   di = 2i+1 - i - 2  and 

 f HxL ÿgHxL =
i=0

¶
i xi

i=0

¶
2i xi

=
i=0

¶ H2i+1 - i - 2L xi

We have shown that addition and multiplication in R@@xDD is virtually identical to that in R@xD. The following theorem parallels Theorem 16.3.1,
establishing the ring properties of  R@@xDD.

Theorem 16.5.1. Let [R, +, ·] be a ring. Then:

(1) R@@xDD is a ring under the operations of power series addition and multiplication, which depend on (are induced by) the operations in R.

(2) If R is a commutative ring, then R@@xDD is a commutative ring.

(3) If R is a ring with unity, 1, then R@@xDD is a ring with unity (the unity in R[x] is 1 + 0 x + 0 x2 +º⋯).
(4) If R is an integral domain, then R@@xDD is an integral domain.

(5) If F is a field, then F@@xDD is not a field. However, F@@xDD is an integral domain.

We are  most  interested  in  the  situation  when  the  set  of  coefficients  is  a  field.  Theorem 16.5.1   indicates  that  when  F  is  a  field,  F@@xDD  is  an
integral  domain.  A  reason  that  F@@xDD  is  not  a  field  is  the  same  as  one  that  we  can  cite  for  F[x],  namely  that  x  does  not  have  multiplicative
inverse in F@@xDD.  With all of these similarities, one might wonder it the rings of polynomials and power series over a field are isomorphic.  It
turns out that they are not.
The  difference  between  F@xD  and  F@@xDD  become  apparent  when  one  studies  which  elements  are  units  (i.e.,  elements  that  have  multiplicative
inverses) in each. First we prove that the only units in F@xD are the nonzero constants— that is, the nonzero elements of F.

Theorem 16.5.2. Let @F; +, ÿD be afield, f(x) is a unit in F[x] if and only f(x) is a nonzero element of F.

Proof:  ( )  Let  f HxL  be  a  unit  in  F@xD.  Then  f HxL  has  a  multiplicative  inverse,  call  it  g HxL,  such  that  f HxL ÿ g HxL = 1.  Hence,  the
deg H f HxL ÿ g HxLL = deg H1L = 0.  But  deg H f HxL ÿ g HxLL = deg f HxL + deg g HxL.  So  deg f HxL + deg g HxL = 0,  and  since  the  degree  of  a
polynomial  is  always  nonnegative,  this  can  only  happen  when  the  deg f HxL = deg g HxL = 0.  Hence,  f HxL  is  a  constant,  an  element  of  F,
which is a unit if and only if it is nonzero.
 (›) If f HxL is a nonzero element of F, then it is a unit since F is a field.  Thus it has an inverse, which is also in F@xD and so f HxL is a unit of
F@xD. ‡
Before  we  proceed  to  categorize  the  units  in  F@@xDD,  we  remind  the  reader  that  two  power  series  a0 + a1 x + a2 x2 + º⋯  and
b0 + b1 x + b2 x2 + º⋯ are equal if and only if corresponding coefficients are equal, ai = bi for all i ¥ 0.

Theorem 16.5.3. Let @F; +, ÿD be a field. Then f HxL =
i=0

¶
ai xi is a unit of F@@xDD  if and only if a0 ¹≠ 0.

Proof: ( ) If f HxL is a unit of F@@xDD, then there exists  gHxL =
i=0

¶
bi xi in F@@xDD such that 

f HxL ÿgHxL = Ha0 + a1 x + a2 x2 + º⋯L ÿ Hb0 + b1 x + b2 x2 + º⋯L
= 1
= 1 + 0 x + 0 x2 + º⋯

Since corresponding coefficients in the equation above must be equal, a0 ÿb0 = 1, which implies that a0 ¹≠ 0. 

(›) Assume that a0 ¹≠ 0. To prove that f HxL is a unit of F@@xDD we need to find gHxL =
i=0

¶
bi xi in F@@xDD such that 

f HxL ÿ gHxL =
i=0

¶
di xi = 1. 

If we use the formula for the coefficients d0, d1, d2, … of  f HxL ÿgHxL and equate coefficients, we will obtain
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d0 = a0 ÿ b0 = 1
d1 = a0 b1 + a1 b0 = 0
d2 = a0 b2 +a1 b1 + a2 b0

ª

ds = a0 bs + a1 bs-1 + º⋯ + as b0
ª

Therefore, the existence of g HxL is equivalent to the existence of a solution b0, b1, b2, …, to the above system of equations. Since a0 ¹≠ 0, we
can solve the first equation for b0. Then we can continue to the second equation and solve for b1, then b2  can be found by solving the third
equation, etc.  Hence,

b0 = a0-1

b1 = -a0-1Ha1 b0L
b1 = -a0-1Ha1 b1 + a2 b0L

ª

bs = -a0-1Ha1 bs-1 + a2 bs-2 + º⋯ + as b0L
ª

Therefore the powers series 
i=0

¶
bi xi is an expression whose coefficients lie in F and that satisfies the statement f HxL ÿ gHxL = 1. Hence, g HxL is

the multiplicative inverse of f HxL and f HxL is a unit..
Example 16.5.2. Let

f HxL = 1 + 2 x + 3 x2 + 4 x3 + º⋯

=
i=0

¶ Hi + 1L xi

be an element of Q@@xDD. Then, by Theorem 16.5.3, since a0 = 1 ¹≠ 0,  f HxL is a unit and has an inverse, call it g HxL. To compute g HxL, we follow
the procedure outlined in  Theorem 16.5.3 .  Using the formulas for the bi 's, we obtain

b0 = 1
b1 = -1 H2 ÿ1L = -2
b2 = -1 H2 ÿ H-2L + 3 ÿ1L = 1
b3 = -1 H2 ÿ1 + 3 ÿ H-2L + 4 ÿ1L = 0
b4 = -1 H2 ÿ0 + 3 ÿ1 + 4 ÿ H-2L + 5 ÿ1L = 0
b5 = -1 H2 ÿ0 + 3 ÿ0 + 4 ÿ H1L + 5 ÿ H-2L + 6 ÿ1L = 0

ª

bs = -1 H2 ÿ0 + 3 ÿ0 +º⋯Hs - 2L ÿ0 + Hs - 1L ÿ1 + s ÿ H-2L + Hs + 1L ÿ1L = 0 s ¥ 3

Hence, g HxL = 1 - 2 x + x2 is the multiplicative inverse of f HxL. 
If we compare Theorems 16.5.2 and 16.5.3, we note that while the only elements in F@xD that are units are the nonzero constants of F, the units
in F@@xDD are every single expression in x where a0 ¹≠ 0. So certainly F@@xDD contains a wider variety of units than F@xD. Yet F@@xDD is not a field,
since x œ F@@xDD  is  not  a  unit  by Theorem 16.5.3.  So concerning the algebraic  structure  of  F@@xDD,  we know that  it  is  an integral  domain that
contains F@xD. If we allow our power series to take on negative exponents—that is, consider expressions of the form

f HxL =
i=-¶

¶
ai xi

where all but a finite number of terms with a negative index equal zero.  These expressions are called extended power series. The set of all such
expressions is a field, call it E. This set does contain, for example, the inverse of x namely x-1. It can be shown that each nonzero element of E
is a unit.

EXERCISES FOR SECTION 16.5
A Exercises 

1. Let  f HxL =
i=0

¶
ai xi  and  gHxL =

i=0

¶
bi xi be elements of R@@xDD.  Let 

f HxL ÿ gHxL =
i=0

¶
di xi = 1. 

(a)   Apply the distributive law repeatedly to

 Ha0 + a1 x + a2 x2 + º⋯L ÿ Hb0 + b1 x + b2 x2 + º⋯L
 to obtain the formula
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ds =
i=0

s
ai bs-i

for the coefficients of f HxL ÿ gHxL. Hence, you have shown that

  f HxL ÿ gHxL =
s=0

¶

i=0

s
ai bs-i xs

(b)   Apply the above formula to the product in Example 16.5.1 and show that the result is the same as that obtained in this example.

2.   (a) Prove that for any integral domain D, the following can be proven:

f HxL =
i=0

¶
ai xi is a unit of D@@xDD if and only if a0 is a unit in D. 

(b)   Compare the statement in part a to that in Theorem 16.5.3.

(c)   Give an example of the statement in part a in Z@@xDD.
3.  Use the formula for the product to verify that the expression g(x) of Example 16.5.2 is indeed the inverse of f(x).

4.  (a) Determine the inverse of f HxL = 1 + x + x2 + º⋯ =
i=0

¶
xi in Q@@xDD.

(b)   Repeat part a with f HxL taken in Z2@@xDD.
(c)   Use the method outlined in Chapter 8 to show that the power series f HxL =

i=0

¶
xi  is the rational generating function 1

1-x
. What is the

inverse of this function? Compare your results with those in part a.

5.   (a) Determine the inverse of hHxL =
i=0

¶
2i xi  in Q@@xDD.

(b)  Use  the  procedures  in  Chapter  8  to  find  a  rational  generating  function  for  hHxL  in  part  a.   Find  the  multiplicative  inverse  of  this
function.

6.  Let a HxL = 1 + 3 x + 9 x2 + 27 x3 + º⋯ =
i=0

¶
3i xi and

 b HxL = 1 + x + x2 + x3 + º⋯ =
i=0

¶
xi  both in R@@xDD.

(a)   What are the first four terms (counting the constant term as the 0th term) of a HxL + b HxL?
(b)   Find a closed form expression for a HxL.
(c)  What are the first four terms of a HxL b HxL?

B Exercise
7. Write as an extended power series:

(a)  Ix4 - x5M-1
(b)   Hx2 - 2 x3 + x4L-1
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SUPPLEMENTARY EXERCISES FOR CHAPTER 16

Section 16.1
1.  (a) Expand HA + BL2 in the ring @MnµnHRL; + , ÿD.
     (b) Will your result be similar for any noncommutative ring?

2.   (a) Expand  HA + BL3 in the ring @MnµnHRL; + , ÿD.
      (b) Will your result be similar  for any noncommutative ring?

3.   Let D be the set of all 2µ2 diagonal matrices over the real numbers.

   (a)   Prove that D is a subring of @M2µ2HRL; + , ÿD, hence a ring under the usual operations.

   (b)   Prove that D is a commutative ring with unity.

   (c)   Is the cancellation law true in D?

4.  (a) Use the definition of a ring to convince yourself that R = :a + b 2 a, b eZ> is a ring. A common name given this ring is ZB 2 F.
     (b)   What is the unity of ZB 2 F?
      (c)   Prove that ZB 2 F is an integral domain.

5.   It can be shown, in general, that if R is any ring, @MnµnHRL; + , ÿD is a ring.  

     (a)   How many elements are there in the ring R = @M2µ2HZ2L; + , ÿD?  What are the zero and unity of R?

     (b)   Determine all solutions of the equation X2 - I = 0 in R.

6.  Find all six units of @M2µ2HZ2L; + , ÿD.  Hint:  The set of units is closed with respect to multiplication and one of them is   K 1 1
1 0 O

7.  Let A = :K a 0
0 0 O a œ R> then A is a ring under matrix addition and multiplication. Prove that A is isomorphic to the ring of real numbers..

Section 16.2
8.  Show that Z2 is a subfield of the field given in Example 16.2.2, or equivalently, that the field in this example is an extension field of Z2.

9. Show that a and b are the two roots of the equation x2 + x + 1 = 0 in the field of Example 16.2.2.

10.  Let A = :K a b
-b a O a, b œ R>. Prove that A with matrix addition and multiplication is isomorphic to the ring of complex numbers, C.

Section 16.3
11.  Find all rational zeros (roots) of f HxL = x4 - 6 x3 + 10 x2 - 6 x + 9 and factor f HxL into irreducible factors in Q@xD.
12.  Determine all zeros of f HxL = x3 + 1 in the field of Example 16.2.2, and express f HxL as a product of irreducible factors over that field.

13.  Repeat Exercise 12 for g HxL = x2 + x2 + x,

14.  Find all five roots of f HxL = x3 + 7 x in Z8 . Explain why this does not contradict Theorem 16.3.4.

Exercises 15 to 20 develop an introduction to polynomial codes. In Chapter 15 we introduced  group codes. Here, we will discuss another code
that uses polynomials. A k - tuple in Z2k  can be identified with a polynomial of degree k - 1 in the integral domain Z2@xD and conversely. We
do this by associating a k-tuple with the coefficients of a polynomial starting with the constant term. For example, the 5-tuple H1, 0, 1, 1, 0L is
viewed as the polynomial 1 + 0 x + 1 x2 + 1 x3 + 0 x4 = 1 + x2 + x3 . If we define addition and multiplication on Z2k based on polynomial
operations, we will have highly structured codes.  For the actual code, we present an example where k = 7. 
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15.  To add k-tuples, we can take two equivalent approaches.   We can either simply add the k-tuples coordinatewise as in any direct product, or
we can covert the k-tuples to polynomials of degree k - 1 or less, add them, and then write down the coefficients of the sum.  

(a)  For each of the following pairs of add and multiply the pairs k-tuples, where k  varies, compute their sum.   Use both ways to add for
at least one part.
(i)  H0, 1, 0L and  H1, 1, 1L
(ii)  H0, 1, 0, 1L and H1, 1, 0, 1L
(iii) H1, 1, 1, 0, 1, 0, 1L and  H0, 0, 0, 0, 1, 0, 0L
(iv)   H1, 0, 0, 1, 1, 1, 1L  and H0, 0, 0, 1, 0, 0, 0L

(b)   What what relationship between polynomials and k-tuples makes it  possible to do this  addition two different  ways to get  the same
sum.

16.  The encoding of a string of bits is based on polynomial division.  Given a four bit message, we make the bits coefficients of a sixth degree
polynomial,   b3 x3 + b4 x4 + b5 x5 + b6 x6   which  we  can  also  express  in  Z26   as  H0, 0, 0, b3, b4, b5, b6L,  we  divide  this  polynomial  by
pHxL = 1 + x + x3  and  add  the  remainder  to  the  “message  polynomial.   The  quotient  is  in  the  division  is  discarded.   Thus,  if  the  remainder,
which must be a polynomial of degree less than 2, is b0 + b1 x + b2 x2, the encoded message is the string of bits Hb0, b1, b2, b3, b4, b5, b6L.

(a) Encode the following elements of Z26as described above.

(a)   H0, 0, 0, 1, 1, 0, 1L
(b)  H0, 0, 0, 1, 1, 1, 1L
(c)   H0, 0, 0, 0, 0, 1, 0L

(b)  Prove that  the encoded message will  always represent  a  polynomial  with is  evenly divisible  by the polynomial  pHxL  that  is  used to
encode the message.

17.   A  single  bit  error  in  the  transmission  of  our  seven  bit  encoded  message  Hb0, b1, b2, b3, b4, b5, b6L  can  be  though  of  as  a  monomial
expression  x j, where 0 § j § 6.  The effect of an error occurring is to add that monomial to the encoded message.  So if the last bit is transmit-
ted incorrectly, the monomial x6 is added and the received bit sequence is Hb0, b1, b2, b3, b4, b5, b6 +2 1L.   If no error takes place, we can think
of the zero polynomial being added.   Prove that if an error takes place, the received bit string represents a polynomial that is not a multiple of
pHxL.
18.   There are seven different single bit errors.  Let’s focus on what happens if an error occurs in the last bit.  If the error occurs in the last bit
and the received bit string  represents the polynomial mHxL, show that the remainder upon dividing mHxL  by pHxL will be the same for all possible
values of mHxL.   What is that remainder?  This is called the syndrome for an error in the last bit.

19.   What are the syndromes for each of the other error positions?  Let’s agree to number them 0th  through 6th , so the 6th  position syndrome
was determined above.  What the syndrome if no error occurs?
20.   Assuming no more than a single bit error in the transmission of seven bits, what is the transmitted bit string, given these received strings?

(a)   H0, 1, 0, 1, 0, 1, 1L
(b)   H1, 1, 1, 0, 0, 0, 0L
(c)   H0, 0, 1, 1, 0, 1, 0L
Section 16.4
21.   In  Exercise  5  of  Section  16.4  you  constructed  GFH8L  using  x3 + x + 1.  Show that  GFH8L  can  also  be  obtained  by  using  the  polynomial
g HxL = x3 + x 2 + 1. 
22.  (a)  Show that f HxL = x4 + x + 1 is irreducible over Z2 .

(b)  Describe the splitting field of f HxL over Z2 .

(c)  Let a be a zero of f HxL. Show that each nonzero element of the splitting field in part (b) can be described as a power of a.

Section 16.5
23. Review  Example  16.5.2.  Derive  the  multiplicative  inverse  of  1 - 2 x + x2  by  doing  repeated  polynomial  division,  as  suggested  by  the
following first step:
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1
1 - 2 x + x2 L 1

1 - 2 x + x2

2 x - x2

24. Use polynomial long division to obtain the power series representation of 1
1+x3

over Q. What is the inverse of the power series you obtained?

25. Find  the  generating  function  for  the  sequence  defined  by  the  difference  equation  ak = ak-1 + ak-2,  k ¥ 2,  with  a0 = a1 = 1  the  indicated
fields.

(a)   Q

(b)   Z2

(c)   Z3

26. Determine the inverse of each of the power series in Exercise 25.

27.  Recall  from high  school  algebra  that  any  quadratic  with  real  coefficients,  of  the  form a x2 + b x + c = 0,  a ¹≠ 0,  can  be  solved  using  the
quadratic formula:

 x = -b± b2-4 a c
2 a

(a)  Does this formula always produce zeros  in R? 

(b)   Use the quadratic formula to solve x2 + x + 1 = 0 in Z3 ,

(c)   Use the quadratic formula to solve x2 + 2 = 0 in Z3 .

(d)   Use the quadratic formula to solve x2 + x + 2 = 0 in  Z3 .

(e)   What observations do you have based on parts (b) - (d)?
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CHAPTER 11

Section 11.1
1. (a) Commutative, and associative. Notice that zero is the identity for addition, but it is not a positive integer.)

(b)  Commutative, associative, and has an  identity (1)

(c)  Commutative, associative, has an identity (1), and is idempotent

(d)  Commutative, associative, and idempotent

(e)   None. Note:   2 ü H3 ü 3L = 512H2 ü 3L ü 3 = 64

        and while a ü 1 = a, 1 ü a = 1.

3.  a, b œ A › B a, b œ A by the definition of intersection
a * b œ A by the closure of A with respect to *

 

     Similarly, a, b œ A › B a * b œ B. Therefore, a * b œ A › B.

The set of positive integers is closed under addition, and so is the set of negative integers, but 1 + -1 - 0. Therefore, their union, the nonzero
integers, is not closed under addition. 
5. Let N be the set of all nonnegative integers (the natural numbers).

(a)  * is commutative since †a - b§ = †b - a§ for all a, b œ N

(b)  * is not associative. Take a = 1, b = 2, and c = 3, then

Ha * bL * c = ††1 - 2§ - 3§ = 2 , and

a * Hb * cL = †1 - †2 - 3§§ = 0.

(c)  Zero is the identity for * on N, since

a * 0 = †a + 0§ = a = †0 - a§ = 0 * a.

(d)   a-1 = a  for each a œ N, since

a * a = †a - a§ = 0.

(e)  * is not idempotent, since, for a ¹≠ 0,

a * a = 0 ¹≠ a.

Section 11.2
1.  The  terms  "generic"  and  "trade"  for  prescription  drugs  are  analogous  to  "generic"  and  "concrete"  algebraic  systems.   Generic  aspirin,  for
example,  has  no  name,  whereas  Bayer,  Tylenol,  Bufferin,  and  Anacin  are  all  trade  or  specific  types  of  aspirins.  The  same  can  be  said  of  a
generic group @G, *D  where G  is  a nonempty set and *  is  a binary operation on G,  When examples of typical domain elements can be given
along with descriptions of how operations act on them, such as Q* or M2µ2HRL,  then the system is concrete (has a specific name, as with the
aspirin). Generic is a way to describe a general algebraic system, whereas a concrete system has a name or symbols making it distinguishable
from other systems.
3.  b, d, e, and f.

5. (a)  K 1 0
0 1 O, K 0 1

1 0 O,  abelian

    (b)     

I R1 R2 F1 F2 F3
I

R1
R2
F1
F2
F3

I R1 R2 F1 F2 F3
R1 R2 I F2 F3 F1
R2 I R1 F3 F1 F2
F1 F F2 I R2 R1
F2 F1 F3 R1 I R2
F3 F2 F1 R2 R1 I

This group is non-abelian since, for example,  F1 F2 = R2 and F2 F1 = R2.
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 (c) 4! = 24, n! 

7.  The identity is e.   a * b = c, a * c = b,  b * c = a, and @V , *D is abelian. (This group is commonly called the Klein-4 group.)

Section 11.3
1. (a)  f is injective: f HxL = f HyL a * x = a * y

x = y Hby left cancellationL
         f is surjective:  For all b,   f HxL = b has the solution a-1 * b.

    (b) Functions of the form f HxL = a + x, where a is any integer, are bijections

3.  Basis: (n = 2)   Ha1 * a2L-1 = a2-1 * a1-1 by Theorem 11.3.4.

Induction: Assume that for some n ¥ 2,

Ha1 * a2 *º⋯* anL-1 = an-1 *º⋯* a2-1 * a1-1

We must show that

Ha1 * a2 *º⋯* an * an+1L-1 = an+1
-1 * an-1 *º⋯* a2-1 * a1-1

This can be accomplished as follows:

Ha1 * a2 *º⋯* an * an+1L-1 = HHa1 * a2 *º⋯* anL* an+1L-1 by the associative law
= an+1

-1 * Ha1 * a2 *º⋯* anL-1 by the basis
= an+1

-1 * Han-1 *º⋯* a2-1 * a1-1L by the induction hypothesis
= an+1

-1 * an-1 *º⋯* a2-1 * a1-1 by the associative law ‡

5. (a) Let p HnL be, where a is any element of group @G; *D. First we will prove that p HnL is true for all n ¥ 0.

First, we would need to prove a lemma that we leave to the reader, that if n ¥ 0, and a is any group element, a * an = an * a. 

Basis: If n = 0, Using the definition of the zero exponent,  Ha 0L -1 = e-1 = e,  while Ha-1L0 = e. Therefore, p H0L is true.
Induction: Assume that for some n ¥ 0, pHn) is true.

Han+1L-1 = Han * aL-1 by the definition of exponentiation
= a-1 * HanL-1 by Theorem 11.3 ÿ 4
= a-1 * Ha-1Ln by the induction hypothesis
= Ha-1Ln+1 by the lemma

If n is negative, then -n is positive and

a-n = IIHa-1L-1M-n M
= Ha-1L-H-nL since the property is true for positive numbers
= Ha-1Ln

(b)  For  m > 1,  let  pHmL  be  an+m = an * am  for  all  n ¥ 1.  The  basis  for  this  proof  follows  directly  from  the  basis  for  the  definition  of
exponentiation.
Induction: Assume that for some m > 1, p HmL is true. Then

an+Hm+1L = aHn+mL+1 by the associativity of integer addition
= an+m * a1 by the definition of exponentiation
= Han * amL* a1 by the induction hypothesis
= an * Ham * a1L by associativity
= an * am+1 by the definition of exponentiation

(c) Let p HmL be HanLm = an m for all integers n.

Basis: HamL0 = e and amÿ0 = a0 = e  therefore, p H0L is true.

Induction; Assume that p HmL is true for some m > 0,

HanLm+1 = HanLm * an definition of exponentiation
= an m * an by the induction hypothesis
= an m+ n by part HaL of this problem
= anHm+1L

Solutions to Odd Numbered Exercises

Applied Discrete Structures by A. Doerr & K. Levasseur is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License.



Finally, if m is negative, we can verify that HanLm = an m using many of the same steps as the proof of part (a).

Section 11.4
1.  (a) 2 (b) 5 (c) 0

     (d) 0 (e) 2 (f) 2 

     (g) 1 (h) 3 

3.  (a) 1 (b) 1 (c) m H4L = r H4L, where m = 11 q + r, 0 § r < 11 .

5. Since the solutions, if they exist, must come from Z2 , substitution is the easiest approach.

(a)  1 is the only solution, since  12 +2 1 = 0   and  02 +2 1 = 1

(b)  No solutions, since 02 +2 0 +2 1 = 1, and  12 +2 1 +2 1 = 1

7. Hint: Prove by induction on m that you can divide any positive integer into m, That is, let p HmL be "For all n greater than zero, there exist
unique integers q and r such that. . . ." In the induction step, divide n into m - n.

Section 11.5
1.   a and c

3.   8I, R1, R2<, 8I, F1<, 8I, F2<, and 8I, F3< are all the proper subgroups of R3.

5.    (a) X1\ = X5\ = Z6

X2\   = X4\ = 82, 4, 0<
X3\   = 83, 0<
X0\ = 80<

       (b) X1\ = X5\ = X7\ = X11\ = Z12

X2\   = X10\ = 82, 4, 6, 8, 10, 0<
X3\   = X9\ = 83, 6, 9, 0<
X4\   = X 8 \ = 8 4 , 8, 0<
X6\ = 86, 0< 
X0\ = 80<

     (c)   X1\ = X 3\ = X 5 \ = X7\ = Z8

X2\ = X6\ = 82, 4, 6, 0< 
X4\ = 84, 0<
X0\ = 80<

X0\

X2\

X1\

X3\

HaL

X0\

X4\
X6\

X2\
X3\

X1\
HbL

X0\

X4\

X2\

X1\
HcL
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(d)  Based  on  the  ordering  diagrams  in  parts  a  through  c,  we  would  expect  to  see  an  ordering  diagram  similar  to  the  one  for  divides  on81, 2, 3, 4, 6, 8, 12, 24< (the divisors of 24) if we were to examine the subgroups of Z24. This is indeed the case.
7. Assume that H and K are subgroups of group G, and that, as in Figure 11.5.1, there are elements x œ H — K  and y œ K — H. Consider the
product x * y. Where could it be placed in the Venn diagram? If we can prove that it must lie in the outer region, Hc › Kc = HH ‹ KLc, then we
have proven that H ‹ K  is not closed under *  and can’t be a subgroup of G,  Assume that  x * y œ H.   Since x  is in H,  x-1  is in H  and so by
closure

x-1 * Hx * y L = y œ H

which is a contradiction.   Similarly, x * y – K.  ‡ 

One way to interpret this theorem is that no group is the union of two groups.

Section 11.6
1. Table of Z2µ Z3 :

y

x

* 80, 0< 80, 1< 80, 2< 81, 0< 81, 1< 81, 2<
80, 0< 80, 0< 80, 1< 80, 2< 81, 0< 81, 1< 81, 2<
80, 1< 80, 1< 80, 2< 80, 0< 81, 1< 81, 2< 81, 0<
80, 2< 80, 2< 80, 0< 80, 1< 81, 2< 81, 0< 81, 1<
81, 0< 81, 0< 81, 1< 81, 2< 80, 0< 80, 1< 80, 2<
81, 1< 81, 1< 81, 2< 81, 0< 80, 1< 80, 2< 80, 0<
81, 2< 81, 2< 81, 0< 81, 1< 80, 2< 80, 0< 80, 1<

The only two proper subgroups are 8H0, 0L, H1, 0L< and 8H0, 0L, H0, 1L, H0, 2L< 
3. (a) (i) a + b could be H1, 0L or H0, 1L. 

(ii)  a + b = H1, 1L.
(b)   (i) a + b = could be H1, 0, 0L, H0, 1, 0L, or H0, 0, 1L. 

(ii) a + b = H1, 1, 1L.
(c)   (i) a + b has exactly one 1.

(ii) a + b has all 1 ' s.

5.   (a)  No,  0 is not an element of Z µZ.  

       (b) Yes. 

       (c) No, (0, 0) is not an element of this set.

       (d) No, the set is not closed: H1, 1L + H2, 4L = H3, 5L and H3, 5L is not in the set. 

       (e) Yes.

Section 11.7
1. (a) Yes, f Hn, xL = Hx, nL for Hn, xL œ Z µ R is an isomorphism. 

(b) No, Z2µ Z has a finite proper subgroup while Z µ Z does not.

(c) No. 

(d) Yes.

(e)  No. 

(f) Yes,  one isomorphism is defined by f Ha1, a2, a3, a4L = K a1 a2
a3 a4

O. 
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(g) Yes, one isomorphism is defined by f Ha1, a2L = Ha1, 10a2L. 
(h) Yes. 

(i) Yes   f HkL = k H1, 1L. 
3.  Consider 3 groups G1, G2, and G3 with operations * , ù , and Ñ, respectively.. We want to show that if G1 is isomorphic to G2 , and if G2 is
isomorphic to G3 , then G1 is isomorphic to G3.

G1 isomorphic to G2 there exists an isomorphism f : G1 Ø G2 

G2 isomorphic to G3 there exists an isomorphism g : G2 Ø G3 

If we compose g with f, we get the function g Î f : G1 Ø G3,  By Theorems 7.3.2 and 7.3.3, g Î f  is a bijection, and if a, b œ G1,

Hg Î f L Ha * bL = gH f Ha * bLL
= gH f HaLù f HbLL since f is an isomorphism
= gH f HaLL ÑgH f HbLL since g is an isomorphism
= Hg Î f L HaL * Hg Î f L HbL

Therefore, g Î f  is an isomorphism from G1 into G3 , proving that “is isomorphic to" is transitive.

5.  Z8, Z2µ Z4 , and Z23|. One other is the fourth dihedral group, introduced in Section 15.3. 
7. Let G be an infinite cyclic group generated by a. Then, using multiplicative notation,  G = 8an n œ Z<.
The map T : G — > Z  defined by THanL = n  is  an isomorphism.  This  is  indeed a  function,  since an = am  implies  n = m.  Otherwise,  a  would
have a finite order and would not generate G.

(a)   T is one-to-one, since THanL = THamL implies n = m, so an = am.

(b)   T is onto, since for any n œ Z, THanL = n.

(c)    THan * am L = THan+mL
= n + m
= THanL + THamL

Supplementary Exercises—Chapter 11
1. (a) With respect to V under +, the identity is a; and -a = a,  -b = c, and -c = b.

(b)  With respect to V under ÿ, the identity is b. Inverses:  b-1 = b, c-1 = c, and a has no inverse,

(c)  ÿ is distributive over + since x ÿ Hy + zL = x ÿ y + x ÿ z for each of the 27 ways that the variables x, y, and z can be assigned values from V.
However, + is not distributive over ÿ since b + Ha ÿ cL = b, while Hb + aL ÿ Hb + cL = a,
3.  By Theorem 7.3.4 every bijection has an inverse, so Î has the inverse property on S. If f œ S,

 f Î f -1 = f -1 Î f = i f inverts f -1, or H f -1L-1 = f .
Therefore, inversion of functions has the involution property.

5.  If  a  and  b  are  odd  integers,  a = 2 j + 1  and  b = 2 k + 1  for  j, k œ Z.  a b = H2 j + 1L H2 k + 1L = 2 H2 j k + j + kL + 1,  which  is  an
odd integer.  Since 1 is  odd and 1 + 1 is  even,  the odds are  not  closed under  addition,  The even integers  are  closed under  both addition and
multiplication.  If  a  and  b  are  even,  a = 2 j  and  b = 2 k  for  some  j, k œ Z,  a + b = 2 j + 2 k = 2 H j + kL,  which  is  even,  and
a b = H2 jL H2 kL = 2 H2 j kL, which is also even.
7.   That  GL H2, RL  is  a  group  follows  from  laws  of  matrix  algebra.  In  addition  to  being  associative,  matrix  multiplication  on  two-by-two
matrices has an identity I, and if A œ GL H2, RL, it has an inverse by the definition of GL H2, RL. The inverse of A is in GL(2,R) since it has an
inverse: HA-1L-1 = A.
9. If a, b, c œ R,

 Ha * bL * c = Ha + b + 5L * c
= a + b + 5 + c + 5
= a + b + c + 10

 a * Hb * cL is also equal to a + b + c + 10, and so * is associative. To find the identity we solve a * e = a for e:

a * e = a a + e + 5 = a e = —5.

If a is a real number, the inverse of a is determined by solving the equation a * x = -5;

a * x = -5 a + x + 5 = -5 x = -a - 10
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Since a is real, -a - 10  is real, and so * has the inverse property. 

11.  By Supplementary Exercise 2 of  this  chapter,  the identity for  *  is  2 and *  is  associative.  All  that  is  left  to  show is  that  * has the inverse
property. If a œ Q+  , a * x = 2 x = 4

a
; hence  a-1 = 4

a
, which is also a positive rational number. 

13. Recall that matrix multiplication is the operation on GLH2, RL.
A X B = C X B = A-1 C Hmultiply on the left by A-1L

X = A-1 C B-1 Hmultiply on the right by B-1L
   X =

1
2

0

0 1
3

K 2 1
0 1 O

1
2

- 1
2

- 1
2

1
=

1
4

0

- 1
6

1
3

15.     (a)   1    (b)  4         (c) 0         (d) 3

17. (a)   X1\ = 81<,  X3\ = 81, 3<,  X5\ = 81, 5<, and X7\ = 81, 7<.
      (b)   No, because no cyclic subgroup equals UHZ8L.
19. (a)   A, B œ SLH2, RL †A§ = †B§ = 1.

       †A B§ = †A§ ÿ †B§ = 1 ÿ 1 = 1 A B œ SLH2, RL
SLH2, RL is closed with respect to matrix multiplication

      (b)   †I§ = 1 I œ SLH2, RL
      (c)  A œ SL H2, RL †A§ = 1

†A-1§ = †A§-1 = 1 A-1 œ SLH2, RL
21. Yes, S is a submonoid of B3µ3.  The zero matrix is in S since it is the matrix of the empty relation, which is symmetric. Furthermore, if A
and B are matrices of symmetric relations,

HA + BLij = Aij + Bij definition of matrix addition
= Aji + Bji   since both A and B are symmetirc
= HA + BLji definition of matrix addition

Therefore, A + B is symmetric, which means that it is the matrix of a symmetric relation and that relation is in S.

23. (a) H1, 4, 20L    (b) H-1, 0, -1, -1L    (c) H1 ê 3 , 4L     (d) H-2, -3, -5L
25. The groups in parts a and c are abelian, since each factor is abelian. The group in part b is non-abelian, since one of its factors, GL H2, RL, is
non-abelian.
27, Since X4\ = 80, 4, 8, 12< is a cyclic group and has order four, it must be isomorphic to Z4,

29, (a) There exists a "dictionary" that allows us to translate between the two systems in such a way that any true fact in one is translated to a
true fact in the other.
     (b)  If one system is familiar to you, the other one should be familiar too.

     (c)  If Hp Ï Ÿ qL ñ 0, and Hp Ï qL ñ 0, then p ñ 0.

31. The key to this exercise is to identify the fact that adding two complex numbers entails adding two pairs of numbers, the real and imaginary
parts. If we simply rename these parts the first and second parts, then we are doing R2 addition. This suggests the function T : C — > R2 where
THa + b ÂL = Ha, bL. For any two complex numbers a + b Â and c + d Â,

THHa + b ÂL + Hc + d ÂLL = T HHa + cL + Hb + dL ÂL   definition of + in C
= 8a + c, b + dL   definition of T
= Ha, bL + Hc, dL   definition of + in R2

= THa + b ÂL + THc + d ÂL   definition of T

Since T has an inverse HT-1Ha, bL = a + b Â L, T is an isomorphism and so the two groups are isomorphic.

It should be noted that T' is not the only isomorphism between these two groups. For example UHa + b ÂL = Hb, aL defines an isomorphism. 

33. The key here is to realize that both groups consist of elements that are constructed from four real numbers and that you operate on elements
by adding four different pairs of real numbers. An isomorphism from R4 into M2µ2HRL is

THa, b, c, dL = K a b
c d O

There are an infinite number of isomorphism in this case.  This one is the most obvious.
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CHAPTER 12
Section 12.1
1. (a) 8H4 ê3, 1 ê3L<

(b) 8H-3 - 0.5 x3, 11 - 4 x3, x3 L x3<
(c)  8H-5, 14 ê5, 8 ê5L<
(d)  8H6.25 - 2.5 x3, -0.75 + 0.5 x3 , x3L x3 œ R<

3. (a)   {(1.2, 2.6, 4.5)}

(b)  8H-6 x3 + 5, 2 x3 + 1, x3 L x3 œ R<
(c) 8H-9 x3 + 3, 4, x3 L x3 œ R<
(d)  8H3 x4 + 1, -2 x4 + 2, x4 + 1, x4L x4 œ R< 

5. (a)   8H3, 0L<
(b)           

1 1 2 1
1 2 4 4
1 3 3 0

-R1 + R2 Ø
-R1 + R3

1 1 2 1
0 1 2 3
0 2 1 -1

-R2 + R1
Ø

-2 R2 + R3

1 0 0 -2
0 1 2 3
0 0 -3 -7

Ø
-1
3

R3

1 0 0 -2
0 1 2 3
0 0 1 7

3

-1
2

R3 + R2 Ø

1 0 0 -2
0 1 2 3
0 0 1 7

3

The row reduction can be done with Mathematica:

RowReduceB 1 1 2 1
1 2 4 4
1 3 3 0

F
1 0 0 -2

0 1 0 - 5
3

0 0 1 7
3

In any case, the solution set is 8H-2, -5 ê3, 7 ê3L<
7. Proof: Since b is the n µ 1 matrix of 0’s, let’s call it 0.  Let S be the set of solutions to A X = 0. If X1 and X2  be in S.   Then

AHX1 + X2 L = A X1 + A X 2 = 0 + 0 = 0

so X1 + X2 œ S; that is, S is closed under addition.

The identity of Rn is 0, which is in S.  Finally, let X be in S. Then

 AH-XL = -HA XL = - 0 = 0 ,

and so -X is also in S.

Section 12.2

(a)   
15
11

30
11

3
11

- 5
11
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(b)   

-20 21
2

9
2

- 3
2

2 -1 0 0
-4 2 1 0
7 - 7

2
- 3
2

1
2

(c)   The inverse does not exist.   When the augmented matrix is row-reduced (see below), the last row of the first half cannot be manipulated to
match the identity matrix. 

(d)    
1 0 0

-3 1 1
-4 1 2

(e)    The inverse does not exist.   

(f)     
9 -36 30

-36 192 -180
30 -180 180

5. The solutions are in the solution section of Section 12.1, exercise 1, We illustrate with the outline of the solution to Exercise 1(c) of Section
12.1.

1 1 2
1 2 -1
1 3 1

x1
x2
x3

=
1

-1
5

A-1 =
1 1 2
1 2 -1
1 3 1

-1

= 1
5

5 5 -5
-2 -1 3
1 -2 1

and   
x1
x2
x3

= A-1
1

-1
5

=

-5
14
5
8
5

Section 12.3
3. (b) Yes

7.  If the matrices are named B, A1, A2 , A3, and A4 , then

B = 8
3

A1 + 5
3

A2 + -5
3

A3 + 23
3

A4.

9. (a) If x1 = H1, 0L, x2 = H0, 1L, and y = Hb1, b2L, then 

y = b1 x1 + b2 x2. 

         If  x1 = H3, 2L, x2 = H2, 1L, and y = Hb1, b2L, then

y = H- b1 + 2 b2L x1 + H2 b1 - 3 b2L x2.

       The second linear combination can be computed using Mathematica as follows.

Solve@c1 83, 2< + c2 82, 1< ã 8b1, b2<, 8c1, c2<D
88c1 Ø 2 b2 - b1, c2 Ø 2 b1 - 3 b2<<

(b)  If y = Hb1, b2L is any vector in R2 , then

 y = H- 3 b1 + 4 b2L x1 + H-b1 + b2L x2 + H0L x3

(c)  One solution is to add any vector(s) to x1, x2, and x3 of part b.

(d)  2, n

(e)  If the matrices are A1, A2 , A3, and A4 , then

K x y
z w O = x A1 z + y A2 + z A3 + w A4

(f)  a0 + a1 x + a2 x2 + a3 x3 = a0H1L + a1HxL + a2Hx2L + a3Hx3L .
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11. (a) The set is linearly independent: let a and b be scalars such that a H4, 1L + bH1, 3L = H0, 0L, then 

4 a + b = 0 and
a + 3 b = 0

which has a = b = 0 as its only solutions. The set generates all of R2  : let Ha, bL be an arbitrary vector in R2  . We want to show that we can
always  find  scalars  b1  and  b2  such  that  b1H4, 1L + b2 H1, 3L = Ha, bL.  This  is  equivalent  to  finding  scalars  such  that  4 b1 + b2 = a  and
b1 + 3 b2 = b. This system has a unique solution  b1 = 3 a- b

11
, and b2 = 4 b— a

11
. Therefore, the set generates R2.

13. (d) They are isomorphic. Once you have completed part (a) of this exercise, the following translation rules will give you the answer to parts
(b) and (c),

Ha, b, c, dL ¨ K a b
c d O ¨ a + b x + c x2 + d x2

Section 12.4

1. (a) Any nonzero multiple of K 1
-1 O is an eigenvector associated with l = 1.

(b)   Any nonzero multiple of K 1
2 O is an eigenvector associated with l = 4.

(c)     Let  x1 = K a
-a O  and  x2 = K b

2 b O  .   You  can  verify  that   c1 x1 + c2 x2 = K 0
0 O   if  and  only  if  c1 = c2 = 0.   Therefore,  8x1, x2<  is  linearly

independent.

3. (c) You should obtain K 4 0
0 1 O or K 1 0

0 4 O, depending on how you order the eigenvalues. 

5. (a)  If  P = K 2 1
3 -1 O, then P-1 A P = K 4 0

0 -1 O.
(b) If  P = K 1 1

7 1 O, then P-1 A P = K 5 0
0 -1 O.

(c)  If  P = K 1 0
0 1 O, then P-1 A P = K 3 0

0 4 O.

(d) If  P =
1 -1 1

-1 4 2
-1 1 1

, then P-1 A P =
-2 0 0
0 1 0
0 0 0

.

(e)  A is not diagonalizable. Five is a double root of the characteristic equation, but has an eigenspace with dimension only 1.

(f)   If  P =
1 1 1

-2 0 1
1 -1 1

, then P-1 A P =
3 0 0
0 1 0
0 0 0

.

7. (b) This is a direct application of the definition of matrix multiplication. Let AHiL stand for the ith row of A, and let PH jL stand for the jth column
of  P.  Hence the jth column of the product A P is

   

AH1L PH jL
AH2L PH jL

ª

AHnL PH jL
Hence, HAPLH jL = AIPH jLM  for j = 1, 2, …, n. Thus, each column of A P depends on A and the jth column of P.

Section 12.5
3. If we introduce the superfluous equation 1 = 0 ÿ Sk-1 + 1 we have the system 

Sk = 5 Sk-1 + 4
1 = 0 ÿ Sk-1 + 1

    which, in matrix form, is:
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K Sk
1 O = K 5 4

0 1 O K Sk-1
1 O

= K 5 4
0 1 Ok K S0

1 O
= K 5 4

0 1 Ok K 0
1 O

 

Let A=K 5 4
0 1 O .  We want to diagonalize A; that is,  find a matrix P such that P-1 A P = D, where D is a diagonal matrix,  or

 A = P D P-1 Ak = P Dk P -1  
Diagonalizing A:

†A - c I§ = £ 5 - c 4
0 1 - c ß = H5 - cL H1 - cL

The eigenvalues are c = 1 and c = 5.   If c = 1,

K 4 4
0 0 O K x1

x2
O = K 0

0 O
which implies x1 + x2 = 0, or  x2 = -x2, and so  K 1

-1 O is an eigenvector associated with 1.

If c = 5,

K 0 4
0 -4 O K x1

x2
O = K 0

0 O x2 = 0.

Therefore, K 1
0 O  is an eigenvector associated with  5. Combining the two eigenvectors, we get

A = K 1 1
-1 0 O K 1 0

0 5 O K 1 1
-1 0 O-1

= K 1 1
-1 0 O K 1 0

0 5 O K 0 -1
1 1 O

and

Ak = K 1 1
-1 0 O K 1 0

0 5 Ok K 0 -1
1 1 O

= K 1 1
-1 0 O 1 0

0 5k
K 0 -1

1 1 O
= 5k 5k - 1

0 1

Hence,  K Sk
1 O = 5k 5k - 1

0 1
K 0

1 O = 5k - 1
1

  and finally, Sk = 5k - 1.

5. Since   A = A1 =
1 1 0
1 0 1
0 1 1

,  t here are 0 paths of length 1 from: node c to node a, node b to node h, and node a to node c; and there is 1

path of length 1 for every other pair of nodes.
(b) The characteristic polynomial is

†A - c I§ =
1 - c 1 0

1 -c 1
0 1 1 - c

= -c3 + 2 c2 + c - 2

Solving the characteristic equation -c3 + 2 c2 + c - 2 = 0 we find solutions 1, 2, and -1.

If c = 1, we find the associated eigenvector by finding a nonzero solution to 

0 1 0
1 -1 1
0 1 0

x1
x2
x3

=
0
0
0
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One of these, which will be the first column of P, is 
1
0

-1

If c = 2, the system 
-1 1 0
1 -2 1
0 1 -1

x1
x2
x3

=
0
0
0

  yields eigenvectors, including 
1
1
1

, which will be the second column of P.

If  c = -1, then the system determining the eigenvectors is 

2 1 0
1 1 1
0 1 2

x1
x2
x3

=
0
0
0

 

and we can select 
1

-2
1

,  although any nonzero multiple of this vector could be the third column of P. 

(c) Assembling the results of (b) we have P =
1 1 1
0 1 -2

-1 1 1
  .

A4 = P
14 0 0
0 24 0
0 0 H-1L4

P-1 = P
1 0 0
0 16 0
0 0 1

P-1

=
1 16 1
0 16 -2

-1 16 1

1
2

0 - 1
2

1
3

1
3

1
3

1
6

- 1
3

1
6

=
6 5 5
5 6 5
5 5 6

Hence  there  are  five  different  paths  of  length  4  between  distinct  vertices,  and  six  different  paths  that  start  and  end  at  the  same vertex.   The
reader can verify these facts from Figure 12.4.1.

7. (a)  ‰A = K ‰ ‰
0 0 O ,  ‰B  =

0 0
0 ‰2

,  and  ‰A+B =
‰ ‰2 - ‰

0 ‰2

(b)  Let 0 be the zero matrix, ‰0 = I + 0 + 02

2
+ 03

6
+ … = I .

(c)   Assume that A and B commute. We will examine the first few terms in the product ‰A ‰B. The pattern that is established does continue in
general.  In  what  follows,  it  is  important  that  A B = B A.  For  example,  in  the  last  step,    HA + BL2  expands  to  A2 + A B + B A + B2,  not
A2 + 2 A B + B2,  if we can’t assume commutativity.

‰A ‰B =
k=0

¶ Ak

k!
k=0

¶ Bk

k!

= JI + A + A2

2
+ A3

6
+ º⋯N JI + B + B2

2
+ B3

6
+ º⋯N

= I + A + B + A2

2
+ A B + B2

2
+ A3

6
+ A2 B

2
+ A B2

2
+ B3

6
+ º⋯

= I + HA + BL + 1
2
HA2 + 2 A B + B2L + 1

6
HA3 + 3 A2 B + 3 A B2 + B3L + º⋯

= I + HA + BL + 1
2
HA + BL2 + 1

6
HA + BL3 + º⋯

= ‰A+B

(d) Since A and -A commute, we can apply part d;
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‰A ‰-A = ‰A+H-AL 
= ‰0

= I by part b of this problem.

Supplementary Exercises—Chapter 12
1. (a)   x1 = x2 = x3 = 1

    (b)  x1 = 1
2

, x2 = 0, x3 = 1
2

3.
-8 -4 1
7 3 -1

-5 -2 1

5. Suppose that A-1  exists and that a1HA x1L + a2HA x2L is equal to the zero vector, 0. By applying several laws of matrix algebra, this implies
that
 AHa1 x1 + a2 x2L = 0 a1 x1 + a2 x2 = 0 since A-1 exists

a1 = a2 = 0 since 8x1, x2< is a basis8A x1, A x2< is linearly independent

To see that 8A x1, A x2< also spans R2 , let b œ R2, we note that since 8x1, x2< is a basis, it will span A-1 b:

 a1 x1 + a2 x2 = A-1 b for some a1, a2 œ R.

Using laws of matrix algebra:

a1 HA x1L + a2 HA x2L = AHa1 x1 + a2 x2L
= AHA-1 bL
= b

Hence, b is a linear combination of A x1 and A x2.

If A has no inverse, then A x = 0 has a nonzero solution y, which is spanned by the vectors x1 and x2 :  y = a1 x1 + a2 x2 , where not both of the
a’s are zero.

A y = 0 AHa1 x1 + a2 x2L = 0
a1HA x1L + a2 HA x2L = 08A x1, A x2< is linearly dependent

7. (b)   -X = X

      (c) 26 = 64, since each entry can take on two possible values.

 9.   A = P-1 D P A100 = P-1 D100 P

K 0.6 0.2
0.4 0.8 O = 1

3
K 1 2

2 -1 O 1100 0
0 0.4100

K 1 1
2 -1 O º

1
3

1
3

2
3

2
3

Note:  0.4100 = 1.60694 µ 10-40 º 0 . 

11. (a) l = 0, ± 2

(b)   B = P D P-1 =
1 0 0
0 1 1
0 0 -2

4 0 0
0 4 0
0 0 2

1 0 0
0 1 1

2

0 0 - 1
2

13. (a) Let the vertices be a1, a2, and a3; and use the convenient matrix representation

  

a1 a2 a3
a1
a2
a3

2 1 0
1 0 3
1 1 0

one sees immediately, for example, that there are 3 different edges from a2 to a3, so that the multigraph is
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a1

a2 a3

(b)   A2 =
5 2 3
5 4 0
3 1 3

  and by Theorem 12.5.1, HA2Li j   is the number of paths of length 2 from ai to a j. For example, the reader can verify from

the graph that there are 3 different paths of length 2 from a1 to a3.

CHAPTER 13
Section 13.1
1. (a) 1, 5  (b) 5 

    (c) 30  (d) 30 

(e) See Figure 13.4.1 with  0 = 1, a1 = 2, a2 = 3, a3 = 5, b1 = 6, b2 = 10, b3 = 15, and 1 = 30

 3. Solution for Hasse diagram (b):

(a)

 

lub a1 a2 a3 a4 a5
a1
a2
a3
a4
a5

a1 a2 a3 a4 a5
a2 a2 a4 a4 a5
a3 a4 a3 a4 a5
a4 a4 a4 a4 a5
a5 a5 a5 a5 a5

glb a1 a2 a3 a4 a5
a1
a2
a3
a4
a5

a1 a1 a1 a1 a1
a1 a2 a1 a2 a2
a1 a1 a3 a3 a3
a1 a2 a3 a4 a4
a1 a2 a3 a4 a5

(b)  a1 is the least element and a5 is the greatest element. 

     Partial solution for Hasse diagram (f):

(a)  lubHa2, a3L and lubH a4, a5L  do not exist.

(b)  No greatest element exists, but a1 is the least element. 

5.  If 0 and 0 ' are distinct least elements, then

  
0 § 0 ' since 0 is a least element
0 ' § 0 since 0 ' is a least element > 0 = 0 ' by antisymmetry, a contradiction. ‡

Section 13.2
1. Assume to the contrary that a and b have two different greatest lower bounds, and call them g and h. Then g ¥ h since g is a greatest lower
bound and h ¥ g since h is a greatest lower bound. Therefore, by antisymmetry h = g.
3. (a) See Table 13.3.1 for the statements of these laws. Most of the proofs follow from the definition of gcd and lcm. 

 (b) (partial) We prove two laws as examples.

Commutative law of join: Let @L, Í , ÏD be a lattice, a, b œ L. We must prove that a Í b = b Í a. 

Proof:  By  the  definition  of  least  upper  bound,  a Í b ¥ b  and  a Í b ¥ a  therefore,  by  Exercise  4,  part  c,  a Í b ¥ b Í a.  Similarly,
b Í a ¥ a Í b, and by antisymmetry a Í b = b Í a.  ‡
Idempotent law (for join): We must prove that for all a œ L, a a = a. 
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Proof: By the reflexive property of §, a § a and hence, by 4(c), a § a a.  But a is an upper bound for a; hence a ¥ a a.  By antisymmetry,
a = a a.   ‡

Section 13.3
1. 

B Complement of B
«8a<8b<8c<8a, b<8a, c<8b, c<
A

A8b, c<8a, c<8a, b<8c<8b<8a<
«

This lattice is a Boolean algebra since it is a distributive complemented lattice. 

3.   a and g. 

5. (a) S* : a Í b = a if a ¥ b

(b)   S : A › B = A if A Œ B

S* : A ‹ B = A if A û B

(c)  Yes

(d)  S : p Ï q ñ p if p q

S* : p Í q ñ p if q p

(e)  Yes

7.  Definition:  Boolean  Algebra  Isomorphism.  @B, Ï , Í , -D  is  isomorphic  to  @B ', Ï , Í , èD if  and  only  if  there  exists  a   function
T : B Ø B ' such that 
(a) T is a bijection;

(b) THa Ï bL = THaL Ï THbL for all a, b œ B

(c) THa Í bL = THaL Í THbL for all a, b œ B

(d) THaL = THaLè for all a œ B.
Section 13.4

1. (a) For a = 3 we must show that for each x œ D30   one of the following is true: x Ï 3 = 3 or x Ï 3 = 1.  We do this through the following
table:

x verification

1
2
3
5
6

10
15
30

1 Ï 3 = 1
2 Ï 3 = 1
3 Ï 3 = 3
5 Ï 3 = 1
6 Ï 3 = 3

20 Ï 3 = 1
15 Ï 3 = 3
30 Ï 3 = 3

For a = 5, a similar verification can be performed.

(b) 6 = 2 Í 3, 10 = 2 Í 5, 15 = 3 Í 5, and 30 = 2 Í 3 Í 5.

3. If B = D30  30 then A = 82, 3, 5< and D30 is isomorphic to PHAL, where
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1 ¨ « 5 ¨ 85<
2 ¨ 82< 10 ¨ 82, 5<
3 ¨ 83< 15 ¨ 83, 5<

6 ¨ 82, 3< 30 ¨ 82, 3, 5

   and   
Join ¨ Union

Meet ¨ Intersection
Complement ¨ Set Complement

5. Assume that x ¹≠ 0 or 1 is the third element of a Boolean algebra. Then there is only one possible set of tables for join and meet, all follow-
ing from required properties of the Boolean algebra.

Í 0 x 1
0
x
1

0 x 1
x x 1
1 1 1

         

Ï 0 x 1
0
x
1

0 0 0
0 x x
0 x 1

Next, to find the complement of x we want y such that x Ï y = 0 and x Í y = 1. No element satisfies both conditions; hence the lattice is not
complemented and cannot be a Boolean algebra. The lack of a complement can also be seen from the ordering diagram from which  and 
must be derived. 
7.  Let  X  be  any  countably  infinite  set,  such  as  the  integers.  A  subset  of  X  is  cofinite  if  it  is  finite  or  its  complement  is  finite.  The  set  of  all
cofinite subsets of X is:

(a)  Countably infinite - this might not be obvious, but here is a hint.  Assume X = 8x0, x1, x2, …<.  For each finite subset A of X,  map
that set to the integer

i=0

¶
cA HxiL 2i   

You can do a similar thing to sets that have a finite complement, but map them to negative integers.  Only one minor adjustment needs to
be made to accommodate both the empty set and X.  
(b)  Closed under union

(c)  Closed under intersection, and

(d) Closed under complementation.

Therefore, if B = 8A Œ X : A is cofinite<, then B is a countable Boolean algebra under the usual set operations.

Section 13.5

1. (a)

Í H0, 0L H0, 1L H1, 0L H1, 1L
H0, 0LH0, 1LH1, 0LH1, 1L

H0, 0L H0, 1L H1, 0L H1, 1LH0, 1L H0, 1L H1, 1L H1, 1LH1, 0L H1, 1L H1, 0L H1, 1LH1, 1L H1, 1L H1, 1L H1, 1L

Ï H0, 0L H0, 1L H1, 0L H1, 1L
H0, 0LH0, 1LH1, 0LH1, 1L

H0, 0L H0, 0L H0, 0L H0, 0LH0, 0L H0, 1L H0, 0L H0, 1LH0, 0L H0, 0L H1, 0L H1, 0LH0, 0L H0, 1L H10L H1, 1L

    

u u
H0, 0LH0, 1LH1, 0LH1, 1L

H1, 1LH1, 0LH0, 1LH0, 0L
(b)   The graphs are isomorphic.

(c)   (0, 1) and (1,0)

3. (a) H1, 0, 0, 0L, H0, 1, 0, 0L, H0, 0, 1, 0L, and H0, 0, 0, 1L are the atoms. 

     (b) The n-tuples of 0’s and 1’s with exactly one 1.
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Section 13.6

1 (a)

M1Hx1, x2L ‡ 0
M2Hx1, x2L ‡ Hx1 x2L
M3Hx1, x2L ‡ Hx1 x2L
M4Hx1, x2L ‡ Hx1 x2L
M5Hx1, x2L ‡ Hx1 x2L
M6Hx1, x2L ‡ HHx1 x2L Í Hx1 x2LL ‡ x1
M7Hx1, x2L ‡ HHx1 x2L Í Hx1 x2LL ‡ x2
M8Hx1, x2L ‡ HHx1 x2L Í Hx1 x2LL ‡ HHx1 x2L Í Hx1 x2LL
M9Hx1, x2L ‡ HHx1 x2L Í Hx1 x2LL ‡ HHx1 x2L Í Hx1 x2LL
M10Hx1, x2L ‡ HHx1 x2L Í Hx1 x2LL ‡ x2
M11Hx1, x2L ‡ HHx1 x2L Í Hx1 x2LL ‡ x1
M12Hx1, x2L ‡ HHx1 x2L Í Hx1 x2L Í Hx1 x2LL ‡ Hx1 x2L
M13Hx1, x2L ‡ HHx1 x2L Í Hx1 x2L Í Hx1 x2LL ‡ Hx1 x2L
M14Hx1, x2L ‡ HHx1 x2L Í Hx1 x2L Í Hx1 x2LL ‡ Hx1 x2L
M15Hx1, x2L ‡ HHx1 x2L Í Hx1 x2L Í Hx1 x2LL ‡ Hx1 x2L
M16Hx1, x2L ‡ HHx1 x2L Í Hx1 x2L Í Hx1 x2L Í Hx1 x2LL ‡ 1

(b)  The truth table for the functions in part (a) are

x1 x2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

(c)        f1Hx1, x2L = M15Hx1, x2L
f2Hx1, x2L = M12Hx1, x2L
f3Hx1, x2L = M1Hx1, x2L
f4Hx1, x2L = M16Hx1, x2L

3. (a) The number of elements in the domain of f is 16 = 42 = †B§2
(b) With two variables, there are 43 = 256 different Boolean functions. With three variables, there are 48 = 65 536 different Boolean functions.

(c)      f Hx1, x2L = H1 Ï x1 Ï x2L Í H1 Ï x1 Ï x2L Í H1 Ï x1 Ï x2L Í H0 Ï x1 Ï x2L
(d)   Consider f : B2 Ø B,  defined by f H0, 0L = 0, f H0, 1L = 1, f H1, 0L = a,  f H1, 1L = a,  and f H0, aL = b,  with the images of all  other pairs in B2
defined arbitrarily. This function is not a Boolean function.  If we assume that it  is Boolean function then f  can be computed with a Boolean
expression MHx1, x2L. This expression can be put into minterm normal form:

MHx1, x2L = Hc1 x1 x2L Í Hc2 x1 x2L Í Hc3 x1 x2L Í Hc4 x1 x2L
f H0, 0L = 0 MH0, 0L = 0 c1 = 0
f H0, 1L = 1 MH0, 0L = 1 c1 = 1
f H1, 0L = a MH0, 0L = a c1 = a
f H1, 1L = a MH0, 0L = a c1 = a

Therefore, 

MHx1, x2L = Hx1 x2L Í Ha x1 x2L Í Ha x1 x2L
MH0, aL = I0 aM Í Ha Ï 0 Ï aL Í Ha Ï 0 Ï aL = a

This contradicts f H0, aL = b, and so f is not a Boolean function.

Section 13,7

1. (a)
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(b)   f Hx1, x2, x3L = HHx1 + x2L ÿ x3L ÿ Hx1 + x2L
= IHx1 + x2L + x3M ÿ Hx1 + x2L
= Hx1 + x2L ÿ Hx1 + x2L + x3 ÿ Hx1 + x2L
= 0 + x3 ÿ Hx1 + x2L
= x3 ÿ Hx1 + x2L

(c)  The Venn diagram for the function is:

      We can read off the minterm normal form from this diagram:

f Hx1, x2, x3L = x1 ÿ x2 ÿ x3 + x1 ÿ x2 ÿ x3 + x1 ÿ x2 ÿ x3

(d)

Simplified form:
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Current will flow only when one of the switches x1 or x2 is On and x3 is Off.

(b)  f Hx1, x2, x3L = HHHx1 ÿ x2L + x3L ÿ Hx2 + x3LL + x3
placing H L ' s to indicate order of evaluation

= HHHx1 ÿ x2L ÿ Hx2LL + x3L + x3
by the distributive law of + over ÿ

= Hx1 ÿ Hx2 ÿ x2LL + Hx3 + x3L
by the associative laws of ÿ and +

= Hx1 ÿ x2L + x3
by the idempotent laws of ÿ and +

 (c)
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Supplementary Exercises—Chapter 13

1.  (a)  The following Sage input generates an ordering diagram.

   Poset({1:[2,3,5,7,11],2:[4,6,10],3:[6,9],4:[6,8,12],5:[10],6:[12]}).plot()

                          

      (b)  The ordering diagram for § is a chain
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1

2

3

4

5

6

7

8

9

10

11

12

3. (a) 4 Í 8 = 8, 3 Í 15 = 15, 4 Ï 8 = 4, 3 Ï 15 = 3, 3 Ï 5 - 15.

    (b) Yes. Let a, b, c œ P and assume that there are n primes, p1, p2, …, pn that appear as factors of a, b and c. Then we can write

a = p1i1 p2i2 º⋯ pnin

 b = p1 j1 p2 j2 º⋯ pn jn

c = p1k1 p2k2 º⋯ pnkn

where each exponent is a nonnegative integer. The greatest common divisor and least common multiple of two integers such as a and b can be
expressed in terms of these exponents.

a Ï b = gcd Ha, bL = p1m1 p2m2 º⋯ pnmn  

where mr = minHir, jrL and

a Í b = lcmHa, bL = p1M1 p2M2 º⋯ pnMn  

where Mr = maxHir, jrL.
Based on this observation, we can compare a Ï Hb Í c L and H a Ï bL Í Ha cL. The exponent of p, is minHir , maxH jr, kr LL in a Ï Hb Í c L
and  maxHminHi r , jrL, minHir , k r LL  in  Ha Ï bL Í Ha cL.  These  two  exponents  are  equal;  this  is  easiest  to  verify  by  checking  the  possible
relative sizes of ir, jr and kr.  Therefore, the lattice is distributive.
(c)  The least element is 1. There is no greatest element.

5. (a) The ordering diagram is the one-cube in Figure 9.4.5. It is interesting to note that the poset relation is really the logical implication, ,
since 0 0,  0 1, 1 1 are all true statements.
(b) From the definitions of lub and glb and part (a) we have the tables

Ï 0 1
0
1

0 0
0 1

     
Í 0 1
0
1

0 1
1 1

which are the logical tables for the connectives "and" and "or."

(c)  L 2 = L µ L = 8H0, 0L, H0, 1L, H1, 0L, H1, 1L< where the poset relation § on L2  and the binary operations  and  are all defined compo-
nentwise  so  that,  for  example,  H0, 1L § H1, 1L,  since  in  the  two  first  coordinates,  0 § 1  and  in  the  two  second  coordinates,  1 § 1.  Also,  for
example,  H0, 1L Ï H1, 0L = H0 Ï 1, 1 Ï 0L = H0, 0L.  The operation tables are given in the solution of  Exercise 1 Section 13.5.  The Hasse
diagram for L2 is the two-cube.
(d) The Hasse diagram for L3 is the three-cube.  Tables for  and  can

easily be constructed where, for example,

 H1, 0, 0L Í H0, 1, 0L = H1 Í 0, 0 Í 1, 0 Í 0L = H1, 1, 0L
7. (a) No. It is not true that every pair of elements in A has both a lub and a glb

in A.  For example, 10 Í 4 does not exist in A.

(b)  Yes. For all a, b œ A, a ¹≠ b,
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 a Í b = the maximum of a and b,

 a Ï b = the minimum of a and b. 

9. Hx + yL ÿ Hx + yL = x + Hy ÿ yL by the distributive law of + over ÿ
= x + 0           by the complement law

= x                     by the identity law
The switching circuit diagram has a single switch labeled x.

11.  (a)

x complementHsL of x
0
a1
a2
a3
a4
a5
a6
1

1
a2, a3, a4, a6

a1, a5
a1, a5
a1, a5

a2, a3, a4, a6
a1, a5

0

(b)  No, it is not distributive, for if it were, complements would be unique. 

13. (a) D 20 = 81, 2, 4, 5, 10, 20< contains 6 elements and so cannot be a Boolean algebra by Corollary 13.4.1.

(b)     D27 = 81, 3, 9, 27<  has  four  elements  and  so  we  cannot  use  Corollary  13.4.1  to  rule  it  out  as  a  Boolean  algebra.  However,  3  has  no
complement, which means that D27 is not a Boolean algebra.
(c)     D35 = 81, 5, 7, 35<  has  4 = 22  elements,  and  so  that  it  may  be  a  Boolean  algebra  by  Corollary  13.4.1.   We  can  confirm through  the
definition of a Boolean algebra that it is.
(d)  Notice that 210 = 2 ÿ 3 ÿ 5 ÿ 7, which means that  †D210§ = 16 = 24  and so Corollary 13.4.1 can’t be used to rule it out as a Boolean algebra.
Indeed,  D210 is a Boolean algebra, which can be confirmed by applying the definition of a Boolean algebra.
15. (a) First, by definition of subsystem in Section 11.5, a sub-Boolean algebra of a Boolean algebra B is a subset W of B which is a Boolean
algebra under the same operations as B.  Specifically, W must satisfy the conditions:

(i) The 0 and 1 of B must be in W,

(ii) a œ W a œ W

(iii) a, b œ W a Í b œ W and a Ï b œ W. 

Hence if W is to contain 4 elements it must be of the form 90, b, b, 1=. W1 = 8H0, 0, 0L, H0, 1, 1L, H1, 0, 0L, H1, 1, 1L< is one such
set. The 3-cube below illustrates this sub-Boolean algebra.

 There are two others that are isomorphic to this one, where Corollary 13.4.2, assures us of this isomorphism.

(b) Again,  the form of the sub-Boolean algebra with four elements must  be 90, b, b, 1=.  Since the 2n  elements of B2n  can be paired up with

their complements to give us 2n-1  pairs, there are 2n-1 - 1  ways to select the elements b and b (0 and its complement, 1, are already selected).
Of course, all of these sub-Boolean algebras are isomorphic.
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(c) A  sub-Boolean  algebra  with  2k  elements  must  have  k  atoms;  so  the  selection  of  k  elements  that  will  act  as  atoms  can  be  considered  in
counting numbers of sub-Boolean algebras of a certain size.  What is the number?  We leave it to the reader in the general case.
17.  Hx1 x2 x3L Í Hx1 x2 x3L Í Hx1 x2 x3L
19.  (a) Since each of the three variables can be any one of two values there are 23  rows, (See Table 13.6.3 for an example.) For n  variables
there are 2n rows. 
(b)  For  each  row,  there  can  be  any  one  of  two  truth  values.  Since  there  are  23 = 8   rows  there  are  28 = 256  functions.  For  n  variables  and
m = 2n rows, there are 2m = 22n  functions.

(c)   f Hx1, x2, x3L = HHx1 + x2 + x3L ÿ x1 + x1 + x2L ÿ x1 ÿ x3
= Hx1 ÿ x1 + x2 ÿ x1 + x3 ÿ x1 + x1 + x2L ÿ x1 ÿ x3
= H0 + x2 ÿ x1 + x3 ÿ x1 + x1 + x2L ÿ x1 ÿ x3
= H x2 ÿ x1 + x3 ÿ x1 + x1 + x2L ÿ x1 ÿ x3
= x2 ÿ x1 ÿ x1 ÿ x3 + x3 ÿ x1 ÿ x1 ÿ x3 + x1 ÿ x1 ÿ x3 + x2 ÿ x1 ÿ x3
= x2 ÿ 0 ÿ x3 + x3 ÿ 0 ÿ x3 + x1 ÿ x3 + x2 ÿ x1 ÿ x3
= x1 ÿ x3 + x2 ÿ x1 ÿ x3
= x1 ÿ x3 ÿ H1 + x2L

       Switching and gate diagrams to be added.

23. (a)   z = Hx1 + x2L + x2 ÿ x3

(b)    z = Hx1 + x2L + x2 ÿ x3
= Hx1 + x2L + Hx2 + x3L
= x1 + Hx2 + x2L + x3
= x1 + 1 + x3
= 1

     The circuit is always on, no gates are necessary.

CHAPTER 14
Section 14.1
1. (a) S1  is not a submonoid since the identity of @Z8 , µ8D,  which is 1, is not in S1.    S2  is a submonoid since 1 œ S2  and S2  is closed under
multiplication; that is, for all a, b œ S2, a µ8 b is in S2.
(b) The identity of NN  is the identity function i : N Ø N defined by i HaL = a, " a œ N. If a œ N, i HaL = a § a, thus the identity of NN  is in S1.
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However, the image of 1 under any function in S2 is 2, and thus the identity of NN is not in S2, so S2 is not a submonoid. The composition of any
two functions in S1,  f and g, will be a function in S1:
  H f ÎgL HnL = f HgHnLL § gHnL since f is in S1

§ n since g is in S1
Thus f Îg œ S1, and the two conditions of a submonoid are satisfied and S1 is a submonoid of  NN .

(c)   The first set is a submonoid, but the second is not since the null set has a non-finite complement.

3. The set of n µ n real matrices is a monoid under matrix multiplication. This follows from the laws of matrix algebra in Chapter 5. To prove
that  the  set  of  stochastic  matrices  is  a  monoid  over  matrix  multiplication,  we  need  only  show  that  the  identity  matrix  is  stochastic  (this  is
obvious) and that the set of stochastic matrices is closed under matrix multiplication. Let A and B be n µ n stochastic matrices.

 HA BLi j =
k=1

n
ai k bk j

The sum of the jth column is

j=1

n HA BLi j =
k=1

n
a1 k bk j +

k=1

n
a1 k bk j + º⋯ +

k=1

n
an k bk j

=
k=1

n Ia1 k bk j + a1 k bk j + º⋯ + an k bk jM
=

k=1

n
bk jHa1 k + a1 k + º⋯ + an k L

=
k=1

n
bk j since A is stochastic

= 1 since B is stochastic

Section 14.2
1. (a) For a character set of 350 symbols, the number of bits needed for each character is the smallest n such that 2n  is greater than or equal to
350.  Since   29 = 512 > 350 > 28 ,  9 bits are needed, 
(b) 212 = 4096 > 3500 > 211; therefore, 12 bits are needed. 

3. This grammar defines the set of all strings over B for which each string is a palindrome (same string if read forward or backward). 

5. (a) Terminal symbols: The null string, 0, and 1.

         Nonterminal symbols: S, E. 

         Starting symbol: S.

         Production rules: S Ø 00 S, S Ø 01 S,  S Ø 10 S,  S Ø 11 S,  S Ø E,  E Ø 0,  E Ø 1

         This is a regular grammar.

    (b) Terminal symbols: The null string,  0,  and 1. 

Nonterminal symbols: S, A, B, C 

Starting symbol: S

Production rules: S Ø 0 A, S Ø 1 A, S Ø l, A Ø 0 B, A Ø 1 B, A Ø l, B Ø 0 C, B Ø 1 C, B Ø A, C Ø 0, C Ø 1, C Ø l 

 This is a regular grammar.

     (c) See Exercise 3. This language is not regular.

7. If s is in A* and L is recursive, we can answer the question “Is s in Lc?”  by

negating the answer to “Is s in L?" 

9. (a) List the elements of each set xi  in a sequence xi 1, xi 2, xi 3, … .   
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Then draw arrows as shown above and list the elements of the union in order established by this pattern:  x11, x21, x12, x13, x22, x31, x41, x32, x23,
x14, x15, …
(b)  Each of the sets A1 , A2 , A3 , … are countable and A* is the union of these sets; hence A* is countable.

Section 14.3

  

x s ZHx, sL tHx, sL
Deposit 25 ¢ Locked Nothing Select
Deposit 25 ¢ Select Return 25 ¢ Select

Press S Locked Nothing Locked
Press S Select Dispense S Locked
Press P Locked Nothing Locked
Press P Select Dispense P Locked
Press B Locked Nothing Locked
Press B Select Dispense B Locked

Press S, P, BêNothing

Deposit 25¢ê
Lock released

Press S, P, Bê
Dispense S, P, B

Deposit 25¢ê
Return 25¢

Locked

Select

3.  8000, 011, 101, 110, 111<
5. (a) Input:10110, Output: 11011  10110 is in position 27 

         Input: 00100, Output: 00111  00100 is in position 7 

         Input:11111, Output: 10101  11111 is in position 21

(b)  Let x = x1 x2 … xn and recall that for n ¥ 1,  Gn+1 =
0 Gn

1 Gn
r , where Gn

r is the reverse of Gn. To prove that the Gray Code Decoder always

works, let p HnL be the proposition "Starting in Copy state,  x's output is the position of x in Gn;  and starting in Complement state, x's output is
the position of x in Gn

r." That p(1) is true is easy to verify for both possible values of x,  0 and 1.  Now assume that for some n ¥ 1, p HnL is true
and consider x = x1 x2 … xn xn+1. 
If x1 = 0,
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    x ' s output = 0 followed by Hx2 … xn xn+1L ' s output starting in Copy
= 0 followed by Hx2 … xn xn+1L ' s position in Gn
= x ' s position in Gn+1

 

If  x1 = 1,

    x ' s output = 1 followed by Hx2 … xn xn+1L ' s output starting in Complement
= 1 followed by Hx2 … xn xn+1L ' s position in Gn

r

= x ' s position in Gn+1

 

Section 14.4

1.   

Input String a b c aa ab ac
1
2
3

Ha, 1L Ha, 2L Hc, 3L Ha, 1L Ha, 2L Hc, 3LHa, 2L Ha, 1L Hc, 3L Ha, 2L Ha, 1L Hc, 3LHc, 3L Hc, 3L Hc, 3L Hc, 3L Hc, 3L Hc, 3L

      

Input String ba bb bc ca cb cc
1
2
3

Ha, 2L Ha, 1L Hc, 3L Hc, 3L Hc, 3L Hc, 3LHa, 1L Ha, 2L Hc, 3L Hc, 3L Hc, 3L Hc, 3LHc, 3L Hc, 3L Hc, 3L Hc, 3L Hc, 3L Hc, 3L
We can see that Ta Ta = Taa = Ta,  Ta Tb = Tab = Tb, etc. Therefore, we have the following monoid:

          

Ta  Tb Tb
Ta 
Tb
Tc

Ta  Tb Tc
Tb Ta  Tc
Tc Tc Tc

Notice that Ta is the identity of this monoid.

(b)   

Input String 1 2 11 12 21 22
A
B
C
D

C B A D D A
D A B C C B

A D C B B C
B C D A A D

        

Input String 111 112 121 122 211 212 221 222
A
B
C
D

C B B C B C C B
D A A D A D D A
B C C B C B B C
B C C B C B B C

We have the following monoid:

          

T1 T2 T11 T12
T1
T2
T11
T12

T11 T12 T1 T2
Tb T11 T2 T1
T1 T2 T11 T12
T2 T1 T12 T11

Notice that T11 is the identity of this monoid.

3. Yes, just consider the unit time delay machine of Figure 14.4.2. Its monoid is described by the table at the end of Section 14.4 where the Tl
row and Tl column are omitted. Next consider the machine in Figure 14.5.3. The monoid of this machine is:

     

Tl T0 T1 T00 T01 T10 T11
Tl Tl T0 T1 T00 T01 T10 T11
T0 T0 T00 T01 T00 T01 T10 T11
T1 T1 T10 T11 T00 T01 T10 T11
T00 T00 T00 T01 T00 T01 T10 T11
T01 T01 T10 T11 T00 T01 T10 T11
T10 T10 T00 T01 T00 T01 T10 T11
T11 T11 T10 T11 T00 T01 T10 T11
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Hence both of these machines have the same monoid, however, their transition diagrams are nonisomorphic since the first has two vertices and
the second has seven.

Section 14.5
1.   (a)

0
1

2
3

3

0

1
2 2

3

0

1

1
2

3
0

01

23

 (b)

880, 0<, 80, 1<, 81, 0<, 81, 1<<

880, 0<, 81, 0<<

880, 1<, 81, 1<<

880, 0<, 80, 1<<

881, 0<, 81, 1<< 880, 0<<
880, 1<<881, 0<<

881, 1<<

80, 0<

80, 1<81, 0<

81, 1<

Supplementary Exercises—Chapter 14
1.   Let f , g, h œ M , and a œ B.

HH f * gL* hL HaL = H f * gL HaL Ï hHaL
= H f HaL Ï gHaLL Ï hHaL
= f HaL Ï H gHaL Ï hHaLL
= f HaL Ï Hg * hL HaL
= H f * Hg * hLL HaL

Therefore H f * gL * h = f * Hg * hL * is associative.

The identity for * is the function u œ M  where u HaL = 1 = the “one” of B. If a œ B

H f * uL HaL = f HaL Ï uHaL = f HaL Ï 1 = f HaL
Therefore f * u - f . Similarly u * f = f .

There are 22 = 4 functions in M  for B = B 2. These four functions are named in the text (see Figure 14.1.1). The table for * is

          

z i t u
z
i
t
u

z z z z
z i z i
z z t t
z u t u
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3.   8a, bb, bbb, bbbb, . . .<
5.    S = start symbol. Nonterminals = 8S, B0 , B1, B2<

S Ø B0 B0 -> a B0 B0 Ø b B1
B1 Ø a B1 B1 Ø b B2 B1 Ø b
B2 Ø a B2 B2 Ø a

7. 

aê0

bê0

aê0
bê1

aê1

bê0

a,bê0

Start

1 2

Reject

9.   (a)

00,10,11ê0 01ê1
00ê0

10ê1 01ê1

11ê1

00,01,11ê010ê1

00,01,10,11ê0

Left Middle Right

Down

(b)  The possible  output  sequences  are  100,  010,  001,  and 111.  Note:  Output  for  t = 3 is  determined by the  next  state,  sH4L).  If  s H4L = s H3L,
output at t = 3 is 0, while if sH4L ¹≠ sH3L, output at t = 3 is 1. 
11.

z

t

u

i

z,t

i,u

z,i,t,u

z,i

t,u

z

t

u

i
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CHAPTER 15

Section 15.1
1.  The only other generator is -1.

3.  If  †G§ = m  , m > 2, and G = Xa\, then a, a2, …, am-1  , am = e  are distinct elements of G. Furthermore, a-1 = am-1 ¹≠ a,  If 1 § k § m,  a-1

generates ak:

   Ha-1Lm-k = Ham-1Lm-k = am2-m-m k + k

= HamLm-k-1 * ak = e * ak = ak

Similarly, if G is infinite and G = Xa\, then a-1 generates G. 

5. (a) No. Assume that q œ Q generates Q. Then Xq\ = 8n q : n œ Z<. But this gives us at most integer multiples of q, not every element in Q.

(b)  No. Similar reasoning to part a.

(c)  Yes. 6 is a generator of 6 Z.

(d)   No.

(e)  Yes, H1, 1, 1L is a generator of the group.

7. Theorem 15.1.4 implies that a  generates Zn  if and only if the greatest common divisor of n  and a  is 1 (i.  e.,  n  and a  are relatively prime).
Therefore the list of generators of Zn are the integers in Zn that are relatively prime to n. The generators of Z25 are all of the nonzero elements
except 5, 10, 15, and 20. The generators of Z256 are the odd integers in Z256  since 256 is 28.  Mathematica expression to generate these sets are

Select@Range@0, 24D, Function@a, GCD@25, aD ã 1DD
81, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24<
Select@Range@0, 255D, Function@a, GCD@256, aD ã 1DD
81, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65,

67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119,
121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165,
167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211,
213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255<

9. (a)   q : Z77 Ø Z7 µ Z11

  

21 Ø H0, 10L
5 Ø H5, 5L
7 Ø H0, 7L
15 Ø H1, 4L

sum = 48 ¬ H6, 4L = sum

The final sum, 48, is obtained by using the facts that q-1H1, 0L = 22 and q-1H0, 1L = 56

q-1H6, 4L = 6 µ77 q-1H1, 0L + 4 µ77 q-1H0, 1L
= 6 µ77 22 +77 4 µ77 56
= 55 +77 70
= 48

(b)   Using the same isomorphism:

25 Ø H4, 3L
26 Ø H5, 4L
40 Ø H5, 7L

sum = H0, 3L
q-1H0, 3L = 3 µ77 q-1H0, 1L

= 3 µ77 56
= 14

The  actual  sum  is  91.  Our  result  is  incorrect,  since  91  is  not  in  Z77.   Notice  that  91  and  14  differ  by  77.  Any  error  that  we  get  using  this
technique will be a multiple of 77.
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Section 15.2
1. Call the subsets A and B respectively. If we choose 0 œ A and 5 œ B  we get 0 +10 5 = 5 œ B. On the other hand, if we choose 3 œ A and
8 œ B, we get 3 +10 8 = 1 œ A. Therefore, the induced operation is not well defined on 8A, B<.
3. (a) The four distinct cosets in G êH are

H = 8H0, 0L, H2, 0L<
  H1, 0L + H = 8H1, 0L, H3, 0L<
 H0, 1L + H = 8H0, 1L, H2, 1L<, 

     and H1, 1L + H = 8H1, 1L, H3, 1L< 
None of these cosets generates G êH; therefore G êH is not cyclic. Hence G êH must be isomorphic to Z2µZ2 .

(b) The factor group is isomorphic to @R; +D. Each coset of R is a line in the complex plane that is parallel to the x-axis: t : C êR Ø R, where
TH8a + b Â a œ R<L = b is an isomorphism.
(c)    X8\ = 80, 4, 8, 12, 16<   †Z20 ê X8\§ = 4 .

The four cosets are: 0, 1, 2, and 3. 1 generates all four cosets.  The factor group is isomorphic to @Z4, +4D   because 1 generates it.
5. a œ b H ñ a = b * h for some h œ H

ñ b-1 * a = h for some h œ H
ñ b-1 * a œ H

Section 15.3

1.   (a)   K 1 2 3 4
1 4 3 2 O         (b)     K 1 2 3 4

4 3 1 2 O
(c)      K 1 2 3 4

3 4 2 1 O      (d)     K 1 2 3 4
3 4 2 1 O

(e)      K 1 2 3 4
4 2 1 3 O      (f)     K 1 2 3 4

3 1 4 2 O
(g)      K 1 2 3 4

2 1 4 3 O     
3.  Yes and no, respectively

5. D4 = 8i, r, r2 , r3 , f1 f2, f3, f4<
Where i is the identity function, r = K 1 2 3 4

2 3 4 1 O, and 

f1 = K 1 2 3 4
4 3 2 1 O f2 = K 1 2 3 4

2 1 4 3 O
f3 = K 1 2 3 4

3 2 1 4 O f4 = K 1 2 3 4
1 4 3 2 O

The operation table for the group is

Î i r r2 r3 f1 f2 f3 f4

i
r
r2

r3

f1
f2
f3
f4

i r r2 r3 f1 f2 f3 f4
r r2 r3 i f4 f3 f1 f2
r2 r3 i r f2 f1 f4 f3
r3 i r r2 f3 f4 f2 f1
f1 f3 f2 f4 i r2 Ñ r3

f2 f4 f1 f3 r2 i r3 r
f3 f2 f4 f1 r3 r i r2

f4 f1 f3 f2 r r3 r2 i

A lattice diagram of its subgroups is
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8i<

8i, f1< 8i, f2< 8i, r2< 8i, f3< 8i, f4<

8i, r2, f1, f2< 8i, r, r2, r3< 8i, r2, f3, f4<

D4

All proper subgroups are cyclic except 8i, r2, f1, f2< and 8i, r2, f3, f4<.  Each 2-element subgroup is isomorphic to Z2  ; 8i, r, r2, r3< is isomor-
phic to Z4 ; and 8i, r2, f1, f2< and 8i, r2, f3, f4< are isomorphic to Z2µZ2.
7.  One solution is to cite Exercise 3 at the end of Section 11.3. It can be directly applied to this problem. An induction proof of the problem at
hand would be almost identical to the proof of the more general statement.
  Ht1 t2º⋯ trL-1 = tr-1º⋯ t2-1 t1-1 by Exercies 3 of Section 11.3

= trº⋯ t2 t1 since each transposition inverts itself. ‡

9. Part I: That †Sk§ = k ! follows from Exercise 3 of Section 7.3.

Part  II:  Let   f   be  the  function defined on 81, 2, ..., n<  by  f H1L = 2,  f H2L = 3,   f H3L = 1,  and f H jL = j   for  4 § j § n;  and let  g  be  defined by
gH1L = 1, g H2L = 3, g H3L = 2, and gH jL = j   for 4 § j § n.  Note that f and g are elements of Sn. Next, H f ÎgL H1L = f HgH1LL = f H1L = 2, whileHg Î f L H1L = gH f H1LL = gH2L = 3, hence  f Îg ¹≠ g Î f  and Sn is non-abelian for any n ¥ 3.
11.  (a)  Both  groups  are  non-abelian  and  of  order  6;  so  they  must  be  isomorphic,  since  only  one  such  group  exists  up  to  isomorphism.  The
function q : S3 Ø R3 defined by

qHiL = I qH f1L = F1
qHr1L = R1 qH f2L = F2
qHr2L = R2 q H f3L = F3

is an isomorphism,

(b) Recall that since every function is a relation, it is natural to translate functions to Boolean matrices. Suppose that f œ Sn. We will define its
image, qH f L, by 

qH f Lkj = 1 ñ f H jL = k

That q is a bijection follows from the existence of q-1.   If A is a rook matrix, 

q-1HAL H jL = k ñ The 1 in column j of A appears in row k
ñ Akj = 1

 

For f , g œ Sn, 

   qH f ÎgLk j = 1 ñ H f ÎgL H jL = k
ñ $ l such that gH jL = l and f HlL = k
ñ $ l such that qHgLlj = 1 and qH f Lk l = 1
ñ HqH f L qHgLLk j  = 1

Therefore,  q is an isomorphism. ‡

Section 15.4
1. (a)   Yes, the kernel is 81, -1<

(b)  No, since q2H2 +5 4L = q2H1L = 1, but  q2H2L +2 q2H4L = 0 +2 0 = 0

(c)  Yes, the kernel is 8Ha, -aL a œ R<
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(d)   No

3.  Xr\ = 8i, r, r2, r3< is a normal subgroup of D4. To see you could use the table given in the solution of Exercise 5 of Section 15.3 and verify
that  a-1 h a œ Xr\ for all a œ D4  and h œ Xr\.   A more efficient approach is to prove the general theorem that if H is a subgroup G with exactly
two distinct left cosets, than H is normal.  
X f1\ is not a normal subgroup of D4.  X f1\ = 8i, f1< and if we choose a = r and h = f1 then a-1 h a = r3 f1 r = f2 – X f1\  

5.  Hb Î aL Ha1, a2, a3L = 0  and so b Îa  is the trivial homomorphism, but a homomorphism nevertheless.

7. Let x, y œ G.

qHx * yL = Hx * yL2
= x * y * x * y
= x * x * y * y since G is abelian
= x2 * y2
= qHxL* qHyL

Hence, q is a homomorphism.

In order for q to be an isomorphism, it must be the case that no element other than the identity is its own inverse.

              x œ Ker HqL ñ q HxL = e
ñ x * x = e
ñ x-1 = x

9. Proof: Recall: The inverse image of H ' under q is

q-1HH 'L = 8g œ G qHgL œ H '<
Closure:   Let g1 g2 œ q-1HH 'L, then qHg1L, qHg2L œ H '.  Since H ' is a subgroup

of G ', 

qHg1Lù qHg2L = qHg1 * g2L g1 * g2 œ q-1HH 'L

Identity: By Theorem 15.4.2(a), e œ q-1HH 'L.
Inverse: Let a œ q-1HH 'L . Then qHaL œ H ' and by Theorem 15.4.2(b), qHaL-1 = qHa-1L œ H ' and so a-1 œ q-1HH 'L.
Section 15.5
1. (a) Error detected, since an odd number of Is was received; ask for retransmission.

(b)  No error detected; accept this block.

(c)  No error detected; accept this block.

3. (a) Syndrome = H1, 0, 1L. Corrected message = H1, 1, 0L.
(b)  Syndrome = H1, 1, 0L. Corrected message = H0, 0, 1L.
(c)  Syndrome H0, 0, 0L. Corrected message = received message

= H0, 1, 1L .

(d)  Syndrome = H1, 1, 0L. Corrected message = H1, 0, 0L.
(e)  Syndrome = H1, 1, 1L. This syndrome occurs only if two bits have been switched. No reliable correction is possible.

5. Let G be the 9 µ 10 matrix obtained by augmenting the 9 µ 9 identity matrix with a column of ones. The function e : Z29 Ø Z2
10   defined by

e HaL = a G will allow us to detect single errors, since e HaL will always have an even number of ones.

Supplementary Exercises—Chapter 15
1. Theorem 15.1.3 guarantees that all subgroups of any cyclic group can be determined by finding all cyclic subgroups. We can find all cyclic
subgroups of noncyclic groups but there may be other subgroups. 
3.  First,  write  120  as  a  product  of  powers  of  distinct  primes:  120 = 23 ÿ 3 ÿ 5.  The  Chinese  Remainder  Theorem  states  that
q : Z120 Ø Z8µZ3µZ5  defined  by  qHkL = Hk mod 8, k mod 3, k mod 5L   is  an  isomorphism.   In  particular,  qH74L = H2, 2, 4L   and
qH85L = H5, 1, 0L.   Therefore,
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qH74 +120 85L = qH74L + qH85L
= H2, 2, 4L + H5, 1, 0L
= H7, 0, 4L

Since qH105L = H1, 0, 0L, and q H96L = H0, 0, 1L, we can compute

 q-1H7, 0, 4L = 7 µ120 105 +120 4 µ120 96
= 39

.

 5.  H = 0 + H = 80, 4, 8< = 4 + H = 8 + H

1  + H = 81, 5, 9< = 5 + H = 9 + H

2  + H = 82, 6, 10< = 6 + H = 10 + H

3  + H = 83, 7, 11< = 7 + H = 11 + H

The operation table for this factor group is the same as that of @Z4, +4D with k replaced with k + H.

7. (a) †Z8§ = 8 and †X2\§ = 4, therefore there are 2 distinct left cosets, and they are:

0  + X2\ = 80, 2, 4, 6< = 2 + X2\ = 4 + X2\ = 6 + X2\
1  + X2\ = 81, 3, 5, 7< = 3 + X2\ = 5 + X2\ = 7 + X2\

(b)  †Z12§ = 12  and †X2\§ = 6, therefore there are 2 distinct left cosets and they are:

0  + X2\ = 8HL, 2, 4, 6, 8, 10< = 2 + X2\ = 4 + X2\ - 6 + X2\ = 8 + X2\ = 10 + X2\
      and 1  + X2\ = 81, 3, 5, 7, 9, 11< = 3 + X2\ = 5 + X2\ = 7 + X2\ = 9 + X2\ = 11 + X2\
(c)   Since both groups are of order 2 and there is only one group of order 2 up to isomorphism, they are isomorphic. A simpler group is Z2.

7.  Assume  f is even,  f = t1 Î t2 Îº⋯ Î t2 r  for some r, where each ti is a transposition. Hence

f -1 = Ht1 Î t2 Îº⋯ Î t2 rL-1 = t2 r Îº⋯ Î t2 Î t1 by Exercise 11 of Section 15.3. 

Since the alternative, that f is odd, leads to f -1 being odd,  f is even if and only if f -1 is even.

11. (a) This following is the "standard definition" of a Boolean algebra homomorphism.  
 f : B1 Ø B2 is a Boolean algebra homomorphism if and only if for all a, b, œ B1.

(1)   f Ha Ï bL = f HaL Ï f HbL  
(2)   f Ha Í bL = f HaL Í f HbL 
(3)   f HaL = f HaL

(b) (i)  f H0L = f Ha aL
= f HaL Ì f Ia

_M
= f HaL Ï f HaL
= 0

and

 f H1L = f Ha aL
= f HaL Î f Ia

_M
= f HaL Í f HaL
= 1

      Note : The 0 and 1 of B1 may be different than those of B2. 

(ii)  a § b a = a Ï b by Supplementary Exercise 4 of Chapter 13
f HaL = f Ha Ï bL = f HaL Ï f HbL
f HaL § f HbL by the same exercise cited above.

(iii) See the solution to Exercise 15 of the Supplementary section of Chapter 13 for the definition of Boolean subalgebra. Part (i) of this
exercise  shows  that  f HB1L  contains  the  0  and  1  of  B2.  The  definition  in  part  a  shows  that f HaL œ f HB1L  has  a  complement,  namely
f HaL œ f HB1L , and also that f HB1L must be closed with respect to both  and .  For example, if a, b œ B1, then a Ï b œ B1, and since
f HaL Ï f HbL = f Ha Ï bL,   f HaL Ï f HhL œ f HB1L. 
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13 (a)    

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

(b)  e H1111L = 1 111 111   and eH1001L = 1 001 001

(c)  (i)  Syndrome = 101 => Error in second bit, since 101 is the second row of P. 

Corrected message = 0000. 

      (ii) Syndrome = 000 => No error in transmission. Correct message is 1010.

      (iii) Syndrome = 001 => Error in seventh bit, since 001 is the seventh row of P.

Corrected message = 1011. (Since the error was in a parity bit, the actual message is not corrected.)

(d)  The most direct way of proving that all single errors can be corrected is to compute the syndromes of each of the seven possible one-
bit errors. Since each of them produces a distinct syndrome (the rows of P), single errors can always be corrected.

CHAPTER 16
Section 16.1
1. All but rings c and e are commutative. All of the rings have a unity element. The number 1 is the unity for all of the rings except c and e. The
unity for M2µ2HRL is the two by two identity matrix; the unity for MnµnHRL is the n by n identity matrix. The units are as follows:

(a)   81, -1<
(b)   C* 

(c)  8A †A§ = ±1<
(d)   Q* 

(e)   8A A11 A22 - A12 A21 ¹≠ 0<
(f)   81< 

3. Hints: (a) Consider commutativity 

   (b) Solve x 2 = 3 x in both rings. 

5. (a) We already know that 3 Z is a subgroup of the group Z; so part 1 of Theorem 16.1.1 is satisfied. We need only show that part 2 of the
theorem holds: Let 3 m, 3 n œ 3 Z.

H3 mL H3 nL = 3 H3 m nL œ 3 Z, since 3 m n œ Z.  †

(b) The proper subrings are 80, 2, 4, 6< and 80, 4<; while 80< and Z8 are improper subrings.

(c)   The proper subrings are 800, 01<, 800, 10<, and 800, 11<: while {00} and Z2µZ2 are improper subrings.

7. (a) The left-hand side of the equation factors into the product Hx - 2L Hx - 3L.  Since Z  is an integral domain, x = 2 and x = 3 are the only
possible solutions.
(b) Over Z12, 2, 3, 6, and 11 are solutions. Although the equation factors into Hx - 2L Hx - 3L, this product can be zero without making x either 2
or 3. For example. If x = 6 we get  H6 - 2Lµ12 H6 - 3L = 4 µ12 3 = 0.  Notice that  4 and 3 are divisors of zero.
9. Let R1, R2, and R3  be any rings, then

(a)   R1 is isomorphic to R1 and so “is isomorphic to” is a reflexive relation on rings,

(b)   R1 is isomorphic to R2  R2 is isomorphic to R1, and so “is isomorphic to” is a symmetric relation on rings,

(c)   R1  is isomorphic to R2, and R2  is isomorphic to R3  implies that R1  is isomorphic to R3, and so “is isomorphic to” is a transitive relation on
rings.
We  haven’t  proven  these  properties  here,  just  stated  them.   The  combination  of  these  observations  implies  that  “is  isomorphic  to”  is  an
equivalence relation on rings,
11. (a) Commutativity is clear from examination of a multiplication table for Z2µ Z3. More generally, we could prove a theorem that the direct
product of two or more commutative rings is commutative. H1, 1L is the unity of Z2µ Z3.
(b)  8Hm, nL m = 0 or n = 0, Hm, nL ¹≠ H0, 0L<
(c)     Another  example  is  Z µ Z.   No,  since  by  definition  an  integral  domain  D  must  contain  the  additive  identity   so  we  always  haveHm, 0L ÿ H0, nL = H0, 0L in D µ D.
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13. (a)    Ha + bL Hc + dL = Ha + bL c + Ha + bL d
= a c + b c + a d + b d

      (b) Ha + bL Ha + b L = a a + b a + a b + b b by part a
= a a + a b + a b + b b since R is commutative
= a2 + 2 a b + b2

15. Hint: The set of units of a ring is a group under multiplication. Apply a theorem from a group theory.

17.  Proof of Corollary to Theorem 6.1.4: Since p is a prime, all nonzero elements of Zp  are relatively prime to p.  By Theorem 16.1.4 we are
done.

Section 16.2
3. No, since 2-1 = 2 in Z3, but a-1 ¹≠ a and b-1 ¹≠ b in F.

5. (a)   0  (over Z2),  1 (over Z3),  3 (over Z5 )

(b)  2 (over Z3 ),  3 (over Z5)

(c)  2

7. (a)   0 and 1   (b) 1   (c) 1   (d) none

9.  (c)  The  roots  of  x 2 - 2 = 0  are  2  and  - 2 .  Both  numbers  can  be  expressed  in  the  form  a + b 2  where  a, b œ Q:
2 = 0 + 1 ÿ 1  and - 2 = 0 + -1 ÿ 2 .

(d)   No,  since  ± 3  cannot  be  expressed  in  the  form  a + b 2 , a, b œ Q.   If  there  exist  rational  numbers  a  and  b  such  that
3 = a + b 2 ,  then  clearly  b ¹≠ 0  since  3  is  irrational  and  a ¹≠ 0  for  that  would  imply  that  3 ê2  is  rational,  which  is  false.    If  we

square both sides, of the equation we will get a rational expression for 2  which is also false.

Section 16.3
1. (i) f HxL + gHxL = 2 + 2 x + x2 ,   f HxL gHxL = 1 + 2 x + 2 x2 + x3

(ii) f HxL + gHxL = x2,       f HxL gHxL = 1 + x3

(iii) 1 + 3 x + 4 x 2 + 3 x3 + x4

(iv) 1 + x + x3 + x4

(v)  x2 + x3

3. (a) If a, b œ R, a - b and a b are in R since R is a ring in its own right. Therefore, R is a subring of R@xD.  The proofs of parts b and c are
similar. 
5. (a) Reducible, Hx + 1L Hx2 + x + 1L

(b) Reducible,  xHx2 + x + 1L
(c) Irreducible.  If  you  could  factor  this  polynomial,  one  factor  would  be  either  x  or  x + 1,  which  would  give  you  a  root  of  0  or  1,
respectively. By substitution of 0 and 1 into this polynomial, it clearly has no roots.

(d) Reducible, Hx + 1L4
7. We illustrate this property of polynomials by showing that it  is not true for a nonprime polynomial in Z2@xD.  Suppose that p HxL = x2 + 1,
which can be reduced to Hx + 1L2  , a HxL = x2 + x, and b HxL = x3 + x2. Since a HxL bHxL = x5 + x3 = x3Hx2 + 1L, pHxL aHxL bHxL. However, p HxL
is not a factor of either aHxL or b HxL.
9. The only possible proper factors of x2 - 3 are Jx - 3 N and Jx + 3 N, which are not in Q@xD but are in R[x]. 

11. For n ¥ 0, let SHnL be the proposition: For all g HxL ¹≠ 0 and f HxL with deg f HxL = n, there exist unique polynomials q HxL and r HxL such that
f HxL = gHxL qHxL + rHxL, and either rHxL = 0  or  deg r HxL < deg g HxL.
Basis: S H0L is true, for if f HxL  has degree 0, it is a nonzero constant, f HxL = c ¹≠ 0, and so either f HxL = gHxL ÿ 0 + c  if gHxL is not a constant, or
f HxL = gHxL gHxL-1 + 0 if gHxL is also a constant.
Induction:  Assume  that  for  some  n ¥ 0,  S HkL  is  true  for  all  k § n,  If  f HxL  has  degree  n + 1,  then  there  are  two  cases  to  consider.  If
deg g HxL > n + 1, f HxL = gHxL ÿ 0 + f HxL, and we are done. Otherwise, if deg gHxL = m § n + 1, we perform long division as follows, where
LDT’s = various terms of lower degree than n + 1.
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fn+1 ÿ gm-1 xn+1-m

gm xm + LDT' s L fn+1 xn+1 + LDT' s
fn+1 xn+1 + LDT' s

hHxL
Therefore,

  hHxL = f HxL - H fn+1 ÿ gm-1 xn+1-mL gHxL
f HxL = H fn+1 ÿ gm-1 xn+1-mL gHxL + hHxL

Since deg h HxL is less than n + 1, we can apply the induction hypothesis:

h HxL = gHxL qHxL + rHxL with  deg r HxL < deg g HxL.
Therefore,

f HxL = gHxL H fn+1 ÿ gm-1 xn+1-m + qHxLL + rHxL  with  deg r HxL < deg g HxL.
This establishes the existence of a quotient  and remainder.  The uniqueness of  q HxL  and r HxL  as  stated in the theorem is  proven as follows: if
f HxL is also equal to gHxL qHxL + rHxL with deg rHxL < deg gHxL, then

gHxL qHxL + rHxL = gHxL qHxL + r HxL gHxL HqHxL - qHxLL = rHxL - rHxL
Since  deg rHxL - rHxL < deg g HxL,  the  degree  of  both  sides  of  the  last  equation  is  less  than  deg g HxL.  Therefore,  it  must  be  that
qHxL - q HxL = 0, or qHxL = qHxL And so rHxL = rHxL.  ‡ 

Section 16.4

1. If a0 + a1 2 œ QB 2 F is nonzero, then it has a multiplicative inverse:

 1

a0+ a1 2
= 1

a0+ a1 2

a0- a1 2

a0- a1 2

= a0- a1 2
a02- 2 a12

= a0
a02- 2 a12

- a1
a02- 2 a12

2

The denominator, a02 - 2 a12, is nonzero since 2  is irrational.  Since a0
a02- 2 a12

 and -a1
a02- 2 a12

 are both rational numbers, a0 + a1 2  is a unit of

QB 2 F.  The field containing QB 2 F is denoted QJ 2 N and so QJ 2 N = QB 2 F 
 3.  x4 - 5 x2 + 6 = Hx2 - 2L Hx2 - 3L  has  zeros  ± 2  and  ± 3 .  QJ 2 N = :a + b 2 a, b œ Q>  contains  the  zeros  ± 2  but  does

not contain ± 3 , since neither are expressible in the form a + b 2  . If we consider the set :c + d 3 : c, d œ QJ 2 N>, then this field

contains ± 3  as well as ± 2 , an is denoted  JQJ 2 NN J 3 N = QJ 2 , 3 N.  Taking into account the form of c and d in the description
above, we can expand to

QJ 2 , 3 N = :b0 + b1 2 + b2 3 + b3 6 bi œ Q>.

5. (a) f HxL = x3 + x + 1 is reducible if and only if it has a factor of the form x - a. By Theorem 16.3.3, x - a is a factor if and only if a is a
zero. Neither 0 nor 1 is a zero of f HxL over Z2.
(b) Since f HxL is irreducible over Z2, all zeros of f HxL must lie in an extension field of Z2  . Let c be a zero of f HxL.   Z2HcL can be described
several different ways.  One way is to note that since c œ Z2HcL, cn œ Z2HcL for all n. Therefore, Z2HcL includes 0, c, c2, c3, …. But c3 = c + 1
since f HcL = 0. Furthermore, c4 = c2 + c, c5 = c2 + c + 1 , c6 = c2 + 1, and c7 = 1.  Higher powers of c repeat preceding powers.  Therefore, 

 Z2 HcL = 80, 1, c, c2 , c + 1, c2 + 1, c2 + c + 1, c 2 + c<
= 8a0 + a1 c + a2 c2 ai œ Z2<

. 

The three zeros of f HxL are c,  c2 and c2 + c.

  f HxL = Hx + cL Hx + c 2 L Hx + c2 + cL.
(c)  Cite Theorem 16.2.4, part 3.

Section 16.5
3. Theorem 16.5.2 proves that not all nonzero elements in F@@xDD are units. 
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7.  (a)   b0 = 1
b1 = H-1L H2 ÿ 1L = -2
b2 = H-1L H2 ÿ H-2L + 4 ÿ 1L = 0
b3 = H-1L H2 ÿ 0 + 4 ÿ H-2L + 8 ÿ 1L = 0

… Hall others are zeroL
           Hence,  f HxL-1 = 1 - 2 x

(b)    f HxL = 1 + 2 x + 22 x2 + 23 x3 + º⋯

= H2 xL0 + H2 xL1 + H2 xL2 + H2 xL3 + º⋯

= 1
1-2 x 

The last step follows from the formula for the sum of a geometric series.

9. (a)  Hx4 - 2 x3 + x2L-1 = Hx2 Hx2 - 2 x + 1LL-1

= x-2H1 - 2 x + x2L-1

= x-2

k=0

¶ Hk + 1L xk by Example 2 of 16.5

=
k=-2

¶ Hk + 2L xk

Supplementary Exercises—Chapter 16
1. (a) This ring is not commutative.

HA + BL2 = HA + BL ÿ HA + BL
= HA + BL ÿ A + HA + BL ÿ B
= A ÿ A + B ÿ A + A ÿ B + B ÿ B
= A2 + B ÿ A + A ÿ B + B2

    (b) Yes

3. (a) By Theorem 16.1.1 show:

(1) @D +D is a subgroup of the group @M2µ2HRL; +D. We leave this to the reader.

(2)   D is closed under multiplication.  To prove this, let K a 0
0 b O, K c 0

0 d O œ D.  Then,

K a 0
0 b O K c 0

0 d O = K a c 0
0 b d O œ D

since a c and b d are real numbers and the product is in the form of a typical matrix in D.

(b)  Since

K a 0
0 b O K c 0

0 d O = K a c 0
0 b d O = K c 0

0 d O K a 0
0 b O ,

       D is commutative.    The unity for D is K 1 0
0 1 O.

(c) The product of two nonzero matrices can be equal to zero.  For example,  K 1 0
0 0 O K 0 0

0 1 O = K 0 0
0 0 O.  Therefore, D has divisors of zero and

by Theorem 16.1.2 the cancellation law is not true in D.
5. (a) 24 = 16

(b)    The  product  cited  in  the  solution  to  3(c)  above  shows  that  M2µ2HRL  has  divisors  of  zero.   Therefore,  the  matrix  polynomial

Hx - IL Hx + IL may have solutions other then ± I.  If fact you can verify that K 1 1
0 1 O and K 1 0

1 1 O satisfy the given equation.

7.   Use T : A Ø R  defined by TKK a 0
0 0 O O = a

9. By substitution and the operation tables of Example 16.2.2,
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a2 + a + 1 = b + a + 1
= 1 + 1 = 0

Therefore, a is a root.  A similar calculation shows that b is a root.   Substitution of 0 and 1 for x shows that they are not root.

11. By Theorem 16.3.3, a œ Q  is a zero of f HxL  iff Hx - aL  is a factor of f HxL,  which also implies a  must be a factor of 9.   Hence, the only
possible rational roots are:  ±1,  ±3,  and ±9.  We can verify that Hx - 3L  is  a divisor of f HxL  or  that  x = 3 is a zero of f HxL.  Dividing f HxL  byHx - 3L  produces  qHxL = x3 - 3 x2 + x - 3,  which has  x = 3 as  a  rational  root.  Dividing q Hx)  by x - 3 produces  x2 + 1.  Hence,  the complete
factorization of f HxL in Q@xD is Hx - 3L2 Hx2 + 1L.
13.    gH0L = 0, gH1L = 1, 

gHaL = a3 + a2 + a = 1 + b + a = 1 + 1 = 0, and 

g HbL = b3  + b2 + b = 1 + a + b = 1 + 1 = 0. 

     Hence, 0, a, and b are zeros of g HxL and the gHxL = xHx - aL Hx - bL = xHx + aL Hx + bL. 
15. (a) Sum = H1, 0, 1L,  Product = H0, 1, 1, 1L

(b)  Sum = H1, 0, 0, 0L, Product = H0, 1, 1, 1, 0, 0, 1L
(c)  Sum = H1, 1, 1, 0, 0L, Product = H0, 0, 0, 0, 1, 1, 1, 0, 1L
(d)  Sum = 010,  Product = 11 011

16.  The encoding of a string of bits is based on polynomial division.  Given a four bit message, we make the bits coefficients of a sixth degree
polynomial,   b3 x3 + b4 x4 + b5 x5 + b6 x6   which  we  can  also  express  in  Z26   as  H0, 0, 0, b3, b4, b5, b6L,  we  divide  this  polynomial  by
pHxL = 1 + x + x3  and  add  the  remainder  to  the  “message  polynomial.   The  quotient  is  in  the  division  is  discarded.   Thus,  if  the  remainder,
which must be a polynomial of degree less than 2, is b0 + b1 x + b2 x2, the encoded message is the string of bits Hb0, b1, b2, b3, b4, b5, b6L.

(a) Encode the following elements of Z26as described above.

(a)   H0, 0, 0, 1, 1, 0, 1L
(b)  H0, 0, 0, 1, 1, 1, 1L
(c)   H0, 0, 0, 0, 0, 1, 0L

(b)  Prove that  the encoded message will  always represent  a  polynomial  with is  evenly divisible  by the polynomial  pHxL  that  is  used to
encode the message.

17.  If  the  message  polynomial  is  mHxL = b3 x3 + b4 x4 + b5 x5 + b6 x6 we  divide  by  pHxL = 1 + x + x3  and  get  a  quotient  and  remainder:
mHxL = pHxL qHxL + rHxL,  where  the  degree  of  rHxL  is  less  than  3.    We  transmit   tHxL = mHxL + rHxL = mHxL + HmHxL - pHxL qHxLL = pHxL qHxL
since mHxL + mHxL = 0.  Now assume that the error xk  is added and we receive pHxL qHxL + xk.   Since xk, 0 § k § 6, is not a multiple of pHxL, the
received polynomial is also not a multiple of pHxL.  The following Mathematica calculation verifies this last claim.

I9xÒ, PolynomialRemainderAxÒ, x3 + x + 1, x, Modulus Ø 2E= & êü Range@0, 6DM êê
Prepend@Ò, 8"Monomial", "Remainder"<D &

Monomial Remainder
1 1
x x
x2 x2

x3 x + 1
x4 x2 + x
x5 x2 + x + 1
x6 x2 + 1

19. (a) bHxL = x5 + x4 + 1 = gHxL Hx2 + x + 1L + 0 a = 111

(b)  bHxL = x5 + x3 + x2 + 1 = gHxL x2 + 1
error in the first bit of b
eHaL = 001 101
a = 001

Getting a from eHaL  involves doing this calculation:
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PolynomialQuotientAx5 + x3 + x2, x3 + x + 1, x, Modulus Ø 2E
x2

(c)  bHxL = x5 + x + 1 = gHxL Hx2 + 1L + x2
error in the third bit of b
eHaL = 111 001
a = 101

PolynomialQuotientAx5 + x2 + x + 1, x3 + x + 1, x, Modulus Ø 2E
x2 + 1

(d)  bHxL = x4 + x3 + x + 1 = gHxL Hx + 1L + x2 + x
error in the fifth bit of b
eHaL = 110 100 Hthe string representation of gHxLL
a = 100

21.  (a)  g HxL  is  irreducible  over  Z2  since  g H0L = gH1L = 1.  Hence,  g(x)  does  not  split   in  Z2.  Let  b  be  a  zero  of  g HxL,  so  that
Z2@bD = 8a + b b + c b2 a, b, c œ Z2<.  This is a field of 23 = 8 elements which, by Theorem 16.2.4, is isomorphic to GFH8L.
23. 1 êg HxL = f HxL of Example 16.5.2.

25. (a)  a0 = a1 = 1, a2 = 2, a3 = 3, a4 = 5, …., so 

f HxL = 1 + x + 2 x2 + 3 x3 + 5 x4 + º⋯ .

 (b)  a0 = a1 = 1, a2 = 0, a3 = 1, a4 = 1, a5 = 0, … .  

g HxL = 1 + x + 0 x2 + x3 + x4 + 0 x5 + x6 + x7 + º⋯

= H1 + xL + x3H1 + xL + x6H1 + xL + º⋯

= H1 + xL H1 + x3 + x6 + º⋯L
= H1+xL

I1-x3M
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