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Applied Discrete Structures

Preface - what a difference 21 years make!

This is Applied Discrete Structures, Part Il - Algebraic Structures, which contains an introduction to groups, monoids, rings, fields,vector
spaces, lattices, and boolean algebras. It corresponds with the content of Discrete Structures II at UMass Lowell, which is a required course
for students in Computer Science. It presumes background contained in Part I - Fundamentals, which is the content of Discrete Structures I
at UMass Lowell.

Twenty-one years after the publication of the 2" edition of Applied Discrete Structures for Computer Science, in 1989 the publishing and
computing landscape have both changed dramatically. We signed a contract for the second edition with Science Research Associates but by the
time the book was ready to print, SRA had been sold to MacMillan. Soon after, the rights had been passed on to Pearson Education, Inc. In
2010, the long-term future of printed textbooks is uncertain. In the meantime, textbook prices (both printed and e-books) have increased and a
growing open source textbook market movement has started. One of our objectives in revisiting this text is to make it available to our students
in an affordable format. In its original form, the text was peer-reviewed and was adopted for use at several universities throughout the country.
For this reason, we see Applied Discrete Structures as not only an inexpensive alternative, but a high quality alternative.

As indicated above the computing landscape is very different from the 1980's and accounts for the most significant changes in the text. One of
the most common programming languages of the 1980's, Pascal; and we used it to illustrate many of the concepts in the text. Although it isn't

totally dead, Pascal is far from the mainstream of computing in the 21% century. In 1989, Mathematica had been out for less than a year —
now a major force in scientific computing. The open source software movement also started in the 1980's and in 2005, the first version of
Sage, an open-source alternative to Mathematica was first released. In Applied Discrete Structures we have replaced "Pascal Notes" with
"Mathematica Notes" and "Sage Notes." Finally, 1989 was the year that World Wide Web was invented by Tim Berners-Lee. There wasn't a

single www in the 2" edition. In this version, we intend to make use of extensive web resources, including video demonstrations.

We would like to thank Tony Penta, Sitansu Mittra, and Dan Klain for using the preliminary versions of Applied Discrete Structures. The
corrections and input they provided was appreciated.

We repeat the preface to Applied Discrete Structures for Computer Science below. Plans for the instructor's guide, which is mentioned in the
preface are uncertain at this time.

Preface to Applied Discrete Structures for Computer Science, 2nd Ed.

We feel proud and fortunate that most authorities, including MAA and ACM, have settled on a discrete mathematics syllabus that is virtually
identical to the contents of the first edition of Applied Discrete Structures for Computer Science. For that reason, very few topical changes
needed to be made in this new edition, and the order of topics is almost unchanged. The main change is the addition of a large number of
exercises at all levels. We have "fine-tuned" the contents by expanding the preliminary coverage of sets and combinatorics, and we have added
a discussion of binary integer representation. We have also added an introduction including several examples, to provide motivation for those
students who may find it reassuring to know that mathematics has "real" applications. "Appendix B —Introduction to Algorithms," has also
been added to make the text more self-contained.

How This Book Will Help Students

In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and
move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable
text, and we have tried to anticipate the questions that go unasked.

The wide range of examples in the text are meant to augment the "favorite examples" that most instructors have for teaching the topics in
discrete mathematics.

To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include
detailed answers whenever warranted and complete proofs, not just terse outlines of proofs.

Our use of standard terminology and notation makes Applied Discrete Structures for Computer Science a valuable reference book for future
courses. Although many advanced books have a short review of elementary topics, they cannot be complete.

How This Book Will Help Instructors

The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.

Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require
an understanding of the topics and how they are interrelated, not just a familiarity with the key words.

An Instructor's Guide is available to any instructor who uses the text. It includes:
(a) Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid;
(b) Suggested coverage times;

(c) Detailed solutions to most even-numbered exercises;
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(d) Sample quizzes, exams, and final exams.

How This Book Will Help the Chairperson/Coordinator

The text covers the standard topics that all instructors must be aware of; therefore it is safe to adopt Applied Discrete Structures for Computer
Science before an instructor has been selected.

The breadth of topics covered allows for flexibility that may be needed due to last-minute curriculum changes.

Since discrete mathematics is such a new course, faculty are often forced to teach the course without being completely familiar with it. An
Instructor's Guide is an important feature for the new instructor.

What a Difference Five Years Makes!

In the last five years, much has taken place in regards to discrete mathematics. A review of these events is in order to see how they have
affected the Second Edition of Applied Discrete Structures for Computer Science.

(1) Scores of discrete mathematics texts have been published. Most texts in discrete mathematics can be classified as one-semester or two-
semester texts. The two-semester texts, such as Applied Discrete Structures for Computer Science, differ in that the logical prerequisites for a
more thorough study of discrete mathematics are developed.

(2) Discrete mathematics has become more than just a computer science support course. Mathematics majors are being required to take it, often
before calculus. Rather than reducing the significance of calculus, this recognizes that the material a student sees in a discrete mathematics/struc-
tures course strengthens his or her understanding of the theoretical aspects of calculus. This is particularly important for today's students, since
many high school courses in geometry stress mechanics as opposed to proofs. The typical college freshman is skill-oriented and does not have a
high level of mathematical maturity. Discrete mathematics is also more typical of the higher-level courses that a mathematics major is likely to
take.

(3) Authorities such as MAA, ACM, and A. Ralson have all refined their ideas of what a discrete mathematics course should be. Instead of the
chaos that characterized the early '80s, we now have some agreement, namely that discrete mathematics should be a course that develops
mathematical maturity.

(4) Computer science enrollments have leveled off and in some cases have declined. Some attribute this to the lay-offs that have taken place in
the computer industry; but the amount of higher mathematics that is needed to advance in many areas of computer science has also discouraged
many. A year of discrete mathematics is an important first step in overcoming a deficiency in mathematics.

(5) The Educational Testing Service introduced its Advanced Placement Exam in Computer Science. The suggested preparation for this exam
includes many discrete mathematics topics, such as trees, graphs, and recursion. This continues the trend toward offering discrete mathematics
earlier in the overall curriculum.

Acknowledgments

The authors wish to thank our colleagues and students for their comments and assistance in writing and revising this text. Among those who
have left their mark on this edition are Susan Assmann, Shim Berkovitz, Tony Penta, Kevin Ryan, and Richard Winslow.

We would also like to thank Jean Hutchings, Kathy Sullivan, and Michele Walsh for work that they did in typing this edition, and our depart-
ment secretaries, Mrs. Lyn Misserville and Mrs. Danielle White, whose cooperation in numerous ways has been greatly appreciated.

We are grateful for the response to the first edition from the faculty and students of over seventy-five colleges and universities. We know that
our second edition will be a better learning and teaching tool as a result of their useful comments and suggestions. Our special thanks to the
following reviewers: David Buchthal, University of Akron; Ronald L. Davis, Millersville University; John W Kennedy, Pace University; Betty
Mayfield, Hood College; Nancy Olmsted, Worcester State College; and Pradip Shrimani, Southern Illinois University. Finally, it has been a
pleasure to work with Nancy Osman, our acquisitions editor, David Morrow, our development editor, and the entire staff at SRA.

AW.D.
KML.
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chapter 11

ALGEBRAIC SYSTEMS

GOALS

The primary goal of this chapter is to make the reader aware of what an algebraic system is and how algebraic systems can be studied at
different levels of abstraction. After describing the concrete, axiomatic, and universal levels, we will introduce one of the most important
algebraic systems at the axiomatic level, the group. In this chapter, group theory will be a vehicle for introducing the universal concepts of
isomorphism, direct product, subsystem, and generating set. These concepts can be applied to all algebraic systems. The simplicity of group
theory will help the reader obtain a good intuitive understanding of these concepts. In Chapter 15, we will introduce some additional concepts
and applications of group theory. We will close the chapter with a discussion of how some computer hardware and software systems use the
concept of an algebraic system.
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Chapter 11 - Algebraic Systems

11.1 Operations

One of the first mathematical skills that we all learn is how to add a pair of positive integers. A young child soon recognizes that something is
wrong if a sum has two values, particularly if his or her sum is different from the teacher's. In addition, it is unlikely that a child would consider
assigning a non-positive value to the sum of two positive integers. In other words, at an early age we probably know that the sum of two
positive integers is unique and belongs to the set of positive integers. This is what characterizes all binary operations on a set.

Definition: Binary Operation. Let S be a nonempty set. A binary operation on S is a rule that assigns to each ordered pair of elements of
S a unique element of S. In other words, a binary operation is a function from S x S into S.

Example 11.1.1. Union and intersection are both binary operations on the power set of any universe. Addition and multiplication are
binary operators on the natural numbers. Addition and multiplication are binary operations on the set of 2 by 2 real matrices, M, (R).
Division is a binary operation on some sets of numbers, such as the positive reals. But on the integers (1/2 ¢ Z) and even on the real numbers
(1/0 is not defined), division is not a binary operation.

Notes:

(a) We stress that the image of each ordered pair must be in S. This requirement disqualifies subtraction on the natural numbers from
consideration as a binary operation, since 1 — 2 is not a natural number. Subtraction is a binary operation on the integers.

(b) On Notation. Despite the fact that a binary operation is a function, symbols, not letters, are used to name them. The most commonly used
symbol for a binary operation is an asterisk, *. We will also use a diamond, ¢, when a second symbol is needed.

(c) If * is a binary operation on S and a, b € S, there are three common ways of denoting the image of the pair (a, b). They are:

xab axb ab *
Prefix Form Infix Form Postfix FOrm

We are all familiar with infix form. For example, 2 + 3 is how everyone is taught to write the sum of 2 and 3. But notice how 2 + 3 was just
described in the previous sentence! The word sum preceded 2 and 3. Orally, prefix form is quite natural to us. The prefix and postfix forms
are superior to infix form in some respects. In Chapter 10, we saw that algebraic expressions with more than one operation didn't need
parentheses if they were in prefix or postfix form. However, due to our familiarity with infix form, we will use it throughout most of the
remainder of this book.

Some operations, such as negation of numbers and complementation of sets, are not binary, but unary operators.

Definition: Unary Operation. Let S be a nonempty set. A unary operator on S is a rule that assigns to each element of S a unique
element of S. In other words, a unary operator is a function from S into S.

COMMON PROPERTIES OF OPERATIONS

Whenever an operation on a set is encountered, there are several properties that should immediately come to mind. To effectively make use of
an operation, you should know which of these properties it has. By now, you should be familiar with most of these properties. We will list the
most common ones here to refresh your memory and define them for the first time in a general setting. Let S be any set and * a binary operation
onS.

Properties that apply to a single binary operation:

Let * be a binary operation on a set S
* s commutative ifa +b = b xa foralla, b € S.
* is associative if (a *b) xc = a (b =) foralla, b, ¢ € §S.
* has an identity if there exists an element, e, in S suchthata +e = e xa = aforalla €S.
* has the inverse property if for each a € S, there exists b € S such thata+b = b+a = e.
We call b an inverse of a.
* isidempotent if a * a = a for all a € S. Properties that apply to two binary operations:
Let ¢ be a second binary operation on S.
o is left distributive over * ifa o (b #¢) = (a o b) % (a o c)foralla,b,c €S.
o is right distributive over * if (b * ¢)oa = (boa) = (c ¢ a) foralla,b,c € S.
o is distributive over * if o is both left and right distributive over *.
Let — be a unary operation.
A unary operation — on S has the involution property if —(—a) = aforalla € S.
Finally, a property of sets, as they relate to operations.

If T is a subset of S, we say that T is closed under * if a, b € T implies that a = b € T. In other words, by operating on elements of
T with *, you can't obtain new elements that are outside of T.
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Chapter 11 - Algebraic Systems

Example 11.1.2.
(a) The odd integers are closed under multiplication, but not under addition.

(b) Let p be a proposition over U and let A be the set of propositions over U that imply p. That is; g € A if ¢ = p. Then A is closed under
both conjunction and disjunction.

(c) The set positive integers that are multiples of 5 is closed under both addition and multiplication.

Note: It is important to realize that the properties listed above depend on both the set and the operation(s).

OPERATION TABLES

If the set on which an operation is defined is small, a table is often a good way of describing the operation. For example, we might want to
define @ on {0, 1, 2} by

a+b ifa+b<3
a+b-3 ifa+b=3

The table for @ is

a®b={

The top row and left column are the column and row headings, respectively. To determine a @ b, find the entry in Row a and Column b. The
following operation table serves to define * on {i, j, k}.

Note that; jxk = j, yet k x j = k. Thus, * is not commutative. Commutivity is easy to identify in a table: the table must be symmetric with
respect to the diagonal going from the top left to lower right.

EXERCISES FOR SECTION 11.1
A Exercises

1. Determine the properties that the following operations have on the positive integers.
(a) addition
(b) multiplication
(c) M defined by a M b = larger of a and b
(d) mdefined by amb = smaller of a and b
(e) @ definedbya @b = a°
2. Which pairs of operations in Exercise 1 are distributive over one another?

3. Let * be an operation on a set S and A, B C S. Prove that if A and B are both closed under *, then A () B is also closed under *,but A |J B
need not be.

4. How can you pick out the identity of an operation from its table?

5. Definea*bby | a — b |, the absolute value of a - b. Which properties does * have on the set of natural numbers, N?
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Chapter 11 - Algebraic Systems

11.2 Algebraic Systems

An algebraic system is a mathematical system consisting of a set called the domain and one or more operations on the domain. If V is the
domain and #;, %, ..., %, are the operations, [V;=;, %, ..., x,] denotes the mathematical system. If the context is clear, this notation is
abbreviated to V.

Example 11.2.1.

(a) Let B* be the set of all finite strings of 0's and 1's including the null (or empty) string, A. An algebraic system is obtained by adding the
operation of concatenation. The concatenation of two strings is simply the linking of the two strings together in the order indicated. The
concatenation of strings a with b is denoted a <> b. For example, "01101" <> "101" ="01101101" and A <> "100" = "100". Note that
concatenation is an associative operation and that A is the identity for concatenation.

Note on Notation: There isn't a standard symbol for concatenation. We have chosen <> to be consistant with the notation used in
Mathematica for the StringJdoin function, which does concatenation. Many programming languages use the plus sign for concatenation,
but others use & or Il

(b) Let M be any nonempty set and let * be any operation on M that is associative and has in identity in M. Our second example might seem
strange, but we include it to illustrate a point. The algebraic system [B*; <>] is a special case of [M;«]. Most of us are much more comfort-
able with B* than with M. No doubt, the reason is that the elements in B* are more concrete. We know what they look like and exactly how
they are combined. The description of M is so vague that we don't even know what the elements are, much less how they are combined. Why
would anyone want to study M? The reason is related to this question: What theorems are of interest in an algebraic system? Answering this
question is one of our main objectives in this chapter. Certain properties of algebraic systems are called algebraic properties, and any
theorem that says something about the algebraic properties of a system would be of interest. The ability to identify what is algebraic and what
isn't is one of the skills that you should learn from this chapter.

Now, back to the question of why we study M. Our answer is to illustrate the usefulness of M with a theorem about M.
Theorem 11.2.1. If a, b are elements of M and a « b = b * a, then (a # b) * (a * b) = (a * a) » (b * b).
Proof:

(axb)*(axb)=ax(b=(axb)) Why ?

ax (bxa)xb) Why?

ax((axb)xb) Why?

ax(ax(bxb)) Why?

(axa)«(bxb) Why?

The power of this theorem is that it can be applied to any algebraic system that M describes. Since B* is one such system, we can apply
Theorem 11.2.1 to any two strings that commute—for example, 01 and 0101. Although a special case of this theorem could have been proven
for B*, it would not have been any easier to prove, and it would not have given us any insight into other special cases of M .

Example 11.2.2. Consider the set of 2 x2 real matrices, Mx>(R), with the operation of matrix multiplication. In this context, Theorem 11.2.1

21
can be interpreted as saying that if AB = BA, then (AB)> = A?B?. One pair of matrices that this theorem applies to is ( 1 2 ) and
3 4
(25
LEVELS OF ABSTRACTION

One of the fundamental tools in mathematics is abstraction. There are three levels of abstraction that we will identify for algebraic systems:
concrete, axiomatic, and universal.

Concrete Level. Almost all of the mathematics that you have done in the past was at the concrete level. As a rule, if you can give examples of a
few typical elements of the domain and describe how the operations act on them, you are describing a concrete algebraic system. Two examples
of concrete systems are B* and M»x>(R). A few others are:

(a) The integers with addition. Of course, addition isn't the only standard operation that we could include. Technically, if we were to add
multiplication, we would have a different system.

(b) The subsets of the natural numbers, with union, intersection, and complementation.
(¢) The complex numbers with addition and multiplication.

Axiomatic Level. The next level of abstraction is the axiomatic level. At this level, the elements of the domain are not specified, but certain
axioms are stated about the number of operations and their properties. The system that we called M is an axiomatic system. Some combinations
of axioms are so common that a name is given to any algebraic system to which they apply. Any system with the properties of M is called a
monoid. The study of M would be called monoid theory. The assumptions that we made about M, associativity and the existence of an identity,
are called the monoid axioms. One of your few brushes with the axiomatic level may have been in your elementary algebra course. Many
algebra texts identify the properties of the real numbers with addition and multiplication as the field axioms. As we will see in Chapter 16,
"Rings and Fields," the real numbers share these axioms with other concrete systems, all of which are called fields.

Universal Level. The final level of abstraction is the universal level. There are certain concepts, called universal algebra concepts, that can be
applied to the study of all algebraic systems. Although a purely universal approach to algebra would be much too abstract for our purposes,
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Chapter 11 - Algebraic Systems

defining concepts at this level should make it easier to organize the various algebraic theories in your own mind. In this chapter, we will
consider the concepts of isomorphism, subsystem, and direct product.

GROUPS
To illustrate the axiomatic level and the universal concepts, we will consider yet another kind of axiomatic system, the group. In Chapter 5 we
noted that the simplest equation in matrix algebra that we are often called upon to solve is AX = B, where A and B are known square matrices
and X is an unknown matrix. To solve this equation, we need the associative, identity, and inverse laws. We call the systems that have these
properties groups.

Definition: Group. A group consists of a nonempty set G and an operation = on G satisfying the properties

(a) = is associative on G:  (a#b)+c =ax(bxc) foralla, b, c €G.
(b) There exists an identity element, e € G such thataxe =e+a =a foralla € G.
(c) For all a € G, there exists an inverse, there exist b € G such that a b = bxa = e.

A group is usually denoted by its set's name, G, or occasionally by [G; = ] to emphasize the operation. At the concrete level, most sets have a
standard operation associated with them that will form a group. As we will see below, the integers with addition is a group. Therefore, in group
theory Z always stands for [Z; +].

Generic Symbols. At the axiomatic and universal levels, there are often symbols that have a special meaning attached to them. In group theory,
the letter e is used to denote the identity element of whatever group is being discussed. A little later, we will prove that the inverse of a group
element, a, is unique and it is inverse is usually denoted a~' and is read "a inverse." When a concrete group is discussed, these symbols are
dropped in favor of concrete symbols. These concrete symbols may or may not be similar to the generic symbols. For example, the identity
element of the group of integers is 0, and the inverse of n is denoted by —n, the additive inverse of n.

The asterisk could also be considered a generic symbol since it is used to denote operations on the axiomatic level.
Example 11.2.3.

(a) The integers with addition is a group. We know that addition is associative. Zero is the identity for addition: 0 + n = n + 0 = n for all
integers n. The additive inverse of any integer is obtained by negating it. Thus the inverse of n is —n.

(b) The integers with multiplication is not a group. Although multiplication is associative and 1 is the identity for multiplication, not all
integers have a multiplicative inverse in Z. For example, the multiplicative inverse of 10 is %, but % is not an integer.

(¢) The power set of any set U with the operation of symmetric difference, @, is a group. If A and B are sets, then
A®B = (AU B) - (A B). We will leave it to the reader to prove that & is associative over P(U). The identity of the group is the empty set:

A® (@ = A.Every set is its own inverse since A & A = (). Note that P(U) is not a group with union or intersection.

Definition: Abelian Group. A group is abelian if its operation is commutative.

Most of the groups that we will discuss in this book will be abelian. The term abelian is used to honor the Norwegian mathematician N. Abel
(1802-29), who helped develop group theory.

Norwegian Stamp honoring Abel

EXERCISES FOR SECTION 11.2
A Exercises

1. Discuss the analogy between the terms generic and concrete for algebraic systems and the terms generic and trade for prescription drugs.

2. Discuss the connection between groups and monoids. Is every monoid a group? Is every group a monoid?
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Chapter 11 - Algebraic Systems

3. Which of the following are groups?
(a) B* with concatenation (Example 11.2.1a).
(b) My3(R) with matrix addition.
(¢) Mjy3(R) with matrix multiplication.
(d) The positive real numbers, R*, with multiplication.
(e) The nonzero real numbers, R*, with multiplication.
(f) {1, —1} with multiplication.
(g) The positive integers with the operation M defined by a M b = larger of a and b.
4. Prove that, @, defined by A @ B = (A U B) — (A () B) is an associative operation on P(U).

5. The following problem supplies an example of a non-abelian group. A rook matrix is a matrix that has only 0's and 1's as entries such that
each row has exactly one 1 and each column has exactly one 1. The term rook matrix is derived from the fact that each rook matrix represents
the placement of n rooks on an nxn chessboard such that none of the rooks can attack one another. A rook in chess can move only vertically or
horizontally, but not diagonally. Let R, be the set of n X n rook matrices. There are six 3 X3 rook matrices:

100 010 00 1
1:[0 1 0] RI:[O 1] R2:[1 0 0]

001 1 0 0 0

100 00 1 010
001]@:[0 0]F3=[1 0]
010 100 00 1

(a) List the 22 rook matrices. They form a group, R,, under matrix multiplication. Write out the multiplication table. Is the group abelian?

- o O O
O = =

F1=

(b) Write out the multiplication table for R3 . This is another group. Is it abelian?

(c¢) How many 4 x4 rook matrices are there? How many n X n rook matrices are there?

6. For each of the following sets, identify the standard operation that results in a group. What is the identity of each group?
(a) The set of all 2 x 2 matrices with real entries and nonzero determinants.

(b) The set of 2 X 3 matrices with rational entries.

B Exercises
7.LetV = {e, a, b, c}. Let x be defined (partially) by x + x = e for all x € V. Write a complete table for = so that [V; x ] is a group.
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Chapter 11 - Algebraic Systems

11.3 Some General Properties of Groups

In this section, we will present some of the most basic theorems of group theory. Keep in mind that each of these theorems tells us something
about every group. We will illustrate this point at the close of the section.

Theorem 11.3.1. The identity of a group is unique.

One difficulty that students often encounter is how to get started in proving a theorem like this. The difficulty is certainly not in the theorem's
complexity. Before actually starting the proof, we rephrase the theorem so that the implication it states is clear.

Theorem 11.3.1 (Rephrased). If G = [G; #] is a group and e is an identity of G, then no other element of G is an identity of G.

Proof (Indirect): Suppose that f € G, f # e, and f is an identity of G. We will show that f = e, a contradiction, which completes the
proof:

f = f = e Since e is an identity.
=e. Since fis an identity. H
Theorem 11.3.2. The inverse of any element of a group is unique.

The same problem is encountered here as in the previous theorem. We will leave it to the reader to rephrase this theorem. The proof is also left
to the reader to write out in detail. Here is a hint: If b and ¢ are both inverses of a, then you can prove that b = c. If you have difficulty with
this proof, note that we have already proven it in a concrete setting in Chapter 5.

The significance of Theorem 11.3.2 is that we can refer to the inverse of an element without ambiguity. The notation for the inverse of a is
usually a~!. (note the exception below).
Example 11.3.1.

(a) Inany group, e”! is the inverse of the identity e, which always is e.
(b) (a")~! is the inverse of a™! , which is always equal to a (see Theorem 11.3.3 below).
(c) (xxyxz)~!is the inverse of x * y * z.

(d) In a concrete group with an operation that is based on addition, the inverse of a is usually written —a. For example, the inverse of k — 3
in the group [Z; +] is written —(k — 3) = 3 — k. In the group of 2 x 2 matrices over the real numbers under matrix addition, the inverse of

4 1. it 4 1 hich | -4 -1
(1 -3 )1swr1 en—(1 _3 ),w ic equas(_1 3 )

Theorem 11.3.3. If a is an element of group G, then (a”)_l =a.
Theorem 11.3.3 (Rephrased). If a has inverse b and b has inverse ¢, then a = c.
Proof:
a = a = (bxc) because cis the inverse of b
= (a x b) x ¢ why?
=excC why?

=c. by the identity property of e. u

Theorem 11.34. If a and b are elements of group G, then (a +b)™" = b~ xa™’

Note: This theorem simply gives you a formula for the inverse of a * b. This formula should be familiar. In Chapter 5 we saw that if A
and B are invertible matrices, then (AB)™! = B~1 A1 .

Proof: Letx = b~'+a~!. We will prove that x inverts a * b. Since we know that the inverse is unique, we will have prove the theorem.

(@xb)xx = (a*b)= b xa")
= ax (bx(b ' xal))

ax((bxbVxa™l)

ax(exa’l)

=axa’!

=e
Similarly, x * (a * b) = e; therefore, (axb)™' =x= b"'sa"' m
Theorem 11.3.5. Cancellation Laws. If a, b, and c are elements of group G, botha *b =a* cand b * a = ¢ * a imply that b = c.

Proof: Since @ * b = a * ¢, we can operate on both a * b and a * c on the left with a™! :
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alx@+b)=a «(axc)
Applying the associative property to both sides we get
(@' xa)«b=(@@@"! xa)«c
or
exb=exc
and finally
b =c.

This completes the proof of the left cancellation law. The right law can be proven in exactly the same way. B

Theorem 11.3.6. Linear Equations in a Group. If G is a group and a, b, € G, the equation a +x = b has a unique solution,

x = a! + b. In addition, the equation x * a = b has a unique solution, x = b = a™ .

Proof: (fora = x = b):

axx = b
=exb
=(axa)xb
=ax(a!«b)

By the cancellation law, we can conclude that x = a 1y b,
If ¢ and d are two solutions of the equation a * x = b,thena x ¢ = b = a = d and, by the cancellation law, ¢ = d. This verifies that a “Tyb
is the only solution of a + x = b. W
Note: Our proof of Theorem 11.3.6 was analogous to solving 4 x = 9 in the following way:
1 1
4x=9=(4-7)9=4(39)
Therefore, by cancelling 4,

1 9
l9=2,
4 4

X =
Exponentiation in a Group
If a is an element of a group G, then we establish the notation that
2

axaxa :a3

etc.

axa=a

In addition, we allow negative exponent and define, for example, a?l= (az)’l

Although this should be clear, proving exponentiation properties requires a more precise recursive definition:

Definition: Exponentiation in a Group. For n > 0, define a" recursively by a® = e and if n > 0, @' = "' =a. Also, if n > 1,
a™ = (an)—l .

Example 11.3.2.

(a) In the group of positive real numbers with multiplication,

53 =525 =(5'.5)-5=((5°-5)-5)-5 = ((1-5)-5)-5= 5 -5-5 = 125.
and

-3 _ -1 L
57 = (125" = s

(b) In a group with addition, we use a different form of notation, reflecting the fact that in addition repeated terms are multiples, not powers.
For example, in [Z; +], a + a is written as 2a, @ + a + a is written as 3a, etc. The inverse of a multiple of a such as
—(a+a+a+ a+ a) = —(5a)is written as (-5) a.
Although we define, for example, @’ = a*
precisely that.

Lemma. Let G be a group. Ifb € G and n =0, then b"*! =bx ", and hence b+ b* = b" +b.

Proof (by induction): If n=0,

* a, we need to be able to extract the single factor on the left. The following lemma justifies doing
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b'= b"«b by the definition of exponentiation

=exb  basis for exponentiation

= b x e identity property

= b » b° basis for exponentiation

Now assume the formula of the lemma is true for some n = 0,
D+ = pmDy b by the definition of exponentiation

= (bxb")«b by the induction hypothesis
= bx(b"xb) associativity
= bx(b""')  definition of exponentiation m

Based on the definitions for exponentiation above, there are several properties that can be proven. They are all identical to the exponentiation
properties from elementary algebra.

Theorem 11.3.7. Properties of Exponentiation. If a is an element of a group G, and n and m are integers,

(a) a™ = (a”)n and hence (a")™! = (a’])n

(b) an+n1 = an >ka}"‘l
(c) (a)‘l )m - an m

We will leave the proofs of these properties to the interested reader. All three parts can be done by induction. For example the proof of (b)
would start by defining the proposition p(m) ,m >0,to be @™ = a"«+a" foralln. The basis is p(0) : @ = a"+a".
Our final theorem is the only one that contains a hypothesis about the group in question. The theorem only applies to finite groups.

Theorem 11.3.8. If G is a finite group, |G| = n, and a is an element of G, then there exists a positive integer m such that a" = e and
m=<n.

Proof: Consider the list a, a2, ..., a"*' . Since there are n + 1 elements of G in this list, there must be some duplication. Suppose that
a’ =al,withp<qg.Letm = g — p. Then

a"=a?"? = alxaP = a9+ (@) = a? x(a9) ' = e
Furthermore, since l = p<g=<n+1, m=qg-p=<n. N

Consider the concrete group [Z; +]. All of the theorems that we have stated in this section except for the last one say something about Z.
Among the facts that we conclude from the theorems about Z are:

Since the inverse of 5 is -5, the inverse of -5 is 5.

The inverse of =6 + 71 is —(71) + —(-6) = =71 + 6.
The solution of 12 + x = 22isx = —12 + 22.
—4(6) + 2(6) = (-4 + 2)(6) = -2(6) = —(2) (6)).
7(4@3) = (7-4(3) = 28(3) (twenty-eight 3s).

EXERCISES FOR SECTION 11.3

A Exercises
1. Let[G; =] be a group and a be an element of G. Define f: G - Gby f(x) = a = x.

(a) Prove that fis a bijection.
(b) On the basis of part a, describe a set of bijections on the set of integers.
2. Rephrase Theorem 11.3.2 and write out a clear proof.

3. Prove by induction on n that if a;, ay, ..., a, are elements of a group G, n = 2, then

(a;=ays-say) ' = a, P xoway  wa 7
Interpret this result in terms of [Z; +] and [R;«].
4. True or false? If a, b, c are elements of a group G,and a = b = ¢ = a, then b = c. Explain your answer.

5. Prove Theorem 11.3.7.
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6. Each of the following facts can be derived by identifying a certain group and then applying one of the theorems of this section to it. For
each fact, list the group and the theorem that are used.

(a) (é) 5 is the only solution of 3 x = 5.
(b) —(-(-18)) = -18.
(c) If A, B, C are 3 x3 matrices over the real numbers, withA + B = A + C,thenB = C.

(d) There is only one subset of the natural numbers for which K @ A = Aforevery A C N.
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11.4 Greatest Common Divisors and Z,, the Integers Modulo n

In this section introduce the greatest common divisor operation and will introduce an important family of concrete groups.

Greatest Common Divisors

We start with a theorem about integer division that is intuitively clear. We leave the proof as an optional exercise.

The Division Property for Integers. If m, n € Z, n >0, then there exist two unique integers, q (quotient) and r (remainder), such that
m=nq +rand0 <r < n.

Note: The division property says that if m is divided by n, you will obtain a quotient and a remainder, where the remainder is less than n.

This is a fact that most elementary school students learn when they are introduced to long division. In doing the division problem 1986 + 97,
1986

you obtain a quotient of 20 and a remainder of 46. This result could either be written o = 20 + g or 1986 = 97-20 + 46. The later
form is how the division property is normally expressed.
Ifr=0,i.e., a = bg, then all of the following say the same thing

b divides a

a is a multiple of b

b is a factor of a

b is a divisor of a

Notation ~ We use the notation b | a if b divides a. Forexample 2|18 and 9|18 ,but 4+ 18

Caution: Don’t confuse the “divides” symbol with the “divided by” symbol. The former is vertical while the later is slanted. Notice that the statement 2|18 is
related to the fact that 18 /2 is a whole number.

Definition: Greatest Common Divisor. Given two integers, a and b, not both zero. The greatest common divisor of a and b is the
integer g such that g|a, g|b, and

claandc|b=>c|g

A little simpler way to think of gcd(a, b) is as the largest positive integer that is a divisor of both a and b.

For small numbers, a simple way to determine the greatest common divisior is to use factorization. For example if we want the greatest

common divisor of 660 and 350, you can factor the two integers: 660 = 22x3 x5 x 11 and 350 = 2x5>x7.  Single factors of 2 and 5 are
the only ones that appear in both factorizations, so the greatest common divisoris 2 x5 = 10.

Relatively Prime Pairs. Some pairs of integers have no common divisors other than 1. Such pairs are called relatively prime pairs. For

example, 128 =27 and 135 =33 5 are relatively prime. Notice that neither 128 nor 135 are primes. In general, a and b need not be prime in
order to be relatively prime. However, if you start with a prime, like 23, for example, it will be relatively prime to everything but its multiples.
This theorem, which we prove later generalizes this observation:

Theorem. If p is a prime and a is any integer such that p x a then gcd(a, p) = 1

The Euclidean Algorithm

As early as Euclid’s time it was known that factorization wasn’t the best way to compute greatest common divisors.

The Euclidean Algorithm is based on the following properties of the greatest common divisor

ged(a,0)=a fora+0
ged(a, b)= ged(b, r) itb+0 anda = bg + r

To compute ged(a, b), we divide b into a and get a remainder r such that 0 < r <|b|. By the property above, gcd(a, b) = ged(b, r). We
repeat the process until we get zero for a remainder. The last nonzero number that is the second entry in our pairs is the greatest common
divisior. This is inevitable because the second number in each pair is smaller than the previous one.

Here is the computation to verify that gcd(99, 53) = 1. At each line, the value of a is divided by the value of b. The quotient is placed on the
next line along with the new value of a, which is the previous b, and the remainder, which is the new value of b.

q a b
- 99 53
1 53 46
1 46 7
6 7 4
1 4 3
1 3 1
3 1 0

If you were allowed to pick two numbers less than 100, which would you pick in order to force Euclid to work hardest? Here's a hint
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q a b
- 34 21
1 21 13
1 13 8
1 8 5
1 5 3
1 3 2
1 2 1
2 1 0

For fixed values of a and b, consider integers of the form a x + by where x and y can be any two integers. For example if a = 36 and b = 27,
some of these results are tabulated below with x values along the left column and the y values on top.

Notice any patterns? What is the smallest positive value the you see in this table? How is it connected to 36 and 27

-6 -378 [ -351 | -324 | -297 | -270 | -243 | -216 | -189 | -162 | -135 | -108 | -81 | -54

-5 -342 | -315 | -288 | -261 | -234 | -207 | -180 | -153 | -126 | -99 | -72 | -45 | -18

-306 [ -279 | =252 [ -225 | -198 | -171 | -144 [ -117 | -90 | -63 | -36 -9 18

-270 | -243 | -216 | -189 | -162 | -135 | -108 | -81 | -54 | -27 - 27 54

-2 -234 | -207 | -180 [ -153 | -126 | -99 | -72 | -45 | -18 9 36 63 90

1 W -198|-171[-144[-117[ 90 [ 63 [ 36 | -0 | 18 | 45 | 72 | 99 | 126
162 | -135 | -108 | -81 | -54 | —27 - 27 | 54 | 81 [ 108 | 135 | 162
126 | -99 | -72 [ 45 [ -18 | o | 36 | 63 | 90 | 117 | 144 | 171 | 198

2 -90 [ -63 | -36 -9 18 45 72 99 126 | 153 180 | 207 | 234
3 -54 | -27 -I 27 54 81 108 | 135 162 189 | 216 | 243 | 270
4 -18 9 36 63 90 117 | 144 171 198 | 225 252 | 279 | 306
5 18 45 72 99 126 153 180 [ 207 | 234 | 261 | 288 | 315 342

54 81 108 135 162 189 216 243 270 297 324 351 378

Theorem 11.4.1. If a and b are positive integers, the smallest positive value of ax + by is the greatest common divisor of a and b,

ged(a, b).
Proof: If ¢ = ged(a, b),theng|a and g|b = g|(ax + by) forany x and y, so ax + by can't be less than g. To show that g is exactly the
least positive value, we show that g can be attained by extending the Euclidean Algorithm. Performing the extended algorithm involves
building a table of numbers. There are many variations on the way that this table arranged, so if your book has this algorithm it may look
slightly different.
The table for ged(152,53) is below. In the "r" column, you will find 152 and 53, and then the successive remainders from division. So each
number in "r" after the first two is the remainder after dividing the number immediately above it into the next number up. To the left of each
remainder is the quotient from the division. So in this case the third row of the table tells us that 152 = 53 x 2 + 46. The last nonzero value in
r is the greatest common divisor.
The "s" and "t" columns are new. The values of s and t in each row are maintained so that
152s + 53t is equal to the number in the "r" column. Notice that

152 = 152 x 1+ 53 x0

53 =152x0 + 53 x 1

46 = 152 x 1 + 53(-2)

= 152 x 15 + 53 (-43)
0 = 152(-53) + 53 x 152
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q r s t

- 152 1 0

- 53 0 1

2 46 1 -2
1 7 -1 3

6 4 7 -20
1 3 -8 23
1 1 15 -43
3 0 -53 152

The next-to-last equation is what we're looking for in the end! The main problem is to identify how to determine these values after the first two
rows. The first two rows in these columns will always be the same.

Let's look at the general case of computing gcd(a,b). If the s and t values inrows i — 1 and i — 2 are correct, we have

asip+btis=ris

@ |

asi-1 +bti_y =ri
In addition, we know that
Na=ri1qi+tr = n=ra—r_4q;

If you substitute the expressions for r;_; and r;_, from (A) into this last equation and then collect the a and b terms separately you get

ri= alsi-2 = qisi-1) + btia — qiti1)
or

si=Si2— qisi1 and 4=ty — qiti
Look closely at the equations for r;, s;, and ;. Their forms are all the same. With a little bit of practice you should be able to compute s and t
values quickly.
Modular Arithmetic

If two numbers, a and b, share the same remainder after dividing by n. we say that they are congruent modulo n, denoted @ = b (mod n). For
example, 13 = 38 (mod 5) because 13 = 5-2 + 3 and 38=5- + 3.

Modular Arithmetic. If n is a positive integer, we define the operations of addition modulo n (+,) and multiplication modulo n ( x,) as
follows. Ifa, b € Z,

a +, b = theremainder after a + bis divided by n
a X, b = the remainder after a - b is divided by n.
Notes:

(a) The result of doing arithmetic modulo 7 is always an integer between 0 and n — 1, by the Division Property. This observation implies that
{0, 1, ..., n— 1} is closed under modulo n arithmetic.

(b) Itisalwaystruethata +, b = (a + b)(modn)and ax, b = (a - b) (modn). For example, 4 +75 =2 =9(mod7)and
4 %75 =6=20(mod7).

(¢) We will use the notation Z,, to denote the set {0, 1, 2, ..., n— 1}.

Properties of Modular Arithmetic on Z,

Addition modulo 7 is always commutative and associative; O is the identity for +, and every element of Z,, has an additive inverse.
Multiplication modulo 7 is always commutative and associative, and 1 is the identity for X,,.

Theorem 11.4.2. If a € Z,, a # 0, then the additive inverse of ais n — a.

Proof:a + (n — a) =n=0(modn) ,since n = n-1 + 0. Therefore, a+,(n—a)=0m

Note: The algebraic properties of +, and X, on Z, are identical to the properties of addition and multiplication on Z.
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The Group Z,. For each n = 1, [Z,; +,] is a group. Henceforth, we will use the abbreviated notation Z,, when referring to this group. Figure

11.4.1 contains the tables for Z, through Zs.

o1z
+ fo 2
il H ofo|1]2
ofo1
oflo 1120
1010
22|02
Qo1 |2]3]a]s
<fo|1]|2]3]|a ]
1 EE A ofo|1(2(3a]s
oflo|1|2]|3|4
oflo|1(2]3 1f1(23]a]5]0
1012|340
11230 20234502
223|402
22301 3f3falsfof1]2
3f3falof1]|2
3f3fof1]2 afla|sfo|1]2]3
4 4|10 |1 (2 (3
sfs|of1]|2(3]4

Figure 11.4.1
Addition tables for Z,,, 1<n<6.

Example 11.4.1.

(a) We are all somewhat familiar with Z, since the hours of the day are counted using this group, except for the fact that 12 is used in place
of 0. Military time uses the mod 24 system and does begin at 0. If someone started a four-hour trip at hour 21, the time at which she would
arrive is 21 +,4 4 = 1. If a satellite orbits the earth every four hours and starts its first orbit at hour 5, it would end its first orbit at time

5 +94 4 =9.Its tenth orbit would end at 5 +,4 7 X244 =9 hours on the clock

(b) Virtually all computers represent unsigned integers in binary form with a fixed number of digits. A very small computer might reserve
seven bits to store the value of an integer. There are only 27 different values that can be stored in seven bits. Since the smallest value is 0,

represented as 0000000, the maximum value will be 27 — 1 = 127, represented as 1111111. When a command is given to add two integer
values, and the two values have a sum of 128 or more, overflow occurs. For example, if we try to add 56 and 95, the sum is an eight-digit
binary integer 10010111. One common procedure is to retain the seven lowest-ordered digits. The result of adding 56 and 95 would be

0010111y = 23 = 56 + 95 (mod 128). Integer arithmetic with this computer would actually be modulo 128 arithmetic.
& Mathematica Note
In Mathematica you can get the ged of two numbers using the function GCD:

GCD[660, 350]

10

A related function, ExtendedGCD, provides the x and y values guaranteed in Theorem 11.4.2.

ExtendedGCD[1001, 231]

{77, {1, -4}}

Most computer languages have a "mod" function that computes the remainder when one integer is divided by another.

exception. To determine the remainder upon dividing 1986 by 97 we can evaluate
Mod[1986, 97]

46

A mod 6 addition function can be defined based on Mod with the following input:

Plus6[a_, b_] :=Mod[a+b, 6]

Mathematica is no

There is a free package called AbstractAlgebra that is available at https:/sites.google.com/site/eaamhl/eaam. It contains a function that
will generate the operation tables, also called Cayley Tables, such you see in Figure 11.4.1. First load the package, as instructed:

<< AbstractAlgebra Master"

We can form a the group Z¢ using the FormGroupoid function:
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G = FormGroupoid [Range [0, 5], Plus6]
Groupoid({0, 1, 2, 3, 4, 5}, —Operation—)
Then the function called CayleyTable generates the table for the group Zs:

CayleyTable[G, BodyColored -» False,
HeadingsColored -» False, ShowExtraCayleyInformation -» False]

TheGroup

Note: The rules BodyColored — False, HeadingsColored — False, ShowExtraCayleyInformation — False are included in the input
above for easier black and white readability. They would not be normally included when using CayleyTable.

It's actually even easier to generate these tables because the family of Z,,' s is part of the package. Here is the table for Zy:

CayleyTable[Z[9], BodyColored - False,
HeadingsColored » False, ShowExtraCayleyInformation -» False]

=N
7%4 Sage Note

In Sage, gcd is the greatest common divisor function. It can be used in two ways. For the ged of 2343 and 4319 we can evaluate the expres-
sion gcd(2343,4319). If we are working with a fixed modulus m that has a value established in your Sage session, the expression
m.gcd (k) to compute the ged of m and any integer value k.

Sage has some extremely powerful tool for working with groups. The integers modulo 7 are represented by the expression Integers(n) and
the addition and multiplications tables can be generated as follows.
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R = Integers(6)
print R.addition table('elements')
print R.multiplication table('elements')

U W~ O
U W~ O

*
o
pay
N
w
'S
(&)

U W~ O

Once we have assigned R a value of Integers(6), we can do calculations by wrapping R( ) around the integers O through 5. Here is a list
containing the mod 6 sum and product, respectively, of 5 and 4:

[R(5)+R(4), R(5)*R(4)]
[3, 2]

EXERCISES FOR SECTION 11.4
A Exercises

1. Determine the greatest common divisors of the following pairs of integers without using any computational assistance.
(@) 2°3%5 and 223 5%7
(b) 2x3x4x5x6x7 and 3 x5xTx9x11x13
(c) 19* and 19
(d) 12112 and 0
2. Find all possible values of the following, assuming that m is a positive integer.
(a) ged(m+ 1, m)
(b) ged(m+2, m)
(c) ged (m + 4, m)
3. Calculate:
(@ 7 +g3
(b) 7xg3
(c) 4xg4
(d) 10+,2
(e) 6Xg2 +g36X%Xg5
() 6x5(2 +35)
() 3 Xs53Xs53x53 = 3*mod5)
(h)y 2x,7
1) 2 %147

4. List the additive inverses of the following elements:
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(a) 4,6,9inZ
(b) 16,25,40in Z5,
5. In the group Z,, , what are:
(@) 3(4)?
(b) 36(4)?
(c) How could you efficiently compute m (4),m € Z?
6. Prove that {1, 2, 3,4} is a group under the operation Xs.
7. A student is asked to solve the following equations under the requirement that all arithmetic should be done in Z,. List all solutions.
(@ x*+1=0.
® x> +x+1=0.
8. Determine the solutions of the same equations as in Exercise 5 in Z5.

B Exercises

9. Prove the division property by induction on m.

10. Prove that congruence modulo 7 is an equivalence relation on the integers. Describe the set of equivalence classes that congruence modulo
n defines.
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11.5 Subsystems
The subsystem is a fundamental concept of algebra at the universal level.

Definition: Subsystem. If [V; #;, ..., %,] is an algebraic system of a certain kind and W is a subset of V, then W is a subsystem of V if
[W; =, ..., %] is an algebraic system of the same kind as V. The usual notation for "W is a subsystem of V"is W < V.
Since the definition of a subsystem is at the universal level, we can cite examples of the concept of subsystems at both the axiomatic and
concrete level.

Example 11.5.1
(a) (Axiomatic) If [G; =] is a group, and H is a subset of G, then H is a subgroup of G if [H; =] is a group.

(b) (Concrete) U = {—1, 1} is a subgroup of [R*;-]. Take the time now to write out the multiplication table of U and convince yourself that
[U;-] is a group.

(c) (Concrete) The even integers,2Z = {2k : kisaninteger} is a subgroup of [Z; +]. Convince yourself of this fact.

(d) (Concrete) The set of nonnegative integers is not a subgroup of [Z; +]. All of the group axioms are true for this subset except one: no
positive integer has a positive additive inverse. Therefore, the inverse property is not true. Note that every group axiom must be true for a
subset to be a subgroup.

(e) (Axiomatic) If M is a monoid and P is a subset of M, then P is a submonoid of M if P is a monoid.

(f) (Concrete) If B* is the set of strings of 0's and 1's of length zero or more with the operation of concatenation, then two examples of
submonoids of B* are: (i) the set of strings of even length, and (ii) the set of strings that contain no 0's. The set of strings of length less than 50
is not a submonoid because it isn't closed under concatenation. Why isn't the set of strings of length 50 or more a submonoid of B*?

For the remainder of this section, we will concentrate on the properties of subgroups. The first order of business is to establish a systematic way
of determining whether a subset of a group is a subgroup.

Theorem/Algorithm 11.5.1. To determine whether H, a subset of group |G; ], is a subgroup, it is sufficient to prove:
(a) H is closed under *; thatis,a, b € H =a b € H;

(b) H contains the identity element for =; and

(c¢) H contains the inverse of each of its elements; that is, a € H = a!leH.

Proof: Our proof consists of verifying that if the three properties above are true, then all the axioms of a group are true for [H ; %]. By Condi-
tion (a), * can be considered an operation on H. The associative, identity, and inverse properties are the axioms that are needed. The identity
and inverse properties are true by Conditions (b) and (c), respectively, leaving only the associative property. Since, [G; =] is a group,
ax*(bxc) = (ax*b)=xcforalla, b, c € G. Certainly, if this equation is true for all choices of three elements from G, it will be true for all
choices of three elements from H, since H is a subset of G. &

For every group with at least two elements, there are at least two subgroups: they are the whole group and {e}. Since these two are automatic,
they are not considered very interesting and are called the improper subgroups of the group; {e} is sometimes referred to as the trivial subgroup.
All other subgroups, if there are any, are called proper subgroups.

We can apply Theorem 11.5.1 at both the concrete and axiomatic levels.
Examples 11.5.2.

(a) (Concrete) We can verify that 27 < Z, as stated in Example 11.5.1. Whenever you want to discuss a subset, you must find some
convenient way of describing its elements. An element of 2 Z can be described as 2 times an integer; that is, a € 2Z is equivalent to
(Fk)z (a = 2k). Now we can verify that the three conditions of Theorem 11.5.1 are true for 2Z. First, if a, b € 27, then there exist
j, k € Z suchthata = 2jand b = 2k. A common error is to write something like a=2j and b=2j. This would mean that a = b,
which is not necessarily true. That is why two different variables are needed to describe @ and . Returning to our proof, we can add a and
b:

a+b=2j+2k=2(+ k).

Since j + k is an integer, @ + b is an element of 2Z. Second, the identity, O, belongs to 2Z (0 = 2(0)). Finally, if a € 2Z and
a=2k, —a=—-2k) =2(—k),and —k € Z, therefore, —a € 2Z.By Theorem 11.5.1,27 < Z.

How would this argument change if you were asked to prove that 37 < Z?ornZ < Z, n = 27

(b) (Concrete) We can prove that H = {0, 3, 6, 9} is a subgroup of Z, . First, for each ordered pair (a, b)) € H X H,a +1 b is in H.
This can be checked without too much trouble since |[H X H| = 16. Thus we can conclude that H is closed under +;,. Second, 0 € H. Third,
-0 =0,-3 =9,-6 = 6,and -9 = 3. Therefore, the inverse of each element in H is in H.

(c) (Axiomatic) If H and K are both subgroups of a group G, then H () K is a subgroup of G. To justify this statement, we have no concrete
information to work with, only the facts that H < G and K <G. Our proof that H (| K < G reflects this and is an exercise in applying the
definitions of intersection and subgroup, (i) If a and b are elements of H () K, then a and b both belong to H, and since H < G, a * b must be
an element of H. Similarly, a * b € K; therefore, a * b € H () K. (ii) The identity of G must belong to both H and K; hence it belongs to

H N K.(iii)Ifa e H (K,thena € H,andsince H < G,a"' € H. Similarly,a™' € K. Hence, by the theorem, H (| K < G.
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Now that this fact has been established, we can apply it to any pair of subgroups of any group. For example, since 2Z and 3 Z are both
subgroups of [Z;+],2Z () 3 Z is also a subgroup of Z. Note that if a €27 (| 3Z, a must have a factor of 3; that is, there exists k € Z
such that @ = 3 k. In addition, @ must be even, therefore k must be even. There exists j € Z such that k = 2 j, therefore a = 3(2j) = 6.
This shows that 2Z (| 3Z C 6 Z. The opposite containment can easily be established; therefore,2Z () 3Z = 6Z.

Given a finite group, we can apply Theorem 11.3.7 to obtain a simpler condition for a subset to be a subgroup.

Theorem/Algorithm 11.5.2. If [G; =] is a finite group, H is a nonempty subset of G, and you can verify that H is closed under +* , then H
is a subgroup of G.

Proof: In this proof, we demonstrate that Conditions (b) and (c) of Theorem 11.5.1 follow from the closure of H under * , which is
Condition (a). First, select any element of H; call it 8. The powers of 8 : 8', 8%, 53, ... are all in H by the closure property. By Theorem
11.3.7, there exists m, m < |G|, such that 8" = e; hence e € H. To prove that (c) is true, we let @ be any element of H. If @ = e, then alisin
Hsincee ! = e.Ifa+ e, a9 = e for some q between 2 and |G| and

e=al=a% xa.

1

Therefore,a™! = a?! , which belongs to Hsinceq — 1 = 1. m

Example 11.5.3 To determine whether H; = {0, 5, 10} and H, = {0, 4, 8, 12} are subgroups of Z,5 , we need only write out the addition
tables (modulo 15) for these sets.

H, H,

Note that H; is a subgroup of Z 5. Since the interior of the addition table for H, contains elements that are outside of H, , H; is not a subgroup
of Z 15-

One kind of subgroup that merits special mention due to its simplicity is the cyclic subgroup.

Definition: Cyclic Subgroup Generated by an Element. If G is a group and a € G, the cyclic subgroup generated by a, (a), is the set of
powers of a and their inverses:

(a) ={d":n e 2}
A subgroup H is cyclic if there exists a € H such that H = (a).
Definition: Cyclic Group. A group G is cyclic if there exists f € G such that () =G.
Note: If the operation on G is additive, then (a) = {(n)a : n € Z}.
Example 11.54.

Lol

@IhR; ], Q=02":nez)={., o é 75 1.2, 4,8, 16, )

(b) In Z;5, (6) = {0, 3, 6, 9, 12}. If G is finite, you need list only the positive powers of a up to the first occurrence of the identity to

obtain all of (a). In Z,5 , the multiples of 6 are 6, (2)6 = 12, (3)6=3,(4)6 =9, and (5) 6 = 0. Note that {0, 3, 6, 9, 12} is also (3),(9),
and (12). This shows that a cyclic subgroup can have different generators.

If you want to list the cyclic subgroups of a group, the following theorem can save you some time.

Theorem 11.5.3. If a is an element of group G, then (a) = (a™!). This is an easy way of seeing that (9) in Z,5 equals (6), since =6 = 9.

EXERCISES FOR SECTION 11.5

A Exercises
1. Which of the following subsets of the real numbers is a subgroup of [R; +]?

(a) the rational numbers
(b) the positive real numbers

(¢) {k/2 | kisaninteger}

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Chapter 11 - Algebraic Systems

@ {2 | kis an integer}

() {x]| —-100 <x =< 100}
2. Describe in simpler terms the following subgroups of Z:

@572 N4z

(b) 4Z () 6Z (be careful)

(c) the only finite subgroup of Z
3. Find at least two proper subgroups of R3 , the set of 3 X3 rook matrices (see Exercise 5 of Section 11.2).
4. Where should you place the following in Figure 11.5.1?

(a) e

) a!

() x=xy

Figure 11.5.1

5. (a) List the cyclic subgroups of Z¢ and draw an ordering diagram for

the relation "is a subset of" on these subgroups.

(b) Do the same for Z,; .

(¢) Do the same for Zg .

(d) On the basis of your results in parts a, b, and ¢, what would you expect if you did the same with Z,4?

B Exercises

6. Subgroups generated by subsets of a group. The concept of a cyclic subgroup is a special case of the concept that we will discuss here. Let
[G; «] be a group and S a nonempty subset of G. Define the set (S) recursively by:

(i) Ifa e S,thena e (5),
@ii) Ifa, b €(S),thena = b €(S), and

(ii) Ifa € (S), thena™' € (8).

(a) By its definition, (S) has all of the properties needed to be a subgroup of G. The only thing that isn't obvious is that the identity of G is in
(S). Prove that the identity of G is in (S).

(b) Whatis ({9, 15})in[Z; +]?

(c) Prove thatif H < Gand S C H,then (S) < H. This proves that (S) is contained in every subgroup of G that contains S; thatis, (S) = () H .
HeG

(d) Describe ({0.5, 3})in [R*;-] and in [R; +].

) Ifj, k € Z,{], k}) is a cyclic subgroup of Z. In terms of j and k, what is a generator of ({j, k})?

7.Prove thatif H, K < G,and H|J K =G, then H = G or K = G. (Hint: Use an indirect argument.)
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11.6 Direct Products

Our second universal algebraic concept lets us look in the opposite direction from subsystems. Direct products allow us to create larger systems.
In the following definition, we avoid complicating the notation by not specifying how many operations the systems have.

Definition: Direct Product. If [V;;x;, o1, ...J, [Vo;#, ¢, .., oo [V %, on, ...] are algebraic systems of the same kind, then the
direct product of these systems is V =V;xV,x---xV, , with operations defined below. The elements of V are n-tuples of the form
(a;, ap, ..., an), wherea, € Vi, k =1, ..., n. The systems V;, V,, ..., V, are called the factors of V. There are as many operations on V
as there are on the factors. Each of these operations is defined componentwise:

If(ap ay, ..., Ay), (b],bz, o by)ev,

(aj, ag, -, an)#x by, by, ..., by) =(a;#,by, ay%,b;, ..., ay#,by)
(Ll], dy, ..., Cln)o(bl,bz, ey bn) :(él1 O]b], 11202172, . anonbn)

Example 11.6.1. Consider the monoids N (the set of natural numbers with addition) and B* (the set of finite strings of 0's and 1's with
concatenation). The direct product of N with B* is a monoid. We illustrate its operation, which we will denote by = , with examples:

(4, 001) = (3, 11) = (4 + 3, 001 <> 11) = (7, 00111)
(0, 11010) = (3,01) = (3, 1101001)
0, A1) = (129, 00011) = (0 + 129, A <>00011) = (129, 00011)
(2, 01) = (8, 10) = (10, 0110), and
(8, 10) = (2, 01) = (10, 1001).
Note that our new monoid is not commutative. What is the identity for = ?
Notes:

(a) On notation. If two or more consecutive factors in a direct product are identical, it is common to combine them using exponential notation.

For example, Z x Z x R can be written Z> x R,and R x R x R x R can be written R*. This is purely a notational convenience; no exponenti-
ation is really taking place.

(b) In our definition of a direct product, the operations are called componentwise operations, and they are indeed operations on V. Consider =
above. If two n-tuples, a and b, are selected from V, the first components of @ and b, a; and b, , are operated on with x; to obtain a; =; by, the
first component of a = b. Note that since = is an operation on V1, a; x; b; is an element of V. Similarly, all other components of a = b, as they
are defined, belong to their proper sets.

One significant fact about componentwise operations is that the components of the result can all be computed at the same time (concurrently).
The time required to compute in a direct product can be reduced to a length of time that is not much longer than the maximum amount of time
needed to compute in the factors (see Figure 11.6.1).

Time >
ay-by
axby
Give! / \
a and a-b
apby
Figure 11.6.1

Concurrent calculation in a direct product.

(c) A direct product of algebraic systems is not always an algebraic system of the same type as its factors. This is due to the fact that certain
axioms that are true for the factors may not be true for the set of n-tuples. This situation does not occur with groups however. You will find that
whenever a new type of algebraic system is introduced, call it type 7', one of the first theorems that is usually proven, if possible, is that the
direct product of two or more systems of type 7 is a system of type 7.

Theorem 11.6.1. The direct product of two or more groups is a group; that is, the algebraic properties of a system obtained by taking the
direct product of two or more groups includes the group axioms.
We will only present the proof of this theorem for the direct product of two groups. Some slight revisions can be made to obtain a proof for any
number of factors.
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Proof: Stating that the direct product of two groups is a group is a short way of saying that if [Gy; =;] and [G,; ;] are groups, then
[G1 X Gy; =] is also a group, where = is the componentwise operation on G| X G».

Associativity of = : If a, b, ¢ € G; XGa,

ax (bxc)=(ar, a)*(b1, by)x(c1, 2))
= (a1, ap)*(by*#1¢1, by#p¢2)
= (ar#1 (b1 *1¢1), az#2(ba#2¢2))
= ((a1 %1 b1)*1c1, (ar*2b2)#2¢2)
= (ar#1 b1, a2 b2)x(c1, €2)
= ((a1, a2) = (b1, b2))*(c1, €2)
= (a = b)xc
Notice how the associativity property hinges on the associativity in each factor.
An identity for =: As you might expect, if e; and e, are identities for G| and G,, respectively, then e = (e;, e, ) is the identity for G| X G,. If
a € G1XGy,
axe =(ay, a)x (e1, €2)
= (a1 *1e1, Ay €3)
= (a1, az)
=a

Similarly, e « a = a.

Inverses in G| x G,: The inverse of an element is determined componentwise a™! = (a;, @2)™' = (a;™', a,™") . To verify, we compute a  a™' :
-1 _ -1 -l
axa =(a, a)x(@™, ")
— -1 o
=(@x1a1”, aykray"")
= (e1, €2)
=e

Similarly,a™! s a=e.m

Example 11.6.2.

(@) Ifn = 2,7Z," , the direct product of n factors of Z,, is a group with 2" elements. We will take a closer look at Zy° = 7y X Zy X Z5. The

elements of this group are triples of zeros and ones. Since the operation on Z, is +,, we will use the symbol + for the operation on Z,> . Two
of the eight triples in the group are @ = (1, 0, 1) and b = (0, 0, 1). Their "sum" isa + b = (1 +, 0, 0 +, 0, 1 +, 1) = (1, 0, 0). One
interesting fact about this group is that each element is its own inverse. For example ¢ + a = (1, 0, 1) + (1, 0, 1) = (0, 0, 0); therefore
—a = a. We use the additive notation for the inverse of a because we are using a form of addition. Note that {(0, 0, 0), (I, 0, 1)} is a

subgroup of Z,>. Write out the "addition" table for this set and apply Theorem 11.5.2. The same can be said for any set consisting of (0, 0, 0)
and another element of Z,>.

(b) The direct product of the positive real numbers with the integers modulo 4, R* X Z4 is an infinite group since one of its factors is infinite.
The operations on the factors are multiplication and modular addition, so we will select the neutral symbol o for the operation on R* x Z4. If
a =4, 3)andb = (0.5, 2), then

aob=(4,30(052=4-053+2=(@2,1
b2=bob=(05,2) (05, 2) = (025, 0),

a' =@", =3) = (025, 1) and

bl = (05", -2) = (2, 2).

It would be incorrect to say that Z, is a subgroup of R*x Z, , but there is a subgroup of the direct product that closely resembles Z,. It is
{1, 0), (1, 1), (1, 2), (1, 3)}.Its table is

{1, 0} {1, 0} | {1, 1} | {1, 2} [ {1, 3}

{1, 1} {1, 1} [ {1, 2} [ {1, 3} [ {1, O}

{1, 2} (1,2} [ (1, 3} [ {1, 0} | {1, 1}

{1, 3} {1, 3} [ {1, 0} [ {1, 1} | {1, 2}

Imagine erasing (1,) throughout the table and writing +4 in place of o. What would you get? We will explore this phenomenon in detail in the
next section.
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The whole direct product could be visualized as four parallel half-lines labeled 0, 1, 2, and 3 (Figure 11.6.2). On the kth line, the point that lies x
units to the right of the zero mark would be (x, k). The set {(2", (n) 1) | n € Z}, which is plotted on Figure 11.6.2, is a subgroup of R* X Z,.
What cyclic subgroup is it?

0 1 2 3 4
3 @
2 —@ L 4
1 @ L
0 @ @
Figure 11.6.2

Graph of R* x 7,
The answer: ((2, 1)) or ((j, 3)).

A more conventional direct product is R?, the direct product of two factors of [R; + ]. The operation on R? is componentwise addition; hence
we will use + as the operation symbol for this group. You should be familiar with this operation, since it is identical to addition of 2 x 1

matrices. The Cartesian coordinate system can be used to visualize R? geometrically. We plot the pair (s, f) on the plane in the usual way: s
units along the x axis and 7 units along the y axis. There is a variety of different subgroups of R? , a few of which are:

(1) {(x, 0) | x € R}, all of the points on the x axis;
2) {(x, y) | 2x— y = 0}, all of the points that are on the line 2x - y =0;

B)Ifa, b e R,{(x, y)| ax + by = 0}. The first two subgroups are special cases of this one, which represents any line that passes
through the origin.

@B {(x, y) | 2x — y = k, k € Z},asetof lines that are parallelto2x — y = 0.
(5) {(n, 3n) | n € Z}, which is the only countable subgroup that we have listed.

We will leave it to the reader to verify that these sets are subgroups. We will only point out how the fourth example, call it H, is closed under
"addition." If a = (p, q) and b = (s, t) and both belong to H,then2 p — g = jand 2s — t = k, where both j and k are integers.
a+b=pP, ¢+, )=(EP+s,qg+1
We can determine whether @ + b belongs to H by deciding whether or not 2 (p + s) — (g + f)is an integer:
2p+s5)-(@+1H)=2p+25s—-—q-—t
=Q2p-q+@2s—-1
=j+k
which is an integer. This completes a proof that H is closed under the operation of RZ.

Several useful facts can be stated in regards to the direct product of two or more groups. We will combine them into one theorem, which we
will present with no proof. Parts a and ¢ were derived for n = 2 in the proof of Theorem 11.6.1.

Theorem 11.6.2. If G = G| X G, X --- X G, is a direct product of n groups and (a;, a3, ..., a,) € G,then:
(a) The identity of Gis (ey, ez, ..., e,), Where ¢, is the identity of G;.

® @, a, ...,a) ' =@ al, L@,

©) (@, a, ..., a)"™= (@™, &", ..., a,™) forallme Z.
(d) G is abelian if and only if each of the factors G|, G,, ..., G, is abelian.

(e) IfHy, H,, ..., H, are subgroups of the corresponding factors, then H; X H, X --- X H, is a subgroup of G.

Not all subgroups of a direct product are obtained as in part e of Theorem 11.6.2. For example, {(n, n) | n € Z} is a subgroup of Z2, but is not
a direct product of two subgroups of Z.

Example 11.6.3. Using the identity (x + y) + x = y, in Z;, we can devise a scheme for representing a symmetrically linked list using only
one link field. A symmetrically linked list is a list in which each node contains a pointer to its immediate successor and its immediate predeces-
sor (see Figure 11.6.3). If the pointers are n-digit binary addresses, then each pointer can be taken as an element of Z,". Lists of this type can be
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accomplished using cells with only one link. In place of a left and a right pointer, the only "link" is the value of the sum (left link) + (right
link). All standard list operations (merge, insert, delete, traverse, and so on) are possible with this structure, provided that you know the value of
the nil pointer and the address, f, of the first (i. e., leftmost) cell. Since first fleft is nil, we can recover f.right by adding the value of nil:
f + nil = (nil + fright) + nil = f right, which is the address of the second item. Now if we temporarily retain the address, s, of the second
cell, we can recover the address of the third item. The link field of the second item contains the sum s.left + s.right = first + third. Therefore

(first + third) + first = 5 + s.left .
= (s.left + s.right) + s.left
= s.right = third

We no longer need the address of the first cell, only the second and third, to recover the fourth address, and so forth.

A = Nil= 0000
1001 1101 0011 0110 1001

A B C D E

1101 1010 1011 1011 0110

Figure 11.6.3
Symmetric Linked List

The following more formal algorithm uses names that the timing of the visits.

Algorithm 11.6.1. Given a symmetric list represented as in Example 11.6.3, a traversal of the list is accomplished as follows, where first
is the address of the first cell. We presume that each item has some information that is represented by item.info and a field called item link
that is the sum of the left and right links.

(1) yesterday =nil

(2) today =first

(3) While today # nil do

(3.1) Write(today.info)
(3.2) tomorrow = today.link + yesterday

(3.3) yesterday = today
(3.4) today = tomorrow.

At any point in this algorithm it would be quite easy to insert a cell between today and tomorrow. Can you describe how this would be
accomplished?

EXERCISES FOR SECTION 11.6
A Exercises
1. Write out the group table of Z, X Z3 and find the two proper subgroups of this group.

2. List more examples of proper subgroups of R? that are different from the ones in Example 11.6.2.

3. Algebraic properties of the n-cube:
(a) The four elements of Z,> can be visualized geometrically as the four corners of the 2-cube (see Figure 9.4.5). Algebraically describe
the statements:

(i) Corers a and b are adjacent.

(ii) Corners a and b are diagonally opposite one another.
(b) The eight elements of 75> can be visualized as the eight corners of the 3-cube. One face contains Z, X Z, x{0} and the opposite face
contains the remaining four elements so that (@, b, 1) is behind (a, b, 0). As in part a, describe statements i and ii algebraically.

(c¢) If you could imagine a geometric figure similar to the square or cube in n dimensions, and its comers were labeled by elements of Z,"
as in parts a and b, how would statements i and ii be expressed algebraically?
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4. (a) Suppose that you were to be given a group [G; =] and asked to solve the equation x = x = e. Without knowing the group, can you
anticipate how many solutions there will be?
(b) Answer the same question as part a for the equation x = x = x.

5. Which of the following sets are subgroups of Z x Z? Give a reason for any negative answers.
(@) {0}
() {2), 2k |j, ke Z}
© {Qj+ 1,2k | j kez)
@) {(n, n2) | n ez}
(e {(j, k)| j + kiseven}
6. Determine the following values in group Z3 X R*:
(@ 2, D=(1,2)

(b) the identity element

© (1, 1/2)7!
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1.7 Isomorphisms

The following informal definition of isomorphic systems should be memorized. No matter how technical a discussion about isomorphic systems
becomes, keep in mind that this is the essence of the concept.

Definition: Isomorphic Systems/Isomorphism. Two algebraic systems are isomorphic if there exists a translation rule between them so
that any true statement in one system can be translated to a true statement in the other

Example 11.7.1. Imagine that you are an eight-year-old child who has been reared in an English-speaking family, has moved to Greece,
and has been placed in a Greek school. Suppose that your new teacher asks the class to do the following addition problem that has been
written out in Greek.

Tl ovv Téooepa oot

The natural thing for you to do is to take out your Greek-English/English-Greek dictionary and translate the Greek words to English, as
outlined in Figure 11.7.1. After you've solved the problem, you can consult the same dictionary to obtain the proper Greek word that the
teacher wants. Although this is not the recommended method of learning a foreign language, it will surely yield the correct answer to the
problem. Mathematically, we may say that the system of Greek integers with addition (ovv) is isomorphic to English integers with addition
(plus). The problem of translation between natural languages is more difficult than this though, because two complete natural languages are
not isomorphic, or at least the isomorphism between them is not contained in a simple dictionary.

Tpla ouy Téooepa wrobTat entd,
three plus four equals seven
Figure 11.7.1

Solution of a Greek arithmetic problem

Example 11.7.2. Software Implementation of Sets. In this example, we will describe how set variables can be implemented on a
computer. We will describe the two systems first and then describe the isomorphism between them.

System 1: The power set of {1, 2, 3, 4, 5} with the operation union, . For simplicity, we will only discuss union. However, the other
operations are implemented in a similar way.

System 2: Strings of five bits of computer memory with an OR gate. Individual bit values are either zero or one, so the elements of this
system can be visualized as sequences of five 0's and 1's. An OR gate, Figure 11.7.2, is a small piece of computer hardware that accepts two
bit values at any one time and outputs either a zero or one, depending on the inputs. The output of an OR gate is one, except when the two bit
values that it accepts are both zero, in which case the output is zero. The operation on this system actually consists of sequentially inputting
the values of two bit strings into the OR gate. The result will be a new string of five 0's and 1's. An alternate method of operating in this
system is to use five OR gates and to input corresponding pairs of bits from the input strings into the gates concurrently.

System 1 : System 2 :
[P{1, 2,3, 4,5} U Strings of 5 bits with OR
J -
X ={l, 2} — 11000
Figure 11.7.2

Translation between sets and strings of bits

The Isomorphism: Since each system has only one operation, it is clear that union and the OR gate translate into one another. The translation
between sets and bit strings is easiest to describe by showing how to construct a set from a bit string. If a; a; a3 a4 as, is a bit string in System
2, the set that it translates to contains the number k if and only if @, equals 1. For example, 10001 is translated to the set {1, 5}, while the set
{1, 2} is translated to 11000. Now imagine that your computer is like the child who knows English and must do a Greek problem. To execute
a program that has code that includes the set expression {1, 2} | {1, 5}, it will follow the same procedure as the child to obtain the result, as
shown in Figure 11.7.3.

{1.2} U {1.5} = {L2.5}
11000 OR 10001 = 11001
Figure 11.7.3

Translation of a problem in set theory

Example 11.7.3. Multiplying without doing multiplication. This isomorphism is between [R* ; -] and [R;+]. Until the 1970s, when the
price of calculators dropped, multiplication and exponentiation were performed with an isomorphism between these systems. The isomor-
phism (R* to R) between the two groups is that - is translated into + and any positive real number « is translated to the logarithm of a. To

translate back from R to R* , you invert the logarithm function. If base ten logarithms are used, an element of R, b, will be translated to 10%.
In pre-calculator days, the translation was done with a table of logarithms or with a slide rule. An example of how the isomorphism is used
appears in Figure 11.7.4.
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8 . 125 = 1000

0.90309 + 2.09691 3.000000

Figure 11.7.4
Multiplication using logarithms

The following definition of an isomorphism between two groups is a more formal one that appears in most abstract algebra texts. At first
glance, it appears different, it is really a slight variation on the informal definition. It is the common definition because it is easy to apply; that
is, given a function, this definition tells you what to do to determine whether that function is an isomorphism.

Procedure for showing that two groups are isomorphic
Definition: Group Isomorphism. If (G, ; =] and |G, ; =] are groups, f : G| = G, is an isomorphism from G into G, if:
(a) fis a bijection, and
(b) f(a #1 b) = f(a) = f(b) foralla, b e G
If such a function exists, then G is isomorphic to G,.
Notes:

(a) There could be several different isomorphisms between the same pair of groups. Thus, if you are asked to demonstrate that two groups
are isomorphic, your answer need not be unique.

(b) Any application of this definition requires a procedure outlined in Figure 11.7.5.

Define a function 7:G;—-G, and
prove that 7' is an isomorphism.

Prove that T Prove that
is a bijection. T(a # b)=T(a) # T(b) forall a,b € G,.
Prove that T Prove that T
is onto. is one—to—one.
Figure 11.7.5

Steps in proving that G;and G, are isomorphic

The first condition, that an isomorphism be a bijection, reflects the fact that every true statement in the first group should have exactly one
corresponding true statement in the second group. This is exactly why we run into difficulty in translating between two natural languages. To
see how Condition (b) of the formal definition is consistent with the informal definition, consider the Function L:R* — R defined by
L(x) = log,,x. The translation diagram between R* and R for the multiplication problem a - b appears in Figure 11.7.6. We arrive at the
same result by computing L~! (L(a) + L(b)) as we do by computing a - b. If we apply the function L to the two results, we get the same
image:

L(a-b) = LIL”'(L(a) + L (b)) = L(a) + L(b) (11.7a)

since L(L™'(x)) = x. Note that 11.7a is exactly Condition b of the formal definition applied to the two groups R* and R.
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a b = LY (L(a * b))
L(a) + L(b) = L(a-b)
Figure 11.7.6

Multiplication using logarithms - general situation

1

Example 11.7.4. Consider G = {( 0

611 ) | ae [R} with matrix multiplication. This group [R; +] is isomorphic to G. Our translation rule is

1
the function f: R — G defined by f(a) = ( 0 611 ) Since groups have only one operation, there is no need to state explicitly that addition is

translated to matrix multiplication. That f'is a bijection is clear from its definition. If @ and b are any real numbers,

s =(y )y 1)

_ 1 a+b
)

We can apply this translation rule to determine the inverse of a matrix in G. We know that @ + (—a) =0 is a true statement in R. Using f to
translate this statement, we get

fl@) f(-a) = f(0)

or

)
()

Theorem 11.7.1 summarizes some of the general facts about group isomorphisms that are used most often in applications. We leave the proof
to the reader.

therefore,

Theorem 11.7.1. If |G, %] and [H, ©] are groups with identities e and e', respectively, and T : G — H is an isomorphism from G into
H, then:
(a) T(e) = e,
(b) T(a)™ = T(a’l) foralla € G, and
(c) If K is a subgroup of G, then T (K) = {T (a) : a € K} is a subgroup of H and is isomorphic to K.

"Is isomorphic to" is an equivalence relation on the set of all groups. Therefore, the set of all groups is partitioned into equivalence classes, each
equivalence class containing groups that are isomorphic to one another.

Procedures for showing groups are not isomorphic

How do you decide that two groups are not isomorphic to one another? The negation of "G and H are isomorphic" is that no translation rule
between G and H exists. If G and H have different cardinalities, then no bijection from G into H can exist. Hence they are not isomorphic.
Given that |G| = |H|, it is usually impractical to list all bijections from G into H and show that none of them satisfy Condition b of the formal
definition. The best way to prove that two groups are not isomorphic is to find a true statement about one group that is not true about the other
group. We illustrate this method in the following checklist that you can apply to most pairs of non-isomorphic groups in this book.

Assume that [G;+] and [H; <] are groups. The following are reasons for G and H to be not isomorphic.
(a) G and H do not have the same cardinality. For example, Z |, X Z5 can't be isomorphic to Zs, and [R; +] can't be isomorphic to [Q™ ; -],

(b) G is abelian and H is not abelian since a = b = b * a is always true in G, but T (a) o T (b) = T (b) ¢ T (a) would not always be true. Two
groups with six elements each are Z¢ and the set of 3 X 3 rook matrices (see Exercise 5 in Section 11.2). The second group is non-abelian,
therefore it can't be isomorphic to Z .

(c) G has a certain kind of subgroup that H doesn't have. Theorem 11.7.1(c) states that this cannot happen if G is isomorphic to H. [R*; -] and
[R*; -] are not isomorphic since R* has a subgroup with two elements, {—1, 1}, while the proper subgroups of R* are all infinite (Convince
yourself of this fact!).

(d) The number of solutions of x x x = e in G is not equal to the number of solutions of y ¢ y = e¢'in H. Zg is not isomorphic to 7,3 since

x +g x = 0 has two solutions, 0 and 4, while y + y = (0, 0, 0) is true for all y € Z,>. If the operation in G is defined by a table, then the

number of solutions of x = x = e will be the number of occurrences of e in the main diagonal of the table. The equations x*> = e, x* = e, ...

can also be used in the same way to identify non-isomorphic groups.
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(e) One of the cyclic subgroups of G equals G (i. e., G is cyclic), while none of H's cyclic subgroups equals H (i. e., H is noncyclic). This is a
special case of Condition ¢. Z and Z X Z are not isomorphic since Z = (1) and Z X Z is not cyclic.

EXERCISES FOR SECTION 11.7
A Exercises

1. State whether each pair of groups below is isomorphic. If it is, give an isomorphism; if it is not, give your reason.
(@) Z xR andR X Z

(b) Z,XZ andZ x Z

(c) RandQ x Q

(d) 21, 2}) with symmetric difference and Z5?

(e) Z,*>and Z4

(f) R*and M,,»(R) with matrix addition

(g2) R?andR x R*

(h) Z, and the 2 X 2 rook matrices

(1) Zeand Z, X Z3

2. If you know two natural languages, show that they are not isomorphic.
3. Prove that the relation "is isomorphic to" on groups is transitive.

4. (a) Write out the operation table for G = [{l, — 1, i, —i}, -] where i is the complex number for which i*> = — 1. Show that G is isomor-
phic to [Z4; +4].
(b) Solve x> = —1 in G by first translating to Z, , solving the equation in Z, , and then translating back to G.

B Exercises

5. It can be shown that there are five non-isomorphic groups of order eight. You should be able to describe at least three of them. Do so
without use of tables. Be sure to explain why they are not isomorphic.

6. Prove Theorem 11.7.1.
7. Prove that all infinite cyclic groups are isomorphic to Z.
8. (a) Prove that R* is isomorphic to Z, X R.

(b) Describe how multiplication of nonzero real numbers can be accomplished doing only additions and translations.

9. Prove that if G is any group and g is some fixed element of G, then the function ¢, defined by ¢,(x) = g#x+g~! is an isomorphism from G

into itself. An isomorphism of this type is called an automorphism.
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11.8 Using Computers to Study Groups

Groups in Mathematica

Mathematica has a wide variety of computable databases available and one of them is on finite groups. To access the database you use the
function FiniteGroupData. Extensive documentation is available at . Since we've only scratch the surface of group theory at this point,
most of the groups and concepts mentioned are likely to be unfamiliar to the reader. For this reason, we well wait until Chapter 15 to discuss
that database.

The Combinatorica package that is included in all Mathematica distributions has limited abstract algebra

<< Combinatorica”

Here is how to generate the body of the operation table for the ring [Z7; +7]. Notice that this really an addition table even though the function
that creates the table is called MultiplicationTable.

MultiplicationTable[Range[0, 6], Function[{a, b}, Mod[a+b, 7]]]

3

AN N AW~
—_ 0 N AW
— 2 N LB
NSRRI e NV s
W= 3O W
LD = 9
R W=

7 23456

An even more user-friendly package that you would need to download to use is available at Exploring Abstract Algebra with Mathematica
(http://www central.edu/EAAM/). The package, when installed on your computer, is loaded with the command

<< AbstractAlgebra Master”
The group Z; is

G = ZG[12]

Groupoid({0, 1, 2, 3,4,5,6,7, 8,9, 10, 11}, (H1 + H2) mod 12 &)
At this point G is an object that consists of the set {0, 1, 2, ..., 11} and the binary operation +;,. Among things we can do with G is that we can
examine its subgroups.

Subgroups [G]

{Groupoid({0}, (1 + H#2) mod 12 &), Groupoid({0, 2, 4, 6, 8, 10}, (H1 + H#2) mod 12 &),
Groupoid({0, 3, 6, 9}, (H1 + H2) mod 12 &), Groupoid({0, 4, 8}, (H1 + H2) mod 12 &),
Groupoid({0, 6}, (H1 + H#2) mod 12 &), Groupoid({0, 1, 2, 3, 4,5, 6,7, 8,9, 10, 11}, (H1 + H#2) mod 12 &)}
We can view the inverses of elements in a variety of ways. For example, we can get them paired up. Notice that two of the elements, O and 6
invert themselves.

Inverses[G]

0 0
1 11
2 10
39
4 8
5 7
6 6

There is a "Visual Mode" that gives us a different view of the inverses. The boxes with "?" and "—" give further information in you are reading
this in a Mathematica Notebook and have the package installed.
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Inverses [G, Mode - Visual]

0
11 1

10

N

The package was designed for teaching a first course in abstract algebra and so it has features that are more basic than other abstract algebra
resources. For example, we can ask G is really a group and get quite a bit of information.
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GroupQ[G, Mode -» Textual]

Given a set S and an operation =, we call the pair (S ,x)

a group if S is closed under the operation =, there is an identity
element, every elemement has an inverse and the operation = is
associative.

We say a Groupoid G has an identity e if for all other elements g in G we have e + g = g + e = g (Where + indicates the operation).
In this case, Z[12] has the identity 0.

|

We say that a set S is closed under an operation op if whenever we have x and y in S, we also have op[x,y] (or x~op~y) in S.
In this case, the Groupoid Z[12] is indeed closed.

|

Given a Groupoid G, we say an element g in G has an inverse h if G has an identity,saye,andg+h=h+g
= e (where + indicates the operation). The Groupoid Z[12] has an inverse for every element. Here they are:

x [x7!
0o 0
1111
2 (10
319
4 8
517
6] 6

|

Given a structured set S (Groupoid or Ringoid), we say the operation = is

associative if for every g, h, and k in S we have (g=h)xk = g=(hxk), where « is the group operation.
In this case, Z[12] is associative. Consider the following table illustrating random

triples that associate. Pay attention to the last two columns.

i ] |k |[Gxj)k [ix(xk)
2 (1114 5 5
311 (4 8 8
81918 1 1
71512 2 2
8 [8 ]2 6 6
1016 (9 1 1
419 |7 8 8
4 512 11 11
114 |1 4 4
5(10]6 9 9

‘

This package also has much more capabilities than what we've covered so far and we will revisit it in Chapters 15 and 16.

Groups in Sage

Abstract Algebra seems to have been given a much higher priory in the design of Sage than it was in Mathematica. Again, the capabilities far
exceed what we've touch on in the theory, but here are a few examples that you should understand. Here is how to generate the group related to
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Zl4.

G=AbelianGroup(1l,[14])
G.list()

[1, £, £°2, £°3, £*4, £°5, £%6, £°7, £°8, £°9, £°10, £°11, £°12, £°13]

There is no output from assigning G. The elements of G are generated from the 1ist method. The connection with Z4 is that when we
multiply powers of £, the exponents are added with +;4. Among other things we can ask whether G is abelian and what its subgroups are.

G.is_abelian()

True

G.subgroups ()

[Multiplicative Abelian Group isomorphic to C2 x C7, which is the
subgroup of

Multiplicative Abelian Group isomorphic to C14

generated by [f], Multiplicative Abelian Group isomorphic to C7, which
is the subgroup of

Multiplicative Abelian Group isomorphic to Cl14

generated by [£72], Multiplicative Abelian Group isomorphic to C2, which
is the subgroup of

Multiplicative Abelian Group isomorphic to C1l4

generated by [f"7], Trivial Abelian Group, which is the subgroup of
Multiplicative Abelian Group isomorphic to Cl14

generated by []]
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SUPPLEMENTARY EXERCISES FOR CHAPTER 11
Section 11.1

1. V={a,b,c} is a set with operations + and - defined by the following "addition" and "multiplication" tables:

+ |ab c |ab c
ala b c ala a a
b|b c a bla b c
cl|lc a b cla c b

(a) With respect to V under + determine,

(1) The identity (i.e., the "zero" of the addition).

(ii) The inverse of each element, that is, -a, -b, and -c.
(b) With respect to V under - determine,

(i) The identity (i.e., the "one" of the multiplication).

(ii) The inverse of each element different from "zero."
(c) Is + distributive over - ? Is - distributive over + ?

2. (a) Determine whether the following are valid binary operations on the given sets. Explain fully.

b
(i) Matrix addition on A = {(f ) a, b, c € R}

0

(i1) Matrix multiplication on the set A above.

(iii) On Q*, define *bya = b = (a - b)/2.
(iv) Function composition on A% = {f: A — A}, where A is {1, 2, 3}.
(v) Function composition on B = {f € A4 | f is a bijection}.
(b) For each binary operation above give the identity element if it exists. Explain.
(c) Determine which of the above binary operations are commutative and which are associative.
3. Let S = set of all bijections of a set A, and let o be function composition. Does o have the inverse property? Does function composition have
the involution property? Explain.
4. Does + on M., (R) have the inverse property? Does + have the involution property? Explain.
5. Prove that the odd integers are closed under multiplication but not under addition. Are the even integers closed under both addition and

multiplication? Prove your answers.
Section 11.2

6. (a) Show that R? is a group under componentwise addition, that is,
(a1, @) + (b1, b2) = (a1 + az, by + b)).

(b) Show that {(x, 2x) | x € R} is a group under componentwise addition. Draw the graph of this subset. Describe similar
subsets of R? that are also groups.
7. Prove that the set of all 2 x 2 invertible matrices (over R) is a group under matrix multiplication. Assume, as indicated in Chapter 5, that the
associative law is true for matrices under multiplication. This group is called the general linear group of degree 2 over R, and it is denoted by
GL(2, R). It is given this name because these matrices are matrix representations of linear motions of R? .
ab
cd
plication. This group is called the special linear group of degree 2 over R and it is denoted SL(2, R).

8. Prove that {A = ( ) ‘ detA = 1} is a group under matrix multiplication. Assume that the associative law is true under matrix multi-

9. Show that R is a group under the operation = defined by a « b = a + b + 5fora, b € R.

10. (a) let Bsys be the set of all 3 X 3 Boolean (adjacency) matrices discussed in Section 6.4. Is Bsx3 a monoid under Boolean addition? Is it a
group? Explain.
(b) Is Bsy3 a monoid under Boolean multiplication? Is it a group? Explain.

Section 11.3
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11. Define * on Q* by a « b = (a * b)/2. Prove that [Q™* ; «] is a group.

12. Let G be the group R under the operationa « b = a + b + 5fora, b € R. Solve the following equations for x in G.

(@ xx3 =5 @ x*=2
b)) 2xxx4=06 (e)4xx>=5
(e) ¥* =7

13. Solve the equation A +X x B = Cin GL(2, R) where

20 4 2 21
a(20) m=(32) wac=(2 )

14. Prove that if [G; =] is a group, (a = b)" = a" = b" forall n = 1 and a, b € G if and only if [G;*] is an abelian group.
Section 11.4
15. Calculate the following in Z5:
(@ 3 +58
() (-3) %52
() BX52) +5 (2 %x52)
(d 27'(e., the multiplicative inverse of 2)
16. (a) Prove that {1,3,5,7},1s a group under Xg . Write out its group table.
(b) Let U (Z,) stand for the elements of Z,, , which have inverses under X,,. Convince yourself that U(Z,, ) is a group under X,,.

(c) Prove that the elements of U(Z,, ) are those elements a € Z,, such that gcd(a, n) = 1. You may use the fact that gcd(a, b) = 1 &
there exist integers s and ¢ such that sa + b = 1.

Section 11.5

17. (a) Recall from "Supplementary Exercises," Section 11.4, that U(Zg )is a group under Xg . List all cyclic subgroups of this group.
(b) Is U(Zg) acyclic group? Explain.

18. (a) Use Theorem 11.5.1 to prove that the set of even integers is a subgroup of the group Z (under +).
(b) Is the set of odd integers a subgroup of the group Z (under +)?

19. Prove that SL(2, R) is a subgroup of GL(2, R). See Exercises 7 and 8 above for an explanation of this notation.

20. Recall that M4, (R) is a group under addition.

(@) IsA = {(Z (I;)

(b) Is B = {(Z 117)

(c) Are either of the subsets in parts a and b subgroups of GL(2, R)?

a,b e [R} a subgroup of My, (R)?

a, b e [R} a subgroup of My, (R)?

21. Let B3y3 be the monoid of all 3 x 3 Boolean matrices, under Boolean addition. Let S be a subset of B33 consisting of all 3 X 3 matrices
that represent symmetric relations. Is § a submonoid of B3y ?

Section 11.6

22. Using the data structure in the text for doubly linked lists with six-bit addresses, what are the addresses of the records containing A and D?
Write your answer as a sum in the group Z$ and then as an address.

? 011100 000011 ?
A B C D
010101 001011

23. Determine the inverse of each element in the respective group.
(@) (2,3,5)inZ3 X Z7 X Zys

®) (10,1,)inz*
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(© (3,2)inR* x Zs
d (2,35 inR3
24. Determine the identity elements in the following groups:
(a) R*xR*
(b) R*xZ;
(c) GL(2, R) x R?
25. Which of the following groups are abelian? Explain.
(@) ZyxZouxZ7s
(b) GL(2, R) x2Z,
() z"
26. Is{0, 3} x {0, 4, 8} a subgroup of Z¢ X Zg ? Explain.
Section 11.7
27. Prove that the cyclic subgroup (4) of Z ¢ is isomorphic to Z, .

28. LetG = { &, $, %}. Given that [G; #] is a group and that it is isomorphic to the group [Z3; +3] with isomorphism T : G - Z; defined
byT(&) = 1,T($) = 2,and T (%) = 0. What are

(@ $+$ (b) Theidentity of [G; *]

29. Let U be a set and Py = {propositions over the set U}. It can be shown that the algebraic system [Py; ~, A, v] is isomorphic to
[PW); -, N, UL

(a) Explain what this means.
(b) How does this help you understand the language of the algebra of propositions?
(c) Give the "propositional" analogue to the following statement: If A (| B = Qand A (| B = @ then A = Q.
30. Write out the operation tables for the following systems:
(a) [{0, 1}; +, ] where + and - denote Boolean addition and multiplication.
(b) [{-1, 1}; A, v] wherei A jand i v jdenote the largest and smallest, respectively, of i and j.
©) [Z2; +2, X2l
Are these systems isomorphic? Explain.
31. Prove that the group C, under +, is isomorphic to the group R? , under + .
32. Determine which of the following groups are isomorphic. Explain.
(a) Rj,the 3 X 3 rook matrices, and Z¢
(b) Rzand S, = {f € A : fisabijection}, where A is {1,2, 3}.
(¢) Zgand U(Z7)
33. Prove that R* under addition, is isomorphic to M>,,(R), under addition.
34. Prove that the group [U(Zs); Xg] is isomorphic to [Z4; +4].
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chapter 12

MORE MATRIX ALGEBRA

GOALS

In Chapter 5 we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to
elementary algebra. The reader should briefly review this material. In this chapter we shall look at a powerful matrix tool in the applied
sciences—namely, a technique for solving systems of linear equations. We will then use this process for determining the inverse of nxn
matrices, n = 2, when they exist. We conclude by a development of the diagonalization process, with a discussion of several of its applications.

12.1 Systems of Linear Equations

The method of solving systems of equations by matrices that we will look at is based on procedures involving equations that we are familiar
with from previous mathematics courses. The main idea is to reduce a given system of equations to another simpler system that has the same
solutions.

Definition: Solution Set. Given a system of equations involving real variables x;, x,, ..., X,, the solution set of the system is the set of n-
tuples in R", (a;, ay, ... a,) such that the substitutions x| = aj, X, = a, ..., X, = a, make all the equations true.

In terms of logic, a solution set is a truth set of a system of equations, which is a proposition over n-tuples of real numbers.
In general, if the variables are from a set S, then the solution set will be a subset of §”. For example, in number theory mathematicians study
Diophantine equations, where the variables can only take on integer values instead of real values.

Definition: Equivalent Systems of Equations. Two systems of linear equations are called equivalent if they have the same set of
solutions.

Example 12.1.1. The previous definition tells us that if we know that the system

dx1+2x+x3=1

2x1+x +x3=4

2x1+2x+x3=3
is equivalent to the system

X1 +0x+0x3 =-1

Ox;+x2 +0x3=-1

Ox;+0xy +x3=7

then both systems have the solution set {(—1, —1, 7)}. In other words, the values x; = —1, x, = —1, and x3 = 7 are the only values of the
variables that make all three equations in either system true.

Theorem 12.1.1. Elementary Operations on Equations. If any sequence of the following operations is performed on a system of
equations, the resulting system is equivalent to the original system:

(1) Interchange any two equations in the system.

(2) Multiply both sides of any equation by a nonzero constant.
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(3) Multiply both sides of any equation by a nonzero constant and add the result to a second equation in the system, with the sum replacing
the latter equation.

Let us now use the above theorem to work out the details of Example 12.1.1 and see how we can arrive at the simpler system..

Step 1. We will first change the coefficient of x; in the first equation to one and then use it as a pivot to obtain 0's for the coefficients of x| in
Equations 2 and 3.

dx14+2x+x3=1
(1.1) 2x1+x+x3=4 Multiply Equation 1 by l— to obtain
2x1+2x+x3=3
Ry
2x+ X0 +x3 =4 Multiply Equation 1 by — 2 and
2x1+2x+x3=3

(1.2)

add the result to Equation 3 to obtain

X X
X+ +T =
2 4

(13)

Ox; + 0xy + )‘2_3 - Multiply Equation 1 by — 2 and add

[CURC ST,

2 x +2)C2+)C3 =3

the result to Equation 3 to obtain

X X
X1+ 2+ =
2 4

n

(14) 0X1+0X2+ '2 =

[SHEV RSN e

Ox; + x2+%3 =

Note: We've explicitly written terms with zero coefficients such as 0 x; to make a point that all variables can be thought of as being

involved in all equations. After this example we will discontinue this practice in favor of the normal practice of making these terms
"disappear."

Step 2. We would now like to proceed in a fashion analogous to Step 1—namely, multiply the coefficient of x, in the second equation by a

suitable number so that the result is 1. Then use it as a pivot to obtain 0's as coefficients for x; in the first and third equations. This is clearly
impossible (Why?), so we will first interchange Equations 2 and 3 and proceed as outlined above.

n
(2.1) O0x;+ Oxp + %3 = Interchange Equations 2 and 3 to obtain

X
Ox1+ xo+=

N
RINngw BTN oo B

X2 X3 _

Xy +
2 4

2.2) Oxi+ xp + 2 Multiply Equation 2 by - and add

Ox;+ O0xp + X;SZ

the result to Equation 1 to obtain
X1+ 0x+ Oxz3=-1

(2.3) Oxl +x + Xi =

[SEESILS N

Ox; + 0x; +%3=

Step 3. Next, we will change the coefficient of x3 in the third equation to one and then use it as a pivot to obtain O's for the coefficients of x3 in
Equations 1 and 2.

X1+ 0x+ Oxz =-—1

3.1 0 x; +Xx + %3

Multiply Equation 3 by 2 to obtain

[SEESE N

X
0x; + O0xp +§

X+ 0xp + OX3=—1

(32) Ox; +x3 + % = 2 Multiply Equation 3 by — % and add the result

Ox; +0xp +x3=7 to Equation 2 to obtain
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x; +0xp +0x3=-1
3.3) O0x; +x +0x3=-1
Ox; +0xy +x3=17
From the system of equations in Step 3.3, we see that the solution to the original system (Step 1.1)isx; = —1,x = —l,andx3 = 7 .
In the above sequence of steps, we note that the variables serve the sole purpose of keeping the coefficients in the appropriate location. This we
can effect by using matrices. The matrix of the system given in Step 1.1 is

4 211
2114
2213

where the matrix of the first three columns is called the coefficient matrix and the complete matrix is referred to as the augmented matrix. Since
we are now using matrices to solve the system, we will translate Theorem 12.1.1 into matrix language.

Definition: Elementary Row Operations. The following operations on a matrix are called elementary row operations:
(1) Interchange any two rows of the matrix.
(2) Multiply any row of the matrix by a nonzero constant.
(3) Multiply any row of the matrix by a nonzero constant and add the result to a second row, with the sum replacing the second row.

Definition: Row Equivalent. Two matrices, A and B, are said to be row-equivalent if one can be obtained from the other by any one
elementary row operation or by any sequence of elementary row operations.

If we use the notation R; to stand for Row i of a matrix and — to stand for row equivalence, then
CRi+R;
 —
means that the matrix B is obtained from the matrix A by multiplying the Row i of A by ¢ and adding the result to Row j. The operation of

multiplying row i by c is indicated by

cR;
A —B

while interchanging rows i and j is denoted by

R;i&R
]

The matrix notation for the system given in Step 1.1 with the subsequent steps are:

111
i1 L - - 7
4 2 1 1 JTR‘ 1 > 13 R R, 2 4 4
2 2
2213 2213 21 3
1 L L1 ;L L1
2 4 4 2 4 4
2R+ Rs 1 7 | RoRs 15
— 00 > 3 — 1 2 3
o1 L2 oo L 12
2 2 2 2
. oo -1 100 -1
——Ry+ R, 1 5 2Ry
e N R
17
00 > 3 001 7
—;—R3+R3 1 00 -1
— 010 -1
001 7

This again gives us the solution. This procedure is called the Gauss-Jordan elimination method.

It is important to remember when solving any system of equations via this or any similar approach that at any step in the procedure we can
rewrite the matrix in "equation format" to help us to interpret the meaning of the augmented matrix.

In Example 12.1.1 we obtained a unique solution, only one triple, namely (-1, —1, 7), which satisfies all three equations. For a system
involving three unknowns, are there any other possible results? To answer this question, let's review some basic facts from analytic geometry.
The graph of a linear equation in three-dimensional space is a plane. So geometrically we can visualize the three linear equations as three planes

in three-space. Certainly the three planes can intersect in a unique point, as in Example 12.1.1, or two of the planes could be parallel. If two
planes are parallel, there are no common points of intersection; that is, there are no triple of real numbers that will satisfy all three equations.
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Also, the three planes could intersect along a common axis or line. In this case, there would be an infinite number of real number triples in R?
that would satisfy all three equations. Finally if all three equations describe the same plane, the solution set would be that plane. We
generalize;

In a system of n linear equations, n unknowns, there can be:

(1) aunique solution,

(2) no solution, or

(3) an infinite number of solutions.

To illustrate these points, consider the following examples:
Example 12.1.2. Find all solutions to the system

Xp +3x +x3=2
X1 +x2 +SX3=4
2x1+2x +10x3=6

The reader can verify that the augmented matrix of this system,

1312

11 5 4},

2 210 6
reduces to

131 2

115 4 (See exercise 4 of this section.)

000 -2
We can row-reduce this matrix further if we wish. However, any further row-reduction will not substantially change the last row, which, in
equation form, is Ox; + Ox; + 0 x3 = =2, or simply 0 = —2. It is clear that we cannot find real numbers x;, x,, and x3 that will satisfy this

equation, hence we cannot find real numbers that will satisfy all three original equations simultaneously. When this occurs, we say that the
system has no solution, or the solution set is empty.

Example 12.1.3. Next let's attempt to find all of the solutions to:
X1+6x+2x3=1
2x1 +x+3x3 =2
4x;+2x+6x3=4
The augmented matrix for the system,
16 21

2132
4 2 6 4

reduces to
10 — 1
01 —0
00 0O

If we apply additional elementary row operations to this matrix, it will only become more complicated. In particular, we cannot get a one in
the third row, third column. Since the matrix is in simplest form, we will express it in equation format to help us determine the solution set.

X +—x3=1
1 TR

)C2+ﬁX3 =0
0 =0

. . . . . . 16 . . .
Any real numbers will satisfy the last equation. However, the first equation can be rewritten as x; =1 — e which describes the coordi-

nate x; in terms of x3 . Similarly, the second equation gives x;in terms of x3 . A convenient way of listing the solutions of this system is to use
set notation. If we call the solution set of the system S, then

16 1
S = {(1 - H)C3, —H)C3, X3) | X3 E[R},
What this means is that if we wanted to list all solutions, we would replace x3 by all possible numbers. Clearly, there is an infinite number of
solutions, two of which are (1, 0, 0) and (—15, -1, 11).

A Word Of Caution: Frequently we may obtain “different-looking” answers to the same problem when a system has an infinite number
of answers. Assume a student’s solutions set to Example 12.1.3is A = {(1 + 16 x,, xp, —11x3) | x3 €R}. Certainly the result described by
S looks different from that described by A. To see whether they indeed describe the same set, we wish to determine whether every solution
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produced in § can be generated in A. For example, the solution generated by S when x3 =11 is (-15, —1, 11). The same triple can be
produced by A by taking x, = —1. We must prove that every solution described in S is described in A and, conversely, that every solution
described in A is described in S. (See Exercise 6 of this section.)

To summarize the procedure in the Gauss-Jordan technique for solving systems of equations, we attempt to obtain 1’s along the main diagonal
of the coefficient matrix with 0’s above and below the diagonal, as in Example 12.1.1. We may find in attempting this that the closest we can
come is to put the coefficient matrix in "simplest" form, as in Example 12.1.3, or we may find that the situation of Example 12.1.1 evolves as
part of the process. In this latter case, we can terminate the process and state that the system has no solutions. The final matrix forms of
Examples 12.1.1 and 12.1.3 are called echelon forms.

In practice, larger systems of linear equations are solved using computers. Generally, the Gauss-Jordan algorithm is the most useful; however,
slight variations of this algorithm are also used. The different approaches share many of the same advantages and disadvantages. The two major
concerns of all methods are:

(1) minimizing inaccuracies due to rounding off errors, and
(2) minimizing computer time.

The accuracy of the Gauss-Jordan method can be improved by always choosing the element with the largest absolute value as the pivot element,
as in the following algorithm.

Algorithm 12.1.1. Given a matrix equation Ax = b, where A is n x m, let C be the augmented matrix [A | b]. The process of row-
reducing to echelon form involves performing the following algorithm where C; = the i'" row of C:

i=1
j=1
while (i < n and j < m):
# Find pivot in column j, starting in row 1i:
maxi = i
for k = i+l to n:
if abs(C[k,j]) > abs(C[maxi,j]) then
maxi := k
if C[maxi,j] # 0 then
interchange rows i and maxi
divide each entry in row i by C[i,]]
# Now C[1i,j] will have the value 1.
for u = i+l to n:
subtract C[u, j] +xC; from cC,
# Now C[u,j] will be 0
is=1i+1
end if
j=3j+1
end while

At the end of this algorithm, with the final form of C you can revert back to the equation form of the system and a solution should be clear. In
general,

(a) If any row of C is all zeros, it can be ignored.
(b) If any row of C has all zero entries except for the entry in the (m + 1) position, the system has no solution. Otherwise, if a column has

no pivot, the variable corresponding to it is a free variable. Variables corresponding to pivots are basic variables and can be expressed in
terms of the free variables.

Example 12.1.4. If we apply Algorithm 12.1.1 to the system

Sxi+x+2x34+x4 = 2
3x1+x—2x3 =5
X1 +X+3x3 —x4 =-—1

the augmented matrix

51 2 1 2
C:[3 1 -2 0 5]
11 3 -1 -1

is reduced to a new value of C:

1roo0 & 1

2 2
C=lo10 -2 2
2

001 0 -1

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Chapter 12 - More Matrix Algebra

therefore x4 is a free variable in the solution and general solution of the system is

1
X 2 TN
33
— X2 _ -+ - X4
x = =272
X3 ~1
X4
X4

This conclusion is easy to see if you revert back to the equations that the final value matrix C represents.

& Mathematica Note

The Mathematica function RowReduce does the same reduction as described in Algorithm 12.1.1. For example, here is the result for the
system in Example 12.1 4.

51 2 1 2
RowReduce[ 31 -2 0 5 ]
11 3 -1 -1
1oo0 + 1
2 2
010 -2
2 2
001 0 -1

Options [RowReduce]
{Method —» Automatic, Modulus — 0, Tolerance - Automatic, ZeroTest — Automatic}
Only one caution: One needs to be aware that if the pivoting process continues into the last column, which Mathematica will do, there will not
be a solution to the system. For example the system
ZM —Xzzl
3& —X1=5
Xy +5x=17

has augmented matrix

2 =11
CcC=[-1 3 5
1 5 7

Here is the computation to row-reduce:

2 -11
RowReduce[[—l 3 5 ]
1 5 17
1 00
010
00 1

The last row of the final form of C is 0 =1 and so there is no solution to the original system.

@ Sage Note

Given an augmented matrix, C, there is a matrix method called eschewing_ form that can be used to row reduce C. Here is the result for
the system in Example 12.1.4. In the assignment of a matrix value to C, notice that the first argument is QQ, which indicates that the entries
should be rational numbers. As long as all the entries are rational, which is the case here since integers are rational, the row-reduced matrix
will be all rational.

C = Matrix(QQ,[[5,1,2,1,2],[3,1,—2,0,5],[1,1,3,—1,-1]])
C.echelon_form()

[ 1 0 0 1/2 1/2]
[ 0 1 0 -3/2 3/2]
[ 0 0 1 0 -1]

If we didn't specify the set from which entries are taken, it would assumed to be the integers and we would not get a fully row-reduced matrix.
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The next step would involve multiplying row 3 by é, which isn't an integer.

C2 = Matrix([[5,1,2,1,21,[3,1,-2,0,5],[1,1,3,-1,-1]1)
C2.echelon_form()

[ 1 1 3 -1 -1]

[ 0 2 2 -3 1]

[ 0 0 9 0 -9]

This is why we would avoid specifying real entries:

Cc3 = Matrix(RR,[[5,1,2,1,2],[3,1,—2,0,5],[1,1,3,—1,—1]])

C3.echelon_ form()

[ 1.00000000000000 0.000000000000000 0.000000000000000 0.500000000000000 0.5000000000000001]
[ 0.000000000000000 1.00000000000000 0.000000000000000 -1.50000000000000 1.50000000000000]
[ 0.000000000000000 0.000000000000000 1.00000000000000 4.93432455388958e-17 -1.00000000000000]

This is the default number of decimal places, which could be controlled and the single small number in row three column four isn't exactly zero
because of round-off and we could just set it to zero. However, the result isn't as nice and clean as the rational output in this case.

EXERCISES FOR SECTION 12.1
A Exercises

1. Solve the following systems by describing the solution sets completely:

2x1+x =3
(a) -
X1 —X2—1
2x1+x+3x3=5
(b) 4x1 +x+2x3=-1
8x1+2x+4x3=-2
Xi+x+2x3=1
©) xp+2x-x3=-1
X1 +3x+x3=5
(d) Xl—)C2+3)C3i7
X1 +3x+x3=4

2. Solve the following systems by describing the solution sets completely:

2x1+2x +4X3 =2
(@) 2x1+x+4x3=0
3x1+5x+x3=0
2x1+x+3x3=2
(b) dx;+x+2x3=-1
8x1+2x+4x3=4
Xp+x+2x3+x4=3
€ x1—x+3x3-—x4=-2
3x1+3x%+6x3+3x4=9
6x1+7x+2x3=3
d) 4x1+2x+x3=-2
6x1+x+x3=1
Xi+X—x3+2x=1
(&) xy+2x+3x3+x4=5
X1 +3XQ+2X3 — x5 =-—1
3. Given that the final augmented matrices below obtained from Algorithm 12.1.1, identify the solutions sets. Identify the basic and free
variables, and describe the solution set of the original system.

10 -5012 1093
@ |01 4 026 (c)[0104]

00 0 145 0001
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10 6 5 100 -31
(b) [01—21] (d)[01022]
00 0 O 1 1
4. (a) Write out the details of Example 12.1.2.
(b) Write out the details of Example 12.1.3.
(c) Write out the details of Example 12.1.4.

5. Solve the following systems using only mod 5 arithmetic. Your solutions should be n — tuples from Z5.

(a) Zat+w=3 (compare r solution to the system in 5(a))
N+ Ax =1 ompare your solution to y! i
Xi+x+2x3=1
(b) X]+2X2+4X3=4
X1 +3x+3x3=0

6. (a) Use the solution set S of Example 12.1.3 to list three different solutions to the given system. Then show that each of these solutions can be
described by the set A of Example 12.1.3.

(b) Prove that S = A.

B Exercise

7. Given a system of n linear equations in n unknowns in matrix form A x = b, prove that if b is a matrix of all zeros, then the solution set of
Ax = bis asubgroup of R".

12.2 Matrix Inversion

In Chapter 5 we defined the inverse of an n X n matrix. We noted that not all matrices have inverses, but when the inverse of a matrix exists, it
is unique. This enables us to define the inverse of an n x n matrix A as the unique matrix B such that AB = BA =1, where [ is the n X n
identity matrix. In order to get some practical experience, we developed a formula that allowed us to determine the inverse of invertible 2x2
matrices. We will now use the Gauss-Jordan procedure for solving systems of linear equations to compute the inverses, when they exist, of nxn
matrices, n = 2. The following procedure for a 3 x 3 matrix can be generalized for n X n matrices, n = 2.

Example 12.2.1. Given the matrix

112
A=[214]
351

we want to find the matrix

X1 X2 X3
B=|x xn x3 |,
X31 X32 X33

if it exists, such that (a) AB = [ and (b) BA = I. We will concentrate on finding a matrix that satisfies Equation (a) and then verify that B also
satisfies Equation (b).

112 X11 X12 X13 100
[2 1 4][}621 X22 X23]=[0 1 0]
351 X31 X32 X33 001

is equivalent to

2x11 +x01 +4x31 2x10+x00 +4x3p 2x13+ X3 +4x33 01 0] (12.2.a)
3x11+5x0 +x31 3x12+5x0+x32 3x13+5x3+ 33 00 1

By definition of equality of matrices, this gives us three systems of equations to solve. The augmented matrix of one of the 12.2a systems, the
one equating the first columns of the two matrices is:

1121
[2 1 4 0] (122b)

3510

[x11+x21+ZX31 X1 + X2 + 23 X13 + Xo3 + 2 X33 ] [1 00
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Using the Gauss-Jordan technique of Section 12.1, we have:

Pr20y ol 12y 2
[2140]‘—*»2 [0—10—2]‘—? [0—10—2]

3510 3510 0 2 -5 -3
11 2 1 —Ro+R, 10 2 -1
—1R, and -2 Ry+R3
— [O 1 0 2] — [0 1 0 2]
02 -5 -3 00 -5 -7
19
e (102 -1 100 -~
PR -2 R3+R,
R [0 10 2 ] — 010 2
001 7/5 oo1 I
5
So x;1 = —19/5, x31 =2 and x3; = 7/5, which gives us the first column of the matrix B. The matrix form of the system to obtain x5, x5;, and
X372 , the second column of B, is:
1120
[2 1 4 1] (122.¢)
3510
which reduces to
100 2
5
010 -1 (12.2.d)
001 -2
5

The critical idea to note here is that the coefficient matrix in 12.2c is the same as the matrix in 12.2b, hence the sequence of row operations that
we used to reduce the matrix in 12.2b can be used to reduce the matrix in 12.2c. To determine the third column of B, we reduce

1120
[2 1 4 O]
3511

to obtain xj3 = 2/5, xp3 =0 and x33 = —1/5,. Here again it is important to note that the sequence of row operations used to "solve" this system
is exactly the same as those we used in the first system. Why not save ourselves a considerable amount of time and effort and solve all three
systems simultaneously? This we can effect by augmenting the coefficient matrix by the identity matrix /. We then have

112100 Samc%cqucnccofrow 1 00 —? % %
operations as above
214010 — 010 2 -1 0
351001 001 1 _2 _1L
5 5 5
So that
_1B’o9 2
5 5 5
B = -1 0

2 1

5
The reader should verify that BA = I sothat A~' = B.

W\ N

As the following theorem indicates, the verification that BA = I is not necessary. The proof of the theorem is beyond the scope of this text.
The interested reader can find it in most linear algebra texts.

Theorem 12.2.1. Let A be an n X n matrix. If a matrix B can be found such that AB = I, then BA = I, so that B = A™. In fact, to find
A7l we need only find a matrix B that satisfies one of the two conditions AB = TorBA = 1.

It is clear from Chapter 5 and our discussions in this chapter that not all n X n matrices have inverses. How do we determine whether a matrix
has an inverse using this method? The answer is quite simple: the technique we developed to compute inverses is a matrix approach to solving
several systems of equations simultaneously.

Example 12.2.2. The reader can verify that if
1 2 1
A= [ -1 -2 -1 ]
0 5 8
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then the augmented matrix

1 2 1 100
[—1 -2 -2010 ]
0 5 8 001
reduces to
121100
[O 00110 ] (122.e)
058001
Although this matrix can be row-reduced further, it is not necessary to do so since in equation form we have:
X1 +2X +x31 =1 X2+ 2x0n +x3=0 X13+2x3+x33=0
1) 0=1 (i) 0=1 (i) 0=0
5x1+8x33=0 5x0p +8x3,=0 S5x3+8x3;3=1

Clearly, there is no solution to Systems (i) and (ii), therefore A~! does not exist. From this discussion it should be obvious to the reader that the
zero row of the coefficient matrix together with the nonzero entry in the fourth column of that row in matrix 12.2e tells us that A~! does not
exist.

EXERCISES FOR SECTION 12.2
A Exercises

1. In order to develop an understanding of the technique of this section, work out all the details of Example 12.2.1.

2. Use the method of this section to find the inverses of the following matrices whenever possible. If an inverse does not exist, explain why.

0 3 2 5
1 2 1 -1 4 0
@ (—1 3) ® 15 0 1
0 1 3 -1
2 -1 0 1 2 1
(© [—1 2 —1] @ | -2 -3 —1]
0o -1 2 1 4 4
6 7 2 213
(e) [4 2 1] ) [4 2 1]
6 1 1 8 2 4
3. Same as question 2:
. 1 0 03
- 2
3 2 -1 06
@1 _1] ® o 2 10
> 0 -1 3 2
1 -1 0 1 0 O
© |-1 2 —1] @ |2 2 —1]
0 -1 1 1 -1 1
L1
2 3 4 2 3
111
(e) |3 4 5] ® 173 32
4 56 111
345

4. (a) Find the inverses of the following matrices.

100 0

200 ogoo
(i)[OBO] (i) |
005 0370
0 00 3

4
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(b) If D is a diagonal matrix whose diagonal entries are nonzero, what is D~! ?

5. Express each system of equations in Exercise 1, Section 12.1, in the form Ax = B. Solve each system by first finding A~! whenever
possible.

12.3 An Introduction to Vector Spaces
When we encountered various types of matrices in Chapter 5, it became apparent that a particular kind of matrix, the diagonal matrix, was

much easier to use in computations. For example, if A = ( ), then A3 can be found, but its computation is tedious. If

o-(3 )

. ( 10 )5 o ( 1 0 )
D = = =
0 4 0 4° 0 1024
In a variety of applications it is beneficial to be able to diagonalize a matrix. In this section we will investigate what this means and consider a

few applications. In order to understand when the diagonalization process can be performed, it is necessary to develop several of the underlying
concepts of linear algebra.

23

then

By now, you realize that mathematicians tend to generalize. Once we have found a "good thing," something that is useful, we apply it to as
many different concepts as possible. In doing so, we frequently find that the "different concepts" are not really different but only look different.
Four sentences in four different languages might look dissimilar, but when they are translated into a common language, they might very well
express the exact same idea.

Early in the development of mathematics, the concept of a vector led to a variety of applications in physics and engineering. We can certainly
picture vectors, or "arrows," in the xy — plane and even in the three-dimensional space. Does it make sense to talk about vectors in four-
dimensional space, in ten-dimensional space, or in any other mathematical situation? If so, what is the essence of a vector? Is it its shape or the
rules it follows? The shape in two- or three-space is just a picture, or geometric interpretation, of a vector. The essence is the rules, or proper-
ties, we wish vectors to follow so we can manipulate them algebraically. What follows is a definition of what is called a vector space. It is a list
of all the essential properties of vectors, and it is the basic definition of the branch of mathematics called linear algebra.

Definition: Vector Space. Let V be any nonempty set of objects. Define on V an operation, called addition, for any two elements
X,y € V, and denote this operation by X + y. Let scalar multiplication be defined for a real number a € R and any element X € V and
denote this operation by aX. The set V together with operations of addition and scalar multiplication is called a vector space over R if the
following hold for allX, y, z €V ,and a,b € R:

(I) X+y=y+%x

(2) @+MN+z2=x+(J+2)

(3) There exists avector 0 €V, such thatitX +0 = %

(4) For each vector X € V, there exists a unique vector —x € V, such that -—x +xe€V = 0.
These are the main properties associated with the operation of addition. They can be summarized by saying that [V; +] is an abelian group.
The next five properties are associated with the operation of scalar multiplication and how it relates to vector addition.

(5) aX +3y) =ax +ay

(6) (a +b)x=ax + bx

(7) a(bx) = (ab)x

(8 1x =7%.
In a vector space it is common to call the elements of V vectors and those from R scalars. Vector spaces over the real numbers are also

called real vector spaces.

Example 12.3.1. Let V = M,,3(R) and let the operations of addition and scalar multiplication be the usual operations of addition and scalar
multiplication on matrices. Then V together with these operations is a real vector space. The reader is strongly encouraged to verify the
definition for this example before proceeding further (see Exercise 3 of this section). Note we can call the elements of M.3(R) vectors even
though they are not arrows.

Example 12.3.2. Let R? = {(a;, a») | a1, a, € R}. If we define addition and scalar multiplication the natural way, that is, as we would on
1 x 2 matrices, then R? is a vector space over R. (See Exercise 4 of this section.

In this example, we have the "bonus" that we can illustrate the algebraic concept geometrically. In mathematics, a "geometric bonus" does not
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always occur and is not necessary for the development or application of the concept. However, geometric illustrations are quite useful in
helping us understand concepts and should be utilized whenever available.

Let's consider some illustrations of the vector space R? . Let X = (1, 4)andy = (3, 1)\
We illustrate the vector (a;, ay) as a directed line segment, or "arrow," from the point (0, 0) to the point (a;, a;). The vectors X and y are as

pictured in Figure 12.3.1 together with X + ¥ = (1, 4) + (3, 1) = (4, 5), which also has the geometric representation as pictured in Figure
12.3.1. The vector 2x = 2(1, 4) = (2, 8) is a vector in the same direction as X, but with twice its length.

St 4,5}
4+ (14
3l
21
1 3,1
1 2 3 4 5
Figure 12.3.1
Addition in R?

Remarks:
(1) We will henceforth drop the arrow above a vector name and use the common convention that boldface letters toward the end of the
alphabet are vectors, while letters early in the alphabet are scalars.
(2) The vector (ay, ay, ..., a,) € R" is referred to as an n-tuple.
(3) For those familiar with vector calculus, we are expressing the vector x = a;i+ a, j + a3k €R? as (a1, ay, az). This allows us to
discuss vectors in R” in much simpler notation.
In many situations a vector space V is given and we would like to describe the whole vector space by the smallest number of essential reference

vectors. An example of this is the description of R? , the xy plane, via the x and y axes. Again our concepts must be algebraic in nature so we
are not restricted solely to geometric considerations.

Definition: Linear Combination. A vector y in vector space V (over R) is a linear combination of the vectors x;, X5, ..., X, if there exist
scalars a;, ay, ..., a, in R suchthaty = a; x; + a,x, + ... +a, X,

Example 12.3.3 The vector (2, 3) in R2 is a linear combination of the vectors (1, 0) and (0, 1) since (2, 3) = 2(1, 0) + 3(0, 1).

Example 12.3.4. Prove that the vector (5, 4) is a linear combination of the vectors (4, 1) and (1, 3). By the definition we must show that
there exist scalars a; and a, such that:

S, 4 =a4, 1)+ a(, 3),
which reduces to
5,4 =U@a + a, a+3a),
which gives us the system of linear equations
da;, +a, =5
a;+3a, =4
which has solution a; =1,a, = 1.

Another way of looking at the above example is if we replace a; and a; both by 1, then the two vectors (4, 1) and (1, 3) produce, or generate,
the vector (5.4). Of course, if we replace a; and a; by different scalars, we can generate more vectors from R2? .Ifa, = 3anda, = -2, then
a4, 1) + ax(1,3) =34, 1) +(=2)(1, 3)
= (12, 3) + (-2, -6)
=(12-2,3-6) = (10, -3)
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Example 12.3.5. Will the vectors (4, 1) and (1, 3) generate any vector we choose in R?? To see if this is so, we let (b;, b>) be an arbitrary
vector in R? and see if we can always find scalars a; and a, such that a;(4, 1) + a, (1, 3) = (by, by). This is equivalent to solving the

following system of equations:
da, + a, =by
a;+3a; =b,
which always has solutions for a; and a, regardless of the values of the real numbers b; and b,. Why? We formalize in a definition:

Definition: Generate. Let {x;, x5, ..., X,} be a set of vectors in a vector space V over R. This set is said to generate, or span, V if, for any
given vector 'y €V, we can always find scalars a;, ay, ..., a, such thaty = a;x; +a, X, + ... +a, X, . A set that generates a vector space is
called a generating set.

We now give a geometric interpretation of the above.
We know that the standard coordinate system, x axis and y axis, were introduced in basic algebra in order to describe all points in the xy plane
geometrically. It is also quite clear that to describe any point in the plane we need exactly two axes. Form a new coordinate system the follow-

ing way:
Draw the vector (4, 1) and an axis from the origin through (4, 1) and label it the x' axis. Also draw the vector (1, 3) and an axis from the origin
through (1, 3) to be labeled the y' axis. Draw the coordinate grid for the axis, that is, lines parallel, and let the unit lengths of this "new" plane

be the lengths of the respective vectors, (4, 1) and (1, 3), so that we obtain Figure 12.3.2.
From Example 12.3.5 and Figure 12.3.2, we see that any vector on the plane can be described using the old (standard xy) axes or our new x'y'

axes. Hence the position which had the name (4, 1) in reference to the standard axes has the name (1, 0) with respect to the x'y' axes, or, in the

phraseology of linear algebra, the coordinates of the point (1, 3) with respect to the x'y' axes are (1, 0).
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Figure 12.3.2

Example 12.3.6. From Example 12.3.4 we found that if we choose a; = 1 and a; = 1, then the two vectors (4, 1) and (1, 3) generate the vector
(5, 4). Another geometric interpretation of this problem is that the coordinates of the position (5, 4) with respect to the x'y' axes of Figure
12.32is (1, 1). In other words, a position in the plane has the name (5, 4) in reference to the xy axes and the same position has the name (1, 1)

in reference to the x'y' axes.
From the above, it is clear that we can use different axes to describe points or vectors in the plane. No matter what choice we use, we want to be

able to describe each position in a unique manner. This is not the case in Figure 12.3.3. Any point in the plane could be described via the x'y'
axes, the x'z' axes or the y'z' axes. Therefore, in this case, a single point would have three different names, a very confusing situation.

We formalize the above discussion in two definitions and a theorem.
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Figure 12.3.3

Definition: Linear Independence/Linear Dependence. The set of vectors {x;, X5, ..., X,} a vector space V (over R) is linearly indepen-
dent if the only solution to the equation a;x; +a,x, +...+a3;x3=01is a; = a, = ... = a, = 0. Otherwise the set is called a linearly
dependent set.

Definition: Basis. A set of vectors B ={x;, x,, ..., X,} is a basis for a vector space V (over R) if:
(1) B generates V, and
(2) B is linearly independent.

Theorem 12.3.1. If {x;, x5, ..., x,} is a basis for a vector space V over R, then any vector y € V can be uniquely expressed as a linear
combination of the x;'s.

Proof: Assume that {x, x;, ..., x,,} is a basis for V over R. We must prove two facts:
(1) each vector y € V can be expressed as a linear combination of the x; 's, and

(2) each such expression is unique.

Part (1) is trivial since a basis, by its definition, must be a generating set for V.

The proof of (2) is a bit more difficult. We follow the standard approach for any uniqueness facts. Let y be any vector in V and assume that
there are two different ways of expressing y, namely

Yy=aiXi+amx+ ... +a,x,
and
y=bixi+byxo+...+b,x,
where at least one ¢; is different from the corresponding b;. Then equating these two linear combinations we get
arxXi+taxs+...+a, X, =b1x1+byx,+... +b,x,
so that
(ar =b)xi+(@—-by)xy+...+(a,—by)x,=0

Now a crucial observation: since the x;'s form a linearly independent set, the only solution to the previous equation is that each of the coeffi-
cients must equal zero, so @; —b; =0 for i = 1, 2, ..., n. Hence a; = b;, for all i. This contradicts our assumption that at least one q; is
different from the corresponding b;, so each vector y € V can be expressed in one and only one way. H

Theorem 12.3.1, together with the previous examples, gives us a clear insight into the meaning of linear independence, namely uniqueness.

Example 12.3.7. Prove that {(1, 1), (-1, 1)} is a basis for R? over R and explain what this means geometrically. First we must show that the

vectors (1, 1) and (-1, 1) generate all of R2. This we can do by imitating Example 12.3.5 and leave it to the reader (see Exercise 10 of this
section). Secondly, we must prove that the set is linearly independent.
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Let a; and a; be scalars such that a;(1, 1) + a> {-1, 1) = (0, 0). We must prove that the only solution to the equation is that a; and a, must
both equal zero. The above equation becomes (a; — a2, a; + a2 ) = (0, 0) which gives us the system

a— a, =0
a + a=0

The augmented matrix of this system reduces in such way that the only solution is the trivial one of all zeros:

1 -1 0 100 o
(1 1 0)_>(0 | 0) = a=a=

Therefore, the set is linearly independent.

To explain the results geometrically, note through Exercise 12, part a, that the coordinates of each vector y € R? can be determined uniquely
using the vectors (1,1) and (-1, 1). The concept of dimension is quite obvious for those vector spaces that have an immediate geometric
interpretation. For example, the dimension of R? is two and that of R is three. How can we define the concept of dimension algebraically so
that the resulting definition correlates with that of R? and R? ? First we need a theorem, which we will state without proof.

Theorem 12.3.2. If V is a vector space with a basis containing n elements, then all bases of V contain n elements.

Definition: Dimension. Let V be a vector space over R with basis {x;, x5, ..., x,}. Then the dimension of V is n. We use the notation
dim V = nto indicate that V is n-dimensional

EXERCISES FOR SECTION 12.3

A Exercises
1. Ifa = 2,b = -3,

A_(10—1) B_(z -2 3) dC_(lO 0)
“l23 4) P7la 5 8)*"T 32 22

verify that all properties of the definition of a vector space are true for M3 (R) with these values.

2. Leta=3,b=4,x= (-1, 3),y = (2, 3),and z = (1, 0). Verify that all properties of the definition of a vector space are true for R? for
these values.

3. (a) Verify that M, (R) is a vector space over R.
(b) Is M, (R) a vector space over R?
4. (a) Verify that R? is a vector space over R.

(b) Is R" a vector space over R for every positive integer n?

2

5. LetPP={ay + a1 x + ar x* + a3 x° | ag, ai, a», az € R}; that is, P? is the set of all polynomials in x having real coefficients with degree

less than or equal to 3. Verify that P? is a vector space over R.

6. For each of the following, express the vector y as a linear combination of the vectors x; and x;.
(@y=0G,0,x =, 0,andx, = (0,
®y=@2, D, x =2, D,and x, = (1, )

©y=@3,4, x; =(, I),and x, = (-1, 1)

1 2
7. Express the vector ( _3 3 ) € M5, (R), as a linear combination of

11 -1 5 01 00
() (G ()l )
8. Express the vector xA3 — 4 x2 + 3 € P? as a linear combination of the vectors 1, x, x* , and x°.
9. (a) Show that the set {x;, x,} generates R? for each of the parts in Exercise 6 of this section.
(b) Show that {x;, x;,, x3} generates R2 where x; = (1, 1), x,= (3,4),and x3 = (=1, 3).
(c) Create a set of four or more vectors that generates R? .

(d) What is the smallest number of vectors needed to generate R2? [R"?

(e) Show that the set of matrices containing
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(10) (01)(0 0) d(O O)
00)loo)\1 o)™ o1
generates Myy»(R)

(f) Show that {1, x, x2, x°} generates P3.
10. Complete Example 12.3.7 by showing that {(1, 1), (-1, 1)} generates R?
11. (a) Prove that {(4, 1), (1, 3)}is a basis for R? over R.
(b) Prove that {(1, 0), (3, 4)} is a basis for R? over R.
(c) Prove that {(1,0, —1), (2, 1, 1), (1, =3, —1)} is a basis for R? over R.
(d) Prove that the sets in Exercise 9, parts e and f, form bases of the respective vector spaces.

12. (a) Determine the coordinates of the points or vectors (3, 4), (-1, 1),and (1, 1) with respect to the basis {(1, 1), (=1, 1)} of R3. Interpret
your results geometrically,

(b) Determine the coordinates of the points or vector (3, 5, 6) with respect to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Explain why this
basis is called the standard basis for R .
13. (@ Lety; = (1,3,5,9), y= (5,7, 6, 3),and ¢ = 2. Find y; + y, and c y;.

(b) Let fi(x)

1 +3x+5x2+9x° ,hx)=5 + 7x+6x*+3x3andc = 2. Find fi(x) + f>(x) and ¢ f(x).

59 6 3

(d) Are the vector spaces R* , P> and M, (R) isomorphic to each other? Discuss with reference to parts a, b, and c.

13 57
(©) LetA:( ),Bz( ),andc:Z.FindA+Banch.
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12.4 The Diagonalization Process
We now have the background to understand the main ideas behind the diagonalization process.

Definition: Eigenvalue, Eigenvector. Let A be an nxn matrix over R. A is an eigenvalue of A if for some nonzero column vector
x € R" we have Ax = Ax. xis called an Eigenvectors corresponding to the eigenvalue A.

1

Example 12.4.1. Find the eigenvalues and corresponding eigenvectors of the matrix A = ( ) 3

X X1
). We want to find nonzero vectors x = ( . )
2

and real numbers A such that

ax = ax @( )] (3)

)02 (0)-(6)
)26 1))
(ié) lo 1 ))(2)-(o)

‘:'( ) 31A)(2):(8) (1242)

The last matrix equation will have nonzero solutions if and only if

2-2 1
det( ’ 3_/1)20

>4

or 2 - A)@3 —A) — 2 = 0, which simplifies to A2 — 51 4+ 4 = 0. Therefore, the solutions to this quadratic equation, A; = 1 and A, = 4,
are the eigenvalues of A. We now have to find eigenvectors associated with each eigenvalue.

Case 1. For A; = 1, Equation 12.4a becomes:
(50
2 3-1)\x 0
1 1Y\(x 0
(2 2)(X2):(0)
which reduces to the single equation, x; + x, = 0. From this, x; = —x;. This means the solution set of this equation is (in column notation)

f= ()]s

—-C . . . . .
So any column vector of the form ( . ) where ¢ is any nonzero real number is an eigenvector associated with A; = 1. The reader should

verify that, for example,

HHEE

so that [ 32 ] is an eigenvector associated with eigenvalue 1.

Case 2. For A, =4 equation 12.4.a becomes:
(5L
2 3-4 X2 - 0
(5 )=o)
2 -1 X2 - 0
which reduces to the single equation —2 x; + x, = 0, so that x, = 2 x;. The solution set of the equation is

£={( )] <R}
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) ), where ¢ can be any nonzero number.
c

Therefore, all eigenvectors of A associated with the eigenvalue A, = 4 are of the form ( _ N

The following theorems summarize the more important aspects of this example:
Theorem 12.4.1. Let A be any n Xn matrix over R. Then A € R is an eigenvalue of A if and only if det(A — A1) = 0.

The equation det(A — A ) = O is called the characteristic equation and the left side of this equation is called the characteristic polynomial of
A.

Theorem 12.4.2. Nonzero eigenvectors corresponding to distinct eigenvalues are linearly independent.
The solution space of (A — A1) x = 0 is called the eigenspace of A corresponding to A. This terminology is justified by Exercise 2 of this section.

We now consider the main aim of this section. Given an nXxn (square) matrix A, we would like to "change" A into a diagonal matrix D, perform
our tasks with the simpler matrix D, and then describe the results in terms of the given matrix A.

Definition: Diagonalizable Matrix. An nxn matrix A is called diagonalizable if there exists an invertible n xn matrix P such that
P~! AP is a diagonal matrix D. The matrix P is said to diagonalize the matrix A.

Example 12.4.2. We will now diagonalize the matrix A of Example 12.4.1. Form the matrix P as follows: Let PV be the first column of P.

1
Choose for PV any eigenvector from E;. We may as well choose a simple vector in E; so P = ( 1 ) is our candidate. Similarly, let P be
the second

1
column of P, and choose for P® any eigenvector from E,. The vector P@ = ( ) ) is a reasonable choice, thus

2 1
1 . 1(2 -1 3 "3
- 1_ 1 _
P‘(—lz)andp‘s(ll) Lot
3 3
So that

Par= iR -0

301 1 2 3)\-12 0 4

Notice that the elements on the main diagonal of D are the eigenvalues of A, where D;; is the eigenvalue corresponding to the eigenvector P
Remarks:

(1) The first step in the diagonalization process is the determination of the eigenvalues. The ordering of the eigenvalues is purely arbitrary. If

0 ) (see Exercise 3b of this section). Nonethe-

1
less, the final outcome of the application to which we are applying the diagonalization process would be the same.

4
we designate A; = 4 and A, = 1, the columns of P would be interchanged and D would be ( 0

(2) If A is an nxn matrix with distinct eigenvalues, then P is also an 7 x n matrix whose columns PV, P? | ..., P™ are n linearly independent
vectors.

Example 12.4.3. Diagonalize the matrix

1 12 -18
A:(O -11 18 ]

0 -6 10
1-2 12 -18
det(A—)LI):det[ 0 -A-11 18 ]
0 -6 10 -2
-A-11 18
:(I—A)det( -6 10_/1)

=1 -2 ((-A=11)(10-2A) + 108)
=(1-)DQA2+1-2)
Hence, the equation det(A — A7) = 0 becomes

A-DQ2+2-2)=—-QA-1D*A+2)

Therefore, our eigenvalues for A are A; = -2 and A, = 1. We note that we do not have three distinct eigenvalues, but we proceed as in the
previous example.

Case 1. For A; = -2 the equation (A —AI)x = 0 becomes
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3 12 —18 )\ ( x 0
[O " b ][xz]: [0 ]
0 -6 12 X3 0

Using Mathematica, we can row reduce the matrix:

3 12 -18
RowReduce[ [ 0 -9 18 ]
0 -6

12
10 2
[0 1 —2]
00 O

In equation form, the matrix equation is then equivalent to

X1 = -2 X3

Xy = 2 X3
Therefore, the solution, or eigenspace, corresponding to A; = —2 consists of vectors of the form

-2 X3 -2
X3 1
-2
Therefore [ 2 ] is an eigenvector corresponding to the eigenvalue A; = —2, and can be used for our first column of P:
1

-2
po- [ , J
1

Before we continue we make the observation: E, is a subspace of R? with basis (P} and dimE, = 1.

Case 2. If A, = 1, then the equation (A — A ) x = 0 becomes

0 12 —18)\(x 0
[O -12 18 ] xz]:[O]
X3 0

0 -6 9

Without the aid of any computer technology, it should be clear that all three equations that correspond to this matrix equation are equivalent to

3 .
2x—=3x3=0,0rx; = 3 %3 Notice that x; can take on any value, so any vector of the form

X1 1 0
3 3
R :x1[0]+X3 5
X3 0 1

will solve the matrix equation.

We note that the solution set contains two independent variables, x; and x3. Further, note that we cannot express the eigenspace E; as a linear
combination of a single vector as in Case 1. However, it can be written as

0

1
E, = {X|[0]+X3 2 ‘xl,x3€ [R}.

0 1

We can replace any vector in a basis is with a nonzero multiple of that vector. Simply for aesthetic reasons, we will multiply the second vector

[N]

0 2

What this means with respect to the diagonalization process is that A, = 1 gives us both Column 2 and Column 3 the diagonalizing matrix.
The order is not important. Let

1 0 -2 10
P(z)z[O] and P(3)=[3] and so P=(2 0 3]
0 2 1 02

1 0
that generates E, by 2. Therefore, the eigenspace E is a subspace of R* with basis {[ 0 ], [ 3 ]} and so dimE, = 2.
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The reader can verify (see Exercise 5 of this section) that

0 2 -3 -2 00
P‘I:[l 4 —6] and P‘IAP:[O 1 0]
0 -1 2 0 01

In doing Example 12.4.3, the given 3 X3 matrix A produced only two, not three, distinct eigenvalues, yet we were still able to diagonalize A.
The reason we were able to do so was because we were able to find three linearly independent eigenvectors. Again, the main idea is to produce
a matrix P that does the diagonalizing. If A is an n X n matrix, P will be an nxn matrix, and its n columns must be linearly independent
eigenvectors. The main question in the study of diagonalizability is “When can it be done?” This is summarized in the following theorem.

Theorem 12.4.3. Let A be an n X n matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

Outline of a proof: (&) Assume that A has linearly independent eigenvectors, PV, P, ... P" with corresponding eigenvalues A, A5, ..., A,,.
We want to prove that A is diagonalizable. Column i of the n Xn matrix AP is A P? (see Exercise 7 of this section). Then, since the P? is an
eigenvector of A associated with the eigenvalue A; we have AP® = A; P9 fori = 1, 2, ..., n. But this means that AP = P D, where D is
the diagonal matrix with diagonal entries A;,A,, ...,A,. If we multiply both sides of the equation by P~ we get the desired P"' AP = D.

(=) The proof in this direction involves a concept that is not covered in this text (rank of a matrix); so we refer the interested reader to
virtually any linear algebra text for a proof. ™

We now give an example of a matrix which is not diagonalizable.

1 00
Example 12.4.4. Let us attempt to diagonalize the matrix A = [ 0 2 1 ]

1 -1 4

1 0 0

A:[OZI]
1 -1 4

1 00

021]

1 -1 4

1-2 0 0
det(A—)lI):det( 0 2-2 1 J
1 -1 4-2
2-1 1
_(I—A)det( 1 4_)[)
=(1-H)@2-HE-H+D
=(1-)@A%-6A+9)
=(1-1)@A-3)7
dettA-A0)=0 > A=1lorA=3
Therefore there are two eigenvalues, A; = 1 and A, = 3. Since A; is an eigenvalue of degree it will have an eigenspace of dimension 1. Since
A, is a double root of the characteristic equation, the dimension of its eigenspace must be 2 in order to be able to diagonalize.
Case 1. For A; = 1, the equation (A — A1) x = 0 becomes

0 0 0)(x 0
[0 1 IJ[XZ]:[O]
1 -1 3)\{x; 0

A quick Mathematica evaluation make the solution to this system obvious

RowReduce [A - IdentityMatrix[3]]

1 04
[O 1 1]
000

There is one free variable, x3, and
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X1 -4 X3 -4
X3 X3 1
-4

Hence, {[ -1 ]} is a basis for the eigenspace of A; = 1.
1

Case 2. For A, = 3, the equation (A — A7) x = 0 becomes

-2 0 0 X1 0
1 -1 1)\x 0

RowReduce [A - 3 IdentityMatrix[3]]

100
[O 1 —1]
00 O

Once again there is only one free variable in the row reduction and so the dimension of the eigenspace will be one:

R

Hence, {[ 1 ]} is a basis for the eigenspace of A, = 3. This means that A; = 3 produces only one column for P. Since we began with only two
1

eigenvalues, we had hoped that one of them would produce a vector space of dimension two, or, in matrix terms, two linearly independent

columns of P. Since A does not have three linearly independent eigenvectors A cannot be diagonalized.

& Mathematica Note

Diagonalization can be easily done with a few built-in functions of Mathematica. Here is a 3 X 3 matrix we've selected because the eigenval-
ues are very simple, and could be found by hand with a little work.

410
151];

01 4

A =

The set of linearly independent eigenvectors of A can be computed:

Eigenvectors[A]

1 2 1
[—1 0 1]
I -11

The rows of this matrix are the eigenvectors, so we transpose the result to get our diagonalizing matrix P whose columns are eigenvectors.

P = Transpose [Eigenvectors[A]]

1 -1 1
[ 2 0 -1 J
1 1 1
We then use P to diagonalize. The entries in the diagonal matrix are the eigenvalues of A.
Inverse[P] .A.P
6 00
[ 040 ]
003

We could have gotten the eigenvalues directly this way:
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Eigenvalues[A]

{6, 4, 3}
Most matrices that are selected at random will not have "nice" eigenvalues. Here is a new matrix A that looks similar to the one above.
810
151 ] ;

017

A=

Asking for the eigenvalues first, we see that the result is returned symbolically as the three roots to a cubic equation. The default for Mathemat-
ica is to leave these non-computed. Since the entries of A are exact numbers, Mathematica is capable of giving an exact solution, but it's very
messy. The easiest way around the problem is to make the entries in A approximate. The following expression redefines A as approximate.

A = N[A]

8. 1. 0.
[l. 5. 1.]
0. 1. 7.

Now we can get approximate eigenvalues, and the approximations are very good for most purposes.

Eigenvalues[A]
{8.3772, 7.27389, 4.34891}

We can verify that the matrix can be diagonalized although due to round-off error some of the off-diagonal entries of the "diagonal" matrix are
nonzero.
P = Transpose [Eigenvectors[A]]
0.906362 —0.341882 0.248244

0.341882 0.248244 —-0.906362
0.248244 0.906362  0.341882

Inverse[P] .A.P

8.3772 2.22045x107'¢  6.66134x 10716
0. 727389 4.44089 % 10716
1.66533x107" —4.44089x 10716 434891

The Chop function will set small numbers to zero. The default thresh hold for "small" is 107'° but that can be adjusted, if desired.

Diag = Chop[Inverse[P].A.P]

8.3772 0 0
[ 0 7.27389 0
0 0 4.34891

We can't use the name D here because Mathematica reserves it for the differentiation function.

If you experiment with more matrices, you will undoubtedly encounter situations where some eigenvalues are complex. The process is the
same, although we've avoided these just for simplicity.

@ Sage Note

We start by defining the same matrix as we did in Mathematica. We also declare D and P to be variables.

A = Matrix (QQ, [[4, 1, 0], [1, 5, 1], [0, 1, 4]]);A
[410]
[15 1]
[0 1 4]
var (' D, P")
(D, P)

We have been working with "right eigenvectors" since the x in Ax = Ax is a column vector to the right of A. It's not so common but still
desirable in some situations to consider "left eigenvectors," so Sage allows either one. The right eigenmatrix method returns a pair of
matrices. The diagonal matrix, D, with eigenvalues and the diagonalizing matrix, P, which is made up of columns that are eigenvectors
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corresponding to the eigenvectors of D.

(D,P)=A.right eigenmatrix();(D,P)

We should note here that P is not unique because even if an eigenspace has dimension one, any nonzero vector in that space will serve as an
eigenvector. For that reason, the P generated by Sage isn't identical to the one generated by Mathematica, but they both work. Here we verify
the result for our Sage calculation. Recall that an asterisk is used for matrix multiplication in Sage.

P.inverse( ) *A*P
= [6 0 0]

[0 4 0]

[0 0 3]

Here is a second matrix, again the same as we used with Mathematica.

A2=Matrix(QQ,[[8,1,0],[1,5,11,[0,1,7]1]);A2
[8 10]
[15 1]
[0 1 7]

Here we've already specified that the underlying system is the rational numbers. Since the eigenvalues are not rational, Sage will revert to
approximate number by default. We'll just pull out the matrix of eigenvectors this time and display rounded entries. Here the diagonalizing
matrix looks very different from the result from Mathematica, but this is because he eigenvalues are not in the same order in the two calcula-
tions. They both diagonalize but with a different diagonal matrix.

P=A2.right eigenmatrix()[1]
P.numerical approx(digits=3)

[ 1.00 1.00 1.00]
[ -3.65 -0.726 0.377]
[ 1.38 -2.65 0.274]
D=(P.inverse()*A2*P);D.numerical approx(digits=3)
[ 4.35 0.000 0.000]
[0.000 7.27 0.000]
[0.000 0.000 8.38]

EXERCISES FOR SECTION 12.4
A Exercises

), the matrix of Example 12.4.1, associated with the two eigenvalues 1 and 4. Verify your

2 1
1. (a) List three different eigenvectors of A = ( ) 3

results.

((b) Choose one of the three eigenvectors corresponding to 1 and one of the three eigenvectors corresponding to 4, and show that the two
chosen vectors are linearly independent.

2. (a) Verify that E; and E, in Example 12.4.1 are vector spaces over R. Since they are also subsets of R?, they are called subvector-spaces, or
subspaces for short, of R2. Since these are subspaces consisting of eigenvectors, they are called eigenspaces.

(b) Use the definition of dimension in the previous section to find dim E; and dim E, . Note that dim E;+ dim E; = dim R2. This is not a
coincidence.

10
3. (a) Verify that P! A P is indeed equal to ( 0 4 ), as indicated in Example 12.4.2.

1 1 10
(b) Choose PV = ( 5 ) and P® = ( - ) and verify that the new value of P satisfies P"' AP = ( 0 4 )

(c) Take any two linearly independent eigenvectors of the matrix A of Example 12.4.2 and verify that P~! A P is a diagonal matrix.
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0
4. (a) Let A be the matrix in Example 12.4.3 and P = [ 1 01 ] Without doing any actual matrix multiplications, determine the value of
102
P1AP
(b) If you choose the columns of P in the reverse order, what is P! A P?

5. Diagonalize the following, if possible:

12 -2 1 30
@ (55) ® (5 4) © (g 4)
1 -1 4 6 0 0 1 -1 0
(d) [3 2 —1] (e) [0 7 —4] (f)[—l 2 —1]
2 1 -1 91 3 0 -1 1
6. Diagonalize the following, if possible:
01 21 2 -1
@ () ® (5 ) @7 )
1 3 6 110 2 -1 0
(d) [—3 -5 —6] (e)[lO 1] (f)[—l 2 —1]
3 3 6 011 0 -1 2
B Exercise

7. Let A and P be as in Example 12.4.3. Show that the columns of the matrix A P can be found by computing A PV, A P® | ... A P™,

8. Prove that if P is an nxn matrix and D is a diagonal matrix with diagonal entries d, da, ..., d,, then P D is the matrix obtained from P, but

multiplying columniof Pby d;,i = 1, 2, ..., n.

C Exercise

9. (a) There is an option to the Mathematica functions Eigenvectors and Eigenvalues called Cubics that will use the cubic equation
810

to find exact eigenvalues of a matrix like { 151 J Use that option to find the exact eigenvalues of the matrix. Diagonalize the matrix using
017

the Cubics option and then convert the result to a matrix of approximate numbers to compare your result with the approximate result we
found in the Mathematica Note.

12.5 Some Applications

A large and varied number of applications involve computations of powers of matrices. These applications can be found in science, the social
sciences, economics, the analysis of relationships with groups, engineering, and, indeed, any area where mathematics is used and, therefore,
where programs are to be developed. We will consider a few diverse examples here.

To aid your understanding of the following examples, we develop a helpful technique to compute A™, m > 1. If A can be diagonalized, then
there is a matrix P such that P! AP = D, where D is a diagonal matrix and

A"=PD"P! forallm=1. (12.5a)

You are asked to prove this equation in Exercise 9 of Section 5.4. The condition that D be a diagonal matrix is not necessary but when it is, the
calculation on the right side is particularly easy to perform. Although the formal proof of equation 12.4a is done by induction, the reason why it
is true is easily seen by writing out an example such as m = 3:
A" = (PDPY)" To getthis, solve P~' AP = D for A and substitute
=®PDPYYPDPY(PDPT
=PDP'P)D(P ' P)DP! by associativity of matrix mult.
=PDIDIDP
=PDDDP!
= ppp!
Example 12.5.1: Recursion. Consider the computation of terms of the Fibonacci sequence, which we examined in Example 8.1.5:
Fo=1, Fi=1

Fy=F_+F,, fork=2.
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In order to formulate the calculation in matrix form, we introduced the "dummy equation" F;,_; = F;_; so that now we have two equations

Fp =F_1+F,
Fi1=Fi

These two equations can be expressed in matrix form as
Fe N\ (1 1\(Fey) .
()= o)) e
Fi1\ . 11
A(Fk—z) ifa= (1 0)

F
= A2( H) if k=3
Fis
etc. if kislarge enough

We can use induction to prove that if k = 2,

(FI::):Ak_l(i)

Next, by diagonalizing A and using the fact that A" = P D™ P~!. we can show that

o (ESRES)

See Exercise la of this section.
Comments:

(1) An equation of the form Fy, = aF,_; + bF,_, , where a and b are given constants, is referred to linear homogeneous second-order
difference equation. The conditions Fy = ¢y and F| = ¢ , where ¢; and ¢, are constants, are called initial conditions. Those of you who are
familiar with differential equations may recognize that the this language parallels what is used in differential equations. Difference (AKA
recurrence) equations move forward discretely—that is, in a finite number of positive steps—while a differential equation moves continu-
ously —that is, takes an infinite number of infinitesimal steps.

(2) A recurrence relationship of the form F;, = aF;_; + b, where a and b are constants, is called a first-order difference equation. In order to
write out the sequence, we need to know one initial condition. Equations of this type can be solved similarly to the method outlined in Example
12.5.1 by introducing the superfluous equation 1 =0 F;_; + 1 to obtain in matrix equation:

(F)=6 D) = ()= ()

Example 12.5.2: Graph Theory. Consider the graph in Figure 12.5.1.

Figure 12.5.1

From the procedures outlined in Section 6.4, the adjacency matrix of this graph is

110
Az[l 0 1]
011

Recall that A* is the adjacency matrix of the relation /¥ , where r is the relation {(a, a), (a, b), (b, a), (b, ¢), (c, b), (c, c)} of the above
graph. Also recall that in computing A¥, we used Boolean arithmetic. What happens if we use "regular" arithmetic? For example,

211
Az[lZl]
112

How can we interpret this? We note that A33 = 2 and that there are two paths of length two from c¢ (the third node) to ¢. Also, A;3 = 1, and
there is one path of length 2 from a to c. The reader should verify these claims from the graph in Figure 12.5.1.

Theorem 12.5.1. The entry (Ak) . is the number of paths, or walks, of length k from node v;, to node v; .

ij
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How do we find A for possibly large values of k? From the discussion at the beginning of this section, we know that AK = PDF P! if A is
diagonalizable. We leave to the reader to show that A = 1, 2, and — 1 are eigenvalues of A with eigenvectors

e

respectively, so that

1 0 O
Ak=pl0O 2 o |P!
0 0 (-DF
1 1
- 0 -
11 1 2 2
_ _ -1_| L L 1
whereP_[O 1 Z]and P = > 3 3
-11 1 [
6 3 6

See Exercise 5 of this section for the completion of this example.

Example 12.5.3: Matrix Calculus. Those who have studied calculus recall that the Maclaurin series is a useful way of expressing many
common functions. For example,

X Sy
e = Z k_'
k=0
Indeed, calculators and computers use these series for calculations. Given a polynomial f(x), we defined the matrix-polynomial f (A) for square
matrices in Chapter 5. Hence, we are in a position to describe e” for an n X n matrix A as a limit of polynomial. Formally, we write

A E Ak
T A
k=0

=T+ A+ S
2! 3!
Again we encounter the need to compute high powers of a matrix. Let A be an nXxn diagonalizable matrix. Then there exists an invertible nxn
matrix P suchthat P"' AP = D, a diagonal matrix, so that

—1
oA = PDP

X DF)
()
k=0

The infinite sum in the middle of this final expression can be easily evaluated if D is diagonal. All entries of powers off the diagonal are zero
and the i entry of the diagonal is
> D > Dif .
[2_] = o
ii

k!
k=0

21 1 1 10
For example, if A = ( ) 3 ) the first matrix we diagonalized in Section 12.3, we found that P = ( _1 2 ) and D = (0 4 ) . Therefore,
2 1
Ao ( 1 1 )( e 0 ) 3 3
' -1 2J){o &)L 1
303
2e e e e
—_— _ _— 4 —
_ 3003 3003
- 204 e 2¢*

2e
-—— + +

3 3 3 3
200116 17.2933

( 34.5866 37.3049 )

Comments on Example 12.5.3:

(1) Many of the ideas of calculus can be developed using matrices. For example, if

£ 3P +8¢
A =
@® (e‘ 2 J
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then

dA® 312 61+8
T 0
(2) Many of the basic formulas in calculus are true in matrix calculus. For example,

dADHB0) _ dAD | dBW

dt dt dt

and if A is a constant matrix,

deMt

dt

= Ae?

(3) Matrix calculus can be used to solve systems of differential equations in a similar manner to the procedure used in ordinary differential
equations.

% Mathematica Note
Mathematica's matrix exponential function is MatrixExp.

MatrixE 21

atrix xp[(2 3)]
%(2e+e4) %(—e+e4)
2 4y L 4
3((e+e) 3(‘e+2e)

@ Sage Note

Sage's matrix exponential method is called exp.

A=Matrix(QQ,[[2,11,[2,311);

A.exp()
[ 2/3%e + 1/3*%e”4 -1/3*e + 1/3*e"4]
[-2/3*%e + 2/3%e”4 1/3*e + 2/3*e"4]

EXERCISES FOR SECTION 12.5
A Exercises

1. (a) Write out all the details of Example 12.5.1 to show that the formula for F, given in the text is correct.

(b) Use induction to prove the assertion made in Example 12.5.1 that

(e )= (1)

2. (a) Do Example 8.3.8 of Chapter 8 using the method outlined in Example 12.5.1. Note that the terminology characteristic equation,
characteristic polynomial, and so on, introduced in Chapter 8, comes from the language of matrix algebra,

(b) What is the significance of Algorithm 8.3.1, part ¢, with respect to this section?
3. Solve S(k) =58k — 1) + 4, with S(0) = 0, using the method of this section.

4. How many paths are there of length 6 between vertex 1 and vertex 3 in Figure 12.5.2?7 How many paths from vertex 2 to vertex 2 of length
6 are there? Hint: The characteristic polynomial of the adjacency matrix is A*.
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Figure 12.5.2
5. Use the matrix A of Example 12.5.2 to:

(a) Determine the number of paths of length 1 that exist from vertex a to each of the vertices in Example 12.5.2. Verify using the graph.
Do the same for vertices b and c.

(b) Verify all the details of Example 12.5.2.

(¢) Use Example 12.5.2 to determine the number of paths of length 4 there are from each node in the graph of Figure 12.5.1 to every
node in the graph. Verify your results using the graph.

6. LetA:(_2 _1)

1 2
(a) Find ¢4
00 vk
(b) Recall that sinx = ), EZ /i::' and compute sin A.
k=0 ’

(d) Formulate a reasonable definition of the natural logarithm of a matrix and compute In A.

11
7. We noted in Chapter 5 that since matrix algebra is not commutative under multiplication, certain difficulties arise. Let A = ( 00 ) and

1=(o 5}

(a) Compute et

A,B B A+B

,e?,and eA*B. Compare e?e?, ePe? and e

(b) Show that if 0 is the 2 X 2 zero matrix, then ¢° = 1.

B

(c) Prove that if A and B are two matrices that do commute, then e4*5 = ¢4 ¢, thereby proving that ¢* and ¢® commute.

(d) Prove that for any matrix A, (e*)™! = ™.

8. Another observation for adjacency matrices: For the matrix in Example 12.5.2, note that the sum of the elements in the row corresponding
to the node a (that is, the first row) gives the outdegree of a. Similarly, the sum of the elements in any given column gives the indegree of the
node corresponding to that column.

3\\
//

2

o

Figure 12.5.3

(a) Using the matrix A of Example 12.5.2, find the outdegree and the indegree of each node. Verify by the graph.
(b) Repeat part (a) for the directed graphs in Figure 12.5.3.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 12

Section 12.1

1. Find all solutions of the following systems:

(a) 2x1 = 2xp + x3 =1 (b) X1 -x3=0
XQ—X3=0 2X1—4X2 =1
Xp +x +x3=3 —Xx1 +x —x3 =-—1

2. Find all solutions of
X — X + ZX:; =1
3x + x3 =2
2Xx1 + X -x3 =1
Section 12.2

3. Determine A~! using the method of the text if

12 1
A:[—Z -3 -1].
1 4 4

4. Find the inverse of the matrix

0-410
1 0 00
01 00
0 0 0 4

Section 12.3

5. In this exercise, write elements of R? in column form. Let {x;, x,} be a basis in R2. Prove that {Ax;, Ax, } is a basis for R? if and only if A
has an inverse.

6. LetV = {f: X - R}, where X is any nonempty set. Show that V is a vector space under the operations:
(f+ 9w =f(x) + gx) forf,g e V,andx € X
(cHx) =cfx)forf € V,c € R,andx € X.
7. (a) Convince yourself that M,.3(Z5) is a vector space over Z; (i.e., allow only scalars from Z, and use mod 2 arithmetic).
(b) What is the vector —X, for any X € M»,3(Z5)?
(¢) Whatis | Myy3(Z>) |?
8. (a) Define operations on R so that R is a vector space over R.

(b) What is a basis for the vector space part a? What is its dimension?

Section 12.4

06 02
9. Employ the diagonalization process to approximate the 100" power of A, where A = [ 04 08 ]
0 -5 0 42 2
10. LetB=[3 o _3 | and C=|2 4 2]
3 3 22 4
0 6 -6

(a) Find all of the eigenvalues of B.

(b) Given that 2 and 8 are the only eigenvalues of C, find invertible matrix P and diagonal matrix D such that C = PDP" .
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010 400
11. Let A:[l 0 1] andB:[O 4 1]

010 002
(a) Find all of the eigenvalues of A.

(b) Given that 4 and 2 are the only eigenvalues of B, find invertible matrix P and diagonal matrix D such that B = PDP™'.
12. Find all eigenvalues and associated eigenvectors of the matrix A, and write A in the form A = PDP™.
31 ]

Az[o 2

Section 12.5

13. For a multigraph we can define its matrix representation as follows: A;; = the number of different edges e from vertex g; to vertex a;.
(a) Draw the digraph that is described by the following matrix:
210
A= [ 103 ]
110

(b) Determine A? and interpret the result using Theorem 12.5.1.
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Chapter 13

BOOLEAN ALGEBRA

George Boole

George Boole wasn't idle a lot.

He churned out ideas on the spot,
Making marvellous use of
Inclusivel/exclusive

Expressions like AND, OR, and NOT

- limerick by Andrew Robinson from the Omnificent English Dictionary In Limerick Form

GOALS

In this chapater we will develop an algebra that is particularly important to computer scientists, as it is the mathematical foundation of computer
design, or switching theory. The similarities of Boolean algebra and the algebra of sets and logic will be discussed, and we will discover special
properties of finite Boolean algebras.

In order to achieve these goals, we will recall the basic ideas of posets introduced in Chapter 6 and develop the concept of a lattice, which has
applications in finite-state machines. The reader should view the development of the topics of this chapter as another example of an algebraic
system. Hence, we expect to define first the elements in the system, next the operations on the elements, and then the common properties of the
operations in the system.
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13.1 Posets Revisited

From Chapter 6, Section 3, we recall the following definition:

Definition: Poset. A set L on which a partial ordering relation (reflexive, antisymmetric, and transitive) r is defined is called a partially
ordered set, or poset, for short.

We recall a few examples of posets:

(1) L = R and r is the relation <.

(2) L = P(A) where A = {a, b} and r is the relation C.
(3) L ={1, 2, 3, 6} and r is the relation | (divides). We remind the reader that the pair (a, b) as an element of the relation r can be
expressed as (a, b) € r,or ar b, depending on convenience and readability.

The posets we will concentrate on in this chapter will be those which have maxima and minima. These partial orderings resemble that of < on
R, so the symbol < is used to replace the symbol r in the definition of a partially ordered set. Hence, the definition of a poset becomes:

Definition: Poset. A set on which a partial ordering, < , is defined is called a partially ordered set, or, in brief, a poset. Here, < is a
partial ordering on L if and only if for all a, b, ¢ € L:

(1) a = a(reflexivity),

2) a <= bandb < a > a = b (antisymmetry), and

We now proceed to introduce maximum and minimum concepts. To do this, we will first define these concepts for two elements of the poset
L, and then define the concepts over the whole poset L.

Definition: Lower Bound, Upper Bound. Let a, b € L, a poset. Then ¢ € L is a lower bound of a and b if c < aandc < b.d € Lis
an upper bound of aand b ifa < dand b =< d.

Definition: Greatest Lower Bound. Let L be a poset and < be the partial ordering on L. Let a, b € L, theng € L is a greatest
lower bound of a and b, denoted glb(a, b), if and only if

o g=<a,
P g < b, and
. ifg' € Lsuchthatifg' < aandg' < b,theng' < g.

The last condition says, in other words, that if g'is also a lower bound, then g is "greater" than g', so g is a greatest lower bound.
The definition of a least upper bound is a mirror image of a greatest lower bound:

Definition: Least Upper Bound. Let L be a poset and < be the partial ordering on L. Leta, b € L, then ¢/ € L is a least upper bound
of a and b, denoted lub(a, b), if and only if

. as</?,
P b </, and
. if' € Lsuchthatifa </'andb =</ then? < /"

Notice that the two definitions above refer to "...a greatest lower bound" and "a least upper bound." Any time you define an object like these
you need to have an open mind as to whether more than one such object can exist. In fact, we now can prove that there can't be two greatest
lower bounds or two least upper bounds.

Theorem 13.1.1. Let L be a poset and < be the partial ordering on L, and a, b € L. If a greatest lower bound of a and b exists, then it
is unique. The same is true of a least upper bound, if it exists.

Proof: Let g and g' be greatest lower bounds of a and . We will prove that g = g'.
(1) gagreatestlower boundof aand b = gisalowerboundof aand b.
(2) g'a greatest lower bound of @ and b and g a lower bound of a and b = g < g' by the definition of greatest lower bound.
(3) g'agreatestlowerboundofaandb = g'isalower bound of @ and b.
(4) g a greatest lower bound of a and b and g'a lower bound of a and b = g' < g by the definition of greatest lower bound.
(5) g=<g'andg'<g = g=g' by the antisymmetry property of a partial ordering.
The proof of the second statement in the theorem is almost identical to the first and is left to the reader. B

Definition: Greatest Element, Least Element. Let L be a poset. M € L is called the greatest (maximum) element of L if, for all
a € L,a < M. In addition,m € L is called the least (minimum) element of L if for alla € L,m < a.

Note: The greatest and least elements, when they exist, are frequently denoted by 1 and O respectively.
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Chapter 13 - Boolean Algebra

Example 13.1.1. LetL = {1, 3, 5, 7, 15, 21, 35, 105} and let < be the relation | (divides) on L. Then L is a poset. To determine the
lub of 3 and 7, we look for all / € L, such that 3 |¢ and 7 |¢. Certainly, both f = 21 and ¢ = 105 satisfy these conditions and no other
element of L does. Next, since 21 | 105, then 21 = lub(3, 7). Similarly, the lub(3, 5) = 15. The greatest element of L is 105 since a | 105 for
all @ € L. To find the glb of 15 and 35, we first consider all elements g of L such that g | 15 and g | 35. Certainly, both g = 5and g = 1
satisfy these conditions. But since 1| 5, then glb (15, 35) = 5. The least element of Lis 1 since 1 |a foralla € L.

Henceforth, for any positive integer n, D, will denote the set of all positive integers which are divisors of n. For example, the set L of
Example 13.1.1 is Dgs.

Example 13.1.2. Consider the poset P(A), where A = {a, b, c}, with the relation C on P(A). The glb of the {a, b} and {a, c} is
g = {a}. For any other element g' of M which is a subset of {a, b} and {a, c} (there is only one; what is it?), g' C g. The least element of
P(A) is () and the greatest element of P(A) is A = {a, b, c}. The Hasse diagram of P(A) is shown in Figure 13.1.1.

{1, 2,3}

{2,3}

f)

Figure 13.1.1
Example 13.1.2

With a little practice, it is quite easy to find the least upper bounds and greatest lower bounds of all possible pairs in P (A) directly from the
graph of the poset.

The previous examples and definitions indicate that the lub and glb are defined in terms of the partial ordering of the given poset. It is not yet
clear whether all posets have the property such every pair of elements has both a lub and a glb. Indeed, this is not the case (see Exercise 3).

EXERCISES FOR SECTION 13.1

A Exercises
1. LetDsy = {1,2, 3, 5, 6, 10, 15, 30} and let the relation | be a partial ordering on Ds3.

(a) Find all lower bounds of 10 and 15.
(b) Find the gib of 10 and 15.

(c) Find all upper bounds of 10 and 15.
(d) Determine the [ub of 10 and 15.

(e) Draw the Hasse diagram for D3y with |. Compare this Hasse diagram with that of Example 13.1.2. Note that the two diagrams are
structurally the same.

2. List the elements of the sets Dg, D5, and Djgp; . For each set, draw the Hasse diagram for "divides."
3. Figure 13.1.2 contains Hasse diagrams of posets.
(a) Determine the [ub and glb of all pairs of elements when they exist. Indicate those pairs that do not have a lub (or a gib).

(b) Find the least and greatest elements when they exist.
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(@) (b) (© (d)
ag ds ds /\
/ \ o s aa 5
a as
\ / a/ \a a/ \a | i
2 3 2 3
y \a / \a / \ /
1 1 1 1
©)] )] (€9) ()
/ | 5 / / \
a 5 a 7 ay 5
a 3
a\ 3 a\3 4 a\ / 3
1 ap 1 1
Figure 13.1.2
Exercise 3

4. For the poset (N, <), what are glb(a, b) and lub(a, b)? Are there least and/or greatest elements?
5. (a) Prove the second part of Theorem 13.1.1, the least upper bound of two elements in a poset is unique, it one exists.
(b) Prove that if a poset L has a least element, then that element is unique.

6.  We naturally order the numbers in A, = {1, 2, ..., m} with "less than or equal to," which is a partial ordering. We may order the
elements of A,, X A, by (a, b) < (a', b') & a < a'andb < b'.

(a) Prove that this defines a partial ordering of A,, X A,.
(b) Draw the ordering diagrams for < on A, X A; , Ay X Az, and Az X Asz .
(¢c) What are glb ((a, b), (a', b")) and lub((a, b), (a', b'))?

(d)Are there least and/or greatest elements in A,, X A,?

13.2 Lattices

In this section, we restrict our discussion to lattices, those posets where every pair of elements has a lub and a glb. We first introduce some
notation.

Definitions: Join, Meet. Let L be a poset under an ordering < . Let a, b € L. We define:
a \/ b (read "a join b") as the least upper bound of a and b, and
a A\ b (read "a meet b") as greatest lower bound of a and b.
Since the join and meet operations produce a unique result in all cases where they exist, by Theorem 13.1.1, we can consider them as binary

operations on a set if they aways exist. Thus the following definition:

Definition: Lattice. A lattice is a poset L (under <) in which every pair of elements has a lub and a glb. Since a lattice L is an algebraic
system with binary operations V and A , it is denoted by [L; \/, N].

In Example 13.1.2, the operation table for the /ub operation is easy, although admittedly tedious, to do. We can observe that every pair of
elements in this poset has a least upper bound. In fact, A\/ B = A U B.

The reader is encouraged to write out the operation table for the gl/b operation and to note that every pair of elements in this poset also has a
glb, so that P(A) together with these two operations is a lattice. We further observe that:

(1) [P(A); V, Alis alattice (under C ) for any set A, and
(2) the join operation is the set operation of union and the meet operation is the operation intersection; thatis, \/ =_and A =().

It can be shown (see the exercises) that the commutative laws, associative laws, idempotent laws, and absorption laws are all true for any
lattice. An example of this is clearly [P(A); U, (], since these laws hold in the algebra of sets. This lattice is also distributive in that join is
distributive over meet and meet is distributive over join. This is not always the case for lattices in general however.
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Definition: Distributive Lattice. Ler [L; \/, Al be a lattice (under <). [L; \/, Y} is called a distributive lattice if and only if the distribu-
tive laws hold; that is, for all a, b, ¢ € L, we have:

aV bNANc)=@V b A (aV c)and
aANbdVeoy=@AbV@Ao.
Example 13.2.1. If A is any set, the lattice [P(A); |J, ()] is distributive.

Example 13.2.2. We now give an example of a lattice where the distributive laws do not hold. Let L = {1, 2, 3, 5, 30}. Then L is a poset
under the relation divides. The operation tables for V and A on L are:

VIl 2 3 5 30
1|1 2 3 5 30
202 2 30 30 30
303 30 3 30 30
515 30 30 5 30
30 (30 30 30 30 30
Al 2 3 5 30
T 11111
201211 2
301131 3
sl 1115 5
30| 1 2 3530

Since every pair of elements in L has both a join and a meet, [L; \/, /] is a lattice (under divides). Is this lattice distributive? We note that:
2VEA3)=2V1=2and
2V5AQ2V3=30A 30 =30,
sothata \/ (b \ ¢) # (a \V b) A\ (a V c¢) for some values of a, b, ¢ € L.Hence L is not a distributive lattice.

It can be shown that a lattice is nondistributive if and only if it contains a sublattice isomorphic to one of the lattices in Figure 13.2.1.

1 |

Figure 13.2.1
Nondistributive lattices

It is interesting to note that for the relation "divides" on P, if a, b € P we have:
a\/ b = lem(a, b), the least common multiple of a and b; that is, the smallest integer (in P) that is divisible by both a and b;

a N\ b = gcd(a, b), the greatest common divisor of a and b; that is, the largest integer that divides both a and b.

EXERCISES FOR SECTION 13.2
A Exercises

1. Let L be the set of all propositions generated by p and g. What are the meet and join operations in this lattice. What are the maximum and
minimum elements?

2. Which of the posets in Exercise 3 of Section 13.1 are lattices? Which of the lattices are distributive?
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B Exercises

3. (a) State the commutative laws, associative laws, idempotent laws, and absorption laws for lattices.
(b) Prove these laws.

4. Let[L; \V, A]be alattice based on a partial ordering <. Prove thatifa, b, ¢ €L,
@ aVb
() a A\Nb

(¢) a=zbanda=c>a=b\V c

v

a.

IA

a.

13.3 Boolean Algebras
In order to define a Boolean algebra, we need the additional concept of complementation.

Definition: Complemented Lattice. Let [L; \/, Al be a lattice that contains a least element, 0, and a greatest element, 1. [L; \/, \] is called a
complemented lattice if and only if for every element a € L, there exists an element a in L such that a Na =0 and aV a = 1. Such an element a
is called a complement of the element a.

Example 13.3.1. Let L = P(A), where A = {a, b, c}. Then [L; |J, (] is a bounded lattice with 0 = () and 1 = A. Then, to find if it
exists, the complement, B, of, say B = {a, b} € L, we want B such that
{a,b} NB = Qand{a, b} UB=A.
Here, B = {c}, and since it can be shown that each element of L has a complement (see Exercise 1), [L; |J, (] is a complemented lattice.
Note that if A is any set and L = P(A), then [L; |, () is a complemented lattice where the complementof B € LisB = B¢ = A — B.

In Example 13.3.1, we observe that the complement of each element of L is unique. Is this always the case? The answer is no. Consider the
following.

Example 13.3.2. Let L = {1, 2, 3, 5, 30} and consider the lattice [L; \/, A] (under "divides"). The least element of L is 1 and the
greatest element is 30. Let us compute the complement of the element a = 2. We want to determine @ such that2 A @ = 1 and2 \ @ = 30.
Certainly, @ = 3 works, but so does @ = 5, so the complement of a = 2 in this lattice is not unique. However, [L; \/, A] is still a comple-
mented lattice since each element does have at least one complement.

The following theorem gives us an insight into when uniqueness of complements occurs.
Theorem 13.3.1. If[L; \/, Al is a complemented and distributive lattice, then the complement @ of any element a € L is unique.
Proof: Let a € L and assume to the contrary that a has two complements, namely a; and a,. Then by definition of complement,
alNa =0anda V a =1,
Also,
alNa =0anda V a, = 1.
So that

a=ag Nl =a AN@V a)
=(a; Na)V (g N\ ap)
=0V (a1 A ay)
=a; N ap.

On the other hand,

am=a N1 =a A @V a)

=(a Na)V(ax A ay)
0V (a A ay)
=a N ay.

Hence a; = a, , which contradicts the assumption that a has two different complements, @; and a,. ®

Definition: Boolean Algebra. A Boolean algebra is a lattice that contains a least element and a greatest element and that is both
complemented and distributive.

Since the complement of each element in a Boolean algebra is unique (by Theorem 13.3.1), complementation is a valid unary operation over
the set under discussion, and we will list it together with the other two operations to emphasize that we are discussing a set together with three
operations. Also, to help emphasize the distinction between lattices and lattices that are Boolean algebras, we will use the letter B as the generic
symbol for the set of a Boolean algebra; that is, [B; —, \/, ] will stand for a general Boolean algebra.
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Example 13.3.3. Let A be any set, and let B = P(A). Then [B; ¢, |J, (] is a Boolean algebra. Here, ¢ stands for the complement of an
element of B with respect to A, A — B.

This is a key example for us since all finite Boolean algebras and many infinite Boolean algebras look like this example for some A. In fact, a
glance at the basic Boolean algebra laws in Table 13.3.1, in comparison with the set laws of Chapter 4 and the basic laws of logic of Chapter 3,
indicates that all three systems behave the same; that is, they are isomorphic.

The "pairing" of the above laws reminds us of the principle of duality, which we state for a Boolean algebra.

Definition: Principle of Duality for Boolean Algebras. Let [B; —, \/, Al be a Boolean algebra (under <), and let S be a true statement for

[B; =, V., Al IfS* is obtained from S by replacing < by > (this is equivalent to turning the graph upside down), V by A\, N by V, 0 by 1, and
1 by 0, then S* is also a true statement.

TABLE 13.3.1

Basic Boolean Algebra Laws

Commutative Laws

1. aVb=b\ a 1!aANb=bAa

Associative Laws

22.aVOVo=@VbVe 2'aNOAN=@AbD) Nc

Distributive Laws

3.aNOVo=@Abd)V@heo 3'aVBA)=@VDA@Vo

Identity Laws

4. aV0=0Va=a 4" aANl1=1ANa=a

Complement Laws

Idempotent Laws

6.aVa=a 6! aNa=a
Null Laws
74[1\/121 7.'(,1/\0:0
Absorption Laws
8. aVa@aAb) =a 8' aN@Vb=a
DeMorgan's Laws
9. aVb=aAb 9' aANb=aVb

Involution Law

S

10.
Example 13.3.4. The laws 1' through 9' are the duals of the Laws 1 through 9 respectively. Law 10 is its own dual.

=da
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We close this section with some comments on notation. The notation for operations in a Boolean algebra is derived from the algebra of logic.
However, other notations are used. These are summarized in the following chart;

Notation used in this text | Set Notation | Logic Design
(Mathematics notation) (CS/EE notation) Read as
V U @ join
A N ® meet
- c - complement
< c < underlying partial ordering

Mathematicians most frequently use the notation of the text, and, on occasion, use set notation for Boolean algebras. Thinking in terms of sets
may be easier for some people. Computer designers traditionally use the arithmetic and notation. In this latter notation, DeMorgan's Laws

become:

and

EXERCISES FOR SECTION 13.3
A Exercises

9 a®b=a®b

©) a®b=a®b.

1. Determine the complement of each element B € L in Example 13.3.1. Is this lattice a Boolean algebra? Why?

2. (a) Determine the complement of each element of D¢ in [Dg; \/, Al.

(b) Repeat part a using the lattice in Example 13.2.2.

(c) Repeat part a using the lattice in Exercise 1 of Section 13.1.

(d) Are the lattices in parts a, b, and ¢ Boolean algebras? Why?

3. Determine which of the lattices of Exercise 3 of Section 13.1 are Boolean algebras.

4. LetA = {a, b}and B = P(A).
(a) Prove that [B; ¢, |J, () is a Boolean algebra.

(b) Write out the operation tables for the Boolean algebra.

5. It can be shown that the following statement, S, holds for any Boolean algebra [B; —, \V, Al:(a A b) = aifa < b.

(a) Write the dual, S*, of the statement S.

(b) Write the statement S and its dual, $*, in the language of sets.

(c) Are the statements in part b true for all sets?

(d) Write the statement S and its dual, S*, in the language of logic.

(e) Are the statements in part d true for all propositions?

6. State the dual of:
@ aVvV®Aa=a
(b) a\/ (bVa)Ab =1

() @Ab)pAb=a Vb
B Exercises

7. Formulate a definition for isomorphic Boolean algebras.

13.4 Atoms of a Boolean Algebra

In this section we will look more closely at previous claims that every finite Boolean algebra is isomorphic to an algebra of sets. We will show
that every finite Boolean algebra has 2" elements for some n with precisely n generators, called atoms.

Consider the Boolean algebra [B; —, \/ , Al], whose graph is:
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b><bX |
aj a as

Figure 13.4.1
lllustration of the atom concept

We note that 1 = a1 V a, V a3z, by = a1 V ap, b, = a1 V a3, and by = a, V as; that is, each of the elements above level one can be
described completely and uniquely in terms of the elements on level one. The g; s have uniquely generated the nonzero elements of B much like
a basis in linear algebra generates the elements in a vector space. We also note that the g; s are the immediate successors of the minimum
element, 0. In any Boolean algebra, the immediate successors of the minimum element are called atoms. Let A be any nonempty set. In the
Boolean algebra [P(A); ¢, |, (] (over C), the singleton sets are the generators, or atoms, of the algebraic structure since each element P (A)
can be described completely and uniquely as the join or union of singleton sets.

Definition: Atom. A nonzero element a in a Boolean algebra [B; —, V, A] is called an atom if for every x € B, x N a = a or
x ANa =0.

The condition that x A a = a tells us that x is a successor of a; that is, a < x, as depicted in Figure 13.4.2a.

The condition x A a = 0 is true only when x and a are "not connected." This occurs when x is another atom or if x is a successor of atoms

different from a, as depicted in Figure 13.4.2b.
X
\ a
0

(@) (b)
Figure 13.4.2

X

/

Example 13.4.1. The set of atoms of the Boolean algebra [Dso; —, V, Alis M = {2, 3, 5}. To see that a = 2 is an atom, let x be any
nonzero element of D3y and note that one of the two conditions x A 2 = 2 or x A 2 = 1 holds. Of course, to apply the definition to this
Boolean algebra, we must remind ourselves that in this case the O-element is 1, the operation A is gcd, and the poset relation < is "divides." So
if x = 10, we have 10 A\ 2 = 2 (or 2 | 10), so Condition 1 holds. If x = 15, the first condition is not true. (Why?) However, Condition 2,
15 A 2 = 1, is true. The reader is encouraged to show that each of the elements 2, 3, and 5 satisfy the definition (see Exercise 13.4.1). Next, if
we compute the join (/cm in this case) of all possible combinations of the atoms 2, 3, and 5, we will generate all nonzero elements of Dsy. For
example,2 \/ 3 \/ 5 = 30and2 V 5 = 10. We state this concept formally in the following theorem, which we give without proof.
Theorem 13.4.1. Let [B; —, V, A]be any finite Boolean algebra. Let A = {a;, a,, ..., a,} be the set of all n atoms of [B; —, V, Al].

Then every nonzero element in B can be expressed uniquely as the join of a subset of A.

We now ask ourselves if we can be more definitive about the structure of different Boolean algebras of a given order. Certainly, the Boolean
algebras [D3o; —, V, Al and [P(A); ¢, U, (] have the same graph (that of Figure 13.4.1), the same number of atoms, and, in all respects,
look the same except for the names of the elements and the operations. In fact, when we apply corresponding operations to corresponding
elements, we obtain corresponding results. We know from Chapter 11 that this means that the two structures are isomorphic as Boolean
algebras. Furthermore, the graphs of these examples are exactly the same as that of Figure 13.4.1, which is an arbitrary Boolean algebra of
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order 8 = 23.

In these examples of a Boolean algebra of order 8, we note that each had 3 atoms and 23 = 8 number of elements, and all were isomorphic to
[P(A); ¢, U, NI, where A = {a, b, c}. This leads us to the following questions:

(1) Are there any other different (nonisomorphic) Boolean algebras of order 8?
(2) What is the relationship, if any, between finite Boolean algebras and their atoms?
(3) How many different (nonisomorphic) Boolean algebras are there of order 2? Order 3? Order 4? And so on.

The answers to these questions are given in the following theorem and corollaries. We include the proofs of the corollaries since they are
instructive.

Theorem 134.2. Let [B; —, V, A] be any finite Boolean algebra, and let A be the set of all atoms in this Boolean algebra. Then
[B; =, V, Alisisomorphic to [P(A); ¢, U, N

Corollary 13.4.1. Every finite Boolean algebra [B; —, V, A] has 2" elements for some positive integer n.

Proof: Let A be the set of all atoms of B and let |A| = n. Then there are exactly 2" elements (subsets) in $(A), and by Theorem 13.4.2,
[B; =, V, Alisisomorphic to [P(A); ¢, U, (). ®

Corollary 13.4.2. All Boolean algebras of order 2" are isomorphic to each other. (The graph of the Boolean algebra of order 2" is the n-cube).

Proof: By Theorem 13.4.2, every Boolean algebra of order 2" is isomorphic to [P(A); ¢, U, ()] when |A| = n. Hence, they are all isomor-
phic to one another. B

The above theorem and corollaries tell us that we can only have finite Boolean algebras of orders 21,22 23 ... 2" and that all finite
Boolean algebras of any given order are isomorphic. These are powerful tools in determining the structure of finite Boolean algebras. In the
next section, we will try to find the easiest way of describing a Boolean algebra of any given order.

EXERCISES FOR SECTION 134
A Exercises
1. (a) Show thata = 2 is an atom of the Boolean algebra [D3o; —, V , Al
(b) Repeat part a for the elements 3 and 5 of Dy.
(c) Verify Theorem 13 4.1 for the Boolean algebra [D3o; —, V, Al
2. LetA = {a, b, c}.
(a) Rewrite the definition of atom for [P(A); ¢, |, (. What does ¢ < x mean in this example?
(b) Find all atoms of [P(A); ¢, U, M.
(¢) Verify Theorem 13.4.1 for [P(A); ¢, U, .
3. Verify Theorem 13.4.2 and its corollaries for the Boolean algebras in Exercises 1 and 2 of this section.

4. Give a description of all Boolean algebras of order 16. (Hint: Use Theorem 13.4.2.) Note that the graph of this Boolean algebra is given in
Figure 9.4.5.

5. Corollary 13.4.1 states that there do not exist Boolean algebras of orders 3, 5, 6, 7, 9, etc. (orders different from 2"). Prove that we cannot
have a Boolean algebra of order 3. (Hint: Assume that [B; —, \/, Al is a Boolean algebra of order 3 where B = {0, x, 1} and show that this
cannot happen by investigating the possibilities for its operation tables.)

6. (a) There are many different, yet isomorphic, Boolean algebras with two elements. Describe one such Boolean algebra that is derived from
a power set, P(A), under C. Describe a second that is described from D,,, for some n € P, under "divides."

(b) Since the elements of a two-element Boolean algebra must be the greatest and least elements, 1 and 0, the tables for the operations on
{0, 1} are determined by the Boolean algebra laws. Write out the operation tables for [{0, 1}; —, V, Al

B Exercises
7. Find a Boolean algebra with a countably infinite number of elements.

8. Prove that the direct product of two Boolean algebras is a Boolean algebra. (Hint: "Copy" the corresponding proof for groups in Section
11.6.)
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13.5 Finite Boolean Algebras as n-tuples of 0's and 1's

From the previous section we know that all finite Boolean algebras are of order 2", where n is the number of atoms in the algebra. We can
therefore completely describe every finite Boolean algebra by the algebra of power sets. Is there a more convenient, or at least an alternate way,
of defining finite Boolean algebras? In Chapter 11 we found that we could produce new groups by taking Cartesian products of previously
known groups. We imitate this process for Boolean algebras.

The simplest nontrivial Boolean algebra is the Boolean algebra on the set B, ={0, 1}. The ordering on B, is the natural one,
0<0,0<1, I<1. If we treat 0 and 1 as the truth values "false" and "true," respectively, we see that the Boolean operations
V/ (join) and A\ (meet) are nothing more than the logical connectives \/ (or) and A (and). The Boolean operation, —, (complementation) is the
logical — (negation). In fact, this is why the symbols —, \/, and /\ were chosen as the names of the Boolean operations. The operation tables
for [B,; —, V, /\] are simply those of "or," "and," and "not," which we repeat here:

Vior AJ01 u
001 o0fo0 0
1|11 101 1o

—~| a1

By Theorem 13.4.2 and its corollaries, all Boolean algebras of order 2 are isomorphic to this one.

We know that if we form B, xB, = B% we obtain the set {(0, 0), (0, 1), (1, 0), (1, 1)}, a set of order 4. We define operations on B% the
natural way, namely, componentwise, so that (0, )/ (1, D=0V 1, 1V D)=, 1,0, DAA, D=0OAI1L, LA1)=(@, I)and (0, 1) =
(6, D = (1, 0). We claim that B% is a Boolean algebra under the componentwise operations. Hence, [B%; —, V., Alis aBoolean algebra of

order 4. Since all Boolean algebras of order 4 are isomorphic to each other, we have found a simple way of describing all Boolean algebras of
order 4.

It is quite clear that we can describe any Boolean algebra of order 8 by considering B, x B x B, = B3 and, in general, any Boolean algebra of
order 2" — that is, all finite Boolean algebras—by Bj = B, x B, x ---B; (n factors).

EXERCISES FOR SECTION 13.5

A Exercises

1. (a) Write out the operation tables for B3 -, V. Al

(b) Draw the Hasse diagram for [B3; —, V', /] and compare your results with Figure 9.4.6.

(c) Find the atoms of this Boolean algebra.

2. (a) Write out the operation table for [B3; —, V, Al
(b) Draw the Hasse diagram for [B%; —, V., Al and compare the results with Figure 9.4.6.

3. (a) List all atoms of B3.

(b) Describe the atoms of B5n = 1.

B Exercise

4. Theorem 13.4.2 tells us we can think of any finite Boolean algebra in terms of sets. In Chapter 4, Section 3, we defined the terms minset and
minset normal form. Rephrase these definitions in the language of Boolean algebra. The generalization of minsets are called minterms.

13.6 Boolean Expressions

In this section, we will use our background from the previous sections and set theory to develop a procedure for simplifying Boolean expres-
sions. This procedure has considerable application to the simplification of circuits in switching theory or logical design.

Definition: Boolean Expression. Let [B; —, V, A] be any Boolean algebra. Let x;, x,, ..., X; be variables in B; that is, variables
that can assume values from B. A Boolean expression generated by x;, x,, ..., X is any valid combination of the x; and the elements of B
with the operations of meet, join, and complementation.

This definition, as expected, is the analog of the definition of a proposition generated by a set of propositions, presented in Section 3.2.

Each Boolean expression generated by k variables, e(x, ..., x;), defines a function f: B - B where f(a;, ..., ay) =e(a, ..., ;). If Bis a

finite Boolean algebra, then there are a finite number of functions from BF into B. Those functions that are defined in terms of Boolean
expressions are called Boolean functions. As we will see, there is an infinite number of Boolean expressions that define each Boolean function.
Naturally, the "shortest" of these expressions will be preferred. Since electronic circuits can be described as Boolean functions with B=B; ,
this economization is quite useful.
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Chapter 13 - Boolean Algebra

Example 13.6.1. Consider any Boolean algebra [B; —, \/, A] of order 2. How many functions f: B> - B are there? First, all
Boolean algebras of order 2 are isomorphic to [B>; —, \/, /] so we want to determine the number of functions f : B% — B,. If we consider
a Boolean function of two variables, x; and x,, we note that each variable has two possible values 0 and 1, so there are 2> ways of assigning
these two values to the k = 2 variables. Hence, the table below has 22 = 4 rows. So far we have a table such as that labeled 13.6.1.

xp | x2 | flx1, x2)

Table 13.6.1
General Form Of Boolean Function f(x;, x;) of Example 13.6.1

How many possible different function values f(x;, x;) can there be? To list a few:fj(x;, x2) = x1, folxy, x2) =x2, f3(x1, x2) =x1 V xp,
Salxr, %)= AX2) V x2, fs(x1, x2) = x1 Axp V3, etc. Each of these will give a table like that of Table 13.6.1. The tables for f; , and f3
appear in Table 13.6.2.

xp | x2 | filxr, x2) xp | x2 | fa(xr, x2)

Table 13.6.2
Boolean Functions f; and f3 of Example 13.6.1

Two functions are different if and only if their tables (values) are different for at least one row. Of course by using the basic laws of Boolean
algebra we can see that f3 = f;. Why? So if we simply list by brute force all "combinations" of x; and x, we will obtain unnecessary duplica-
tion. However, we note that for any combination of the variables x;, and x, there are only two possible values for f(x;, x;), namely O or 1.

Thus, we could write 2% = 16 different functions on 2 variables.
Now let's count the number of different Boolean functions in a more general setting. We will consider two cases: first, when B =B, , and
second, when B is any finite Boolean algebra with 2" elements.
Let B = B,. Each function f: B* - B is defined in terms of a table having 2 rows. Therefore, since there are two possible images for each

element of B, there are 2 raised to the 2k, or 22" different functions. We claim that every one of these functions is a Boolean function.

Now suppose that |B] = 2" > 2. A function from B* into B can still be defined in terms of a table. There are |B[* rows to each table and |B|

possible images for each row. Therefore, there are 2" raised to the power 2" different functions. If n > 1, then not every one of these functions
is a Boolean function. Notice that in counting the numbers of functions we are applying the result of Exercise 5 of Section 7.1.

Since all Boolean algebras are isomorphic to a Boolean algebra of sets, the analogues of statements in sets are useful in Boolean algebras.

Definition: Minterm. A Boolean expression generated by x;, X, ..., X, that has the form
k
A i,
i=1
where each y; may be either x; or X; is called a minterm generated by x;, x,, ..., X;.
By a direct application of the Product Rule we see that there are 2% different minterms generated by xi, ..., X;.

Definition: Minterm Normal Form. A Boolean expression generated by X, ..., X, is in minterm normal form if it is the join of
expressions of the form a N m, where a € B and m is a minterm generated by x,, ..., x;. That is, it is of the form

V (a; Ay
=

where p = 28 and my, my, ..., m, are the minterms generated by x;, ..., x;

If B = B,, then each a; in a minterm normal form is either O or 1. Therefore, a; Am ; is either O or m;.

Theorem 13.6.1. Let e(x,, ..., x;) be a Boolean expression over B. There exists a unique minterm normal form M(x,, ..., x;) that is
equivalent to e(x;, ..., x;) in the sense that e and M define the same function from B into B.

The uniqueness in this theorem does not include the possible ordering of the minterms in M (commonly referred to as "uniqueness up to the
order of minterms"). The proof of this theorem would be quite lengthy, and not very instructive, so we will leave it to the interested reader to
attempt. The implications of the theorem are very interesting, however.

If |B| = 2, then there are 2" raised to the 2% different minterm normal forms. Since each different minterm normal form defines a different
function, there are a like number of Boolean functions from B¥ into B. If B = B,, there are as many Boolean functions (2 raised to the 2") as
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there are functions from B* into B, since there are 2 raised to the 2" functions from B* into B. The significance of this result is that any desired
function can be obtained using electronic circuits having 0 or 1 (off or on, positive or negative) values, but more complex, multivalued circuits
would not have this flexibility.

We will close this section by examining minterm normal forms for expressions over B, , since they are a starting point for circuit
economization.

Example 13.6.2. Consider the Boolean expression f(x;, x;) = x; V X3. One method of determining the minterm normal form of fis to think
in terms of sets. Consider the diagram with the usual translation of notation in Figure 13.6.1. Then f(x1, x2) = X1 AX) V (x1 A%) V (x1 A x2).

Figure 13.6.1

Example 13.6.3. Consider the function f : B3 - B, defined by Table 13.6.3. The minterm normal form for f can be obtained by taking the
join of minterms that correspond to rows that have an image value of 1. If f(a;, a2, a3) = 1, then include the minterm y; A y» A\ y; where

xj ifaj=1
y-’:{)?j ifa;=0
TABLE 13.6.3
Boolean Function of f(a;, a,, a;) Of Example 13.6.3

V)
iy

Q
N

V]
w

f (a1, a2, asz)
1

o

H R R REPOOOo
Or oOORrR R OO
HOROROLRO
oOor oo r oo

Therefore,
fG, x, ) =@ AR ARGV @ AxnAx)V (x Axn AXG).

The minterm normal form is a first step in obtaining an economical way of expressing a given Boolean function. For functions of more than
three variables, the above set theory approach tends to be awkward. Other procedures are used to write the normal form. The most convenient is
the Karnaugh map, a discussion of which can be found in any logical design/switching theory text (see, for example, Hill and Peterson).

EXERCISES FOR SECTION 13.6
A Exercises
1. (a) Write the 16 possible functions of Example 13.6.1. (Hint: Find all possible joins of minterms generated by x; and x; .)
(b) Write out the tables of several of the above Boolean functions to show that they are indeed different.
(¢c) Determine the minterm normal form of

Silxr, x2) =x1 V xo,

b, R) =XV

S, 1) =0, falxi, ) =1

2. Consider the Boolean expression f(x;, Xz, x3) = (X3 A x)V(X[ A x3)V(xa Ax3)on [By; —, V, Al
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(a) Simplity this expression using basic Boolean algebra laws.
(b) Write this expression in minterm normal form.

(c) Write out the table for the given function defined by f and compare it to the tables of the functions in parts a and b.

(d) How many possible different functions in three variables on [B,; —, \/, /\] are there?
B Exercise
3. Let[B; —, V., Al be aBoolean algebra of order 4, and let f be a Boolean function of two variables on B.

(a) How many elements are there in the domain of f ?
(b) How many different Boolean functions are there of two, variables? Three variables?

(c) Determine the minterm normal form of f(x;, x2) = x; V x;.

(d) If B=1{0, a, b, 1}, define a function from B? into B that is not a Boolean function.

13.7 A Brief Introduction to the Application of Boolean Algebra to Switching Theory

The algebra of switching theory is Boolean algebra. The standard notation used for Boolean algebra operations in most logic design/switching
theory texts is + for V and ¢ for A. Complementation is as in this text. Therefore, (x; AX2) V (x; A x2) V (&7 A x2) becomes

X1 ®X; + X1 * Xy + X1 ® X, or simply x; X5 + X1 X + X7 x; . All concepts developed previously for Boolean algebras hold. The only change is
purely notational. We make the change in this section solely to introduce the reader to another frequently used notation. Obviously, we could
have continued the discussion with our previous notation.

The simplest switching device is the on-off switch. If the switch is closed, on, current will pass through it; if it is open, off, current will not pass

through it. If we designate on by true or the logical, or Boolean, 1, and off by false, the logical, or Boolean, 0, we can describe electrical circuits

containing switches by logical, or Boolean, expressions. The expression x; ®x, represents the situation in which a series of two switches

appears in a circuit (see Figure 13.7. 1a). In order for current to flow through the circuit, both switches must be on, that is, have the value 1.

J
4]

e e = =
J

X3

{a) ib)
FIGURE 13.71

Similarly, a pair of parallel switches, as in Figure 13.7.1b, is described algebraically by x; + x,. Many of the concepts in Boolean algebra can
be thought of in terms of switching theory. For example, the distributive law in Boolean algebra (in +, * notation) is:x;®(x; + x3) =
X1 *xp + x1 *x3. Of course, this says the expression on the left is always equivalent to that on the right. The switching circuit analogue of the
above statement is that Figure 13.7.2a is equivalent (as an electrical circuit) to Figure 13.7.2b.

The circuits in a digital computer are composed of large quantities of switches that can be represented as in Figure 13.7.2 or can be thought of
as boxes or gates with two or more inputs (except for the NOT gate) and one output. These are often drawn as in Figure 13.7.3. For example,
the OR gate, as the name implies, is the logical/Boolean OR function. The on-off switch function in Figure 13.7.3a in gate notation is Figure
13.7.3b.

Applied Discrete Structures by A. Doerr & K. Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Chapter 13 - Boolean Algebra

b

A3

(a)

— o

Lt

(b}
FIGURE 13.7.2

L/, |

[a}

X _
X — Jixy, X5, ) = &) + 0+ X
=1

[L:1}
FIGURE 13.7.3

Either diagram indicates that the circuit will conduct current if and only if f(x;, xp, x3) is true, or 1. We list the gate symbols that are widely
used in switching theory in Figure 13.7.4 with their names. The names mean, and are read, exactly as they appear. For example, NAND means

"not x; and x," or algebraically, x; A x,, or x| * x;.

The circuit in Figure 13.7.5a can be described by gates. To do so, simply keep in mind that the Boolean function f(x;, x;) = x; *X; of this
circuit contains two operations. The operation of complementation takes precedence over that of "and," so we have Figure 13.7.5b.

Example 13.7.1. The switching circuit in Figure 13.7.6a can be expressed through the logic, or gate, circuit in Figure 13.7.6b.
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Operation Svimbol Logical/Boobcan Function
Mathematics Switch Theory
read inpast autpuat motadion mikation

i
AND #xd ;IZD_ Sizjoag) = gjxy | M) = xp & & | ilixp. b =) ¢ x5y
£
OR or \." :D_ fq_).'__v:] =X + X1 f‘-‘-‘l--'-'}] =X v iz {[}]I N3 = ¥y + 13
NOT | nem | -‘__I}_..— fig) =7 ik =
X = . = LY o=y
NAND | not and gi ﬂ flegonsd = + x| Flxgval =0 4 x| MNxpoxs) =xp X3
wg = ;
Xy
MOR nolot |, e My %3}
Exchisive [Excluxive] ! nE ] z
OR or a3 ;D_ fly, an} = X @ X3 Flcp ) = xp® x| Mg, 200= x5 @ X2

FIGURE 12.7.4

T fh.,:l = "l-l

=

]

X N | Sk =Xy v x| PNy as) =

We leave it to the reader to analyze both figures and to convince him- or herself that they do describe the same circuit. The circuit can be
described algebraically as

fOxr, x, x3)=((x1 + x2) + (X1 + x3))*x1* X,
We can use basic Boolean algebra laws to simplify or minimize this Boolean function (circuit):
fOxr, x, x3) = (1 + x2) + (x1 + x3))*x1 * X2

=+ +x3)exen

= (X exeXy + 00X Xy + X30x 0%

=x;°X + 0°x; + x3°x1°x;

=X 0X) + X30X 0%

= x1*(n + X¢x3)
xpox o (1 + x3)
= XX

The circuit for f may be described as in Figure 13.7.5. This is a less expensive circuit since it involves considerably less hardware.
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Xy
(b}
FIGURE13.7.5
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x| Xy
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Xi
()
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(ry + x) + [ + X

xn + X

(b)
FIGURE 13.7.6

The table for fis:

X1 Xz X3 |f (%1, X2, X3)
0 0 O 0
0 0 1 0
0 1 0 0
0o 1 1 0
1 0 O 1
1 0 1 1
1 1 0 0
1 1 1 0

The Venn diagram that represents fis the shaded portion in Figure 13.7.7. From this diagram, we can read off the minterm normal form of f:

S(x1, X2, X3) =x1°X2*X3 + X1 *X2*X3.

Applied Discrete Structures by A. Doerr & K. Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Chapter 13 - Boolean Algebra

X

X1

X3

Figure 13.7.7
The circuit (gate) diagram appears in Figure 13.7.8.

How do we interpret this? We see that f(x;, xp, x3) = 1 when x; =1, x, =0, and x3 =0 or x3 = 1. Current will be conducted through the
circuit when switch x; is on, switch x;, is off, and when switch x3 is either off or on.

Xy |
e —
X2

-\
5 ——L

X
x; ps
Xy x| v Xy Xy

FIGURE 13.7.8

We close this section with a brief discussion of minimization, or reduction, techniques. We have discussed two in this text: algebraic (using
basic Boolean rules) reduction and the minterm normal form technique. Other techniques are discussed in switching theory texts. When one
reduces a given Boolean function, or circuit, it is possible to obtain a circuit that does not look simpler, but may be more cost effective, and is,
therefore, simpler with respect to time. We illustrate with an example.

Example 13.7.2. Consider the Boolean function of Figure 13.7.9a is f(x|, X2, X3, X4) = ((xl * X3) ® X3) * x4, which can also be diagrammed
as in Figure 13.7.9b.
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FIGURE 13.7.%

Is Circuit b simpler than Circuit a? Both circuits contain the same number of gates, so the hardware costs (per gate) would be the same. Hence,
intuitively, we would guess that they are equivalent with respect to simplicity. However, the signals x3 and x4 in Circuit a pass through three
levels of gating before reaching the output. All signals in Circuit b go through only two levels of gating (disregard the NOT gate when counting
levels). Each level of logic (gates) adds to the time delay of the development of a signal at the output. In computers, we want the time delay to
be as small as possible. Frequently, speed can be increased by decreasing the number of levels in a circuit. However, this frequently forces a
larger number of gates to be used, thus increasing costs. One of the more difficult jobs of a design engineer is to balance off speed with
hardware costs (number of gates).

One final remark on notation: The circuit in Figure 13.7.10a can be written as in Figure 13.7.10b, or simply as in Figure 13.7.10c.
EXERCISES FOR SECTION 13.7

A Exercises

1. (a) Write all inputs and outputs from Figure 13.7.11 and show that its Boolean function is f(x;, X2, x3) = ((x; + x2)*x3)* (x| + Xp).
(b) Simplify f algebraically.

(c) Find the minterm normal form of f.

(d) Draw and compare the circuit (gate) diagram of parts b and ¢ above.

(e) Draw the on-off switching diagram of fin part a.

(i)

X3 ) Xy» E:
Xy 1 =
(b
t: .'l'! - j‘]
X )

(<)
FIGURE 13.7.10
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X ,_____lr—-.\
[

FIGURE 13,711

(f) Write the table of the Boolean function fin part a and interpret the results.
2. Given Figure 13.7.12:

_./-

X

FIGURE 13.7.42

(a) Write the Boolean function that represents the given on-off circuit.

(b) Show that the Boolean function obtained in answer to part a can be reduced to f(x;, x;) = x;. Draw the on-off circuit diagram of this
simplified representation.

(c) Draw the circuit (gate) diagram of the given on-off circuit diagram.
(d) Determine the minterm normal of the Boolean function found in the answer to part a or given in part b; they are equivalent.
(e) Discuss the relative simplicity and advantages of the circuit gate diagrams found in answer to parts ¢ and d.
3. (a) Write the circuit (gate) diagram of
fCer, x2, x3) =(x1°x2 + x3)* (2 + X3) + X3.
(b) Simplify the function in part a by using basic Boolean algebra laws.
(c) Write the circuit (gate) diagram of the result obtained in part b.
(d) Draw the on-off switch diagrams of parts a and b.
4. Consider the Boolean function
Flr, x2, x3, xg) =x1 + (20 (7 + xg) + x3°(2 + X2)).
(a) Simplify falgebraically.
(b) Draw the switching (on-off) circuit of fand the reduction of f obtained in part a.

(c) Draw the circuit (gate) diagram of f and the reduction of f obtained in answer to part a.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 13

Section 13.1
1. (a) Draw the Hasse diagram of the relation divides on the set A = {1, 2, 3, ..., 12}.

(b) For the same set A draw the Hasse diagram for the relation < on A.

2. (a) For the poset A = {1, 2, 3, ..., 12} under the relation divides find the [ub and glb of the following pairs of numbers if possible: 4 and 6,
2and 3,10 and 4,6 and 9.

(b) Repeat part a for the set A, but use the relation <.

Section 13.2

3. Consider the poset P under the relation "divides."
(a) Compute: 4V 8,3V 15,3V 5,4 A 8,3 A 153 A 5for[P, V, Al
(b) Is[P, \V, AJadistributive lattice? Explain.
(c) Does [P, /', Al have a least element? Does it have a greatest element? If so, what are they?
4.Let[L, V. A] be alattice and a, b € L. Prove:
(@ aV b =bifandonlyifa < b.
(b) a A b =aifandonlyifa < b.

IA

A

S5.LetL = {0, l}anddefine<onLby0 <0 =<1 < 1.
(a) Draw the Hasse diagram of this poset.

(b) Write out the operation table for V and A on L observing that they are essentially the standard logical connectives.

(c) Define the operations on L? componentwise and draw the Hasse diagram for L? .
(d) Repeat part (c) for 3.

6.(a) Let [L;, V, Aland[L,, V, Al be lattices. Prove that [L; X L,, \/, ] is a lattice when the operations are defined componentwise as
we did for algebraic systems in Section 11.6.

(b) Let L; and L, be lattices whose posets have the following Hasse diagrams respectively. List the elements in the lattice L; X L,.

L1]

(c) Compute:
©, @) V (0, b)
©, a) A (0, b)
(L, o)V {4, b
(Lay A1, D)
O, DV, 0

and (0, 1) A (1, 0).
Use this information as an aid to draw the Hasse diagram for L; X L,.

7.(@)Is A = {1, 2, 3, ..., 12} alattice under the relation “divides”? Explain.

(b) Is the set A above a lattice under the relation “less than or equal to”? Explain.
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Section 13.3

8. Using the rules of Boolean algebra, reduce the expression (x; V x3) V (X7 A x2) V (x1 A xp) to the equivalent expression Xj V x,. Justify each
step.

9. Using the rules of Boolean algebra, reduce the expression (x + y)-(x + y) to a simpler expression.

10. Even a cursory examination of the basic laws for Boolean algebra (Table 13.3.1), for logic (Table 3.4.1), and for sets (Section 4.2) will
indicate that they are the same in three different languages: they are isomorphic to one another as Boolean algebras.

(a) Fill out the following table to illustrate the above concept:

comparable
connectives
Sets U
Logic Al-
Boolean Algebraa |~ | <

(b) Since the above algebras are isomorphic as Boolean algebras, any theorem true in one is true in the other two. Translate each of the
following statements into the language of the other two.

(i) p—~gifandonlyif -g—- - p.
(i)IfA c BandA cCthenA € B\ C
(iii)Ifa=banda=cthena= b\ c.

11. (a) Determine the complements of each element described by the following Hasse diagram:

ds iy

g

(b) Is the above lattice a Boolean algebra?
12. (a) Determine the complement of each element in the lattice Ds.
(b) Is D5y a Boolean algebra? Explain.
Section 13.4
13. (a) Use the Theorem 13.4.2 and its Corollaries to determine which of the following are Boolean algebras:
(@) Dy (b) Dz (©) D35 (d) Dano

(b) Notice that D, is a Boolean algebra if and only if # is a product of distinct primes. Such an integer is called square free. What are the atoms
of D, if n is square free?

14. Let [B, —, V. A] be any Boolean algebra of order 8. Find a Boolean algebra of sets that is isomorphic to B. How many atoms must B
have?

Section 13.5
15. (a) List all sub-Boolean algebras of order 4 in B’

(b) How many sub-Boolean algebras of order 4 are there in B," ,n = 4?

(c) Discuss how the selection of atoms in a sub-Boolean algebra can be used to answer questions such as the one in part (b).
16. Prove that Boolean algebras B,” x B," and B,"*" are isomorphic.

Section 13.6

17 Find the minterm normal form of the Boolean expression (X7 V x) A x3

18. Find the minterm normal form of the Boolean expression
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X4 A3V Vx) Vs Ao V)V Ax

19. Let B be a Boolean algebra of order 2.

(a) How many rows are there in the table of a Boolean function of 3 variables? Of n variables?

(b) How many different Boolean functions of 3 variables and of n variables are there?
20. Let B be a Boolean algebra of order 2.

(a) How many different minterm normal forms are there for Boolean expressions of 2 variables over B? List them.

(b) How many different minterm normal forms are there for Boolean expressions of 3 variables over B?
Section 13.7
21. Consider the following Boolean expression:

S, x2, x3) = (1 + X2 + X3) X7 + X1 +X2) X1 X3

(a) Draw the switching circuit of f.
(b) Draw the gate diagram of f.
(c) Simplify falgebraically and draw the switching circuit and gate diagrams of this simplified version of f.

22. Assume that each of the three members of a committee votes yes or no on a proposal by pressing a button that closes a switch for yes and
does nothing for no. Devise as simple a switching-circuit as you can that will allow current to pass when and only when at least two of the
members vote in the affirmative.

23. (a) Find the Boolean function of this network:
(b) Draw an equivalent

24. Given the switching circuit

-
X

Lk

-
¥

-

(a) Express the switching circuit algebraically.
(b) Draw the gate diagram of the expression obtained in part a.

(c) Simplify the expression in part a and draw the switching-circuit and gate diagram for the simplified expression.
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chapter 14

Monoids and Automata

GOALS

At first glance, the two topics that we will discuss in this chapter seem totally unrelated. The first is monoid theory, which we touched upon in
Chapter 11. The second is automata theory, in which computers and other machines are described in abstract terms. After short independent
discussions of these topics, we will describe how the two are related in the sense that each monoid can be viewed as a machine and each
machine has a monoid associated with it.

14.1 Monoids

Recall the definition of a monoid:

Definition: Monoid. A monoid is a set M together with a binary operation * with the properties
(a) = is associative: (axb)xc = a (b xc) foralla,b,c € M, and
(b) * has an identity: there exists e € M such that forall a e M, a+e =exa =a.

Note: Since the requirements for a group contain the requirements for a monoid, every group is a monoid.

Example 14.1.1.
(a) The power set of any set together with any one of the operations intersection, union, or symmetric difference is a monoid.
(b) The set of integers, Z, with multiplication, is a monoid. With addition, Z is also a monoid.

(c) The set of nxn matrices over the integers, M, (Z), n = 2, with matrix multiplication, is a monoid. This follows from the fact that matrix
multiplication is associative and has an identity, /,. This is an example of a noncommutative monoid since there are matrices, A and B, for
which AB # BA.

(d) [Zn, Xul, n=2,is amonoid with identity 1.
(e) Let X be a nonempty set. The set of all functions from X into X, often denoted X* , is a monoid over function composition. In Chapter 7,

we saw that function composition is associative. The function i : X —» X defined by i(a) = a is the identity element for this system. This is
another example of a noncommutative monoid, provided |X| is greater than 1.

If X is finite, |XX| = |X|'X! . For example, if B = {0, 1}, |B®| = 4. The functions z, u, i, and ¢, defined by the graphs in Figure 14.1.1, are the
elements of B5 . This monoid is not a group. Do you know why?

One reason that B? is noncommutative is that ¢z # zt, since (tz) (0) = 1 and (z¢) (0) = 0.
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Figure 14.1.1
The four elements of B®
GENERAL CONCEPTS AND PROPERTIES OF MONOIDS
Virtually all of the group concepts that were discussed in Chapter 11 are applicable to monoids. When we introduced subsystems, we saw that a

submonoid of monoid M is a subset of M —that is, it itself is a monoid with the operation of M. To prove that a subset is a submonoid, you can
apply the following algorithm.

Theorem/Algorithm 14.1.1. Let [M; *] be a monoid and K is a nonempty subset of M, K is a submonoid of M if and only if:
(a) Ifa,b e K, thenaxb € K (i.e., K is closed under =), and
(b) the identity of M belongs to K.

Often we will want to discuss the smallest submonoid that includes a certain subset S of a monoid M. This submonoid can be defined recur-
sively by the following definition.

Definition: Submonoid Generated by a Set. If S is a subset of monoid [M ; +], the submonoid generated by S, (S), is defined by:
(a) (Basis) (i) a € S > a € (S), and (ii) the identity of M belongs to (S);
(b) (Recursion), a, b € (S) = ax=b €(S).
Note: If S ={ay, az, ..., a,}, we write {a;, ay, ..., a,) in place of ({a;, az, ..., a,}).
Example 14.1.2.
(a) In[Z; +], (2)={0,2,4,6,8, ...}.

(b) The power set of Z,P(Z), over union is a monoid with identity (. If S ={{1}, {2}, {3}}, then (S) is the power set of {1, 2, 3}. If
S = {{n} : n € Z}, then (S) is the set of finite subsets of the integers.

MONOID ISOMORPHISMS

Two monoids are isomorphic if and only if there exists a translation rule between them so that any true proposition in one monoid is translated
to a true proposition in the other.

Example 14.1.3. M =[P {1, 2, 3}, N] is isomorphic to M, = [Z3;-], where the operation in M, is componentwise mod 2 multiplication.
1 ifieA

A translation rule is that if A C {1, 2, 3}, then it is translated to (d;, d5, d3) where d; = { 0 ifigA Two cases of how this translation rule
works are:
{1, 2, 3} is the identity for M;, and 1,2} N{2, 3= {2}
l l T 7 I
(1, 1, 1) is the identity for M,, and (1, 1, 0)e(0, 1, 1) = (0, 1, 0).

A more precise definition of a monoid isomorphism is identical to the definition of a group isomorphism (see Section 11.7).

EXERCISES FOR SECTION 14.1
A Exercises

1. For each of the subsets of the indicated monoid, determine whether the subset is a sub monoid.
(@) 1 =1{0,2,4, 6}and S, = {1, 3, 5, 7}in [Zg; X3].

O {feNN: fn)<n, V¥, eNyand {f eNY: (1) =2} in NV,
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(c){Ac Z : Aisfinite}and {A C Z : A€ is finite} in [P(Z); ].

2. For each subset, describe the submonoid that it generates.

(a) {3}and{0}in[Z12;X12]

(b) {5}in [Z55;X05]

(c) the set of prime numbers and {2} in [P; -]

(d) {3, 5}in [N; +]

B Exercises

3. Definition: Stochastic Matrix. An nxn matrix of real numbers is called stochastic if and only if each entry is nonnegative and the sum of

entries in each column is 1. Prove that the set of stochastic matrices is a monoid over matrix multiplication.
4. Prove Theorem 14.1.1.

14.2 Free Monoids and Languages

In this section, we will introduce the concept of a language. Languages are subsets of a certain type of monoid, the free monoid over an
alphabet. After defining a free monoid, we will discuss languages and some of the basic problems relating to them. We will also discuss the
common ways in which languages are defined.

Let A be a nonempty set, which we will call an alphabet. Our primary interest will be in the case where A is finite; however, A could be infinite
for most of the situations that we will describe. The elements of A are called letters or symbols. Among the alphabets that we will use are
B ={0, 1}, ASCII = the set of ASCII characters, and PAS = the Pascal character set (whichever one you use).

Definition: Strings over an Alphabet. A string of length n,n = 1, over A is a sequence of n letters from A : a; a, ...a,. The null string, A,
is defined as the string of length zero containing no letters. The set of strings of length n over A is denoted by A". The set of all strings over A.
is denoted A*.

Notes:
(a) If the length of string s is n, we write |s| = n.

(b) The null string is not the same as the empty set, although they are similar in many ways.

(c) Ax=A"JA' JAZJ A3 ---andifi# j, A" A/ = @; thatis, {A°, A!, A%, A3, ...} is a partition of A*.
(d) An element of A can appear any number of times in a string.

Theorem 14.2.1. If A is countable, then A* is countable.

Proof: Case 1. Given the alphabet B = {0, 1}, we can define a bijection from the positive integers into B*. Each positive integer has a
binary expansion d, d;_; -+~ di dy, where each d; is 0 or 1 and d; = 1. If n has such a binary expansion, then 2% <n < 2!, We define
f:P - Bby f(n) = f(d, dy_ - dy dy) = dy_, --- dy dy, where f(1) = A. Every one of the 2¥ strings of length k are the images of exactly one
of the integers between 2k and 2k*1 — 1. From its definition, f is clearly a bijection; therefore, B* is countable.

Case 2: A is Finite. We will describe how this case is handled with an example first and then give the general proof. If A = {a, b, c, d, e), then

we can code the letters in A into strings from B®>. One of the coding schemes (there are many) is
a < 000, b < 001, ¢ <010, d < 011, ande < 100. Now every string in A* corresponds to a different string in B*; for example, ace would
correspond with 000010 100. The cardinality of A* is equal to the cardinality of the set of strings that can be obtained from this encoding
system. The possible coded strings must be countable, since they are a subset of a countable set (B*); therefore, A* is countable.

If |A| = m, then the letters in A can be coded using a set of fixed-length strings from B*. If 25~ < m < 2, then there are at least as many

strings of length & in BX as there are letters in A. Now we can associate each letter in A with an element of B*. Then any string in A* corre-
sponds to a string in B*. By the same reasoning as in the example above, A* is countable.

Case 3: A is Countably Infinite. We will leave this case as an exercise. B

FREE MONOIDS OVER AN ALPHABET

The set of strings over any alphabet is a monoid under concatenation.

Definition: Concatenation. Let a = ay ay -+ ay and b = by by --- b, be strings of length m and n, respectively. The concatenation of a with b,
a <> b, is the string of lengthm + n:ayay -~ a, by by --- b,.

Notes:
(a) The null string is the identity element of [A*; concatenation]. Henceforth, we will denote the monoid of strings over A by A*.

(b) Concatenation is noncommutative, provided |A| > 1.
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(c) If |A)| = |Az|, then the monoids A} and A% are isomorphic. An isomorphism can be defined using any bijec-
tionf: A - A Ifa=a1ay---a, € A}, f*(a) = f(a)) f(az) -+~ f(a,) defines a bijection from Aj] into A5. We will leave it to the reader to
convince him or herself that for all a, b, € A7, f*(a <> b) = f*(a) <> f*(b).

LANGUAGES
The languages of the world—English, German, Russian, Chinese, and so forth—are called natural languages. In order to communicate in

writing in any one of them, you must first know the letters of the alphabet and then know how to combine the letters in meaningful ways. A
formal language is an abstraction of this situation.

Definition: Formal Language. If A is an alphabet, a formal language over A is a subset of A*.
Example 14.2.1.

(a) English can be thought of as a language over the set of letters A, B, ---Z (upper and lower case) and other special symbols, such as
punctuation marks and the blank. Exactly what subset of the strings over this alphabet defines the English language is difficult to pin down
exactly. This is a characteristic of natural languages that we try to avoid with formal languages.

(b) The set of all ASCII stream files can be defined in terms of a language over ASCII. An ASCII stream file is a sequence of zero or more
lines followed by an end-of-file symbol. A line is defined as a sequence of ASCII characters that ends with the two characters CR (carriage
return) and LF (line feed). The end-of-file symbol is system-dependent; for example, CTRL/C is a common one.

(c) The set of all syntactically correct expressions in Mathematica is a language over the set of ASCII strings.
(d) A few languages over B are

L, ={s € B* | shas exactly asmany 1's asithas0's},

L, ={l<>s<>0:5€B"},and

L; =0, 01) = the submonoid of B* generated by {0, 01}.

TWO FUNDAMENTAL PROBLEMS: RECOGNITION AND GENERATION

The generation and recognition problems are basic to computer programming. Given a language, L, the programmer must know how to write
(or generate) a syntactically correct program that solves a problem. On the other hand, the compiler must be written to recognize whether a
program contains any syntax errors.

The Recognition Problem: Design an algorithm that determines the truth of s € L in a finite number of steps for all a € A*. Any such algo-
rithm is called a recognition algorithm.

Definition: Recursive Language. A language is recursive if there exists a recognition algorithm for it.
Example 14.2.2.
(a) The language of syntactically correct Mathematica expressions is recursive.

(b) The three languages in Example 14.2.1 (d) are all recursive. Recognition algorithms for L; and L, should be easy for you to imagine.
The reason a recognition algorithm for L3 might not be obvious is that L3's definition is more cryptic. It doesn't tell us what belongs to L3,
just what can be used to create strings in L3. This is how many languages are defined. With a second description of L3, we can easily design a
recognition algorithm. L3 = {s € B*; s = A or s starts with a 0 and has no consecutive 1’s}.
Algorithm 14.2.1: Recognition Algorithm for L3. Let s = 51 55 --- 5, € B*. This algorithm determines the truth value of s € L3. The truth value is
returned as the value of Word.
(1) Word := true
(2) If n> 0 then

If 51 = 1 then Word := false

elsefori:=3ton
if s;_; = l and s; = 1 then Word := false

The Generation Problem. Design an algorithm that generates or produces any string in L. Here we presume that A is either finite or countably
infinite; hence, A* is countable by Theorem 14.2.1, and L C A* must be countable. Therefore, the generation of L amounts to creating a list of
strings in L. The list may be either finite or infinite, and you must be able to show that every string in L appears somewhere in the list.

Theorem 14.2.2.

(a) If Ais countable, then there exists a generating algorithm for A*.

(b) If Lis a recursive language over a countable alphabet, then there exists a generating algorithm for L.
Proof:

(a) Part a follows from the fact that A* is countable; therefore, there exists a complete list of strings in A*.

(b) To generate all strings of L, start with a list of all strings in A* and an empty list, W, of strings in L. For each string s, use a recognition
algorithm (one exists since L is recursive) to determine whether s € L. If s is in L, add it to W; otherwise "throw it out." Then go to the next
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string in the list of A*. W

Example 14.2.3. Since all of the languages in Example 14.2.2 are recursive, they must have generating algorithms. The one given in the proof
of Theorem 14.2.2 is not generally the most efficient. You could probably design more efficient generating algorithms for L, and L3; however,
a better generating algorithm for L, is not quite so obvious.

The recognition and generation problems can vary in difficulty depending on how a language is defined and what sort of algorithms we allow
ourselves to use. This is not to say that the means by which a language is defined determines whether it is recursive. It just means that the truth
of "L is recursive" may be more difficult to determine with one definition than with another. We will close this section with a discussion of
grammars, which are standard forms of definition for a language. When we restrict ourselves to only certain types of algorithms, we can affect
our ability to determine whether s € L is true. In defining a recursive language, we do not restrict ourselves in any way in regard to the type of
algorithm that will be used. In Section 14.3, we will consider machines called finite automata, which can only perform simple algorithms.

PHRASE STRUCTURE GRAMMARS AND LANGUAGES

One common way of defining a language is by means of a phrase structure grammar (or grammar, for short). The set of strings that can be
produced using the grammar rules is called the phrase structure language (of the grammar).

Example 14.2.4. We can define the set of all strings over B for which all Os precede all 1s as follows. Define the starting symbol S and establish
rules that S can be replaced with any of the following: A, 0S, or S1. These replacement rules are usually called production (or rewriting) rules
and are usually written in the format S - A, S - 0§, and S —» S1. Now define L to be the set of all strings that can be produced by starting with
S and applying the production rules until S no longer appears. The strings in L are exactly the ones that are described above.

Definition: Phrase Structure Grammar. A phrase structure grammar consists of four components:
(1) A nonempty finite set of terminal characters, T. If the grammar is defining a language over A, T is a subset of A*.
(2) A finite set of nonterminal characters, N.
(3) A starting symbol, S € N.

(4) A finite set of production rules, each of the form X - Y, where X and Y are strings over A\J N such that X # Y and X contains at least
one nonterminal symbol.

If G is a phrase structure grammar, L(G) is the set of strings that can be obtained by starting with S and applying the production rules a finite
number of times until no nonterminal characters remain. If a language can be defined by a phrase structure grammar, then it is called a phrase
structure language.

Example 14.2.5. The language over B consisting of strings of alternating Os and 1s is a phrase structure language. It can be defined by the
following grammar:

(1) Terminal characters: A, 0, and 1,

(2) Nonterminal characters: S, T, and U,
(3) Starting symbol: S,

(4) Production rules:

S->T,S->U, S->A, $-50,S>1, §S->0T,
S->1U, T->10T, T->10, U-01U, U-01

These rules can be visualized more easily with a graph:
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Figure 14.2.1

Production rules for the language of alternating 0’s and 1’s.

We can verify that a string such as 10101 belongs to the language by starting with S and producing 10101 using the production rules a finite
number of times: S » 1 U - 101 U - 10 101.

Example 14.2.6. Let G be the grammar with components:
(1) Terminal symbols = all letters of the alphabet (both upper and lower case) and the digits O through 9,
(2) Nonterminal symbols ={/, X},
(3) Starting symbol: I

(4) Production rules: I - «, where « is any letter, I —» aX for any letter @, X - SX for any letter or digit 8, and X - S for any letter or digit

There are a total of 176 production rules for this grammar. The language L (G) consists of all valid Mathematica names.

Backus-Naur form (BNF), A popular alternate form of defining the production rules in a grammar is BNF. If the production rules
A- By, A- B, ... A - B, are part of a grammar, they would be written in BNF as A :: = By |B;| --- |B,. The symbol | in BNF is read as "or,"
while the :: = is read as "is defined as." Additional notations of BNF are that {x}, represents zero or more repetitions of x and [y] means that y is
optional.

Example 14.2.7. A BNF version of the production rules for a Mathematica name is
letter :: =alblc--- |z|A|B|--|Z
digit::=0]1]---|9
I:: = letter {letter | digit}
Example 14.2.8. An arithmetic expression can be defined in BNF. For simplicity, we will consider only expressions obtained using

addition and multiplication of integers. The terminal symbols are (, ), +, *, —, and the digits O through 9. The nonterminal symbols are E (for
expression), T (term), F (factor), and N (number). The starting symbol is E.

E :=E+T|T
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T::=T«F|F
F::=(E)|N
N ::=[-]digit {digit}.
One particularly simple type of phrase structure grammar is the regular grammar.

Definition: Regular Grammar. A regular (right-hand form) grammar is a grammar whose production rules are all of the form A —t and
A — tB, where A and B are nonterminal and t is terminal. A left-hand form grammar allows only A -t and A - Bt, A language that has a
regular phrase structure language is called a regular language.

Example 14.2.9.
(a) The set of Mathematica names is a regular language since the grammar by which we defined the set is a regular grammar.

(b) The language of all strings for which all Os precede all 1s (Example 14.2.4) is regular; however, the grammar by which we defined this
set is not regular. Can you define these strings with a regular grammar?

(c) The language of arithmetic expressions is not regular.
EXERCISES FOR SECTION 14.2

A Exercises

1. (a) If a computer is being designed to operate with a character set of 350 symbols, how many bits must be reserved for each character?
Assume each character will use the same number of bits.

(b) Do the same for 3,500 symbols.

2. It was pointed out in the text that the null string and the null set are different. The former is a string and the latter is a set, two different kinds
of objects. Discuss how the two are similar.

3. What sets of strings are defined by the following grammar?
(a) Terminal symbols: A, 0 and 1
(b) Nonterminal symbols: S and E
(c) Starting symbol: S
(d) Production rules: S -0S0, S->1S1, S»E, E-»>A, E-»0, E- 1.
4. What sets of strings are defined by the following grammar?
(a) Terminal symbols: A, @, b, and ¢
(b) Nonterminal symbols: S, 7, U and E
(c) Starting symbol: §
(d) Production rules: S »aS, S> T, T-»>bT, T->U, U->cU, U-E, E- A.
5. Define the following languages over B with phrase structure grammars.
Which of these languages are regular?
(a) The strings with an odd number of characters.
(b) The strings of length 4 or less.
(c) The palindromes, strings that are the same backwards as forwards.
6. Define the following languages over B with phrase structure grammars. Which of these languages are regular?
(a) The strings with more Os than 1s.
(b) The strings with an even number of 1s.
(c) The strings for which all Os precede all 1s.
7. Prove that if a language over A is recursive, then its complement is also recursive.

8. Use BNF to define the grammars in Exercises 3 and 4.
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B Exercise

o0
9. (a)Prove that if X;, X5, ...is a countable sequence of countable sets, the union of these sets, |J X;, is countable.

i=1

(b) Using the fact that the countable union of countable sets is countable, prove that if A is countable, then A* is countable.

14.3 Automata, Finite-State Machines

In this section, we will introduce the concept of an abstract machine. The machines we will examine will (in theory) be capable of performing
many of the tasks associated with digital computers. One such task is solving the recognition problem for a language. We will concentrate on
one class of machines, finite-state machines (finite automata). And we will see that they are precisely the machines that are capable of recogniz-
ing strings in a regular grammar.

Given an alphabet X, we will imagine a string in X* to be encoded on a tape that we will call an input tape. When we refer to a tape, we
might imagine a strip of material that is divided into segments, each of which can contain either a letter or a blank.

The typical abstract machine includes an input device, the read head, which is capable of reading the symbol from the segment of the
input tape that is currently in the read head. Some more advanced machines have a read/write head that can also write symbols onto the tape.
The movement of the input tape after reading a symbol depends on the machine. With a finite-state machine, the next segment of the input tape
is always moved into the read head after a symbol has been read. Most machines (including finite-state machines) also have a separate output
tape that is written on with a write head. The output symbols come from an output alphabet, Z, that may or may not be equal to the input
alphabet. The most significant component of an abstract machine is its memory structure. This structure can range from a finite number of bits
of memory (as in a finite-state machine) to an infinite amount of memory that can be sorted in the form of a tape that can be read from and
written on (as in a Turing machine).

Definition: Finite-State Machine. A finite-state machine is defined by a quintet (S, X, Z, w, t) where
(1) S= {s;, S5, ..., S/} is the state set, a finite set that corresponds to the set of memory configurations that the machines can have at any
time.
(2) X ={x;, x5, ..., Xy} is the input alphabet.
(3) Z ={z;, 22, ..., Zn} is the output alphabet.
(4) w: X xS — Z is the output function, which specifies which output symbol w(x, s) € Z is written onto the output tape when the machine is
in state s and the input symbol x is read.

(5) t:XXxS — S is the next-state (or transition) function, which specifies which statet(x, s) € S the machine should enter when it is in state s
and it reads the symbol x.

Example 14.3.1. Many mechanical devices, such as simple vending machines, can be thought of as finite-state machines. For simplicity,
assume that a vending machine dispenses packets of gum, spearmint (S), peppermint (P), and bubble (B), for 25¢ each. We can define the input
alphabet to be {deposit25 ¢, press S, press P, press B} and the state set to be {Locked, Select}, where the deposit of a quarter unlocks the
release mechanism of the machine and allows you to select a flavor of gum. We will leave it to the reader to imagine what the output alphabet,
output function, and next-state function would be. You are also invited to let your imagination run wild and include such features as a coin-
return lever and change maker.

Example 14.3.2. The following machine is called a parity checker. It recognizes whether or not a string in B* contains an even number of 1s.
The memory structure of this machine reflects the fact that in order to check the parity of a string, we need only keep track of whether an odd or
even number of 1s has been detected.

(1) The input alphabet is B = {0, 1}.

(2) The output alphabet is also B.

(3) The state set is {even, odd}.

(4, 5) The following table defines the output and next-state functions:

x| K |w(x,s)|t(x,s)

0 [even 0 even
0 [ odd 1 odd
1 [even 1 odd
1 | odd 0 even

Note how the value of the most recent output at any time is an indication of the current state of the machine. Therefore, if we start in the even
state and read any finite input tape, the last output corresponds to the final state of the parity checker and tells us the parity of the string on the
input tape. For example, if the string 11001010 is read from left to right, the output tape, also from left to right, will be 10001100. Since the last
character is a 0, we know that the input string has even parity.

An alternate method for defining a finite-state machine is with a transition diagram. A transition diagram is a directed graph that contains a

node for each state and edges that indicate the transition and output functions. An edge (s,-, s j) that is labeled x/z indicates that in state s; the

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License.



Chapter 14 - Monoids and Automata

input x results in an output of z and the next state is s;. That is, w(x, s;) =z and #(x, s5;) = s;. The transition diagram for the parity checker
appears in Figure 14.3.1. In later examples, we will see that if different inputs, x; and x;, while in the same state, result in the same transitions

and outputs, we label a single edge x;, xj/z instead of drawing two edges with labels x;/z and xj/z.

One of the most significant features of a finite-state machine is that it retains no information about its past states that can be accessed by the
machine itself. For example, after we input a tape encoded with the symbols 01101010 into the parity checker, the current state will be even,
but we have no indication within the machine whether or not it has always been in even state. Note how the output tape is not considered part of
the machine’s memory. In this case, the output tape does contain a "history" of the parity checker's past states. We assume that the finite-state
machine has no way of recovering the output sequence for later use.

0/1 Odd Even 0/0

Figure 14.3.1
Transition Diagram for a parity checker

Example 14.3.3. Consider the following simplified version of the game of baseball. To be precise, this machine describes one half-inning of a
simplified baseball game. Suppose that in addition to home plate, there is only one base instead of the usual three bases. Also, assume that there
are only two outs per inning instead of the usual three. Our input alphabet will consist of the types of hits that the batter could have: out (O),
double play (DP), single (S), and home run (HR). The input DP is meant to represent a batted ball that would result in a double play (two outs),
if possible. The input DP can then occur at any time. The output alphabet is the numbers 0, 1, and 2 for the number of runs that can be scored as
a result of any input. The state set contains the current situation in the inning, the number of outs, and whether a base runner is currently on the
base. The list of possible states is then 00 (for O outs and O runners), 01, 10, 11, and end (when the half-inning is over). The transition diagram
for this machine appears in Figure 14.3.2.

Let's concentrate on one state. If the current state is 01, 0 outs and 1 runner on base, each input results in a different combination of output and
next-state. If the batter hits the ball poorly (a double play) the output is zero runs and the inning is over (the limit of two outs has been made). A
simple out also results in an output of O runs and the next state is 11, one out and one runner on base. If the batter hits a single, one run scores
(output = 1) while the state remains O1. If a home run is hit, two runs are scored (output = 2) and the next state is 00. If we had allowed three
outs per inning, this graph would only be marginally more complicated. The usual game with three bases would be quite a bit more compli-
cated, however.

Start

N
00 ODP0 10

OHP/0

HR[2 $/0

A

—Fll

Figure 14.3.2
Transition Diagram for a simplified game of baseball

RECOGNITION IN REGULAR LANGUAGES

As we mentioned at the outset of this section, finite-state machines can recognize strings in a regular language. Consider the language L over
{a, b, c} that contains the strings of positive length in which each a is followed by b and each b is followed by c. One such string is bccabebe.
This language is regular. A grammar for the language would be nonterminal symbols {A, B, C} with starting symbol C and production rules
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A-bB, cC, C »aA, C— cCandC - c. A finite-state machine (Figure 14.3.3) that recognizes this language can be constructed with one
state for each nonterminal symbol and an additional state (Reject) that is entered if any invalid production takes place. At the end of an input
tape that encodes a string in {a, b, c}*, we will know when the string belongs to L based on the final output. If the final output is 1, the string
belongs to L and if it is 0, the string does not belong to L. In addition, recognition can be accomplished by examining the final state of the
machine. The input string belongs to the language if and only if the final state is C.

The construction of this machine is quite easy: note how each production rule translates into an edge between states other than Reject.
For example, C — bB indicates that in State C, an input of b places the machine into State B. Not all sets of production rules can be as easily
translated to a finite