
chapter 3

LOGIC
GOALS
In this chapter, we will introduce some of the basic concepts of mathematical logic. In order to fully understand some of the later concepts in
this  book,  you  must  be  able  to  recognize  valid  logical  arguments.  Although  these  arguments  will  usually  be  applied  to  mathematics,  they
employ the same techniques that are used by a lawyer in a courtroom or a physician examining a patient. An added reason for the importance of
this chapter is that the circuits that make up digital computers are designed using the same algebra of propositions that we will be discussing.
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3.1 Propositions and Logical Operators

PROPOSITIONS
Definition: Proposition. A proposition is a sentence to which one and only one of the terms true or false can be meaningfully applied.

Example 3.1.1. "Four is even," "4 œ 81, 3, 5<," and "43 > 21" are propositions.

In  traditional  logic,  a  declarative  statement  with  a  definite  truth  value  is  considered  a  proposition.  Although  our  ultimate  aim  is  to  discuss
mathematical  logic,  we  won't  separate  ourselves  completely  from  the  traditional  setting.  This  is  natural  because  the  basic  assumptions,  or
postulates,  of  mathematical  logic  are  modeled  after  the  logic  we  use  in  everyday  speech.  Since  compound  sentences  are  frequently  used  in
everyday  speech,  we  expect  that  logical  propositions  contain  connectives  like  the  word  and.  The  statement  "Europa  supports  life  or  Mars
supports life" is a proposition and, hence, must have a definite truth value. Whatever that truth value is, it should be the same as the truth value
of "Mars supports life or Europa supports life."

LOGICAL OPERATORS
There are several ways in which we commonly combine simple statements into compound ones. The words/phrases and, or, not, if… then, and
if and only if can be added to one or more propositions to create a new proposition. To avoid any confusion, we will precisely define each one's
meaning and introduce its standard symbol. With the exception of negation (not), all of the operators act on pairs of propositions. Since each
proposition has two possible truth values, there are four ways that truth can be assigned to two propositions. In defining the effect that a logical
operator has on two propositions, the result  must be specified for all  four cases.  The most convenient way of doing this is with a truth table,
which we will illustrate by defining the word and.

Conjunction
Definition: Conjunction (And). If p and q are propositions, their conjunction, p and q (denoted p Ï q), is defined by the truth table in

Table 3.1.1.
p q p Ï q
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.1.1.  Truth Table for And

Notes:

(a)   To read this truth table, you must realize that any one line represents a case: one possible set of values for p and q.

(b)    The numbers 0 and 1 are used to denote false and true,  respectively.  This is  consistent with the way that many programming languages
treat  logical,  or  Boolean,  variables  since  a  single  bit,  0  or  1,  can represent  a  truth  value.  Although Mathematica's  logical  expressions  have a
value of True or False, there is a built in function called Boole which converts the value to 1 or 0, if desired. 8Boole@FalseD, Boole@TrueD<

80, 1<
(c)   For each case, the symbol under p represents the truth value of p. The same is true for q. The symbol under p Ï q represents the truth value
of p Ï q  for that case. For example, the second row of the truth table represents the case in which p  is false, q  is true, and the resulting truth
value for p Ï q is false. As in everyday speech, p Ï q is true only when both propositions are true.
(d)   Just as the letters x, y, and z are frequently used in algebra to represent numeric variables, p, q, and r seem to be the most commonly used
symbols for logical variables. When we say that p is a logical variable, we mean that any proposition can take the place of p.
(e)   One final comment: The order in which we list the cases in a truth table is standardized in this book. If the truth table involves two simple
propositions, the numbers under the simple propositions can be inter preted as the two-digit binary integers in increasing order, 00, 01, 10, and
11, for  0, 1, 2, and 3.

Disjunction
Definition: Disjunction (Or). If p and q are propositions, their disjunction is p or q, denoted p  q, and is defined by the truth table in

Table 3.1.2.
p q p Í q
0 0 0
0 1 1
1 0 1
1 1 1

Table 3.1.2. Truth Table for Or
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Note; The only case in which disjunction is false is when both propositions are false. This interpretation of the word or is called the nonexclu-
sive or. The exclusive or will be discussed when we consider logical design in Chapter 13.

Negation
Definition: Negation (Not). If p is a proposition, its negation, not p, is denoted ¬p and is defined by the truth table in Table 3.1.3.

p Ÿ p
0 1
1 0

Table 3.1.3 Truth Table for Not

Note: Negation is the only standard operator that acts on a single proposition; hence only two cases are needed.

The Conditional Operator (If . . . then).
Consider the following propositions from everyday speech:

(a)  I'm going to quit if I don't get a raise.

(b)   If I pass the final, then I'll graduate.

(c)  I'll be going to the movies provided that my car starts.

All three propositions are conditional, they can all be restated to fit into the form if Condition, then Conclusion. For example, statement (a) can
be rewritten as "If I don't get a raise, then I'm going to quit."
A conditional statement is meant to be interpreted as a guarantee; if the condition is true, then the conclusion is expected to be true. It says no
more and no less.

Definition: Conditional Operator. The conditional statement if p then q, denoted p Ø q, is defined by the truth table in Table 3.1.4.

p q p Ø q
0 0 1
0 1 1
1 0 0
1 1 1

Table 3.1.4 Truth Table for If... then

Example 3.1.2. Assume your instructor told you "If you receive a grade of 95 or better in the final examination, then you will receive an
A  in  this  course."  Your  instructor  has  made  a  promise  to  you  (placed  a  condition  with  you).  If  you  fulfill  his  condition  you  expect  the
conclusion (getting an A) to be forthcoming. Your graded final has been returned to you. Has your instructor told the truth (kept the promise)
or is your instructor guilty of a falsehood?
Case I: Your final exam score was less than 95 (the condition is false) and you did not receive an A (the conclusion is false). The instructor
told the truth.
Case II:  Your final  exam score was less  than 95,  yet  you received an A for  the course.  The instructor  told the truth.  (Perhaps your overall
course average was excellent.)
Case III: Your final exam score was greater than 95, but you did not receive an A. The instructor lied.

Case IV: Your final exam score was greater than 95, and you received an A. The instructor told the truth.

To sum up, the only case in which a conditional proposition is false is when the condition is true and the conclusion is false.

The order of the condition and conclusion in a conditional proposition is important. If the condition and conclusion are exchanged, a different
proposition is produced.

Definition: Converse. The converse of the proposition pØ q is the proposition q Ø p.

The converse of "If you receive a grade of 95 or better in the final exam, then you will receive an A in this course," is "If you receive an A in
this course, then you received a grade of 95 or better in the final exam." It should be clear that these two statements say different things.

Definition:  Biconditional  Operator  (...if  and  only  if...).  If  p  and  q  are  propositions,  the  biconditional  statement  "p  if  and  only  if  q,"
denoted p¨ q, is defined by the truth table in Table 3.1.5.

p q p ¨ q
0 0 1
0 1 0
1 0 0
1 1 1

Table 3.1.5  Truth table for "... if and only if..."

Note that p ¨ q is true when p and q have the same truth values. It is common to abbreviate "if and only if" to "iff."
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Although "if . . . then" and "if and only if" are frequently used in everyday speech, there are several alternate forms that you should be aware of.
They are summarized in the following list:
Conditional

If p then q.

p implies q.

q follows from q.

p, only if q.

q, if p.

p is sufficient for q.

q is necessary for p.

Biconditional

p if and only if  q.

p is necessary and sufficient for q.

p is equivalent to q.

If p, then q, and if q, then p.

If p, then q and conversely.

EXERCISES FOR SECTION 3.1
A Exercises
1. Let d = "I like discrete structures" c = "I will pass this course" s = "I will do my assignments" Express each of the following propositions in
symbolic form:
(a) I like discrete structures and I will pass this course.

(b) I will do my assignments or I will not pass this course.

(c) It is not true that I like discrete structures and I will do my assignments.

(d) I will not do my assignment and I will not pass this course.

2. For  each  of  the  following  propositions,  identify  simple  propositions,  express  the  compound  proposition  in  symbolic  form,  and  determine
whether it is true or false:
(a) The world is flat or zero is an even integer.

(b) If 432,802 is a multiple of 4, then 432,802 is even.

(c) 5 is a prime number and 6 is not divisible by 4. 

(d) 3 œ Z  and 3 œ Q.

(e) 2 ê3 œ Z and 2 ê3 œ Q.

(f) The sum of two even integers is even and the sum of two odd integers is  odd.

3. Let p = "2 < 5," q = "8 is an even integer," and r = "11 is a prime number." Express the following as a statement in English and determine
whether the statement is true or false:

(a) Ÿ p Í q   
(b)  p Ø q   

(c) Hp Ï qLØ r  

(d) p Ø q Í HŸ rL
(e) p Ø HŸ qL Í HŸ rL
(f) Ÿ q Ø Ÿ p

4. Rewrite each of the following statements using the other conditional forms:
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(a) If an integer is a multiple of 4, then it is even.

(b) The fact that a polygon is a square is a sufficient condition that it is a rectangle.

(c) If  x = 5, then x2 = 25.

(d) If x2 - 5 x + 6 = 0, then x = 2 or x = 3.

(e)  x2 = y2 is a necessary condition for x = y.
5. Write the converse of the propositions in exercise 4. Compare the truth of each proposition and its converse.
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3.2 Truth Tables and Propositions Generated by a Set
Consider the compound proposition c = Hp Ï qL Í HŸ q Ï rL,  where p,  q,  and r  are propositions. This is an example of a proposition gener-
ated  by  p,  q,  and  r.  We  will  define  this  terminology  later  in  the  section.  Since  each  of  the  three  simple  propositions  has  two  possible  truth
values, it follows that there are eight different combinations of truth values that determine a value for c. These values can be obtained from a
truth  table  for  c.  To  construct  the  truth  table,  we  build  c  from  p,  q,  and  r  and  from the  logical  operators.  The  result  is  Table  3.2.1.  Strictly
speaking, the first three columns and the last column make up the truth table for c. The other columns are work space needed to build up to c.

p q r p Ï q Ÿ q Ÿ q Ï r Hp Ï qL Í HŸ q Ï rL
0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 1 0 0
1 0 1 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 0 0 1

Table 3.2.1 Truth Table for c = Hp Ï qL Í Hÿ q Ï rL
Note  that  the  first  three  columns  of  the  truth  table  are  an  enumeration  of  the  eight  three-digit  binary  integers.  This  standardizes  the  order  in
which the cases  are  listed.  In  general,  if  c  is  generated by n  simple propositions,  then the truth table  for  c  will  have 2n  rows with the first  n
columns being an enumeration of the n digit binary integers. In our example, we can see at a glance that for exactly four of the eight cases, c
will be true. For example, if p and r are true and q is false (the sixth case), then c is true.
Let S be any set of propositions. We will give two definitions of a proposition generated by S. The first is a bit imprecise, but should be clear.
The second definition is called a recursive definition. If you find it confusing, use the first definition and return to the second later.

Definition: Proposition Generated by S.
(1) A proposition generated by S is any valid combination of propositions in S with conjunction, disjunction, and negation.
(2) (a) If p œ S, then p is a proposition generated by S.
     (b) If x and y are propositions generated by S, then so are HxL, Ÿ x, x Í y , and x Ï y.

Note: We have not included the conditional and biconditional in the definition because they can both be obtained from conjunction, disjunction,
and negation, as we will see later.
If S is a finite set, then we may use slightly different terminology. For example, if S = 8p, q, r<, we might say that a proposition is generated
by p, q, and r instead of 8p, q, r<. 
Hierarchy of Logical Operations

It is customary to use the following hierarchy for interpreting propositions, with parentheses overriding this order:

First: Negation

Second: Conjunction 

Third: Disjunction

Within any level of the hierarchy, work from left to right. Using these rules, p Ï q Í r is taken to mean Hp Ï qL Ï r. These precedence rules
are universal, and are exactly those used by computer languages to interpret logical expressions. 
Example 3.2.1. A few shortened expressions and their fully parenthesized versions:

(a)   p Ï q Ï r is Hp Ï qL Ï r.

(b)   Ÿ p Í Ÿ r is HŸ pL Í HŸ rL.
 (c)    Ÿ Ÿ p is Ÿ HŸ pL.
A proposition generated by a set S need not include each element of S in its expression. For example, Ÿ q Ï r is a proposition generated by p,
q, and r.

EXERCISES FOR SECTION 3.2
A Exercises
1.   Construct the truth tables of:

(a)  p Í p  

(b)  p Ï HŸ pL  
( c) p Í HŸ pL
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 (d) p Ï p

2.   Construct the truth tables of:

(a)   Ÿ Hp Ï q L  
(b)   p Ï HŸ qL   
(c)  Hp Ï qL Ï r   

(d)  Hp Ï qL \ê Hq Ï rL Í Hr Ï pL
(e) HŸ pL Í Ÿ qL
(f)   p Í q Í r Í s

3.   Rewrite the following with as few extraneous parentheses as possible:

 (a) HŸ HHpL Ï HrLLL Í HsL  
 (b) HHpL Í HqLL Ï HHrL Í HqLL
4. In what order are the operations in the following propositions performed?

(a)   p Í Ÿ q Í r Ï Ÿ p

(b)  p Ï Ÿ q Ï r Ï Ÿ p

5.   Determine the number of rows in the truth table of a proposition containing four variables p, q, r, and s.

6. If there are 45 lines on a sheet of paper, and you want to reserve one line for each line in a truth table, how large could S  be if you can
write truth tables of propositions generated by S on a sheet of paper?
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3.3 Equivalence and Implication

Tautologies & Contradictions
Consider two propositions generated by p  and q:  Ÿ Hp Ï qL  and Ÿ p Í Ÿ q.  At first glance, they are different propositions. In form, they are
different, but they have the same meaning. One way to see this is to substitute actual propositions for p and q; such as:
p: I've been to Toronto; and q: I've been to Chicago.

Then Ÿ Hp Ï qL translates to "I haven't been to both Toronto and Chicago," while Ÿ p Í Ÿ q. is "I haven't been to Toronto or I haven't been to
Chicago." Determine the truth values of these propositions. Naturally, they will be true for some people and false for others. What is important
is  that  no  matter  what  truth  values  they  have,  Ÿ Hp Ï qL  and  Ÿ p Í Ÿ q.  will  have  the  same  truth  value.  The  easiest  way  to  see  this  is  by
examining the truth tables of these propositions ().

p q Ÿ Hp Ï qL Ÿ p Í Ÿ q
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

Table 3.3.1 Truth tables of  ÿ Hp Ï qL and ÿ p Í ÿ q. 

In all four cases, Ÿ Hp Ï qL and Ÿ p Í Ÿ q. have the same truth value. Then when the biconditional operator is applied to them, the result is a
value of true in all cases.

Definition: Tautology. An expression involving logical variables that is true in all cases is called a tautology.

Example 3.3.1. All of the following are tautologies because their truth tables consist of a column of 1's.

(a)  HŸ Hp Ï qLL¨ HŸ p Í Ÿ qL.
(b)   p Í Ÿ p

(c)  Hp Ï qLØ p

(d)  q Ø Hp Í qL
(e)  Hp Í qL¨ Hq Í pL

Definition: Contradiction. An expression involving logical variables that is false for all cases is called a contradiction.

Example 3.3.2. p Ï Ÿ p and Hp Í qL Ï HŸ pL Ï HŸ qL are contradictions.

Equivalence
Definition: Equivalence. Let S be a set of propositions and let r and s be propositions generated by S. r and s are equivalent if and only

if r ¨ s is a tautology. The equivalence of r and s is denoted r Í s.
Example 3.3.3. The following are all equivalences:

(a)  Hp Ï qL Í HŸ p Ï qL Í q.

(b)  p Ø q Í Ÿ q Ø Ÿ p

(c)  p Í q Í q Í p.

All tautologies are equivalent to one another. We will use the number 1 to symbolize a tautology.

Example 3.3.4. p Í Ÿ p Í l.

All contradictions are equivalent to one another. We will use the number 0 to symbolize a contradiction.

Example 3.3.5. p Ï Ÿ p Í 0.

Equivalence is to logic what equality is to algebra. Just as there are many ways of writing an algebraic expression, the same logical meaning
can be expressed in many different ways.

IMPLICATION
Example 3.3.6. Consider the two propositions:

x: The money is behind Door A; and

y: The money is behind Door A or Door B.
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Imagine that you were told that there is a large sum of money behind one of two doors marked A and B, and that one of the two propositions
x and y is true and the other is false. Which door would you choose? All that you need to realize is that if x is true, then y will also be true.
Since we know that this can't be the case, y must be the true proposition and the money is behind Door B.
This is an example of a situation in which the truth of one proposition leads to the truth of another. Certainly, y can be true when x is false; but x
can't be true when y is false. In this case, we say that x implies y.
Look at the truth table of p Ø q in Table 3.1.4 (copied below). If p implies q, then the third case can be ruled out, since it is the case that makes
a conditional proposition false.

p q p Ø q
0 0 1
0 1 1
1 0 0
1 1 1

Definition: Implication. Let S be a set of propositions and let r and s be propositions generated by S. We say that r implies s if r Ø s is a
tautology. We write r s to indicate this implication.

Example 3.3.7. A commonly used implication is that p implies p Í q, which is verified by the truth table in Table 3.3.2.

p q p Í q p Ø p Í q
0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 1

Table 3.3.2 Truth Table for p Æ Hp Í qL
If we let p represent "The money is behind Door A" and q represent "The money is behind Door B," p Hp Í qL is a formalized version of
the reasoning used in Example 3.3.6. A common name for this implication is disjunctive addition. In the next section we will consider some
of the most commonly used implications and equivalences.
When  we  defined  what  we  mean  by  a  proposition  generated  by  a  set  in  Section  3.2,  we  didn't  include  the  conditional  and  biconditional
operators. This was because of the two equivalences p Ø q ñ Ÿ p Í q and p ¨ q ñ Hp Ï qL Í HŸ p Ï Ÿ qL. Therefore, any proposi-
tion  that  includes  the  conditional  or  biconditional  operators  can  be  written  in  an  equivalent  way  using  only  conjunction,  disjunction,  and
negation. We could even dispense with disjunction since p Í q is equivalent to a proposition that uses only conjunction and negation.

EXERCISES FOR SECTION 3.3
A Exercises
1.  Given the following propositions generated by p, q, and r, which are equivalent to one another?

(a)  Hp Ï rL Í q  

(b)  p Í Hr Í qL 
(c)  r Ï p   

(d)  Ÿ r Í p  

 (e)   Hp Í qL Ï Hr Í qL
 (f)   r Ø p

(g)   r Í Ÿ p

 (h)   p Ø r

2.  (a) Construct the truth table for x = Hp Ï Ÿ qL Í Hr Ï pL.
(b) Give an example other than x itself of a proposition generated by p, q, and r that is equivalent to x.

(c) Give an example of a proposition other than x that implies x.

(d)   Give an example of a proposition other than x that is implied by x.

3.   Is an implication equivalent to its converse? Verify your answer using a truth table.

4. Suppose that x is a proposition generated by p, q, and r that is equivalent to p Í Ÿ q. Write out the truth table for x.

B Exercises
5.   How large is the largest set of propositions generated by p and q with the property that no two elements are equivalent?
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6.   Find a proposition that is equivalent to p Í q and uses only conjunction and negation.

7. Explain why a contradiction implies any proposition and any proposition implies a tautology.
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3.4 The Laws of Logic
In  this  section,  we  will  list  the  most  basic  equivalences  and  implications  of  logic.  Most  of  the  equivalences  listed  in  Table  3.4.1  should  be
obvious to the reader. Remember, 0 stands for contradiction, 1 for tautology.  Many logical laws are similar to algebraic laws.  For example,
there is a logical law corresponding to the associative law of addition, a + Hb + cL = Ha + bL + c.  In fact, associativity of both conjunction
and disjunction are among the laws of logic. Notice that with one exception, the laws are paired in such a way that exchanging the symbols ,

, 1 and 0 for , , 0, and 1, respectively, in any law gives you a second law. For example,  p Í 0 ñ p results in p Ï 1 ñ p. This called a
duality principle. For now, think of it as a way of remembering two laws for the price of one. We will leave it to the reader to verify a few of
these laws with truth tables. However, the reader should be careful in applying duality to the conditional operator and implication since the dual
involves taking the converse. For example, the dual of p Ï q p is p Í q › p, which is usually written p p Í q

Example 3.4.1. The identity law:

p 1 p Ï 1 Hp Ï 1L¨ p
0 1 0 1
1 1 1 1

therefore, Hp Ï lL Í p.

Some of the logical laws in Table 3.4.2 might be less obvious to you. For any that you are not comfortable with, substitute actual propositions
for the logical variables. For example, if p is "John owns a pet store" and q is "John likes pets," the detachment law should make sense.

TABLE 3.4.1 Basic Logical Laws

Commutative Laws

 p Í q ñ q Í p    p Ï q ñ q Ï p

Associative Laws

Hp Í qL Í r ñ p Í Hq Í rL    (p Ï qL Ï r ñ p Ï Hq Ï rL
Distributive Laws

p Ï Hq Í rL ñ Hp Ï q L Í Hp Ï rL         p Í Hq Ï rL ñ Hp Í qL Ï Hp Í rL
Identity Laws

   p Í 0 ñ p    p Ï 1 ñ p

Negation Laws

 p Ï Ÿ p ñ 0   p Í Ÿ p ñ 1

Idempotent Laws

p Í p ñ p    p Ï p ñ p

Null Laws

p Ï 0 ñ 0  p Í 1 <ñ 1

Absorption Laws

p Ï 8p Í qLñ p    p Í Hp Ï qL ñ p

DeMorgan's Laws

 Ÿ Hp Í qL ñ HŸ pL Ï HŸ qL Ÿ Hp Ï qL ñ HŸ pL Í HŸ qL
Involution Law

 Ÿ HŸ pLñ p
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TABLE 3.4.2 Common Implications and Equivalences

Detachment

Hp Ø qL Ï p q

Indirect Reasoning

Hp Ø qL Ï Ÿ q Ÿ p

Disjunctive Addition

p Hp Í qL
Conjunctive Simplification

 Hp Ï qL p and Hp Ï qL q

Disjunctive Simplification

 Hp Í qL Ï Ÿ p q and Hp \ê qL Ï Ÿ q p

Chain Rule

Hp Ø qL Ï H q Ø rL Hp Ø rL
Conditional Equivalence

 p Ø q ñ Ÿ p Í q

Biconditional Equivalences

 Hp ¨ qL ñ Hp Ø qL Ï Hq Ø pLñ Hp Ï qL Í HŸ p Ï Ÿ qL
Contrapositive

 Hp Ø qL ñ HŸ q Ø Ÿ pL
EXERCISES FOR SECTION 3.4
A Exercises
1.  Write the following in symbolic notation and determine whether it is a tautology: "If I study then I will learn. I will not learn. Therefore, I do
not study."
2. Show that the common fallacy Hp Ø qL Ï Ÿ p Ÿ q is not a law of logic.

3. Describe in general how duality can be applied to implications if we introduce the symbol ›, read "is implied by."

4. Write the dual of the following statements:

(a)  Hp Ï qL p

(b)  Hp Í qL Ï Ÿ q p
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3.5 Mathematical Systems
In this section, we present an overview of what a mathematical system is and how logic plays an important role in one. The axiomatic method
that we will use here will not be duplicated with as much formality anywhere else in the book, but we hope an emphasis on how mathematical
facts  are developed and organized will  help to unify the concepts  we will  present.  The system of propositions and logical  operators we have
developed will serve as a model for our discussion. Roughly, a mathematical system can be defined as follows:

Definition: Mathematical System. A mathematical system consists of:

(1) A set or universe, U.

(2) Definitions — sentences that explain the meaning of concepts that relate to the universe. Any term used in describing the universe itself is
said to be undefined. All definitions are given in terms of these undefined concepts of objects.
(3) Axioms  —  assertions  about  the  properties  of  the  universe  and  rules  for  creating  and  justifying  more  assertions.  These  rules  always
include the system of logic that we have developed to this point.
(4) Theorems — the additional assertions mentioned above.

Example  3.5.1.  In  Euclidean  geometry  the  universe  consists  of  points  and  lines  (two  undefined  terms).  Among  the  definitions  is  a
definition of parallel lines and among the axioms is the axiom that two distinct parallel lines never meet.

Example  3.5.2.  Propositional  calculus  is  a  formal  name  for  the  logical  system  that  we've  been  discussing.  The  universe  consists  of
propositions. The axioms are the truth tables for the logical operators and the key definitions are those of equivalence and implication. We
use propositions to describe any other mathematical system; therefore, this is the minimum amount of structure that a mathematical system
can have.

Definition: Theorem. A true proposition derived from axioms of mathematical system is called a theorem.

Theorems are normally expressed in terms of a finite number of propositions, p1, p2, . . . , pn , called the premises, and a proposition, C, called
the conclusion. These theorems take the form

p1 Ï p2 Ï º⋯ Ï pn C

or more informally,

p1, p2, . . . , and pn imply C

For a theorem of this type, we say that the premises imply the conclusion. When a theorem is stated, it is assumed that the axioms of the system
are true. In addition, any previously proven theorem can be considered an extension of the axioms and can be used in demonstrating that the
new theorem is true. When the proof is complete, the new theorem can be used to prove subsequent theorems. A mathematical system can be
visualized as an inverted pyramid with the axioms at the base and the theorems expanding out in various directions (Figure 3.5.1).

FIGURE 3.5.1 The body of knowledge In a mathematical system

PROOF
Definition: Proof. A proof of a theorem is a finite sequence of logically valid steps that demonstrate that the premises of a theorem imply

the conclusion.
Exactly what constitutes a proof is not always clear. For example, a research mathematician might require only a few steps to prove a theorem
to a colleague, but might take an hour to give an effective proof to a class of students. Therefore, what constitutes a proof often depends on the
audience.  But  the  audience  is  not  the  only  factor.  One  of  the  most  famous  theorems  in  graph  theory,  The  Four  Color  Theorem,  was  finally
proven in 1976, after over a century of effort by many mathematicians.  Part of the proof consisted of having a computer check many different
graphs for a certain property. Without the aid of the computer, this checking would have taken years. In the eyes of some mathematicians, this
proof was considered questionable. Shorter proofs have been developed since 1976 and there is no controversy associated with The Four Color
Theorem at this time. (The theorem is stated in Chapter 9.)

PROOFS IN PROPOSITIONAL CALCULUS
Theoretically, you can prove anything in propositional calculus with truth tables. In fact, the laws of logic stated in Section 5.4 are all theorems.
Propositional  calculus  is  one  of  the  few  mathematical  systems  for  which  any  valid  sentence  can  be  determined  true  or  false  by  mechanical
means. A program to write truth tables is not too difficult to write; however, what can be done theoretically is not always practical. For example,

a, a Ø b, b Ø c, . . . , y Ø z z

is a theorem in propositional calculus. However, suppose that you wrote such a program and you had it write the truth table for

Ha Ï Ha Ø bL Ï H b Ø cL Ïº⋯Ï Hy Ø zLLØ z
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The truth table will have 226 cases. At one million cases per second, it would take approximately one minute  to verify the theorem.  Now if you
decided to check a similar theorem,
 p1, p1 Ø p2, … , p99 Ø p100 p100,

you would really have time trouble. There would be 2100 º 1.26765µ1030 cases to check in the truth table.  At one million cases per second it
would take approximately 1.46719µ1019 days to check all cases.  For most of the remainder of this section, we will discuss an alternate method
for proving theorems in propositional calculus. It is the same method that we will use in a less formal way for proofs in other systems. Formal
axiomatic methods would be too unwieldy to actually use in later sections. However, none of the theorems in later chapters would be stated if
they couldn't be proven by the axiomatic method.
We will introduce two types of proof here, direct and indirect.

DIRECT PROOFS
A direct proof is a proof in which the truth of the premises of a theorem are shown to directly imply the truth of the theorem's conclusion.

Example 3.5.3. Theorem: p Ø r, q Ø s, p Í q s r.   A direct proof of this theorem is:

Step   Proposition   Justification

(1)   p Í q   Premise

(2)   Ÿ p Ø q    (1), conditional rule

(3)   q Ø s   Premise

(4)    Ÿ p Ø s   (2), (3), chain rule

(5)  Ÿ s Ø p   (4), contrapositive

(6)   p Ø r   Premise

(7)   Ÿ s Ø r   (5), (6), chain rule

(8)  s r   (7), conditional rule   ‡

Note that ‡ marks the end of a proof.

Rules for Formal Proofs.  Example 3.5.3 illustrates the usual  method of formal proof in a formal mathematical  system. The rules governing
these proofs are:
(1) A proof must end in a finite number of steps.

(2) Each step must be either a premise or a proposition that is implied from previous steps using any valid equivalence or implication.

(3) For  a  direct  proof  ,  the  last  step  must  be  the  conclusion  of  the  theorem.  For  an  indirect  proof  (see  below),  the  last  step  must  be  a
contradiction.
(4) Justification Column. The column labeled "justification" is analogous to the comments that appear in most good computer programs. They
simply make the proof more readable.

Example 3.5.4. Here are two direct proofs of Ÿ p Í q, s Í p, Ÿ q s:

(1)   Ÿ p Í q   Premise

(2)   Ÿ q   Premise

(3)   Ÿ p   Disjunctive simplification, (1), (2)

(4)   s Í p   Premise

(5)   s    Disjunctive simplification, (3), (4). ‡
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You are invited to justify the steps in this second proof:

(1)  Ÿ p Í q

(2)  Ÿ q Ø Ÿ p

(3)   s Í p

(4)   p Í s

(5)   Ÿ p Ø s

(6)   Ÿ q Ø s

(7)   Ÿ q

(8)   s ‡

CONDITIONAL CONCLUSIONS
The conclusion of a theorem is often a conditional proposition. The condition of the conclusion can be included as a premise in the proof of the
theorem. The object of the proof is then to prove the consequence of the conclusion. This rule is justified by the logical law

p Ø Hh Ø cL ñ Hp Ï hL Ø c.
Example 3.5.5. The following proof of p Ø (q Ø s), ¬r \/ p, q  r Ø s includes r as a fourth premise. The truth of s concludes the proof.

(1)   Ÿ r \ê p   Premise

(2)  r   Added premise

(3)   p    (1), (2), disjunction simplification

(4)   p Ø Hq Ø sL Premise

(5)    q Ø s   (3), (4), detachment

(6)    q   Premise

(7)  s   (5), (6), detachment. ‡

INDIRECT PROOFS / PROOF BY CONTRADICTION
Consider a theorem P C,  where P  represents p1, p2, . . . , and pn ,  the premises.  The method of indirect  proof is  based on the equivalence
P Ø C ñŸ HP Ï Ÿ CL.  
In  words,  this  logical  law states  that  if  P C,  then  P Ï Ÿ C  is  always  false;  that  is,  P Ï Ÿ C  is  a  contradiction.  This  means  that  a  valid
method of proof is to negate the conclusion of a theorem and add this negation to the premises. If a contradiction can be implied from this set of
propositions,  the  proof  is  complete.  For  the  proofs  in  this  section,  a  contradiction  will  often  take  the  form  t Ÿ t.  For  proofs  involving
numbers, a contradiction might be 1 = 0 or 0 < 0. Indirect proofs involving sets might conclude with x œ « or (x œ A and x œ Ac). Indirect
proofs are often more convenient than direct proofs in certain situations.  Indirect proofs are often called proofs by contradiction.

Example 3.5.6. Here is an example of an indirect proof of the theorem in Example 3.5.3:

(1)   Ÿ Hs rL   Negated conclusion

(2)    Ÿ s Ÿ r   DeMorgan's Law, (1)

(3)    Ÿ s   Conjunctive simplification, (2)

(4)    q Ø s   Premise

(5)   Ÿ q   Indirect reasoning, (3), (4)

(6)  Ÿ r   Conjunctive simplification, (2)

(7)    p Ø r   Premise

(8)    Ÿ p   Indirect reasoning, (6), (7)

(9)    HŸ pL Ï HŸ qL   Conjunctive, (5), (8)

(10)   Ÿ Hp Í qL   DeMorgan's Law, (9)

(11)   p Í q   Premise

(12)   0   (10), (11) ‡
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PROOF STYLE
The rules  allow you to list  the premises of  a  theorem immediately;  however,  a  proof  is  much easier  to  follow if  the premises are  only listed
when they are needed.

Example 3.5.7. Here is an indirect proof of a Ø b, Ÿ Hb Í c L Ÿ a .

(1)    a   Negation of the conclusion

(2)   a Ø b   Premise

(3)    b   (1), (2), detachment

(4)    b Í c    (3), disjunctive addition

(5)    Ÿ Hb Í cL    Premise

(6)   0   (4), (5) ‡

As  we  mentioned  at  the  outset  of  this  section,  we  are  only  presenting  an  overview  of  what  a  mathematical  system  is.  For  greater  detail  on
axiomatic theories, see Stoll (1961). An excellent description of how propositional calculus plays a part in artificial intelligence is contained in
Hofstadter  (1980).  If  you  enjoy  the  challenge  of  constructing  proofs  in  propositional  calculus,  you  should  enjoy  the  game  WFF'N  PROOF
(1962), by L.E. Allen.

EXERCISES FOR SECTION 3.5
A Exercises
1.  Prove with truth tables:

(a) p Í q, Ÿ q p

(b) p Ø q, Ÿ q Ÿ p

2. Prove with truth tables:

(a) q, Ÿ q p 

(b) p Ø q Ÿ p Í q

B Exercises

3. Give direct and indirect proofs of:

(a) a Ø b, c Ø b, d Ø Ha cL, d b.

(b)  Hp Ø qL Ï Hr Ø sL, Hq Ø tL Ï Hs Ø uL, Ÿ Ht uL, p Ø r Ÿ p.

(c) p Ø Hq Ø sL, Ÿ s \ê p, q s Ø r.

(d)  p Ø q, q Ø r, Ÿ Hp Ï rL, p Í r r.

(e) Ÿ q, p Ø q, p Í t t

4. Give direct and indirect proofs of:

(a)  p Ø q, Ÿ r Ø Ÿ q, Ÿ r Ÿ p.

(b)  p Ø Ÿ q, Ÿ r Ø q, p r.

(c)  a Í b, c Ï d, a Ø Ÿ c b.

5. Are the following arguments valid? If they are valid, construct formal proofs; if they aren't valid, explain why not.

(a) If wages increase, then there will be inflation. The cost of living will not increase if there is no inflation. Wages will increase. Therefore, the
cost of living will increase.
(b) If  the  races  are  fixed  or  the  casinos  are  crooked,  then  the  tourist  trade  will  decline.  If  the  tourist  trade  decreases,  then  the  police  will  be
happy. The police force is never happy. Therefore, the races are not fixed.
6. Determine the validity of  the following argument:  For students  to do well  in a  discrete mathematics course,  it  is  necessary that  they study
hard.  Students who do well  in courses do not  skip classes.  Students who study hard do well  in courses.  Therefore students who do well  in a
discrete mathematics course do not skip class.
7. Describe how p1, p1 Ø p2, … , p99 Ø p100 p100 could be proven in 199 steps.
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3.6 Propositions over a Universe
Example 3.6.1. Consider the sentence "He was a member of the Boston Red Sox." There is no way that we can assign a truth value to

this sentence unless "he" is specified. For that reason, we would not consider it a proposition. However, "he" can be considered a variable that
holds a place for any name. We might want to restrict the value of "he" to all names in the major-league baseball record books. If that is the
case, we say that the sentence is a proposition over the set of major-league baseball players, past and present.
Definition: Proposition over a Universe. Let U be a nonempty set. A proposition over U is a sentence that contains a variable that can take on
any value in U and that has a definite truth value as a result of any such substitution.

Example 3.6.2.

(a)  A few propositions over the integers are 4 x2 - 3 x = 0,  0 § n § 5, and "k is a multiple of 3."

(b)  A few propositions over the rational numbers are 4 x2 - 3 x = 0,  y2 = 2 , and  Hs - 1L Hs + 1L = s2 - 1.

(c)  A few propositions over the subsets of P are HA = «L Í HA = P L, 3 œ A, and  A › 81, 2, 3< ¹≠ «.
All of the laws of logic that we listed in Section 3.4 are valid for propositions over a universe. For example, if p and q are propositions over the
integers, we can be certain that p Ï q p, because Hp Ï qL Ø p is a tautology and is true no matter what values the variables in p and q are
given. If we specify p and q to be p HnL : n < 4 and q HnL : n < 8, we can also say that p implies p Ï q. This is not a usual implication, but for
the propositions under discussion, it is true. One way of describing this situation in general is with truth sets.

TRUTH SETS
Definition: Truth Set. If p is a proposition over U, the truth set of p is Tp = 8a œ U p HaL is true<.
Example  3.6.3.  The  truth  set  of  the  proposition  81, 2< › A = «  taken  as  a  proposition  over  the  power  set  of  81, 2, 3, 4<  is8«, 83<, 84<, 83, 4<<.
Example 3.6.4. In the universe Z (the integers), the truth set of 4 x2 - 3 x = 0 is 80<. If the universe is expanded to the rational numbers,

the truth set becomes 80, 3 ê4<. The term solution set is often used for the truth set of an equation such as the one in this example.
Definition: Tautology and Contradiction. A proposition over U is a tautology if its truth set is U. It is a contradiction if its truth set is

empty.

Example 3.6.5. Hs - 1L Hs + 1L = s2 - 1 is a tautology over the rational numbers. x2 - 2 = 0 is a contradiction over the rationals.
The truth sets of compound propositions can be expressed in terms of the truth sets of simple propositions. For example, if a œ TpÏq,  then a
makes p Ï q true. Therefore, a makes both p and q true, which means that a œ Tp › Tq. This explains why the truth set of the conjunction of
two  propositions  equals  the  intersection  of  the  truth  sets  of  the  two  propositions.  The  following  list  summarizes  the  connection  between
compound and simple truth sets:

TpÏq = Tp › Tq

TpÍq = Tp ‹ Tq

TŸp = Tp
c

Tp¨q = ITp › TqM ‹ ITp
c › TqcM

TpØq = Tp
c ‹ Tq

Definition:  Equivalence.  Two propositions  are  equivalent  if  p ¨ q is  a  tautology.  In  terms of  truth  sets,  this  means  that  p  and q  are
equivalent if Tp = Tq .

Example 3.6.6.

(a)   n + 4 = 9 and n = 5 are equivalent propositions over the integers.

(b)  A › 84< ¹≠ « and 4 œ A  are equivalent propositions over the power set of the natural numbers.
Definition: Implication. If p and q are propositions over U, p implies q if p Ø q is a tautology.

Since the truth set of p Ø q is Tp
c ‹ Tq, the Venn diagram for TpØq in Figure 3.6.1 shows that p q when Tp Œ Tq.
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FIGURE 3.6.1 Venn diagram for TpØq

Example 3.6.7.

(a)  Over the natural numbers: n < 4 n < 8 since 80, 1, 2, 3, 4< Œ 80, 1, 2, 3, 4, 5, 6, 7, 8<.
(b)   Over the power set of the integers: Ac = 1 implies A › 80, 1< ¹≠ «.

(c)  A Œ even integers A › odd integers = «.

EXERCISES FOR SECTION 3.6
A Exercises
1.  If U = P H 81, 2, 3, 4<L, what are the truth sets of the following propositions?

(a)  A › 82, 4< = «.
(b)  3 œ A and 1 – A.

(c)  A ‹ 81< = A.

(d)   A is a proper subset of 82, 3, 4<.
(e)   A = Ac .

2.   Over the universe of positive integers, define

p HnL : n is prime and n < 32.

q HnL : n is a power of 3.

r HnL : n is a divisor of 27.

(a)   What are the truth sets of these propositions?

(b)   Which of the three propositions implies one of the others?

3.   If U = 80, 1, 2<, how many propositions over U could you list without listing two that are equivalent?

4.   Given the propositions over the natural numbers:

p : n < A

q : 2 n > 17

r : n is a divisor of 18

what are the truth sets of:

(a)  q

(b)  p Ï q

(c)  r

(d)  q Ø r

5.  Suppose that s is a proposition over {1, . . . , 8} . If Ts = 81, 3, 5, 7<, give two examples of propositions that are equivalent to s.

6.  (a) Determine the truth sets of the following propositions over the

positive integers:

p HnL : n is a perfect square and n < 100. 

Chapter 3 - Logic

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 



q HnL : n = PHAL for some set A

 (b) Determine TpÏq for p and q above.

7.  Let the universe be Z, the set of integers. Which of the following propositions are equivalent over Z?

a:   0 < n2 < 9.

b:  0 < n3 < 27.
c:  0 < n < 3.
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3.7 Mathematical Induction
In  this  section,  we  will  examine  mathematical  induction,  a  technique  for  proving  propositions  over  the  positive  integers.  Mathematical  (or
finite) induction reduces the proof that all of the positive integers belong to a truth set to a finite number of steps.

Mathematical Induction is sometimes called finite induction.

Example 3.7.1. Consider the following proposition over the positive integers, which we will label p HnL: The sum of the positive integers
from 1 to n is n Hn+1L

2
. This is a well-known formula that is quite simple to verify for a given value of n.   For example, p H5L is: The sum of the

positive integers from 1 to 5 is 5 H5+1L
2

. Indeed, 1 + 2 + 3 + 4 + 5 = 15 = 5 H5+1L
2

. Unfortunately, this doesn't serve as a proof that p HnL is a
tautology.  All  that  we've  established  is  that  5  is  in  the  truth  set  of  p.  Since  the  positive  integers  are  infinite,  we  certainly  can't  use  this
approach to prove the formula.
An Analogy: Mathematical induction is often useful in overcoming a problem such as this one. A proof by mathematical induction is similar to
knocking over a row of closely spaced dominos that are standing on end. To
knock over the five dominos in Figure 3.7.1, all you need to do is push Domino 1 to the right. To be assured that they all will be knocked over,
some work  must  be  done  ahead of  time.  The  dominos  must  be  positioned so  that  if  any  domino is  pushed to  the  right,  it  will  push  the  next
domino in the line.

FIGURE 3.7.1 Illustration of example 3.7.1

Now imagine the propositions pH1L, p H2L, pH3L, … to be an infinite line of dominos. Let's see if these propositions are in the same formation
as the dominos were.  First,  we will  focus on one specific point of the line: pH99L  and pH100L.  We are not going to prove that either of these
propositions is true, just that the truth of pH99L implies the truth of p H100L. In terms of our analogy, if pH99L is knocked over, it will knock over
pH100L.
In proving pH99L pHl00L, we will use pH99L as our premise. We must prove: The sum of the positive integers from 1 to 100 is 100 H100+1L

2
. We

start by observing that the sum of the positive integers from 1 to 100 is H1 + 2 + º⋯ + 99L + 100. That is,  the sum of the positive integers
from  1  to  100  equals   the  sum  of  the  first  ninety-nine  plus  the  final  number,  100.  We  can  now  apply  our  premise,  pH99L,  to  the  sum
1 + 2 + º⋯ + 99. After rearranging our numbers, we obtain the desired expression for 1 + 2 + º⋯ + 100:

1 + 2 + º⋯ + 99 + 100 = H1 + 2 + º⋯ + 99L + 100
= 99 H99+1L

2
+ 100

= 99 µ 100
2

+ 2 µ 100
2

= 100 µ 101
2

= 100 H100+1L
2

What we've just done is analogous to checking two dominos in a line and finding that they are properly positioned. Since we are dealing with an
infinite line, we must check all pairs at once. This is accomplished by proving that pHnL pHn + 1L for all n ¥ 1:

1 + 2 + º⋯ + n + Hn + 1L = H1 + 2 + º⋯ + nL + Hn + 1L
= nHn+1L

2
+ Hn + 1L by pHnL

= nHn+1L
2

+ 2 Hn+1L
2

= Hn+1L Hn+2L
2

= Hn+1L HHn+1L+1L
2

They are all lined up! Now look at pH1L : The sum of the positive integers from 1 to l is 1+1
2

. Clearly, pH1L is true. This sets off a chain reaction.
Since p H1L p H2L, p H2L is true. Since p H2L p H3L, pH3L is true; and so on.   ‡

The Principle of Mathematical Induction. Let p(n) be a proposition
over the positive integers, then p(n) is a tautology if
(1)   p(1) is true, and
(2)   for all n ¥ 1,  pHnL pHn + 1L.

Note: The truth of p H1L is called the basis for the induction proof. The premise that p(n) is true in Statement (b) is called the induction hypothe-
sis.  The proof  that  p HnL  implies  p Hn + 1L  is  called the induction step of  the proof.  Despite  our  analogy,  the basis  is  usually  done first  in  an
induction proof. The order doesn't really matter.

Example 3.7.2. Consider the implication over the positive integers
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p HnL : q0 Ø q1, q1 Ø q2, … , qn-1 Ø qn, q0 qn

 A proof that p HnL is a tautology follows.

Basis: pH1L is q0 Ø q1, q0 q1. This is the logical law of detachment which we know is true. If you haven't done so yet, write out the truth
table of HHq0 Ø q1 L Ï q0LØ q1 to verify this step.
Induction: Assume that  p HnL is true for some n ¥ 1. We want to prove that p Hn + 1L must be true. That is:

q0 Ø q1, q1 Ø q2, … , qn-1 Ø qn , qn Ø qn+1, q0 qn+1

 Here is a direct proof of p Hn + 1L:
Steps   Proposition(s)   Justification

H1L - H n + 1L  q0 Ø q1, q1 Ø q2, … , qn-1 Ø qn, q0 Premises

Hn + 2L    qn H1L - Hn + 1L, p HnL
Hn + 3L    qn Ø qn+1   Premise

Hn + 4L    qn+1 Hn + 2L, Hn + 3L, detachment ‡

Example 3.7.3. For all n ¥ 1, n3 + 2 n  is a multiple of 3.  An inductive proof follows:

Basis:  13 + 2 H1L = 3  is a multiple of 3.
The basis is almost always this easy!

Induction: Assume that n ¥ 1 and n3 + 2 n is a multiple of 3. Consider Hn + 1L3 + 2 Hn + 1L. Is it a multiple of 3?

Hn + 1L3 + 2 Hn + 1L = Hn3 + 3 n2 + 3 n + 1L + H2 n + 2L
= n3 + 2 n + 3 n2 + 3 n + 3 Rearrange the terms
= Hn3 + 2 nL + 3 H n2 + n + 1L

.

Yes, Hn + 1L3 + 2 Hn + 1L is the sum of two multiples of 3; therefore, it is also a multiple of 3.  ‡ 

Variations of Induction
Now we will discuss some of the variations of the principle of mathematical induction. The first simply allows for universes that are similar to
P, like 8-2, -1, 0, 1, . . . < or 85, 6, 7, 8, . . . <.

Principle of Mathematical Induction (Generalized). If p HnL is a proposition over 8k0 , k0 + 1, k0 + 2, … <, where k0  is any integer, then
p HnL is a tautology if
(1)  pHk0L is true, and
(2)  for all n ¥ k0,  pHnL pHn + 1L.

Example 3.7.4. In Chapter 2, we stated that the number of different permutations of k elements taken from an n element set, P Hn; kL, can
be computed with the formula n!

Hn-kL! . We can prove this statement by induction on n. For n ¥ 0, let q HnL be the proposition

 P Hn; kL = n!
Hn-kL!   for all k from 0 to n.

Basis: q H0L states that 

P H0; 0L = the number of ways that 0 elements can be
selected from the empty set and arranged in order

= 0 ! ê0 ! = 1.
This is true — a general law in combinatorics is that there is exactly one way of doing nothing.

Induction: Assume that q HnL  is  true for some natural number n.  It  is  left  for us to prove that this assumption implies that q Hn + 1L  is  true.
Suppose that we have a set of cardinality n + 1 and want to select and arrange k of its elements. There are two cases to consider, the first of
which is easy. If k = 0, then there is one way of selecting zero elements from the set; hence

 PHn + 1; 0L = 1 = Hn+1L!
Hn+1+0L!  

and the formula works in this case.

The more challenging case is to verify the formula when k is positive and less than or equal to n + 1. Here we count the value of PHn + 1; kL
by  counting  the  number  of  ways  that  the  first  element  in  the  arrangement  can  be  filled  and  then  counting  the  number  of  ways  that  the
remaining k - 1 elements can be filled in using the induction hypothesis.
There  are  n + 1  possible  choices  for  the  first  element.  Since  that  leaves  n  elements  to  fill  in  the  remaining  k - 1  positions,  there  are
P Hn; k - 1L ways of completing the arrangement. By the rule of products,
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        PHn + 1; kL = Hn + 1L P Hn; k - 1L
= Hn + 1L n!

Hn-Hk-1LL!
= Hn+1L n!

Hn-k+1L!
= Hn+1L!

HHn+1L-kL! ‡

A second variation allows for the expansion of the induction hypothesis. The course-of-values principle includes the previous generalization.  It
is also sometimes called strong induction.
The  Course-of-Values  Principle  of  Mathematical  Induction.    If  p HnL  is  a  proposition  over  8k0 , k0 + 1, k0 + 2, … <,  where  k0  is  any
integer, then p HnL is a tautology if
(1) p(k0) is true, and
(2) for all n ¥ k0,   pHk0L, pHk0 + 1L, . . . , p HnL p Hn + 1L.

Example 3.7.5.  A prime number is defined as a positive integer that has exactly two positive divisors, 1 and itself. There are an infinite
number of primes. The list of primes starts with 2, 3, 5, 7, 11,… .  The proposition over 82, 3, 4, . . .<  that we will prove here is p HnL : n can
be written as the product of one or more primes.  In most texts, the assertion that p HnL is a tautology would appear as:

Theorem. Every positive integer greater than or equal to 2 has a prime decomposition.

If you were to encounter this theorem outside the context of a discussion of mathematical induction, it might not be obvious that the proof can
be done by induction. Recognizing when an induction proof is appropriate is mostly a matter of experience. Now on to the proof!
Basis:  Since 2 is a prime, it is already decomposed into primes (one of them).

Induction:  Suppose that for some k ¥ 2 all of the integers 2, 3, . . . , k have a prime decomposition.  Notice the course-of-value hypothesis.
Consider k + 1. Either k + 1 is prime or it isn't.   If k + 1 is prime, it is already decomposed into primes. If not, then k + 1 has a divisor, d,
other  than  1  and  k + 1.  Hence,  k + 1 = c d  where  both  c  and  d  are  between  2  and  k.  By  the  induction  hypothesis,  c  and  d  have  prime
decompositions, c1 c2º⋯ cm and d1 d2º⋯ dm , respectively. Therefore, k + 1 has the prime decomposition c1 c2º⋯ cm d1 d2º⋯ dm.   ‡

HISTORICAL NOTE
Mathematical  induction originated in  the late  nineteenth century.  Two mathematicians who were prominent  in  its  development  were Richard
Dedekind and Giuseppe Peano. Dedekind developed a set of axioms that describe the positive integers. Peano refined these axioms and gave a
logical interpretation to them. The axioms are usually called the Peano Postulates.
Peano's Postulates. The system of positive integers consists of a nonempty set, P; a least element of P, denoted 1; and a "successor function,"
s, with the properties
(1)  If k œ P , then there is an element of P called the successor of k, denoted s HkL.
(2)   No two elements of P have the same successor.
(3)   No element of P has 1 as its successor.
(4)  If S Œ P, 1 œ S, and k œ S  s HkL œ S, then S = P.

Richard Dedekind Giuseppe Peano

Notes:

(a) You might recognize s HkL as simply being k + 1.

(b) Axiom 4, mentioned above, is the one that makes mathematical induction possible. In an induction proof, we simply apply that axiom to the
truth set of a proposition.

Exercises for Section 3.7
A Exercises
1.   Prove that the sum of the first n odd integers equals n2 .
2.   Prove that if n ¥ 1, then 1 H1 !L + 2 H2 !L + º⋯ + n Hn !L = Hn + 1L ! - 1.
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3.  Prove that for n ¥ 1: 
k=1

n
k2 = 1

6
nHn + 1L H2 n + 1L.

4. Prove that for n ¥ 1: 
k=0

n
2k = 2n+1 - 1.

5.   Use mathematical induction to show that for n ¥ 1,

  1
1 µ 2

+ 1
2 µ 3

+ º⋯ + 1
nHn+1L =

n
n+1

6.  Prove that if n ¥ 2,  the generalized DeMorgan's Law is true:

Ÿ Hp1 Ï p2 Ï ... Ï pnLñ HŸ p1L Í HŸ p2L Í º⋯ Í HŸ pnL
B Exercises
7. The number of strings of n zeros and ones that contain an even number of ones is 2n-1.   Prove this fact by induction for n ¥ 1.

8.  Let p HnL be 8n - 3n is a multiple of 5.  Prove that p HnL is a tautology over N.

9. Suppose  that  there  are  n  people  in  a  room,  n ¥ 1,  and that  they all  shake hands  with  one another.  Prove that  nHn-1L
2

 handshakes  will  have
occurred.
10. Prove that it is possible to make up any postage of eight cents or more using only three- and five-cent stamps.

C Exercises
11.   Generalized  associativity.  It  is  well  known  that  if  a1,  a2,  and  a3  are  numbers,  then  no  matter  what  order  the  sums  in  the  expression
a1 + a2 + a3  are taken in, the result is always the same. Call this fact pH3L and assume it is true. Prove using course-of-values induction that if
a1, a2, …, and an   are numbers, then no matter what order the sums in the expression a1 + a2 +º⋯ + an  are taken in, the result is always the
same.
12. Let S be the set of all numbers that can be produced by applying any of the rules below in any order a finite number of times.

Rule 1: 1
2
œ S

Rule 2: 1 œ S

Rule 3: If a and b have been produced by the rules, then a b œ S.

Rule 4: If a and b have been produced by the rules, then a+b
2

œ S.

Prove by course-of-values induction that a œ S 0 < a § 1. Hint: The number of times the rules are applied should be the integer that you do
the induction on.
13.   A recursive definition is  similar  to  an inductive  proof.  It  consists  of  a  basis,  usually  the  simple  part  of  the  definition,  and the  recursion,
which  defines  complex  objects  in  terms  of  simpler  ones.  For  example,  if  x  is  a  real  number  and  n  is  a  positive  integer,  we  can  define  xn  as
follows:
Basis: x1 = x .

Recursion: if n ¥ 2, xn = xn-1 x .

For example,  x3 = x2 x  = Hx1 xL x = Hx xL x.  Proofs involving objects  that  are defined recursively are often inductive.  Prove that  if  n, m œ P,
xm+n = xm xn.  Hint: Let p HmL be the proposition that xm+n = xm xn for all n ¥ 1.  There is much more on recursion in Chapter 8.
14. Let S be a finite set and let Pn„ be defined recursively by P1 = S  and Pn = SµPn-1 for n ¥ 2.

(a) List the elements of P3 for the case S = {a, b}.

(b) Determine the formula for Pn , given that S = k, and prove your formula by induction.
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3.8 Quantifiers 
As we saw in Section 3.6, if p HnL is a proposition over a universe U, its truth set Tp is equal to a subset of U. In many cases, such as when p HnL
is  an  equation,  we  are  most  concerned  with  whether  Tp  is  empty  or  not.  In  other  cases,  we  might  be  interested  in  whether  Tp = U;  that  is,
whether p HnL is a tautology. Since the conditions Tp ¹≠ «  and Tp = U are so often an issue, we have a special system of notation for them.

THE EXISTENTIAL QUANTIFIER
If  pHnL  is  a  proposition over U  with Tp ¹≠ «,  we commonly say "There exists  an n  in U  such that  pHnL  (is  true)."  We abbreviate this  with the
symbols H$ nLU HpHnLL. The symbol $ is called the existential quantifier.   If the context is clear, the mention of U is dropped: H$ nL HpHnLL.

Example 3.8.1.

(a) H$ kLZ Ik 2 - k - 12 = 0M is another way of saying that there is an integer that solves the equation k 2 - k - 12 = 0. The fact that two such
integers exist doesn't affect the truth of this proposition in any way.
(b)  H$ kLZ H3 k = 102L  simply  states  that  102  is  a  multiple  of  3,  which  is  true.  On  the  other  hand,  H$ kLZ H3 k = 100L  states  that  100  is  a
multiple of 3, which is false.
(c) H$ xLR Hx2 + 1 = 0L  is  false  since  the  solution  set  of  the  equation  x2 + 1 = 0  in  the  real  numbers  is  empty.  It  is  common  to  writeH± xLR Hx2 + 1 = 0L  in this case.
There are a wide variety of ways that you can write a proposition with an existential quantifier. Table 3.8.1 contains a list of different variations
that could be used for both the existential and universal quantifiers.

THE UNIVERSAL QUANTIFIER
If  p HnL  is  a  proposition  over  U  with  Tp = U,  we  commonly  say  "For  all  n  in  U,  p HnL  (is  true)."  We  abbreviate  this  with  the  symbolsH" nLU HpHnLL. The symbol " is called the universal quantifier.  If the context is clear, the mention of U is dropped: H" nL HpHnLL.

Example 3.8.2.

(a)   We can say that the square of every real number is non-negative symbolically with a universal quantifier:  H" xL R Hx 2 ¥ 0L.
(b)  H" nL Z Hn + 0 = 0 + n = nL says that the sum of zero and any integer n is n. This fact is called the identity property of zero for addition.

Table 3.8.1 Notational Variations  for Existential and Universal Quantifiers

Universal Quantifier            Existential Quantifier

H" nLU HpHnLL                       H$ nLU HpHnLL
H" n œ UL HpHnLL                      H$ n œ UL HpHnLL
" n œ U, pHnL                 $ n œ U such that pHnL

p HnL, " n œ U                    p HnL is true for some n œ U

p HnL is true for all  n œ U                                                        

THE NEGATION OF QUANTIFIED PROPOSITIONS
When you negate a quantified proposition, the existential and universal quantifiers complement one another.

Example 3.8.3. Over the universe of animals, define F(x) : x is a fish and W(x) : x lives in the water. We know that the proposition W(x) Ø F(x)
is not always true. In other words,  ("x)(W(x) Ø  F(x)) is false.  Another way of stating this fact is that there exists an animal that lives in the
water and is not a fish; that is,

 Ÿ H" xL HWHxL Ø FHxLL Í H$ xL HŸ HWHxL Ø FHxLLL
Í H$ xL HWHxL Ï Ÿ F HxLL .

Note  that  the  negation  of  a  universally  quantified  proposition  is  an  existentially  quantified  proposition.  In  addition,  when  you  negate  an
existentially quantified proposition, you obtain a universally quantified proposition.   Symbolically,

Ÿ HH" nLU HpHnLL Lñ H$ nL U HŸ pHnLLL, and

Ÿ HH$ nLU HpHnLL Lñ H" nL U HŸ pHnLLL
Example 3.8.4.

(a)     The  ancient  Greeks  first  discovered  that  2  is  an  irrational  number;  that  is,  2  is  not  a  rational  number.  Ÿ HH$ rLQ Hr2 = 2LL  and
2      

Chapter 3 - Logic

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 



                        H" rLQ Hr2 ¹≠ 2L both state this fact symbolically.

(b)  Ÿ HH" nLP Hn 2 - n + 41 is primeLL is equivalent to H$ nLP Hn2 - n + 41 is compositeL. They are both either true or false.

MULTIPLE QUANTIFIERS
If a proposition has more than one variable, then you can quantify it more than once. For example, if p Hx, yL : x2 - y2 = Hx + yL Hx - yL is a
tautology over the set of all pairs of real numbers because it is true for each pair Hx, yL in R µ R. Another way to look at this proposition is as a
proposition  with  two  variables.  The  assertion  that  p Hx, yL  is  a  tautology  could  be  quantified  as  H" xLR HH" yL R Hp Hx, yLLL  orH" yLR HH" xL R HpHx, yLLL
In general, multiple universal quantifiers can be arranged in any order without logically changing the meaning of the resulting proposition. The
same  is  true  for  multiple  existential  quantifiers.  For  example,  p Hx, yL : x + y = 4 and x - y - 2  is  a  proposition  over  R µ R.H$ xLR HH$ yL R Hx + y = 4 and x - y = 2LL  and  H$ yLR HH$ xL R Hx + y = 4 and x - y = 2LL  are  equivalent.  A  proposition  with  multiple
existential  quantifiers  such  as  this  one  says  that  there  are  simultaneous  values  for  the  quantified  variables  that  make  the  proposition  true.  A
similar example is q Hx, yL : 2 x - y - 2 and 4 x - 2 y = 5, which is always false; and the following are all equivalent
Ÿ HH$ xL R HH$ yL R Hq Hx, yLLLL ñ Ÿ H$ yLR HH$ xLR HqHx, yLLLL

ñ H" yLR HŸ HH$ xLR HqHx, yLLL
ñ HH" yLR HH" xLR HŸ qHx, yLLLL
ñ HH" xLR HH" yLR HŸ qHx, yLLLL

When existential and universal quantifiers are mixed, the order cannot be exchanged without possibly changing the meaning of the proposition.
For example, let R+ be the positive real numbers, x : H" aLR+ HH$ bLR+ Ha b = 1LL and y : H$ bLR+ HH" aLR+ Ha b = 1LL have different meanings; x
is true, while y is false.

TIPS ON READING MULTIPLY QUANTIFIED PROPOSITIONS
It  is  understandable  that  you  would  find  propositions  such  as  x  difficult  to  read.  The  trick  to  deciphering  these  expressions  is  to  "peel"  one
quantifier  off  the proposition just  as you would peel  off  the layers of  an onion (but  quantifiers  shouldn't  make you cry).  Since the outermost
quantifier in x is universal, x says that z HaL : H$ bLR+ Ha b = 1L is true for each value that a can take on. Now take the time to select a value for
a, like 6. For the value that we selected, we get zH6L : H$ bLR+ H6 b = 1L, which is obviously true since 6 b = 1 has a solution in the positive real
numbers. We will get that same truth value no matter which positive real number we choose for a; therefore, z HaL is a tautology over R+ and we
are  justified  in  saying  that  x  is  true.  The  key  to  understanding  propositions  like  x  on  your  own  is  to  experiment  with  actual  values  for  the
outermost variables as we did above.
Now consider y. To see that y is false, we peel off the outer quantifier. Since it is an existential quantifier, all that y says is that some positive
real number makes wHbL : H" aL R+ Ha b = 1L true. Choose a few values of b to see if you can find one that makes w HbL true. For example, if we
pick b = 2, we get H" aL R+ H2 a = 1L, which is false, since 2 a is almost always different from 1. You should be able to convince yourself that
no value of b will make w HbL true.  Therefore, y is false.
Another way of convincing yourself that y is false is to convince yourself that Ÿ y is true:

Ÿ HH$ bLR+ HH" aLR+ Ha b = 1LLLñ H" bLR+ Ÿ HH" aLR+ Ha b = 1LL
ñ H" bLR+ HH$ aLR+ Ha b ¹≠ 1LL

In words, for each value of b, a value for a that makes a b ¹≠ 1.  One such value is a = 1
b
+ 1.  Therefore, Ÿ y is true.

EXERCISES FOR SECTION 3.8
A Exercises
1.  Let C HxL be "x is cold-blooded," let F HxL be "x is a fish," and let S HxL be "x lives in the sea."

(a) Translate into a formula: Every fish is cold-blooded.

(b) Translate into English: H$ xL HS HxL Ï Ÿ F HxLL
and H" xL HF HxL Ø S HxLL.
2.  Let M HxL be "x is a mammal," let A HxL be "x is an animal," and let W HxL be "x is warm-blooded."

(a) Translate into a formula: Every mammal is warm-blooded.

(b) Translate into English: H$ xL HA HxL Ï HŸ M HxLLL.
3. Over  the  universe  of  books,  define  the  propositions  BHxL:  x  has  a  blue  cover,  MHxL:  x  is  a  mathematics  book,  C HxL:  x  is  published  in  the
United States, and R Hx, yL : The bibliography of x includes y. Translate into words:
(a)  H$ xL HŸ B HxLL.
(b) H" xL HM HxL Ï U HxL Ø B HxLL.
(c)  H$ xL HM HxL Ï Ÿ B HxLL.
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(d) H$ yL HH" xL HMHxLØ RHx, yLLL.
Express using quantifiers:

(e) Every book with a blue cover is a mathematics book.

(f) There are mathematics books that are published outside the United States.

(g) Not all books have bibliographies.
revised
4. Let the universe of discourse, U, be the set of all people, and let MHx, yL be "x is the mother of y."

(a) Which of the following is a true statement? Translate it into English. 

(i)  H$ xLU HH" yLU HMHx, yLLL
(ii)  H" yLU HH$ xLU HMHx, yLLL
(b) Translate the following statement into logical notation using quantifiers and the proposition MHx, yL over U:  "Everyone has a grandmother,"

5. Translate into your own words and indicate whether it is true or false that H$ uL Z H4 u2 - 9 = 0L.
6. Use quantifiers to say that 3  is an irrational number.
7. What do the following propositions say, where U is the power set of 81, 2, ... , 9<? Which of these propositions are true?

(a) H" ALU H A ¹≠ Ac L.
(b)  H$ ALU H$ BLU H A = 5, B = 5, and A › B = «L
(c)  H" ALU H" BLU HA - B = Bc - AcL
8. Use quantifiers to state that for every positive integer, there is a larger positive integer.

9. Use  quantifiers to state that the sum of any two rational numbers is rational.

10. Over the universe of real numbers, use quantifiers to say that the equation a + x = b has a solution for all values of a and b. Hint: You will
need three quantifiers.
11. Let n be a positive integer.  Describe using quantifiers:

(a)  x œ ‹
k=1

n
Ak

(b)  x œ ›
k=1

n
Ak

12. Prove that H$ xL H" yL Hp Hx, yLL H" yL H$ xL Hp Hx, yLL, but the converse is not true.

Chapter 3 - Logic

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 



3.9 A Review of Methods of Proof
One of the major goals of this chapter is to acquaint the reader with the key concepts in the nature of proof in logic, which of course carries over
into all areas of mathematics and its applications. In this section we will stop, reflect, and "smell the roses," so that these key ideas are not lost
in the many concepts covered in logic. In Chapter 4 we will use set theory as a vehicle for further practice and insights into methods of proof.

KEY CONCEPTS IN PROOF
1.  All theorems in mathematics can be expressed in "If P then C" (P C) format, or in "C1 if and only if C2" (P ñ C) format. The latter is
equivalent to "If C1 then C2, and if C2 then C1." Alternate ways of expressing conditional propositions are found in Section 3.1.
2. In "If P then C," P is the premise (or hypothesis) and C is the conclusion. It is important to realize that a theorem makes a statement that is
dependent on the premise being true.
3. There are two basic methods for proving P C:

(a)  Direct: Assume P is true and prove C is true; and

(b)  Indirect (proof by contradiction): Assume P is true and C is false and prove that this leads to a contradiction of some premise, theorem,
or basic concept.
4. The method of proof for "If and only if" (iff) theorems is found in the law HP ¨ CL ñ HHP Ø CL Ï HC Ø PLL. Hence to prove an "If and
only if" statement one must prove an "if . . . then ..." statement and its converse.
The initial response of most people when confronted with the task of being told they must be able to read and do proofs is:

(a) Why? or,

(b) I cannot do proofs.

To answer the first question, problem solving, even on the most trivial level, involves being able to read statements. First we must understand
the problem and know the hypothesis; second, we must realize when we are done and we must understand the conclusion. To apply theorems or
algorithms we must be able to read theorems and their proofs intelligently.
To be able to do the actual proofs of theorems we are forced to learn:

(1) the actual meaning of the theorems, and

(2) the basic definitions and concepts of the topic discussed.

For example, when we discuss rational numbers and refer to a number x as being rational, this means we can substitute a fraction p
q

 in place of

x,  with the understanding that p  and q  are integers and q ¹≠ 0. Therefore, to prove a theorem about rational numbers it is absolutely necessary
that you know what a rational number "looks like."
It's  easy to comment on the response,  "I  cannot  do proofs."   Have you tried? As elementary school  students  we were in awe of  anyone who
could  handle  algebraic  expressions,  especially  complicated  ones.  We  learned  by  trying  and  applying  ourselves.  Maybe  we  cannot  solve  all
problems in algebra or calculus, but we are comfortable enough with these subjects to know that we can solve many and can express ourselves
intelligently in these areas. The same remarks hold true for proofs.

THE ART OF PROVING P C
First  one  must  completely  realize  what  is  given,  the  hypothesis.  The  importance  of  this  is  usually  overlooked  by  beginners.  It  makes  sense,
whenever you begin any task, to spend considerable time thinking about the tools at your disposal. Write down the premise in precise language.
Similarly,  you  have  to  know  when  the  task  is  finished.  Write  down  the  conclusion  in  precise  language.  Then  you  usually  start  with  P  and
attempt to show that C follows logically. How do you begin? Basically you attack the proof the same way you solve a complicated equation in
elementary algebra. You may not know exactly what each and every step is but you must try something. If we are lucky, C follows naturally; if
it  doesn't,  try  something  else.  Often  what  is  helpful  is  to  work  backward  from  C.  Finally,  we  have  all  learned,  possibly  the  hard  way,  that
mathematics is a participating sport, not a spectator sport. One learns proofs by doing them, not by watching others do them. We give several
illustrations of how to set up the proofs of several examples. Our aim here is not to prove the statements given, but to concentrate on the logical
procedure.

Example 3.9.1. We will outline a proof that the sum of any two odd integers is even. Our first step will be to write the theorem in the
familiar conditional form: If j  and k  are odd integers, then j + k  is even. The premise and conclusion of this theorem should be clear now.
Notice that if j and k are not both odd, then the conclusion may or may not be true. Our only objective is to show that the truth of the premise
forces the conclusion to be true. Therefore, we can express the integers j and k in the form that all integers take; that is:

n œ Z is odd implies H$ m œ ZL Hn = 2 m + 1L.
This observation allows us to examine the sum  y + k and to verify that it must be even.

Example 3.9.2. Let n œ Z. We will outline a proof that n2 is even if and only if n is even.
Outline of a proof: Since this is an "If and only if theorem we must prove two facts (see key concept number 4 above):

Chapter 3 - Logic

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 



I. ( ) If n2  is even, then n is even. To do this directly, assume that n2  is even and prove that n is even.   To do this indirectly, assume n2  is
even and that n is odd, and reach a contradiction.   It turns out that the latter of the two approaches is easiest here.
II. (›) If n is even, then n2 is even. To do this directly, assume that n is even and prove that n2 is even.   
Now that  we have  broken the  theorem down into  two parts  and know what  to  prove,  we proceed to  prove  the  two implications.  The  final
ingredient  that  we need is  a  convenient  way of  describing  even integers.  When we refer  to  an  integer  n  (or  m,  or  k,.  .  .  )  as  even,  we can
always replace it with a product of the form 2 q, where q is an integer (more precisely, H$ qL Z Hn = 2 qLL. In other words, for an integer to be
even it must have a factor of two in its prime decomposition.

Example 3.9.3. Our final example will be an outline of the proof that the square root of 2 is irrational (not an element of Q). This is an
example of the theorem that does not appear to be in the standard P C form. One way to rephrase the theorem is: If x is a  rational number,
then x2 ¹≠ 2. A direct proof of this theorem would require that we verify that the square of every rational number is not equal to 2. There is no
convenient way of doing this, so we must turn to the indirect method of proof. In such a proof, we assume that x is a  rational number and that
x2 = 2 (i.e., 2  is a rational number). This will lead to a contradiction. In order to reach this contradiction, we need to use the following facts:
(a) A rational number is a quotient of two integers.

(b) Every fraction can be reduced to lowest terms, so that the numerator and denominator have no common factor greater than 1.

(c) If n is an integer, n2 is even if and only if n is even.

EXERCISES FOR SECTION 3.9
B Exercises
1.  Prove that the sum of two odd positive integers is even.

2. Write out a complete proof that if n is an integer, n2 is even if and only if n is even.

3. Write out a complete proof that 2  is irrational.

4. Prove that 23  is an irrational number.

5. Prove that if x and y are real numbers such that x + y § 1, then either  x § 1
2

 or y § 1
2

.

6. Use  the  following  definition  of  absolute  value  to  prove  the  given  statements:  If  x  is  a  real  number,  then  the  absolute  value  of  x,  x ,  is
defined by:

 x = ¶ x if x ¥ 0
-x if x < 0

(a) For any real number x, x ¥ 0. Moreover, x = 0 implies x = 0.

(b) For any two real numbers x and y, x ÿ y = x y .

(c) For any two real numbers x and y, x + y § x + y .
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SUPPLEMENTARY EXERCISES FOR CHAPTER 3
Section 3.1
1. Construct the truth tables of

(a)  p Í p  

(b)  p Ï HŸ pL   
(c) p Í HŸ pL
(d)  p Ï p

2.  Express each of the following in symbolic form and determine whether they are true or false:

(a) If a, b œ Z, and if a = 0 or b = 0, then a ÿ b = 0.

(b) If a, b œ Z, and if a ÿ b = 0, then a = 0 or b = 0.

(c) Let a, b œ Z.   a ÿ b = 0 if and only if a = 0 or b = 0.

(d)  If  85< Œ Z, then  2 + 3 = 8.

(e)  If 2 + 3 = 8, then the world is flat.

(f)  5 is an odd integer if and only if 8 is an even integer.

Section 3.2
3. Write the truth table for the expression p Í q Ï Ÿ p.

4. Insert parentheses in the following statements to indicate the order in which the operations are performed:

(a) p Í q Ï r Í Ÿ q  

(b)  p Ï Ÿ q Í Ÿ p Ï q

(c)  p Í q Ï r

(d) p Ï q \ê p Ï r Í q Ï r

Section 3.3
5. Use truth tables to verify that HHp Ø Ÿ qL Ï Hq Í rL Ï HŸ rLL Ÿ p is a tautology.

6. Is an implication equivalent to its converse? Verify your answer using a truth table.

7. Prove that an implication is always equivalent to its contrapositive.

8. (a) Construct truth tables for the following propositions generated by p, q, and r.

(i) r Ï Hp Ï qL     (ii) r Í Hp Í qL       (iii) r Ï q

(b)  Which of the propositions i, ii, and iii in part (a) imply proposition i? Explain.

9. Suppose that x is a proposition generated by p and q, and x is equivalent to p Ø p Ï q. What is the truth table for x?

10. The Scheffer Stroke is the logical operator defined by the following truth table:

p q p»q
0 0 1
0 1 1
1 0 1
1 1 0

Truth Table for the Sheffer Stroke

(a)  Prove that p q is equivalent to Ÿ Hp Ï qL.
The significance of the Sheffer Stroke is that it is a "universal" operator. All other operators can be built from it.

(b)   Prove that Ÿ p ñ p p.

(c)   Build  using only the Sheffer Stroke.
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(d)   Build  using only the Sheffer Stroke.

Section 3.4
11.   Write the negation of each of the following statements:

(a)   3 is a prime number and it is even.

(b)  4 is a prime number or it is odd.

(c)   If I can exhibit an example of a statement then I have proven it true.

(d)  If x2 - 11 x + 12 = 0, then x = 3 or x = 8.
12.   Prove that all | defined by has the same property as the Sheffere Stroke (see problem 10) in that is is a "universal" operator.   

p q p } q
0 0 0
0 1 1
1 0 1
1 1 1

Truth Table for p } q

13.   The following are frequently used and very important tautologies in logic. Use truth tables to prove them.

(a)   Hp Ø qL ñ HŸ q Ø Ÿ pL
(b)   Hp ¨ qLñ HHp Ø qL Ï Hq Ø pLL

14.   Write the following in symbolic notation and prove it is a tautology: "The statement p if and only if q is equivalent to saying if p then q
and if q then p."
15.   Write the following in symbolic notation and determine whether it is a valid argument: "If I quit my job, then I will starve. If I don't do my
work, then I must quit my job. I did my work, therefore I will eat."
16.   Write the dual of each of the following statements:

(a)   HŸ p Í 0L 1

(b)   Hp Í qL Ï HŸ p Í rL Hr Í qL
Section 3.5
17.   Write the following in symbolic form and then determine its validity. "If this car is made in England then parts are difficult to obtain. This
car is expensive, or it is not difficult to obtain parts. But this car is not expensive. Hence it was not made in England."
18.     In  order  to  attach  the  Mark  13  printer  to  the  Lemon  III  computer,  you  must  set  eight  "dip  switches"  in  the  computer  according  to  the
following rules. The switches are labeled a through h and are set to be either ON or OFF.

(1)   Neither a nor c is set the same as d.

(2)   b and g are different if and only if e and g are in the same positions.

(3)   g is OFF if d is OFF, but g is ON if b is OFF.

(4)   d is ON, unless e is the same as/.

(5)   h is not the same as a if either b or e is OFF.

(6)   g is OFF only if e is not the same as h.

(7)   b,f, and g are not all the same.

How should the switches be set?

19.   Consider the following argument:

If person X does not live in France, then X does not speak French.

X does not drive a Chevrolet.

If X lives in France, then he rides a bicycle.

Either X speaks French or he drives a Chevrolet.

Therefore, X rides a bicycle.
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Let p = "X lives in France."

q = "X speaks French."

r = "X drives a Chevrolet."

s = "X rides a bicycle."

Translate the argument into logical notation using these propositions, and prove it by any method except a truth table.

20. Determine the validity of the following argument: "I will miss class only if I sleep late. I will not sleep late. Therefore, I will not miss class."

21. Mayoral candidate Ms. Perpetual Candidate made the following promise to the voters: "If I am elected, I will bring industry to the town. If I
bring  industry  to  the  town,  your  taxes  will  decrease.  If  your  taxes  decrease,  you  will  be  wealthier.  Therefore,  if  I  am  elected,  you  will  be
wealthier." Express this argument in symbolic notation and determine whether the mayoral candidate is telling the truth.
22. Professor Smoothtalker made the following promise to his class. "If you receive an A in this course, you are happy. You will do all your
assignments  or  you  are  not  happy.  If  you  concentrate  too  hard,  you  will  not  do  all  your  assignments.  Therefore,  if  you  are  happy,  do  not
concentrate too hard." Is Professor Smoothtalker's argument valid?
23. Determine whether the following argument is valid: Taxes will increase or government spending decreases. Government spending increases
or more people have jobs. More people do not have jobs or people are rich. Therefore, if taxes decrease, people are rich.
Section 3.6

24. Let p HnL be n < 2 and let q HnL be n2 < 5.

(a) Over the universe of integers, Z,   are p and q equivalent? Does one imply the other?

(b) Over the universe of natural numbers, N, are p and q equivalent? Does one imply the other?

25.  Prove that: TpÏq = Tp › Tq.

26. Prove that: TpØq = Tp
c ‹ Tq. 

Section 3.7
27.   Express 60 and 120 as a product of primes.

28.  Prove that for n ¥ 1

    
i=1

n
i3 = 1

4
n2 Hn + 1L2 = I 1

2
n Hn + 1LM2

29. (a) Prove that K n
k - 1 O + K n

k O = K n + 1
k O  for k > 1 and n ¥ k + 1. 

      (b) Use mathematical induction to prove the binomial theorem: 

Hx + yLn =
k=0

n K n
k O xn-k yk  for  n ¥ 0.

30. Use mathematical induction to prove for all n ¥ 1 and for all real numbers c, ai, and bi, i = 1, 2, …, n: 

(a)   
i=1

n Hai + biL =
i=1

n
ai +

i=1

n
bi

(b)  
i=1

n
c ai = c

i=1

n
ai

Section 3.8
31. Write the negation of: "Some sailing is dangerous and all fishing is tedious" in graceful English.

32. Prove: Ÿ HH$ uL H" vL HpLL ñ H" uL HH$ vL HŸ pLL
33. Translate the following sentences into expressions using quantifiers:

(a)   All fish except sharks are kind to children.

(b)   Either every wine-drinker is very communicative, or some pawn broker is honest and doesn't drink wine.

(c)     If  all  clever  philosophers  are  cynics,  and  only  women  are  clever  philosophers,  then,  if  there  are  any  clever  philosophers,  some
women are cynics.

34. First write each of the following in logical notation using quantifiers, then write the negative of each logical expression using symbols and
complete English sentences. If possible, determine which of the statements are true.
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(a)   All people in this classroom are over six feet tall.

(b)   Some of the people in this classroom are over six feet tall and are bald.

(c)   Let U = 82, 3, 4, 5< and let p HnL denote the statement "n is a prime number." Apply the above directions to the statement: Every
number in U is a prime number.
(d)   All prime numbers are odd.

(e)   You will all pass the course Discrete Structures or you will all fail.

(f) You can fool some of the people some of the time.

35. Use quantifiers to state that for every positive integer, there is a larger positive integer.

36. Over the universe of students in your class, let N Hx, yL be "x knows y's name." Interpret in English:

(a)  H$ xL HH" yL HN Hx, yLLL
(b)   H" yL HH$ xL HNHx, yL and x ¹≠ yLL
(c)  How would you symbolically say that everyone knows everyone's name?

(d)  How would you symbolically say that everyone knows your name?

(e)  How would you symbolically say that someone in the class has amnesia?

Section 3.9
37. For any nonzero real number x,

x2 = 1 ñ x = 1 or x = -1

(a) Outline the logical procedure you would use to prove this statement.

(b) Fill in the proof.

38. Let a, b, c œ P and read a b as "a divides evenly into b." Consider the statements

(i)    b a and a b implies a = b.

(ii)   If p is prime and p a2 , then p a.

(a) Are these statements true? Explain your answers.

(b) Is the converse of each of these statements true? Explain your answers.

(c) Is the contrapositive of each of these statements true? Explain your answers.

39. Let a, b œ R. A necessary and sufficient condition for a ÿb = 0 is that a = 0 or b = 0.

(a) Is this statement true? Explain your answer.

(b) Outline the logical procedure you would use to prove this statement.
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