
Solutions and Hints to Odd-Numbered Exercises
CHAPTER 1
Section 1.1
1. (a)   8, 15, 22, 29

(b)  apple, pear, peach, plum   These solutions are not unique.

(c)  1 ê2, 1 ê3, 1 ê4, 1 ê5
(d)  -8, -6, -4, -2

(e) 6, 10, 15, 21

3.(a)   82 k + 1 : k œ Z, 2 b k b 39< (b) 8x œ Q : -1 < x < 1<
(c)   82 n : n œ Z<  (d) 89 n : n œ Z, –2 b n<
5.(a) True (b) False (e) True (d) True (e) False

(f) True (g) False (h) True

Section 1.2
1. (a) 82, 3< (b) 80, 2, 3< (c) 80, 2, 3< (d) 80, 1, 2, 3, 5, 9<
(e) 80<  (f) «  (g)8 1, 4, 5, 6, 7, 8, 9<   (h) 80, 2, 3, 4, 6, 7, 8<
(i) «  (j) 80<
3. These are all true for any sets A, B, and C. 

5. (a) 81, 4< Œ A Œ 81, 2, 3, 4<
(b)  82< Œ A Œ 81, 2, 4, 5<  (c) A = 82, 4, 5<
7.

(a) (b)

(c) (d)

9.    (a) 
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? Select

Select@list, critD picks out all elements ei of list for which crit@eiD is True.
Select@list, crit, nD picks out the first n elements for which crit@eiD is True.  à

? PrimeQ

PrimeQ@exprD yields True if expr is a prime number, and yields False otherwise.  à

       (b) 

Select@Range@2000, 2099D, PrimeQ@ÒD &D
82003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099<

Section 1.3
1. (a) 8H0, 2L, H0, 3L, H2, 2L, H2, 3L, H3, 2L, H3, 3L<
(b) 8H2, 0L, H2, 2L, H2, 3L, H3, 0L, H3, 2L, H3, 3L<
(c)  8H0, 2, 1L, H0, 2, 4L, H0, 3, 1L, H0, 3, 4L, H2, 2, 1L, H2, 2, 4L, H2, 3, 1L, H2, 3, 4L, H3, 2, 1L, H3, 2, 4L, H3, 3, 1L, H3, 3, 4L<
(d) «

(e)  8H0, 1L, H0, 4L, H2, 1L, H2, 4L, H3, 1L, H3, 4L<
(f) 8H2, 2L, H2, 3L, H3, 2L, H3, 3L<
(g)  8H2, 2, 2L, H2, 2, 3L, H2, 3, 2L, H2, 3, 3L, H3, 2, 2L, H3, 2, 3L, H3, 3, 2L, H3, 3, 3L<
(h) 8H2, «L, H2, 82<L, H2, 83<L, H2, 82, 3<L, H3, «L, H3, 82<L, H3, 83<L, H3, 82, 3<L<
3.8a, b<, 8a, c<, 8a, d<, 8b, c<, 8b, d<, 8c, d<
5. There are n singleton subsets, one for each element.

7. (a) 8+00, +01, +10, +11, -00, -01, -10, -11<  (b) 16 and 512

9. When  A = B

Section 1.4
1.(a) 11 111 (b) 100 000 (c) 1010 (d) 1 100 100

3. (a) 18 (b) 19 (c) 42 (d) 1264

5.There is a bit for each power of 2, starting with the zeroth power. The number

1990 is between 210 = 1024 and 211 = 2048, so there are 10 + 1 (the 0 power
of 2) bits.

(a) 11 (b) 12 (c) 13 (d) 8

7.It must be a multiple of four.

Section 1.5
1.(a)  24 (b)  6 (c)  3, 7, 15, 31 (d)  1, 4, 9, 16

3. (a) 1
1 H1+1L + 1

2 H2+1L + 1
3 H3+1L + º⋯ + 1

nHn+1L = n
n+1

(b) 1
1 H2L + 1

2 H3L + 1
3 H4L = 1

2
+ 1
6

+ 1
12

= 3
4

= 3
3+1

(c) 1 + 23 + 33 + º⋯ + n3 = I 1
4
M n2Hn + 1L2

  1 + 4 + 27 = 36   I 1
4
M H3L2 H3 + 1L2 = 36

5.Hx + yLn = H 0
nL xn + H 1

nL xn-1 y + H2nL xn-2 y2 + º⋯ + H n-1
n L x yn-1 + H n

nL yn
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7.(a) 8x œ Q 0 < x b 5<  (b) «

(c) 8x œ Q -5 < x < 5< = B5  (d) 8x œ Q -1 < x < 1< = B1

 9.(a) 36   (b) 105

Supplementary Exercises—Chapter 1
1. (a) 82, 1<  (b) «  (c) 8i, -i<
3. (a) 80, 3, 4, 5, 6, 7, 8, 9< (b) 83, 6, 9<    (c) 80, 1, 2<
5. (a) A ‹ B = 81, 2, 3, 4, 5, 6, 7, 9, 12< †HA ‹ BL§ = 9

 †A§ = 6, †B§ = 5  A › B = 82, 5< †HA › BL§ = 2

 †A§ + †B§ - †HA › BL§ = 6 + 5 - 2 = 9

(b)  10, 8, 2

(c) HA ‹ B ‹ CL = †HHA ‹ BL ‹ CL§
by part (a) = †HA ‹ BL§ + †C§ - †HHA ‹ BL › CL§   
Distributive = †HA ‹ BL§ + †C§ - †HHA › CL ‹ HB › CLL§
by part (a) = †A§ + †B§ - †HA › BL§ + †C§ - @†HA › CL§

+ †HB › CL§ - †HHA › CL › HB › CLL§D 
 Simplify   = †A§ + †B§ + †C§ - †HA › BL§ - †HA › CL§

-†HB › CL§ + †HA › B › CL§
7. (a) 8H4, 4L<
(b)  8H2, 4L, H4, 4L, H6, 4L<
(c)   8H4, 4, 4L<
(cl)   8H4, 2L, H4, 4L, H4, 6L<
(e)   {(2, 4, 1), (2, 4, 5), (4, 4, 1), (4, 4, 5), (6, 4, 1), (6, 4, 5)}

15. (a)   A0 = 80<, A1 = 80, 1, 2, 3<, A2 = 80, 1, 2, …, 6<, A 3 = 80, 1, 2, …, 9<
(b)  H0, 1, 2, 3<
(c)  80<
(d)  80, 1, 2, …, 9<
(e)  80, 1, 2, …, 9<
17. Parts a, b, and d are true with multiplication replacing addition.

CHAPTER 2
Section 2.1
1. If there are m horses in race 1 and n horses in race 2 then there are m ÿ n possible daily doubles.

3. 72 = 4 ÿ 6 ÿ 3

5. 720 = 6 ÿ 5 ÿ 4 ÿ 3 ÿ 2 ÿ 1

7. If we always include the blazer in the outfit we would have 6 outfits. If we

consider the blazer optional then there would be 12 outfits. When we add a

sweater we have the same type of choice. Considering the sweater optional

produces 24 outfits.

9. (a) 28 = 256 (b) 24 = 16. Here we are concerned only with the first four
bits, since the last four must be the same.

(c) 27 = 128, you have no choice in the last bit. 
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11. (a) 16 (b) 30

13. (a) 3 (b) 6

15. 18 
17. (a)

Start

Yes No

a b c d

(b) 56

19. 2n-1 - 1 and 2n - 2

Section 2.2
1. PH1000; 3L
3. With repetition: 268 º 2.0883 µ 1011

Without repetition: PH26; 8L º 6.2991 µ 1010 
5. 15 !

7. (a) PH15; 5L = 360 360 (b) 2 ÿ 14 ÿ 13 ÿ 12 ÿ 11 = 48 048

9. 2 ÿ PH3; 3L = 12

11. (a) PH4; 2L = 12  (b) PHn; 2L = nHn - 1L
(c) Case 1: m > n. Since the coordinates must be different, this case is impossible. 

Case 2: m b n. PHn; mL.
Section 2.3
1. 88a<, 8b<, 8c<<, 88a, b<, 8c<<, 88a, c<, 8b<<, 88a<, 8b, c<<, 88a, b, c<<
3. No. By this definition it is possible that an element of A; might not belong to A.

5. The first subset is all the even integers and the second is all the odd integers.

These two sets do not intersect and they cover the integers completely.

7. Let J, A, N stand for the set of people who jog, do aerobics, and do Nautilus.

Then, using law of addition #2,

90 = 30 + 30 + 30 - 25 - 20 - 10 + †HJ › A › NL§. 
9. Assume †HA1 ‹ A2L§ = †A1§ + †A2§ - †HA1 › A2L§. 
†HA1 ‹ A2 ‹ A3L§ = †HHA1 ‹ A2L ‹ A3L§ 
by 1st law = †HA1 ‹ A2L§ + †A3§ - †HHA1 ‹ A2L › A3L§ 
Distributive = †HA1 ‹ A2L§ + †A3§ - †HHA1 › A3L ‹ HA2 › A3LL§ 
1st law (twice) = †A1§ + †A2§ - †HA1 › A2L§ + †A3§

-@†HA1 › A3L§ + †HA2 › A3L§ - †HHA1 › A3L › HA2 › A3LL§D 
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Simplify = †A1§ + †A2§ + †A3§ - †HA1 › A2L§ - †HA1 › A3L§
-†HA2 › A3L§ + †HA1 › A2 › A3L§.  

(b)  †HA1 ‹ A2 ‹ A3 ‹ A4L§ = †A1§ + †A2§ + †A3§ + †A4§ - †HA1 › A2L§
-†HA1 › A3L§ - †HA1 › A4L§ - †HA2 › A3L§ - †HA2 › A4L§
-†HA3 › A4L§ + †HA1 › A2 › A3L§ + †HA1 › A2 › A4L§
+†HA1 › A3 › A4L§ + †HA2 › A3 › A4L§ - †HA1 › A2 › A3 › A4L§

 

Derivation:

†HA1 ‹ A2 ‹ A3 ‹ A4L§ = †HHA1 ‹ A2 ‹ A3L ‹ A4L§ 
1st law = †HA1 ‹ A2 ‹ A3L§ + †A4§ - †HHA1 ‹ A2 ‹ A3L › A4L§ 
Distributive = †HA1 ‹ A2 ‹ A3L§ + †A4§ - †HHA1 › A4L ‹ HA2 › A4L‹ HA3 › A4LL§  

2nd law (twice) = †A1§ + †A2§ + †A3§ - †HA1 › A2L§ - †HA1 › A3L§
-†HA2 › A3L§ + †HA1 › A2 › A3L§ + †A4§ - @†HA1 › A4L§

+ †HA2 › A4L§ + †HA3 › A4L§ - †HHA1 › A4L › HA2 › A4LL§
- †HHA1 › A4L › HA3 › A4LL§ - †HHA2 › A4L › HA3 › A4LL§
+ †HHA1 › A4L › HA2 › A4L › HA3 › A4LL§D

 

Simplify = †A1§ + †A2§ + †A3§ + †A4§ - †HA1 › A2L§ - †HA1 › A3L§
-†HA2 › A3L§ - †HA1 › A4L§ - †HA2 › A4L§ - †HA3 › A4L§
+†HA1 › A2 › A3L§ + †HA1 › A2 › A4L§ + †HA1 › A3 › A4L§
+†HA2 › A3 › A4L§ - †HA1 › A2 A3 › A4L§

11. Hint: Partition the set of fractions into blocks, where each block contains fractions that are numerically equivalent. Describe how you would 
determine whether two fractions belong to the same block. Redefine the rational numbers to be this partition. Each rational number is a set of 
fractions.
Section 2.4
1. CH10; 3L ÿ CH25; 4L = 1, 518, 000

3. CH10; 7L + CH10; 8L + CH10; 9L + CH10; 10L 
5. 16 x4 - 96 x 3 y + 216 x2 y2 - 216 x y3 + 81 y4

7. (a) CH52; 5L = 2, 598, 960

    (b)  CH52; 5L ÿ CH47; 5L ÿ CH42; 5L ÿ CH37; 5L
9. CH4; 2L CH48; 3L
11. CH12; 3L ÿ CH9; 4L ÿ CH5; 5L
13. (a) CH10; 2L = 45 (b) CH10; 3L = 120

15. Assume †A§ = n. If we let x = y = 1 in the Binomial Theorem, we obtain

2n = CHn; 0L + CHn; 1L + º⋯ + CHn; nL, and as a consequence of Example

2.4.7 we realize that the right side of this equation says the sum of all subsets 

of A. Hence †PHAL§ = 2†A§ 
17. 999, 400, 119, 992.

Supplementary Exercises—Chapter 2
1. (a) 10 ÿ 9 ÿ 8 = 720

(b) 10 ÿ 10 ÿ 10 = 1000

3. (a)
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Start

a

b

c

d

e

1 Ha, 1L
2 Ha, 2L
3 Ha, 3L
1 Hb, 1L
2 Hb, 2L
3 Hb, 3L
1 Hc, 1L
2 Hc, 2L
3 Hc, 3L
1 Hd, 1L
2 Hd, 2L
3 Hd, 3L
1 He, 1L
2 He, 2L
3 He, 3L

15 pairs

(b) If you imagine drawing a tree diagram for this general case, from the starting point, there will be m branches, one for each element of A. 
From the end of each of the "A branches" there will be n branches, one for each element of B. Therefore, there are m ÿ n pairs in A µ B. 
5. (a) If couple A is seated, couple B can be either to their left or right and couple C sits in the other position; therefore, there are two possible 
arrangements.
(b)   2 ÿ 23 = 48
7. (a) 5 != 120  (b) 5 ! - 2 ÿ 4 != 72. (Here, we subtract the ways that the 

two could be seated together from the total number of arrangements.) 

9. (a) PH10; 4L  (b) CH10; 4L ÿ CH6; 3L
11. CH10; 2L ÿ 8 = 360

13. (a) CH11; 5L = 462 (b) CH10; 4L = 210

(c)  CH2; 1L ÿ CH9; 4L + CH9; 3L
15. (a) 3 PH3; 2L = 18  (b) 2 PH3; 2L = 12

CHAPTER 3
Section 3.1
1. (a)   d Ï c (b) s Ÿ c

(c)   Ÿ Hd Ï sL  (d) Ÿ s Ÿ c

3. (a)   2 > 5 and 8 is an even integer. False.

(b)  If 2 b 5 then 8 is an even integer. True.

(c)  If 2 b 5 and 8 is an even integer then 11 is a prime number. True.

(d)   If 2 b 5  then either 8 is an even integer or 11 is not a prime number. True.

(e)   If 2 b 5 then either 8 is an odd integer or 11 is not a prime number. False.
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(f) If 8 is not an even integer then 2 > 5. True.

5. Only the converse of d is true.

Section 3.2

1.   (a)  
p p Í p
0
1

0
1

 (b)   
p Ÿ p p Ï p
0
1

1
0

0
0

 (c)  
p Ÿ p p Ï HŸ pL
0
1

1
0

1
1

(d)   
p p Ï p
0
1

0
1

3. (a) Ÿ Hp Ï qL Í s (b) Hp Í qL Ï Hr Í qL
5. 24 = 16

Section 3.3
1. a ñ e, d ñ f , g ñ h

3. No. In symbolic form the question is: Is Hp Ø qL ñ Hq Ø pL?
p q p Ø q q Ø p Hp Ø qL ¨ Hq Ø pL
0
0
1
1

0
1
0
1

1
1
0
1

1
0
1
1

1
0
0
1

This table indicates that an implication is not always equivalent to its converse. 

5. Let x be any proposition generated by p and q. The truth table for x has 4 rows

and there are 2 choices for a truth value for x for each row, so there are

2 ÿ 2 ÿ 2 ÿ 2 = 24 possible propositions.
(See Table 13.6.1 for an illustration.) 

7. 0 Ø p and p Ø 1 are tautologies.

Section 3.4
1. Let s = "I will study", t = "I will learn." The argument is: HHs Ø tL HŸ tLL Ø HŸ sL , call the argument a.

s t s Ø t Hs Ø tL HŸ tL a
0
0
1
1

0
1
0
1

1
1
0
1

1
0
0
0

1
1
1
1

Since a is a tautology, the argument is valid.

3. In any true statement S, replace; with , with , 0 with 1, 1 with 0, › with , and  with ›. Leave all other connectives unchanged.

5.  (a) If not EOF then repeat

Read (ch);

Count := Count + 1

Until EOF

Law used: involution law, Not Not EOFñ EOF}

(b) S := 0; K := 1; N := 100;  

If K <= N then do

Repeat
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S := S + K;
K := K + 1
Until K > N

No Law of logic is really used here, only  a law of integers:

Not HK § NL ñ K > N.

Section 3.5

1. (a)    

p q Hp Í qL Ï Ÿ q HHp Í qL Ï Ÿ qL Ø p
0
0
1
1

0
1
0
1

0
0
1
0

1
1
1
1

 

(b)   

p q Hp Ø qL Ï Ÿ q Ÿ p Hp Ø qL Ï HŸ qL
0
0
1
1

0
1
0
1

1
0
0
0

1
1
0
0

1
1
1
1

3. (a) Direct proof:

(1)   d Ø Ha cL
(2)   d

(3)   a c

(4)   a Ø b

(5)   Ÿ a Í b

(6)   c Ø b

(7)  Ÿ c Í b

(8)  HŸ a Í bL Ï HŸ c Í bL
(9)   HŸ a Ÿ cL Í b

(10)  Ÿ Ha cL Í b
(11)  b ‡

Indirect proof:

(1)   Ÿ b  Negated conclusion

(2)   a Ø b   Premise

(3)   Ÿ a Indirect Reasoning (1), (2)

(4)  c Ø b Premise

(5)  Ÿ c   Indirect Reasoning (1), (4)

(6)  HŸ a Ÿ cL  Conjunctive (3), (5)

(7)  Ÿ Ha cL DeMorgan's law (6)

(8)  d Ø Ha cL   Premise

(9)  Ÿ d Indirect Reasoning (7), (8)

(10)   d       Premise

(11)  0     (9), (10) ‡

 (b) Direct proof:

(1)  Hp Ø qL Ï Hr Ø sL
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(2)   p Ø q

(3)  Hp Ø tL Ï Hs Ø uL
(4)   q Ø t

(5)   p Ø t

(6)  r Ø s

(7)  s Ø u

(8)   r Ø u

(9)  p Ø r

(10) p Ø u

(11) p Ø Ht uL  Use Hx Ø yL Ï Hx Ø zL ñ x Ø Hy Ï zL
(12)   Ÿ Ht uL Ø Ÿ p

(13)  Ÿ Ht uL
(14) Ÿ p ‡

Indirect proof:

(1)   p

(2) p Ø q

(3)   q

(4) q Ø t

(5)  t

(6)  Ÿ Ht uL
(7) Ÿ t Ÿ u

(8)   Ÿ u

(9)  s Ø u

(10)  Ÿ s

(11) r Ø s

(12)  Ÿ r

(13)  p Ø r

(14) r

(15)  0 ‡

(c)   Direct proof:

(1)   Ÿ s Í p Premise

(2)   s    Added premise (conditional conclusion)

(3)  Ÿ HŸ sL Involution (2)

(4)   p Disjunctive simplification (1), (3)

(5)  p Ø Hq Ø rL Premise

(6)   q Ø r  Detachment (4), (5)
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(7)   q   Premise

(8)  r   Detachment (6), (7) ‡ 

Indirect proof:

(1)  Ÿ Hs Ø rL Negated conclusion

(2)   Ÿ HŸ s rL Conditional equivalence (I)

(3)  s Ÿ r DeMorgan (2)

(4)   s    Conjunctive simplification (3)

(5)   Ÿ s Í p Premise

(6)   s Ø p Conditional equivalence (5)

(7)   p    Detachment (4), (6)

(8)  p Ø Hq Ø rL Premise

(9)   q Ø r Detachment (7), (8)

(10)  q Premise

(11)   r       Detachment (9), (10)

(12)   Ÿ r    Conjunctive simplification (3)

(13)  0   Conjunction (11), (12) ‡

(d)   Direct proof:

(1)   p Ø q

(2)   q Ø r

(3)   p Ø r

(4)   p Í r

(5)  Ÿ p Í r

(6)   Hp Í rL Ï HŸ p Í rL
(7)  Hp Ï Ÿ pL Í r

(8)  0 Í r

(9)  r ‡

Indirect proof:

(1)   Ÿ r Negated conclusion

(2)  p Í r Premise

(3)   p (1), (2)

(4)   p Ø q Premise

(5)   q    Detachment (3), (4)

(6)   q Ø r Premise

(7)   r    Detachment (5), (6)

(8)  0   (1), (7) ‡

5. (a) Let W  stand for "wages will increase," I  stand for "there will be inflation," and C  stand for "cost of living will increase." Therefore the
argument is: W Ø I, Ÿ I Ø Ÿ C, W C.. The argument is invalid. The easiest way to see this is through a truth table. Let x be the conjunc-
tion of all premises.
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W I C Ÿ I Ÿ C W Ø I Ÿ I Ø Ÿ C x x Ø C
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

1
1
1
1
0
0
1
1

0
1
1
1
0
1
1
1

0
0
0
0
0
0
1
1

1
1
1
1
1
1
1
0

(b) Let r stand for "the races are fixed," c stand for "casinos are crooked," t stand for "the tourist trade will decline," and p stand for "the police
will be happy." Therefore, the argument is:Hr cL Ø t, t Ø p, Ÿ p Ø Ÿ r. The argument is valid. Proof:

(1)  t Ø p Premise

(2)  Ÿ p Premise

(3)   Ÿ t Indirect Reasoning (1), (2)

(4)  Hr cL Ø t    Premise

(5)  Ÿ Hr cL Indirect Reasoning (3), (4)

(6)  HŸ rL HŸ cL DeMorgan (5)

(7)  Ÿ r    Conjunction simplification H6L ‡

7. p1 Ø pk  and pk Ø pk+1  implies p1 Ø pk+1. It takes two steps to get to p1 Ø pk+1  from p1 Ø pk  This means it takes 2 H100 - 1L steps to get to
p1 Ø p100 (subtract 1 because p1 Ø p2 is stated as a premise). A final step is needed to apply detachment to imply p100
Section 3.6
1. (a) 881<, 83<, 81, 3<, «<
    (b)   883<, 83, 4<, 83, 2<, 82, 3, 4<<
    (c)  881<, 81, 2<, 81, 3<, 81, 4<, 81, 2, 3<, 81, 2, 4<, 81, 3, 4<, 81, 2, 3, 4<<
    (d)   882<, 83<, 84<, 82, 3<, 82, 4<, 83, 4<<
    (e)  8A Œ U : †A§ = 2<
3. There are 23 = 8  subsets of U, allowing for the possibility of 28nonequivalent 
propositions over U.

5. s is odd and Hs - 1L Hs - 3L Hs - 5L Hs - 7L = 0

 7. b and c

Section 3.7
1. We wish to prove that PHnL : 1 + 3 + 5 + º⋯ + H2 - nL = n2  is true for n r 1. Note: The nth odd positive integer is 2n - 1.

Basis: for n = 1 : 1 = 12

Induction:  Assume that for somen r 1, pHnL is true. Then:

1 + 3 + º⋯ + H2 Hn + 1L - 1L + 1 = @1 + 3 + º⋯ + H2 n - 1LD
+H2 Hn + 1L - 1L
= n2 + H2 n + 1L by pHnL and basic algebra
= Hn + 1L2 ‡

3. Proof: (a) Basis: 1 = 1 H2L H3L ê6 = 1
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(b) Induction: 
1

n+1
k2 =

1

n
k2 + Hn + 1L2

= nHn+1L H2 n+1L
6

+ Hn + 1L2
=

Hn+1L I2 n2+7 n+6M
6

= Hn+1L Hn+2L H2 n+3L
6

‡

5. Basis:   For n = 1 , we observe that 1

H1ÿ2L =
1

H1+1L
Induction: Assume that for some n r 1, the formula is true.

Then: 1
H1ÿ2L + º⋯ + 1

HHn+1L Hn+2LL = n
Hn+1L + 1

HHn+1L Hn+2LL
= Hn + 2L HnL + 1

HHn+1L Hn+2LL
= Hn+1L2

HHn+1L Hn+2LL
= Hn+1L

Hn+2L ‡

7. Let An be the set of strings of zeros and ones of length n (we assume that †An§ = 2n is known), En = the even strings, and En
c = the odd strings.

The  problem  is  to  prove  that  for  n r 1,  †En§ = 2n-1.  Clearly,  †E1§ = 1,  and,  if  for  some  n r 1, †En§ = 2n-1,  it  follows  that  †En+1§ = 2n  by  the
following reasoning:
En+1 = 81 s : s in En

c< ‹ 80 s : s in En<
Since 81 s : s in En

c< and 80 s : s in En< are disjoint, we can apply the addition law. Therefore, †En+1§ = †En
c§ + †En§

= 2n-1 + H2n - 2n-1L = 2n. ‡

9.  Assume  that  for  n  persons  Hn r 1L, Hn-1L n
2

 handshakes  take  place.  If  one  more  person  enters  the  room,  he  or  she  will  shake  hands  with  n

people, Hn-1L n
2

+ n =
In2-n+2 nM

2
= nHn+1L

2

= HHn+1L-1L Hn+1L
2

Also, for n = 1, there are no handshakes: H1-1L H1L
2

= 0.  ‡ 

11. Let pHnL be "a1 + a2 + º⋯ + an has the same value no matter how it is evaluated."

Basis: a1 + a2 + a3  may be evaluated only two ways. Since + is associative, Ha1 + a2L + a3 = a1 + Ha2 + a3L. Hence p H3L is true.

Induction:  Assume that  for  some n r 3 pH3L, pH4L, . . . , pHnL are all  true.  Now consider  the sum a1 + a2 + º⋯ + an+1.  Any of  the n
additions  in  this  expression  can  be  applied  last.  If  the  jth  addition  is  applied  last,  we  have  c j = Ia1 + a2 + º⋯ + a jM + Ia j+1 + º⋯ + an+1M.  No

matter how the expression to the left and right of the jth  addition are evaluated, the result will always be the same by the induction hypothesis,
specifically pH jL and pHn + 1 - jL.  We now can prove that c1 = c2 = º⋯ = cn.  If i < j, 

      ci = Ha1 + a2 + º⋯ + aiL + IIai+1 + º⋯ + a jM + Ia j+1 + º⋯ + an+1M
= Ha1 + a2 + º⋯ + aiL + IIai+1 + º⋯ + a jM + Ia j+1 + º⋯ + an+1M

= IHa1 + º⋯ + aiL + Iai+1 + º⋯ + a jMM + Ia j+1 + º⋯ + an+1M by pH3L
= c j

 

ci = Ha1 + a2 + º⋯ + aiL + Iai+1 + º⋯ + a j + a j+1 + º⋯ + an+1M definition of ci
= Ha1 + a2 + º⋯ + aiL + IIai+1 + º⋯ + a jM + Ia j+1 + º⋯ + an+1M by pHn + 1 - iL
= IHa1 + º⋯ + aiL + Iai+1 + º⋯ + a jMM + Ia j+1 + º⋯ + an+1M by pH3L
= Ia1 + º⋯ + ai + ai+1 + º⋯ + a jM + Ia j+1 + º⋯ + an+1M by pHiL
= c j definition of c j ‡

  

13. For m r 1, let pHmL be xn+m = xn xm for all n r 1. The basis for this proof follows directly from the basis for the definition of exponentiation.

Induction: Assume that for some m r 1, pHmL is true. Then

xn+Hm+1L = xHn+mL+1 by associativity of integer addition
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= xn+m x1  by recursive definition

= xn xm x1 inductive hypothesis

= xn xm+1 recursive definition ‡

Section 3.8
1. (a) H" xL HFHxL Ø GHxLL
(b) There are objects in the sea which are not fish.

 Every fish lives in the sea. 

3. (a) There is a book with a cover that is not blue.

(b) Every mathematics book that is published in the United States has a blue cover.

(c)  There exists a mathematics book with a cover that is not blue.

(d) There exists a book that appears in the bibliography of every mathematics book.

(e)  H" xL HBHxL Ø MHxLL
(f)  H$ xL HMHxL Ï Ÿ UHxLL
(g)  H$ xL HH" yL HŸ RHx, yLL
5. The equation 4 u2 - 9 = 0 has a solution in the integers. (False)
7. (a) Every subset of U has a cardinality different from its complement. (True)

(b)  There is a pair of disjoint subsets of U both having cardinality 5. (False)

(c) A - B = Bc - Ac is a tautology. (True) 

9.H" aLQ H" bLQ(a + b is a rational number.)

11. Let  I = 81, 2, 3, …, n<
(a)   H$ iLI Hx œ AiL
(b) H" iLI Hx œ AiL
Section 3.9
1. The given statement can be written in if … , then … format as: If x and y are two odd positive integers, then x + y is an even integer.

Proof: Assume x and y are two positive odd integers. It can be shown that x + y = 2 ·(some positive integer).

x odd x = 2 m + 1 for some m œ P, 

y odd y = 2 n + 1 for somen œ P.

Therefore, x + y = H2 m + 1L + H2 n + 1L = 2 HHm + nL + 1L = 2·(some positive integer) so x + y is even. ‡

3. Proof: (Indirect) Assume to the contrary, that 2  is a rational number. Then there exists p, q œ Z, Hq ¹≠ 0L where p
q

= 2  and where
p
q

 is in lowest terms, that is, p and q have no common factor other than 1.

p
q

= 2 p2

q2
= 2 p2 = 2 q2 p2is an even integer p  is an even integer (see Exercise 2)  4 is a factor of p2 q2  is even q  is even.

Hence both p and q have a common factor, namely 2. Contradiction.  ‡

5.  Proof: (Indirect)  Assume  x, y œ R  and  x + y b 1.  Assume  to  the  contrary  that  Ix b 1
2

or y b 1
2
M  is  false,  which  is  equivalent  to

x > 1
2

and y > 1
2

. Hence x + y > 1
2

+ 1
2

= 1. This contradicts the assumption that x + y b 1.  ‡

Supplementary Exercises—Chapter 3
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1.(a)  
p p Í p
0
1

0
1

(b)  
p Ÿ p p Ï Ÿ p
0
1

1
0

0
0

(c) 
p Ÿ p p Í Ÿ p
0
1

1
0

1
1

(d) 
p p Ï p
0
1

0
1

3.  

p q Ÿ p q Ï Ÿ p p Í Hq Ï Ÿ pL
0
0
1
1

0
1
0
1

1
1
0
0

0
1
0
0

0
1
1
1

 

5.  Let a = p Ø Ÿ q, b = q Í r, and c = Hp Ø Ÿ qL Ï Hq Í rL Ï Ÿ r 

p q r Ÿ q a b a Ï b Ÿ r c Ÿ p c Ø Ÿ p
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1
1
0
0
1
1
0
0

1
1
1
1
1
1
0
0

0
1
1
1
0
1
1
1

0
1
1
1
0
1
0
0

1
0
1
0
1
0
1
0

0
0
1
0
0
0
0
0

1
1
1
1
0
0
0
0

1
1
1
1
1
1
1
1

7. An implication is always equivalent to its contrapositive, as can be seen in the table below.

p q p q Ÿ q Ÿ p Hp qL ¨ HŸ q Ÿ pL
0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

1
1
1
1

9. The truth tables of p Ø Hp Ï qL and x must be equal.

p q p Ø Hp Ï qL x
0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

11. (a) "3 is not a prime number or it is odd," or "3 is a composite number or it is odd."

(b)   "4 is not a prime number and it is even," or "4 is a composite number and it is even."

(c)  I can exhibit an example of a statement and I cannot prove it.

(d)   x2 - 7 x + 12 = 0 and x ¹≠ 3 and x ¹≠ 8

13.  (a) 

p q p Ø q Ÿ q Ø Ÿ p Hp Ø qL ¨ HŸ q Ø Ÿ pL
0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

1
1
1
1
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(b)

p q p ¨ q p Ø q q Ø p Hp Ø qL Ï Hq Ø pL
0
0
1
1

0
1
0
1

1
0
0
1

1
1
0
1

1
0
1
1

1
0
0
1

Columns 3 and 6 are the same so Hp ¨ qL ñ @Hp Ø qL Ï Hq Ø pLD is a tautology. 

15. Let q = "I quit my job," s = "will starve," and w = "I did my work." In

symbolic form, the argument is Hq Ø sL Ï HŸ w Ø qL Ï w Ÿ s. The truth

table for x = Hq Ø sL Ï HŸ w Ø qL Ï w Ø Ÿ s  does not consist of all ones.
For example, when q is false, s is true and when w is true, x is false. Therefore,

x is not a tautology and the argument is not valid. 

17. @H m Ø pL Ï He Í Ÿ pL Ï Ÿ eD Ÿ m.  Valid

    Proof: (Direct)

(1)  e Í Ÿ p Premise

(2)   Ÿ e Premise

(3)  Ÿ p (1), (2), disjunctive simplification

(4)   m Ø p Premise

(5)   Ÿ m (3), (4), indirect reasoning ‡ 

19. @HŸ p Ø Ÿ q Ï Ÿ r Ï Hp Ø sL Ï Hq Í rL s. Valid

Proof: (Direct)

(1)  Ÿ p Ø Ÿ q Premise

(2)  q Ø p (1), Contrapositive

(3)  p Ø s Premise

(4)  q Ø s (2), (3), Chain rule

(5)  q Í r Premise

(6)  Ÿ r Premise

(7)  q (5), (6), Disjunctive simplification

(8)  s (4), (7), Detachment ‡

    (Indirect)

(1)  Ÿ s Negated conclusion

(2)  p Ø s Premise

(3)  Ÿ p (1), (2), Indirect Reasoning

(4)  Ÿ p Ø Ÿ q Premise

(5)  Ÿ q (3), (4), Detachment

(6)  q Í r Premise

(7)  r    (5), (6), Disjunctive simplification

(8)  Ÿ r Premise

(9)   0 (7), (8) ‡ 

21.  e Ø i, i Ø d, d Ø w e Ø w
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Proof:

(1)  e Ø i Premise

(2)  i Ø d Premise

(3)  e Ø d (1), (2), Chain rule

(4)  d Ø w Premise

(5)  e Ø w (3), (4), Chain rule  ‡

23. Valid. Statement:  t Í d, Ÿ e Í j, Ÿ j Í r Ÿ t Ø r 

Proof: (direct)

(1)  t Í d Premise

(2)  Ÿ t Ø d (1), Conditional equivalence

(3)  Ÿ d Í j Premise

(4)  d Ø j (3), Conditional equivalence

(5)  Ÿ j Í r Premise

(6)  j Ø r (5), Conditional equivalence

(7)  Ÿ t Ø r (2), (4), (6), Chain rule  ‡

 25. (1) First show TpÏq Œ Tp › Tq

             a œ TpÏq a makes p Ï q true 

a makes p true and a makes q true  

a œ Tp and a œ Tq 

a œ Tp › Tq

(2) To prove Tp › Tq Œ TpÏq reverse the above steps.  ‡

27. 60 = 6 ÿ 10 = 2 ÿ 3 ÿ 2 ÿ 5 = 22 ÿ 3 ÿ 5
120 = 2 ÿ 60 = 23 ÿ 3 ÿ 5

 

29  (a)  K n
k - 1 O + K n

k O = n!
Hn- Hk - 1LL! Hk - 1L! + n!

Hn- kL! k!
= n!

Hn- k + 1L! Hk - 1L + n!
Hn- kL! k!

= n! k + n! Hn- k + 1L
Hn- k + 1L! k!

= n! Hn+ 1L
Hn- k + 1L! k! = Hn+ 1L!

Hn+ 1- k L! k!
= H k

n+ 1L ‡

(b)   Basis: Hn = 1L : Hx + yL1 = x + y .  

k=0

1 K 1
k O x1-k yk = K 1

0 O x + K 1
1 O y = x + y  

Induction: Assume n r 1 and Hx + yLn =
k=0

n K n
k O xn-k yk. 

We will now prove Hx + yLn+1 = k=0
n+1 K n + 1

k O xn+1-k yk.
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Hx + yLn+1 = Hx + yL Hx + yLn
= Hx + yL k=0

n K n
k O xn-k yk By induction hypothesis

= x k=0
n K n

k O xn-k yk + y k=0
n K n

k O xn-k yk distribution

=
k=0

n K n
k O xn+1-k yk +

k=0

n K n
k O xn-k yk + 1

 

Let k = k - 1 in the second summation; remember to increase top.

= k=0
n K n

k O xn+1-k yk + k=1
n+1 K n

k - 1 O xn-k+1 yk

= K n
0 O xn+1 + k=1

n K n
k O xn+1-k yk +

k=1

n K n
k - 1 O xn+1-k yk + K n

n O yn+1

= K n
0 O xn+1 +

k=1

n BK n
k O + K n

k - 1 OF xn+1-k yk + K n
n O yn+1

= K n
0 O xn+1 +

k=1

n K n + 1
k O xn+1-k yk + K n

n O yn+1,

But K n
0 O = K n + 1

0 O = 1 and K n
n O = K n + 1

n + 1 O = 1

=
k=0

n+1 K n + 1
0 O xn+1-k yk.

+

31. Ÿ H$ xL HH" yL HDHxL Ï THyLLL H" xL HŸ H" yL HDHxL Ï THyLLLH" xL HH$ yL HŸ HDHxL Ï THyLLLLH" xL HH$ yL HŸ DHxL Í Ÿ THyLLL
All sailing is not dangerous or some fishing is

not tedious.
33. (a) Let U be the universe of all fish, kHxL ="x is kind to children," and sHxL ="x is a shark." H" xLU HŸ sHxL Ø kHxLL
(b)   Let wHxL = "x is a wine drinker," 

  c HxL ="x is very communicative,"

   pHxL = "x is a pawnbroker,"

  and  hHxL = "x is honest"; 

  then H" xL HH$ yL HHwHxL Ø cHxLL Í HpHyL Ø HhHxL Ï Ÿ wHyLLLLL
(c)   Let pHxL = "x is a clever philosopher," 

              cHxL = "x is a cynic," 

       and wHxL = "x is a woman"; then

  H" xL HH$ yL HHHpHxL Ø cHxLL Ï HwHxL Ø pHxLLL Ø HpHyL Ø HwHyL Ø cHyLLLLL
35. H" aLR + H" bLR + H$ nLP Hna > bL
CHAPTER 4
Section 4.1
1. (a) Assume that x œ A  (condition of the conditional conclusion A Œ C). Since A Œ B, x œ B by the definition of Œ.  B Œ C and x œ B implies
that x œ C Therefore, if x œ A, then x œ C. ‡ 
   (b) (Proof that A - B Œ A › Bc) Let x be in A - B. Therefore, x is in A, but it is not in B; that is, x œ A and            x œ Bc x œ A › Bc. ‡

     (c)  H L Assume that A Œ B  and  A Œ C.  Let  x œ A.  By  the  two  premises, x œ B  and  x œ C.  Therefore,  by  the         definition  of
intersection, x œ B › C. ‡
     (d)  H L (Indirect)  Assume  that  A Œ C  and  Bc  is  not  a  subset  of  Ac  .  Therefore,  there  exists  x œ Bc  that  does  not  belong  to  Ac.
x – Ac x œ A. Therefore, x œ A and x – B, a contradiction to the assumption that A Œ B. ‡
3. (a) If A = Z and B = «, A - B = Z, while B - A = «.
    (b)  If A = 80< and B = 81<, H0, 1L œ A µ B, but H0, 1L is not in B µ A.
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    (c) Let A = «, B = 80<, and C = 81<. 
5. Proof: Let p HnL be

A › HB1 ‹ B2 ‹º⋯‹ BnL
= HA › B1L ‹ HA › B2L ‹º⋯‹ HA › BnL.

Basis: We must show that p H2L : A › HB1 ‹ B2 L = HA › B1L ‹ HA › B2L is true. This was done by several methods in section 4.1.
Induction: Assume for some n ¥ 2 that pHnL is true. Then
 A › HB1 ‹ B2 ‹º⋯‹ Bn+1L = A › @HB1 ‹ B2 ‹º⋯‹ BnL ‹ Bn+1]

= HA › HB1 ‹ B2 ‹º⋯‹ BnLL ‹ HA › Bn+1L 
by pH2L

= HHA › B1L ‹º⋯‹ HA › BnLL ‹ HA › Bn+1L
by the induction hypothesis

= HA › B1L ‹º⋯‹ HA › BnL ‹ HA › Bn+1L  ‡ 

Section 4.2
1. (a)

(b)  A B Ac Bc A ‹ B HA ‹ BLc Ac › Bc  

       

0 0
0 1
1 0
1 1

    

1 1 0 1 1
1 0 1 0 0
0 1 1 0 0
0 0 1 0 0

The last two columns are the same so the two sets must be equal.
(c)  (i)x œ A ‹ A x œ A or x œ A  by the definition of ›

      x œ A   by the idempotent law of logic
       Therefore, A ‹ A Œ A. 
       (ii) x œ A x œ A and x œ A by conjunctive addition
                     x œ A ‹ A 
       Therefore, A Œ A ‹ A and so we have A ‹ A = A. ‡ 
3. For all parts of this exercise, a reason should be supplied for each step. We have supplied reasons for part a only and 
    left them out of the other parts to give you further practice.
(a)  A ‹ HB - AL = A ‹ HB › AcL             by Exercise 2b of Section 4.1
                            = HA ‹ BL › HA ‹ AcL by the distributive law
                            = HA ‹ BL › U            by the null law
                            = HA ‹ BL                by the identity law    ‡
(b)  A - B = A › B c
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                    = Bc › A
                    = Bc › HAcLc
                    = Bc - Ac

(c) Select any element, x, in A › C. One such element exists since A › C is not empty. 
x œ A › C x œ A and x œ C
                  x œ B and x œ C
                  x œ B › C
                  B › C ¹≠ «   ‡

(d) A › HB - CL = A › HB › CcL
              = HA › B › AcL ‹ HA › B › CcL
                           = HA › BL › HAc ‹ CcL
                           = HA › BL › HA ‹ CLc
                           = HA - BL › HA - CL    ‡
(e) A - HB ‹ CL = A › HB ‹ CLc
                           = A › HBc › CcL
                           = HA › BcL › HA › CcL
                           = HA - BL › HA - CL   ‡
              3       1   2                                              1         3        2                                            2       3      1

5. (a) A ‹ Bc › C (b) A › B ‹ C › B (c) A ‹ B ‹ Cc

Section 4.3
1. (a) 81<, 82, 3, 4, 5<, 86<, 87, 8<, 89, 10<      
    (b) 25 , as compared with 210.    81, 2< is one of the 992 sets that can't be generated. 
3.  B1 = 800, 01, 10, 11<  and B2 = 80, 00, 01<  generate  minsets  800, 01<, 80<, 810, 11<,  and  8l, 1<.  Note:  l  is  the  null  string,  which  has
length zero.
5. (a) B1 › B2 = «

         B1 › Bc
2 = 80, 2, 4<

         Bc
1 › B2 = 81, 5<

         Bc
1 › Bc

2 = 83<
   (b) 23 , since there are 3 nonempty minsets. 

7. Let a œ A. For each i, a œ Bi, or a œ Bi
c, since Bi ‹ Bi

c = A by the complement law. Let Di = Bi if a œ Bi, and D = Bi
c otherwise. Since a is in

each Di, it must be in the minset D1 › D2º⋯› Dn. Now consider two different minsets M1 = D1 › D2º⋯› Dn, and M2 = G1 › G2º⋯› Gn,
where  each  Di  and  Gi  is  either  Bi  or  Bi

c.  Since  these  minsets  are  not  equal,  Di ¹≠ Gi,  for  some  i.  Therefore,
M1 › M2 = D1 › D2º⋯› Dn › G1 › G2º⋯› Gn = «, since two of the sets in the intersection are disjoint. Since every element of A is in a
minset and the minsets are disjoint, the nonempty minsets must form a partition of A. ‡

Section 4.4
1. (a) A › HB ‹ AL = A

    (b) A › HHBc › AL ‹ BLc = «

    (c)  HA › BcLc ‹ B = Ac ‹ B

3. (a)  Hp Ï Ÿ HŸ q Ï pL Í gLL ñ 0

    (b)  HŸ Hp Í HŸ qLL Ï qL ñ HHŸ pL Ï qL
5. The maxsets are:

    B1 ‹ B2 = 81, 2, 3, 5<
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    B1 ‹ B2c = 81, 3, 4, 5, 6<
    B1c ‹ B2 = 81, 2, 3, 4, 6<
    B1c ‹ B2c = 82, 4, 5, 6<
They do not form a partition of A since it is not true that the intersection of any two of them is empty. A set is said to be in maxset normal form
when it is expressed as the intersection of distinct nonempty maxsets or it is the universal set U.

Supplementary Exercises—Chapter 4
1. (a) Proof: ( ) (Indirect) Assume A Œ B and A ‹ HU - BL ¹≠ «. To prove that this cannot occur, let x œ A › HU - BL.

x œ A › HU - BL
Definition of complement x œ A › Bc

Definition of ›  x œ A and x œ Bc

Definition of complement x œ A and x – B
Definition of subset   A is not a subset of B

    This contradicts the premise that A Œ B. Hence this part of the statement is proven.

    (›) (Indirect) Assume A › HU - BL = «, and A is not a subset of B. To prove that this cannot occur, let x œ A such
    that x – B.

x œ A and x – B
Definition of complement x œ A and x œ Bc  
Definition of ›  x œ A › Bc

Definition of complement x œ A › HU - BL
Definition of disjoint   A › HU - BL ¹≠ «

But this cannot happen because it contradicts the assumption that A › HU - BL = «. Hence this part of the statement is proven and the proof is
complete.
    (b)  Proof: (Indirect) Assume U = A ‹ B, A › B = «, and A ¹≠ U - B. One way in which A and U - B can be not
    equal is that A is not a subset of U - B. Let x œ A and x – U - B.

x œ A and x – U - B
Definition of complement x œ A and x œ B
Definition of ›   x œ A › B
Definition of disjoint A › B ¹≠ «

    But this cannot happen because it contradicts the assumption that A › B = «. The other way A and U - B can diffe is if U - B is not a subset
of A, Let x – A and x œ U - B. We could infer from this assumption thatx x – A ‹ B.   Therefore, any way that we assume that A ¹≠ U - B leads
to a contradiction.
(c) Proof: ( ) (Direct) Let x œ A.

A and B are disjoint 
Definition of disjoint   x – B
Definition of complement x œ Bc 

    Therefore, A Œ Bc

    (›) (Indirect) Assume that A Œ Bc and x œ A › B.
x œ A › B
Definition of intersection x œ A and x œ B 
Definition of complement x œ A and x – Bc 
Definition of subset    A is not a subset of B c  ‡

3. (a) Proof: (Direct) Let A, B, and C be sets. 
Let Hx, yL œ HA ‹ BL µ C.
Definition of Cartesian product x œ HA ‹ BL and y œ C 
Definition of ‹   Hx œ A or x œ BL and y œ C
Distributive law of logic   Hx œ A and y œ CL or Hx œ B and y œ CL 
Definition of Cartesian product HHx, yL œ A µ CL orHHx, yL œ B µ CL
Definition of ‹   Hx, yL œ HA µ CL ‹ HB µ CL  ‡

(b) We proved HA ‹ BLµ C Œ HA µ CL ‹ HB µ CL in part a; we now must show HA µ CL ‹ HB µ CL Œ HA ‹ BLµ C and we will be finished. 

5. Proof: (Indirect) Assume A, B, and C are subsets of U, A Œ B, B Œ C and Cc  is not a subset of Ac. To prove that this cannot occur, let x œ Cc

and x – Ac by definition of subset.
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x œ Cc and x – Ac

Definition of complement   x – C and x œ A
Premise   A Œ B
Definition of subset   x œ B
Premise B Œ C
Definition of subset   x œ C  (Contradiction)    ‡

7. (a) Proof: (Indirect) Let A, B, and C be sets. Assume A ‹ C ¹≠ B ‹ C and A = B.

A = B A Œ B
x œ A ‹ C
Definition of union   x œ A or x œ C
Definition of subset   x œ B or x œ C
Definition of union   x œ B ‹ C

    Therefore, A ‹ C Œ B ‹ C. By a similar line of reasoning we can infer B ‹ C Œ A ‹ C, which proves that
    A ‹ C = B ‹ C, a contradiction. 
   (b) Proof: (Direct) Assume A ¹≠ B and show Ac ¹≠ Bc. Since A ¹≠ B we can assume that A is not a subset of B. The
        alternative is that B is not a subset of A and the remaining logic would be identical. 

A not a subset of B
Definition of subset   x œ A and x – B
Definition of complement   x – Ac and x œ Bc

Definition of subset   Bc is not a subset of Ac

Definition of inequality   Ac ¹≠ Bc    ‡
9. (a) The minsets are B1 › B2 = 83<, B1c › B2 = 82, 5<, B1 › B2c = 81<, and B1c › B2c = 84, 6< 
    (b) The minsets are disjoint and
         HB1 › B2L ‹ HB1c › B2L ‹ HB1 › B2cL ‹ HB1c › B2cL = U,
          so the minsets form a partition of U.
CHAPTER 5
Sections 5.1-5.3
1. For parts c, d and i of this exercise, only a verification is needed. Here, we supply the result that will appear on both sides of the equality.

(a)   AB = K -3 6
9 -13 O BA = K 2 3

-7 -18 O (b)   K 1 0
5 -2 O

(c)   K 3 0
15 -6 O (d)   K 18 -15 15

-39 35 -35 O (e)   K -12 5 -5
5 -25 25 O

(f)   B + 0 = B (g)   K 0 0
0 0 O (h)   K 0 0

0 0 O (i)   K 5 -5
10 15 O

3.   K 1 ê2 0
0 1 ê3 O

5.    A3 =
1 0 0
0 8 0
0 0 27

   A15 =
1 0 0
0 32 768 0
0 0 14 348 907

7. (a) Ax = K 2 x1 + 1 x2
1 x1 - 1 x2

O  equals K 3
1 O if and only if both of the equalities

          2 x1 + x2 = 3 and x1 - x2 = 1 are true.

    (b)  (i) A = K 2 -1
1 1 O     x = K x1

x2
O      B = K 4

0 O
 (ii)      A =

1 1 2
1 2 -1
1 3 1

 x =
x1
x2
x3

      B =
1

-1
5

             (iii)     A =
1 1 0
0 1 0
1 0 3

    x =
x1
x2
x3

       B =
3
5
6

Section 5.4
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1. (a)  K -1 ê5 3 ê5
2 ê5 -1 ê5 O  (b) K 1 3

0 1 O    (c)    No inverse exists.

    (d) A-1 = A        (e) 
1 ê3 0 0

0 2 0
0 0 -1 ê5

3. Let A and B be n by n invertible matrices. Prove HABL-1 = B-1 A-1.

    Proof: HB-1 A-1L HABL = HB-1L HA-1HABLL
      = HB-1L HHA-1 AL BLL
      = HB-1L HIBL
      = HB-1M HBL
      = I

    Similarly, HABL HB-1 A-1L = I.

    By Theorem 5.4.1, B-1 A-1 is the only inverse of AB, If we tried to invert AB  with A-1 B-1, we would be
    unsuccessful since we cannot rearrange the order of the matrices. 

5. (b) 1 = det I = detIAA-1M = det A det A-1. Now solve for det A-1. 

7. Basis: Hn = 1L : det A1 = det A = Hdet A L1.
    Induction: Assume det An = Hdet ALn for some n ¥ 1.

det An+1 = detHAn AL by the definition of exponents
    = detHAnL detHAL by exercise 5 

   = Hdet ALn Hdet AL   by the induction hypothesis 
  = Hdet ALn+1

9. (a) Assume A = BDB-1

Basis:Hm = 1): A^1 = BD1 B-1 is given.

Induction: Assume that for some positive integer m, Am = BDm B-1

Am+1 = Am A
= HBDm B-1L IBDB-1M by the induction hypothesis 
= BDm DB-1 by associativity, definition of inverse 
= BDm+1 B-1

    (b) A10 = BD10 B-1 = K -9206 15 345
-6138 10 231 O

Section 5.5
l. (1) Let A and B be m by n matrices. Then A + B = B + A,
   (2) Let A, B, and C be m by n matrices. Then A + HB + CL = HA + BL + C.
   (3)  Let A and B be m by n matrices, and let c œ R. Then cHA + BL = cA + cB,
   (4)  Let A be an m by n matrix, and let c1, c2 œ R. Then Hc1 + c2L A = c1 A + c2 A.
   (5)  Let A be an m by n matrix, and let c1, c2 œ R. Then c1Hc2 AL = Hc1 c2L A
   (6)  Let 0 be the zero matrix, of size m by n, and let A be a matrix of size n by r. Then 0 A = 0 = the m by r zero matrix.
   (7)  Let A be an m by n matrix, and 0 = the number zero. Then 0 A = 0 = the m by n zero matrix.
   (8) Let A be an m by n matrix, and let 0 be the m by n zero matrix. Then A + 0 = A. 
   (9) Let A be an m by n matrix. Then A + H- 1L A = 0, where 0 is the m by n zero matrix.
 (10) Let A, B, and C be m by n, n by r, and n by r matrices respectively. Then AHB + CL = AB + AC.
 (11) Let A, B, and C be m by n, r by m, and r by m matrices respectively. Then HB + CL A = BA + CA.
 (12) Let A, B, and C be m by n, n by r, and r by p matrices respectively. Then AHBCL = HABL C.
 (13) Let A be an m by n matrix, Im the m by m identity matrix, and In the n by n identity matrix. Then Im A = AIn = A
 (14) Let A be an n by n matrix. Then if A-1 exists, HA-1L-1 = A .
 (15) Let A and B be n by n matrices. Then if A-1 and B-1 exist, HABL-1 = B-1 A-1.

3. (a) AB + AC = K 21 5 22
-9 0 -6 O

    (b) AHB + CL = AB + AC

    (c) A-1 = K 1 2
0 -1 O = A
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    (d) HA2L-1 = HAAL-1 = IAA-1M-1 = I-1 = I by part c

Section 5.6
1. In elementary algebra (the algebra of real numbers), each of the given oddities does not exist.

(i) AB may be different from BA .  Not so in elementary algebra, since ab = ba by the commutative law of multiplication.
(ii) There exist matrices A and B such that AB = 0, yet A ¹≠ 0 and B ¹≠ 0. In elementary algebra, the only way  ab = 0   is if either a or b is zero.
There are no exceptions.
(iii) There exist matrices A, A ¹≠ 0, yet A2 = 0. In elementary algebra, a2 = 0 ñ a = 0.
(iv) There exist matrices A2 = A. where A ¹≠ 0 and A ¹≠ I. In elementary algebra, a2 = a ñ a = 0 or 1.
(v) There exist matrices A where A2 = I but A ¹≠ I and A ¹≠ -I. In elementary algebra, a2 = 1 ñ a = 1 or - 1.
3. (a) det A ¹≠ 0 A-1 exists, and if you multiply the equation A2 = A on both sides by A-1 , you obtain A = I.

    (b) Counterexample: A = K 1 0
0 -1 O

5. (a) A-1 = K 1 ê3 1 ê3
1 ê3 -2 ê3 O    x1 = 4 ê3, and x2 = 1 ê3

    (b) A-1 = K 1 -1
1 -2 O    x1 = 4, and x2 = 4

    (c) A-1 = K 1 ê3 1 ê3
1 ê3 -2 ê3 O    x1 = 2 ê3, and x2 = -1 ê3

    (d) A-1 = K 1 ê3 1 ê3
1 ê3 -2 ê3 O    x1 = 0, and x2 = 1

    (e) The matrix of coefficients for this system has a zero determinant; therefore, it has no inverse. The system cannot
          be solved by this method. In fact, the system has no solution.

Supplementary Exercises—Chapter 5
1. K x + y 5

-2 x - y O = K 3 5
-2 4 O ¶ x + y = 3

x - y = 4 ¶ y = -1 ê2
x = 7 ê2

3. For n ¥ 1 let pHnL be ABn = Bn A 

Basis:Hn = 1L: AB1 = B1 A is true as given in the statement of the problem. Therefore, pH1L is true.

Induction: Assume n ¥ 1 and p HnL is true.

ABn+1 = HAB nL B
= HBn AL B By the induction hypothesis
= HBn BL A   By p HlL
= Bn+1 A ‡

5. A-1 A3 = A2 = K 7 18
6 19 O

7. D has no inverse if det D = 0.

    det D = 0 ñ 3 c - f H15L = 3 c - 60 = 0 ñ c = 20

9. (a) HA + BL2 = A2 + AB + BA + B2

    (b) HA + BL2 = A2 + 2 AB + B2 only if AB = BA.

11. The implication is false. Both  K 1 0
0 -1 O and K 0 1

1 0 O are self-inverting, but their product is not.

13. Yes, matrices of the form A =
a bH1 - aL2 êb -a

 also solve A2 = I

CHAPTER 6
Section 6.1
1. (a)   H2, 4L, H2, 8L       (b) H2, 3L, H2, 4L, H5, 8L       (c) H1, 1L, H2, 4L
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3. (a)   r = 8H1, 2L, H2, 3L, H3, 4L, H4, 5L<
    (b)  r2 = 8H1, 3L, H2, 4L, H3, 5L< = 8Hx, yL : y = x + 2, x, y œ A<
    (c)  r3 = 8H1, 4L, H2, 5L< = 8Hx, yL : y = x + 3, x, y œ A< 
5. (a)   When n = 3, there are 27 pairs in the relation.

    (b)  Imagine building a pair of disjoint subsets of S. For each element of S there are three places that it can go: into the first set of the ordered
pair, into the second set, or into neither set. Therefore the number of pairs in the relation is 3n, by the product rule.

Section 6.2
1.

3. See Figure 13.1.1 of Section 13.1.

5. A Hasse diagram cannot be used because not every set is related to itself. Also, 8a< and 8b< are related in both directions.

Section 6.3

(c) The graphs are the same if we disregard the names of the vertices.

3. (a) (i) reflexive (ii) reflexive (iii) not reflexive
not symmetric   not symmetric   symmetric
not antisymmetric antisymmetric   not antisymmetric
transitive   transitive   transitive

(iv) not reflexive (v) reflexive   (vi) reflexive
symmetric   symmetric   not symmetric
antisymmetric   not antisymmetric   antisymmetric
transitive   transitive   transitive

(vii) not reflexive 
not symmetric 
not antisymmetric 
not transitive 

    (b) Graphs ii and vi show partial ordering relations. Graph v is of an equivalence relation. 

5. (a) No, since for example 1 - 1 = 0 ¹≠ 2
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    (b)  Yes, since i - j = j - i

    (c)  No, since 2 - 4 = 2 and 4 - 6 = 2, but 2 - 6 = 4 ¹≠ 2.

    (d)

7. (b)  cH0L = 80<, cH1L = 81, 2, 3< = cH2L = cH3L
    (c)  cH0L ‹ cH1L = A and cH0L › cH1L = «

    (d) Let A be any set and let r be an equivalence relation on A. Let a be any element of A. a œ cHaL since r is reflexive, so each element of A is
in some equivalence class. Therefore, the union of all equivalence classes equals A. Next we show that any two equivalence classes are either
identical  or  disjoint  and we are  done.  Let  cHaL  and c HbL  be  two equivalence classes,  and assume that  cHaL › cHbL ¹≠ «.  We want  to  show that
cHaL = cHbL. To show that cHaL Œ cHbL, letx œ cHaL. x œ cHaL arx. Also, there exists an element, y, of A that is in the intersection of c HaL and c HbL
by our assumption. Therefore,

      ary and bry ary and yrb Hr is symmetricL
arb Htransitivity of rL

Next,
                  arx and arb xra and arb

xrb
brx
x œ cHbL

Similarly, cHbL Œ cHaL.  ‡ 
9. (a) Equivalence Relation

cH0L = 80<, cH1L = 81<, cH2L = 82, 3< = cH3L, cH4L = 84, 5< = cH5L,
cH6L = 86, 7< = cH7L

    (b)   Not an Equivalence Relation

    (c)   Equivalence Relation
cH0L = 80, 2, 4, 6< = cH2L = cH4L = cH6L 
cH1L = 81, 3, 5, 7< = cH3L = cH5L = cH7L

11. (b) The proof follows from the biconditional equivalence in Table 3.4.2.

      (c) Apply the chain rule.

      (d)

Section 6.4

1. (a)   

Ñ 4 5 6
1
2
3
4

0 0 0
1 0 0
0 1 0
0 0 1

 and

Ñ 6 7 8
4
5
6

0 0 0
1 0 0
0 1 0
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    (b)

Ñ 6 7 8
1
2
3
4

0 0 0
0 0 0
1 0 0
0 1 0

3.  R : xry if and only if x - y = 1.
     S : xsy if and only if x is less than y. 
5. The diagonal entries of the matrix for such a relation must be 1. When the three entries above the diagonal are determined, the entries below
are also determined. Therefore, the answer is 23.

7. (a)

Ñ 1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

and

Ñ 1 2 3 4
1
2
3
4

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

    (b)  PQ =

Ñ 1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

P2 =

Ñ 1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= Q2

9. (a) Reflexive: Rij = Rij for all i, j, therefore Rij § Rij

Antisymmetric: Assume Rij § Sij and Sij § Rij for all 1 § i, j § n Rij § Sij
Transitive: Assume R, S, and T  are matrices where Rij § Sijand Sij § Tij, for all 1 § i, j § n. Then Rij § Tij  for all 1 § i, j § n, and so

R § T.

    (b)  HR2Lij = Ri1 R1 j + Ri2 R2 j + º⋯ + Rin Rnj

           § Si1 S1 j + Si2 S2 j + º⋯ + Sin Snj = HS2Lij R2 § S2

To verify that the converse is not true we need only one example. For n = 2, let R12 = 1 and all other entries equal 0, and let S  be the
zero matrix. Since R2 and S2 are both the zero matrix, R2 § S2, but since R12 > S12, R § S is false.
    (c)  The matrices are defined on the same set A = 8a1, a2, … , an<. Let cHaiL, i = 1, 2, … , n be the equivalence classes defined by R and let
dHaiL be those defined by S. Claim: cHaiL Œ dHaiL. Let a j œ cHaiL ai ra j Rij = 1 Sij = 1 ai sa j a j œ dHaiL.

Section 6.5
3. (a)
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    (b) Example, 1 s 4 and using S one can go from 1 to 4 using a path of length 3.

5. (a) Definition: Reflexive Closure. Let r be a relation on A. A reflexive closure of r is the smallest reflexive relation that contains r.

Theorem: The reflexive closure of r is the union of r with 8Hx, xL : x œ A< 
7. (a) By the definition of transitive closure, r+ is the smallest relation which contains r; therefore, it is transitive. The transitive closure of r+,Hr+L+ , is the smallest transitive relation that contains r+. Since r+ is transitive, Hr+L+ = r+. 
    (b)   The transitive closure of a symmetric relation is symmetric, but it may not be reflexive. If one element is not related to any elements,
then the transitive closure will not relate that element to others.

Supplementary Exercises—Chapter 6
1. If Andy is the parent of Barbara and Barbara is the parent of Charles, then Andy is the grandparent of Charles. 

3. (a) r = 8H-1, 0L, H0, 1L, H1, 2L<
(b)   s = 8H-1, -1L, H-1, 1L, H0, 0L, H1, -1L, H1, 1L, H2, 2L<
(c)   t = 8H-1, 0L, H-1, 1L, H-1, 2L, H0, -1L, H0, 1L, H0, 2L,H1, -1L, H1, 0L, H1, 2L, H2, -1L, H2, 0L, H2, 1L<

5. His main office should be at node 2. The least desirable location is at node 1. The arrows in both directions between nodes 1 and 2 represent
a two-way street. 
7. (a) No.

    (b) Person a is friendly toward the most people so he/she would be chair person.

    (c) If "great personality" has any effect then person b becomes chairperson.

    (d) A  seating  arrangement  does  not  exist,  since  persons  c  and  d  are  only  friendly  toward  one  person  each  and  they  have  to  be  seated
between two people they are friendly toward.
9. In order for the relation "living in the same house" to be an equivalence relation we must assume that a person lives in only one house. 

11.(a) r is an equivalence relation.

     (b) s is neither since s is not reflexive.

     (c) In order for s to be a partial ordering we rephrase it slightly; xsy iff x taller than y or x equals y. Why would xsy iff x is the same height
as or taller than y be wrong?
13. There are 16 places in the adjacency matrix for a relation on four elements, but for a symmetric relation those entries below the diagonal
will be the same as above. Hence we are only concerned with 16 - 6 = 10 places. Each of the remaining entries may take on a value of either 0
or 1, so by the rule of products we have 210 possible symmetric relations on a four element set.
15.
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(b) (i)  8Ha, aL, Ha, bL, Hb, aL, Hb, bL, Hc, cL<
(ii)  8Ha, aL, Ha, cL, Hc, aL, Hc, bL, Hc, cL< 

(c) (i)  R2 = R =
1 1 0
1 1 0
0 0 1

(ii) R2 =
1 1 1
0 0 0
1 1 1

17.

(b) r is not reflexive, not symmetric, not antisymmetric, and not transitive.

(c)   R+ =

1 0 1 1
0 1 0 0
0 0 1 0
1 0 1 1

19. (a) A5 is friendly to no one.

(b)  The U.S. Ambassador HA1L should be the chairman of this committee, since he is friendly toward the most people.

(c)  The U.S. Ambassador can communicate to everyone on the committee.

CHAPTER 7
Section 7.1
1. (a) Yes (b) Yes (c) No (d) No (e) Yes

Solutions to Odd Numbered Exercises

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 



3. (a) Range of f = f HAL = 8a, b, c, d< = B

(b) Range of g = gHAL = 8a, b, d<
(c)  Range of L = LHAL = 81<

5. For each of the A  elements of A, there are B  possible images, so there are B ÿ B ÿ … ÿ B = B A  functions from A into B.

Section 7.2
1. The only one-to-one function and the only onto function is f . 

3. (a) onto but not one-to-one H f1H0L = f1H1LL
    (b) one-to-one and onto
    (c)  one-to-one but not onto
    (d)  onto but not one-to-one
    (e)  one-to-one but not onto
    (f)  one-to-one but not onto
5. Let X = 8socks selected<  and Y = 8pairs of socks<  and define f : X Ø Y  where f HxL =the pair of socks that x  belongs to .  By the Pigeonhole
principle, there exist two socks that were selected from the same pair.
7. (a) f HnL = n, for example

    (b) f HnL = 1, for example

    (c)  None exist.

    (d)  None exist.

9. (a) Use s : N Ø P defined by sHxL = x + 1.

    (b) Use the function f : N Ø Z defined by f Hx0 = x ê2 if x is even and f HxL = -Hx + 1L ê2 if x is odd.

    (c)The proof is due to Georg Cantor (1845-1918), and involves listing the rationals through a definite procedure so that none are omitted and
duplications are avoided. In the first row list all nonnegative rationals with denominator 1, in the second all nonnegative rationals with denomina-
tor  2,  etc.  In this  listing,  of  course,  there are duplications,  for  example,  0 ê1 = 0 ê2 = 0,  1 ê1 = 3 ê3 = 1,  6 ê4 = 9 ê6 = 3 ê2,  etc.  To obtain a list
without duplications follow the arrows in the given array listing only the circled numbers.

We  obtain:  0, 1, 1 ê2, 2, 3, 1 ê3, 1 ê4, 2 ê3, 3 ê2, 4 ê1, …  Each  nonnegative  rational  appears  in  this  list  exactly  once.  We  now  must
insert in this list the negative rationals, and follow the same scheme to obtain: 0, 1, -1, 1 ê2, -1 ê2, 2, -2, 3, -3, 1 ê3, -1 ê3, … , which can
be paired off with the elements of N.
11. Let f  be any function from A into B. By the Pigeonhole principle with n = 1, there exists an element of B that is the image of at least two
elements of A. Therefore, f  is not an injection.
13. The proof is indirect and follows a technique called the Cantor diagonal process. Assume to the contrary that the set is countable, then the
elements can be listed:

n1, n2, n3, … where each ni is an infinite sequence of 0s and 1s. Consider the array:

n1 = n11 n12 n13º⋯
n2 = n21 n22 n23º⋯
n3 = n31 n32 n33º⋯

ª

      We assume that this array contains all infinite sequences of 0s and 1s. Consider the sequence s defined by

si = ¶ 0 if nii = 1
1 if nii = 0
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      s differs from each ni in the ith position and so cannot be in the list. This is a contradiction, which  completes our proof.

Section 7.3

1. (a) g Î f : A Ø C is defined by Hg Î f L HkL = ¶ + if k = 1 or k = 5
- if k = 2, 3, 4

    (b)  No, since the domain of f  is not equal to the codomain of g.

    (c)  No, since f  is not surjective.

    (d)  No, since g is not injective.

3. (a) The permutations of A are i, r1, r2, f1, f2, and f3, defined in section 15.3

    (b, c) Inverse of   Square of
Permutation   the permutation   permutation
i

r1
r2
f1
f2
f3

i
r2
r1
f1
f2
f3

i
r2
r1
i
i
i

    (d) Apply both Theorems 7.3.3 and 7.3.4: If f  and g are permutations of A, then they are both 
injections and their composition, f Îg, is a injection, by Theorem 7.3.3. By 7.3.4, f Îg is also a 
surjection; therefore, f Îg is a bijection on A, a permutation.

    (e)   Proof by induction:

Basis: Hn = 1L The number of permutations of A is one, the identity function, and 1! = 1.

Induction:  Assume that  the number of  permutations on a set  with n  elements,  n ¥ 1,  is  n!.  Furthermore,  assume that  A = n + 1
and that A contains an element called x. Let A ' = A - 8x<. We can reduce the definition of a permutation, f , on A to two steps. First, we select
any  one  of  the  n!  permutations  on  A '.  (Note  the  use  of  the  induction  hypothesis.)  Call  it  g.  This  permutation  almost  completely  defines  a
permutation on A by f HaL = gHaL for all a in A ', Next, we select the image of x, which can be done n + 1 different ways. To keep our function
bijective, we must adjust f  as follows: If we select f HxL = y, then we must find the element, z, of A such that gHzL = y, and redefine the image of
z  to f HzL = x.  If we had selected f HxL = x,  then there is really no adjustment needed. By the rule of products, the number of ways that we can
define f  is n ! Hn + 1L = Hn + 1L !   ‡
7. (a) f ÎgHnL = n + 3 (b) f 3HnL = n + 15 (c) f ÎhHnL = n2 + 5 

9. Theorem: If f : A Ø B and f  has an inverse, then that inverse is unique.

    Proof: Suppose that g and h are both inverses of f .
g = g Î iA g

= g Î H f ÎhL
= Hg Î f L Îh
= iA Îh
= h g = h #

 

11. Proof of Theorem 7.3.2: Let x, x ' be elements of A such that g Î f HxL = g Î f Hx 'L; that is, g H f HxLL = gH f Hx 'LL. Since g is injective, f HxL = f Hx 'L
and since f  is injective, x = x '. ‡
Proof of Theorem 7.3.3:  Let x  be an element of C.  We must show that  there exists  an element of A  whose image under g Î f  is  x.  Since g  is
surjective, there exists an element of B,  y,  such that gHyL = x.  Also, since f  is a surjection, there exists an element of A,  z,  such that f HzL = y,
g Î f HzL = gH f HzLL = gHyL = x. ‡
13. Basis: Hn = 2L: H f1 Î f2L-1 = f2-1 Î f1-2 by exercise 10. 

Induction: Assume n ¥ 2 and H f1 Î f2 Îº⋯ Î fnL-1 =
fn-1 Îº⋯ Î f2-1 Î f1-1

Consider H f1 Î f2 Îº⋯ Î fn+1L-1.
H f1 Î f2 Îº⋯ Î fn+1L-1 = HH f1 Î f2 Îº⋯ Î fnL Î fn+1L-1
by the Basis   = fn+1-1 Î H f1 Î f2 Îº⋯ Î fnL-1
by Induction hypothesis = fn+1-1 Î I fn-1 Îº⋯ Î f2-1 Î f1-1M
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= fn+1-1 Îº⋯ Î f2-1 Î f1-1. ‡
15. Assume all functions are functions on A.

H f ÎgL Îh = f Î Hg ÎhL
f Î iA = iA Î f = f
If f -1 and g-1 exist, Hg Î f L-1 = f -1 Îg-1 and
If f -1 exists, H f -1L-1 = f .

Supplementary Exercises—Chapter 7
1. (a)    Z (b)    Z (c) f H-5L = 2 5 +1 = 11

    (d)  81, 3, 5, 7, 9, …< = the set of odd positive integers

    (e)  No, a = 5 or a = -5.

3. No. Relations (iii) and (iv) are not functions because the domain is not all of the set A. The others are not functions since in each case at least
one element of A is mapped to 2 different elements. Example for relation (i), a is mapped to both a and b.
5. (a) The matrix of f  can only have one 1 in each row. So if the domain of f  has n elements the matrix of f  will have n 1s.

    (b) If f  is a bijection, besides having only one 1 in each row, there can only be one 1 in each column. 

7. (a) Let f HnL = n 2 , "nœN. Since f  is a bijection from N into A = 8n 2 n œ N<, N and A have the same cardinality; so A is countable.
    (b)  Let B = 81 ên n œ P<. g : N Ø B defined by gHnL = 1 ê Hn + 1L is the required bijection.

    (c) That C = C1 ‹ C2 = 83, 9, 27, 81, …< ‹ 82, 4, 8, 16, …< is countable follows from the proof of Exercise 8. Without using this proof, we
can still prove that C is countable by using the list 21, 31, 22, 32, 23, 33 to define h : N Ø C where hHaL =the number in position a + 1 in the list,
9. f : A µ B Ø B µ A defined by f Ha, bL = Hb, aL is a bijection, which is all that we need to prove that  
   A µ B = B µ A
11. This "code" can be viewed as a function, a, on the set of all finite sequences of letters. For example, aHhatL = qmh. This encoding function
will not work very well because it is not a bijection. For example, no sequence with a or t in it is in the range. Although a is not one-to-one, it is
difficult to find two English words with the same image.
13. (a) 10 Ha + 10L (b) a + 20 (c) 10a div 10 = a

      (d) Ha + 10L div 10 = a div 10 + 1

15. (a) f HbL = b and f HcL = c

      (b) f HbL = a and f HcL = d

17.  Since  detK a b
c d O = ad - bc  there  are  four  permutations  of  8a, b, c, d<  that  leave  the  determinant  invariant.  These  permutations  are  the

identity function, a1 = 8Ha, dL, Hb, bL, Hc, cL, Hd, aL<, a2 = 8Ha, dL, Hb, cL, Hc, bL, Hd, aL<, and a3 = 8Ha, aL, Hb, cL, Hc, bL, Hd, dL<. 
19. (a) Domain = positive real numbers, Codomain = Real numbers. 

CHAPTER 8
Section 8.1
1. CH5, 2L = CH4, 2L + CH4, 1L

= CH3, 2L + CH3, 1L + CH3, 1L + CH3, 0L
= CH3, 2L + 2 CH3, 1L + 1
= CH2, 2L + CH2, 1L + 2 HCH2, 1L + CH2, 0LL + 1
= 3 CH2, 1L + 4
= 6 + 4 = 10

3. (a) p HxL in telescoping form: HHHHx + 3L x - 15L x + 0L x + 1L x - 10

    (b) pH3L = HHHH3 + 3L 3 - 15L 3 - 0L 3 + 1L 3 - 10 = 74

5. The basis is not reached in a finite number of steps if you try to compute f HxL for a nonzero value of x.

Section 8.2
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1. Basis: BH0L = 3 ÿ 0 + 2 = 2, as defined

    Induction: Assume: BHkL = 3 k + 2 for some k ¥ 0.
         BHk + 1L = BHkL + 3

= H3 k + 2L + 3 by the induction hypothesis 

= H3 k + 3L + 2

= 3 Hk + 1L + 2, as desired. ‡ 

3. Imagine drawing line k in one of the infinite regions that it passes through. That infinite region is divided into two infinite regions by line k.
As line k is drawn through every one of the k - 1 previous lines, you enter another region that line k divides. Therefore, the number of regions
is increased by k. 
5. For n greater than zero, MHnL = MHn - 1L + 1, and MH0L = 0.

Section 8.3

1.   SHkL = 2 + 9k

3.   SHkL = 6 H1 ê4Lk
5.   SHkL = k2 - 10 k + 25

7.   SHkL = H3 + kL 5k

9.   SHkL = H12 + 3 kL + Hk2 + 7 k - 22L 2k-1

11. PHkL = 4 H-3Lk + 2k - 5k+1

13. (a) The characteristic equation is a a2 - a - 1 = 0, which has solutions a = J1 + 5 Ní2 and b = J1 - 5 Ní2, It is useful to point out that

a + b = 1 and a - b = 5 . The general solution is

FHkL = b1 ak + b2 bk .
Using the initial conditions, we obtain the system: b1 + b2 = 1 and b1 a + b2 b = 1. The solution to this system is

b1 = a ê Ha - bL = J5 + 5 Ní2 5

and b2 = b ê Ha - bL = J5 - 5 Ní2 5  

Therefore the final solution is

FHnL = J1í 5 NBJJ1 + 5 Ní2Nn+1 - JJ1 - 5 Ní2Nn+1F
      (b) Cr = FHr + 1L
15. (a) DHnL = 2 DHn - 1L + 1 for n ¥ 2 and DH1L = 0.

      (b) DHnL = 2n-1 - 1

17. Solutions to the recurrence relation and its approximation are BHkL = H1 + cLk + H1 - cLk  and BaHkL = 1. Note how as k increases, B HkL grows
in size, while BaHkL stays constant.

Section 8.4
1. (a) SHnL = 1 ên! (c)UHkL = 1 êk, an improvement. 

    (b) THkL = H-3Lk k!, no improvement.
3. (a) THnL = 3 Hdlog2 nt + 1L (c) VHnL = dlog8 nt + 1
    (b) THnL = 2
5. The indicated substitution yields SHnL = SHn + 1L. Since SH0L = TH1L êTH0L = 6, SHnL = 6 for all n. Therefore THn + 1L = 6 THnL THnL = 6n.

7. (a) A good approximation to the solution of this recurrence relation is based on the following observation: n is a power of a power of two;
that  is,  n  is  2m,  where  m = 2k  ,  then  QHnL = 1 + QI2mê2M.  By  applying  this  recurrence  relation  k  times  we  obtain  QHnL = k.  Going  back  to  the

original  form  of  n,  log2 n = 2k  or  log2Hlog2 nL = k.  We  would  expect  that  in  general,  QHnL  is  dlog2Hlog2 nLt.  We  do  not  see  any  elementary
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method for arriving at an exact solution. 

    (b) Suppose that n is a positive integer with 2k-1 § n < 2k. Then n can be written in binary form, Hak-1 ak-2º⋯ a2 a1 a0Ltwo  with ak-1 = 1 and
RHnL is equal to the sum

S
i=0

k-1Hak-1 ak-2º⋯ aiLtwo
If 2k-1 § n < 2k, then we can estimate this sum to be between 2 n - 1 and 2 n + 1. Therefore, RHnL º 2 n.

Section 8.5

1. (a)   1, 0, 0, 0, 0, … (b) 5 H1 ê2Lk (c) 1, 1, 0, 0, 0, …
    (d)   3 H-2Lk + 3 ÿ 3k

3. (a)  1 ê H1 - 9 zL (b) H2 - 10 zL ê H1 - 6 z + 5 z2L
    (c)  1 ê H1 - z - z2L
5. (a)   3 ê H1 - 2 zL + 2 ê H1 + 2 zL, 3 ÿ 2k + 2 H-2Lk
    (b)  10 ê H1 - zL + 12 ê H2 - zL, 10 + 6 H1 ê2Lk
    (c)  -1 ê H1 - 5 zL + 7 ê H1 - 6 zL, 7 ÿ 6k - 5k

7. (a)  11 k
    (b) H5 ê3L kHk + 1L H2 k + 1L + 5 kHk + 1L
    (c) S

j=0

k H jL H10 Hk - jLL = 10 k S
j=0

k

j - 10 S
j=0

k

j2

    = 5 k2 Hk + 1L - H5 kHk + 1L H2 k + 1L ê6L
= H5 ê3L kHk + 1L H2 k + 1L

    (d)  kHk + 1L H2 k + 7L ê12

9. Coefficients of z0 through z5 in H1 + 5 zL H2 + 4 zL H3 + 3 zL H4 + 2 zL H5 + zL
k Number of ways of getting a score of k
0 120
1 1044
2 2724
3 2724
4 1044
5 120

Supplementary Exercises—Chapter 8
1. Let v HnL  be the quantity in question. Since any positive digit  can appear in a one-digit  positive integer,  vH1L = 9. Given an n  digit  number,
n ¥ 2,  it  can be thought  of  as  an n - 1 digit  number  times ten plus  a  digit.  This  digit  cannot  be the same as  the  units  digit  of  the  n - 1 digit
number. Therefore, by the product rule vHnL = 9 vHn - 1L for n ¥ 2.
3. (a) To execute Split with L in = H1, 2, 3, 4L, we must split the list into L 1 = H1, 3L and L 2 = H2, 4L. If you carefully examine the algorithm for
a list of length 2, you will see that the output equals the input; therefore L 1 out = H1, 3L and L 2 out = H2, 4L and L out = H1, 3, 2, 4L.     
    (b) Examine the results for r = 1, 2, 3 with numbers in binary form. Notice the symmetry with respect to the vertical line.

     

r = 1
L in

0
1

L out
0
1

r = 2

L in
00
01
10
11

L out
00
10
01
11

r = 3

L in
000
001
010
011
100
101
110
111

L out
000
100
010
110
001
101
011
111

    The integers in L out are sorted so that Hbr-1 br-2º⋯ b0Ltwo appears in position Hb0 b1º⋯ br-1Ltwo.
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5. This is not a closed form expression because the number of operations that are needed to compute the expression grows with n, B HnL in this
form requires n additions and n - 1 multiplications. 
7. Kathryn's balance on her first birthday is $1 = BH1L. If B HnL is her balance on her nth birthday, n ¥ 2, then BHnL = 1.1 BHn - 1L + n.

BHnL = BHnLHnL + BHpLHnL = b1H1.1Ln - H10 n + 110L
BH1L = 1 H1.1L b1 = 121 b1 = 1.1

Therefore BHnL = 121 H1.1Ln-1 - H10 n + 110L. On her 21st birthday, Kathryn will have BH21L = 121 H1.1L20 - H210 + 110L = $494 .03. 
9. (a) If it takes X HnL moves to move n disks to peg 2, then we can transfer the n + 1 disk to peg 3 in one move and then transfer the n disks
from peg 2 to peg 3 in XHnL moves, so XHn + 1L = XHnL + 1 + XHnL = 2 XHnL + 1, or equivalently XHnL = 2 XHn - 1L + 1.
    (b) XHnL = b1 ÿ 2n - 1. Since it takes 1 move to transfer 1 disk from one peg to another, XH1L = 1 ; so b1 = 1 and XHnL = 2n - 1. We verify that
X H3L = 7:

11.  The  solution  for  n = 4k  is  QI4kM = 1
3
I4k+1 - 1M,  This  can  be  obtained  in  one  of  two ways.  Either  use  the  substitution  SHkL = QI4kM,  which

yields SHkL = 4k + SHk - 1L, or note that QI4kM = 4k + QI4k-1M = 4k + 4k-1 + QI4k-2M = 4k + 4k-1 + º⋯ + 4 + 1. This finite geometric series has the

closed form expression above. By similar means, QI2 ÿ 4kM = 2 QI4kM = 2
3
I4k+1 - 1M

13. GHS; zL = 1 + z + 2 z2 + 4 z3 + 8 z4º⋯

15. GHT; zL = GHS; czL = S
k=0

¶

SHkL HczLk =

= S
k=0

¶ ISHkL ckM zk

Therefore, THkL = SHkL ck.
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