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Preface - what a difference 21 years make!
Twenty-one  years  after  the  publication  of  the  2nd  edition  of  Applied  Discrete  Structures  for  Computer  Science,  in  1989  the  publishing  and
computing landscape have both changed dramatically.  We signed a contract for the second edition with Science Research Associates but by the
time the book was ready to print, SRA had been sold to MacMillan.  Soon after, the rights had been passed on to Pearson Education, Inc.  In
2010, the long-term future of printed textbooks is uncertain.  In the meantime, textbook prices (both printed and e-books) have increased and a
growing open source textbook market movement has started.  One of our objectives in revisiting this text is to make it available to our students
in an affordable format.  In its original form, the text was peer-reviewed and was adopted for use at several universities throughout the country.
For this reason, we see Applied Discrete Structures as not only an inexpensive alternative, but a high quality alternative.   
As indicated above the computing landscape is very different from the 1980's and accounts for the most significant changes in the text.   One of
the most common programming languages of the 1980's, Pascal; and we used it to illustrate many of the concepts in the text.  Although it isn't
totally dead, Pascal is far from the mainstream of computing in the 21st  century.   In 1989, Mathematica had been out for less than a year —
now a major  force in  scientific  computing.    The open source software movement  also started in  the  1980's  and in  2005,  the  first  version of
Sage,  an  open-source  alternative  to  Mathematica  was  first  released.    In  Applied  Discrete  Structures  we  have  replaced  "Pascal  Notes"  with
"Mathematica Notes" and "Sage Notes."    Finally, 1989 was the year that World Wide Web was invented by Tim Berners-Lee.   There wasn't a
single www in the 2nd edition.   In this version, we intend to make use of extensive web resources, including video demonstrations.
We repeat the preface to Applied Discrete Structures for Computer Science below.   Plans for the instructor's guide, which is mentioned in the
preface are uncertain at this time.

Preface to Applied Discrete Structures for Computer Science, 2nd Ed.

We feel proud and fortunate that most authorities, including MAA and ACM, have settled on a discrete mathematics syllabus that is virtually
identical  to  the  contents  of  the  first  edition  of  Applied  Discrete  Structures  for  Computer  Science.  For  that  reason,  very  few  topical  changes
needed  to  be  made  in  this  new  edition,  and  the  order  of  topics  is  almost  unchanged.  The  main  change  is  the  addition  of  a  large  number  of
exercises at all levels. We have "fine-tuned" the contents by expanding the preliminary coverage of sets and combinatorics, and we have added
a discussion of binary integer representation. We have also added an introduction including several examples, to provide motivation for those
students  who  may  find  it  reassuring  to  know  that  mathematics  has  "real"  applications.  "Appendix  B—Introduction  to  Algorithms,"  has  also
been added to make the text more self-contained.

How This Book Will Help Students
In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and
move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable
text, and we have tried to anticipate the questions that go unasked.
The  wide  range  of  examples  in  the  text  are  meant  to  augment  the  "favorite  examples"  that  most  instructors  have  for  teaching  the  topics  in
discrete mathematics.
To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include
detailed answers whenever warranted and complete proofs, not just terse outlines of proofs.
Our  use  of  standard  terminology and notation makes  Applied  Discrete  Structures  for  Computer  Science  a  valuable  reference  book for  future
courses. Although many advanced books have a short review of elementary topics, they cannot be complete.

How This Book Will Help Instructors
The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.

Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require
an understanding of the topics and how they are interrelated, not just a familiarity with the key words.
An Instructor's Guide is available to any instructor who uses the text. It includes:

(a) Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid;

(b)!Suggested coverage times;

(c)!Detailed solutions to most even-numbered exercises;

(d)!Sample quizzes, exams, and final exams.

How This Book Will Help the Chairperson/Coordinator
The text covers the standard topics that all instructors must be aware of; therefore it is safe to adopt Applied Discrete Structures for Computer
Science before an instructor has been selected.
The breadth of topics covered allows for flexibility that may be needed due to last-minute curriculum changes.

Since  discrete  mathematics  is  such  a  new course,  faculty  are  often  forced  to  teach  the  course  without  being  completely  familiar  with  it.  An
Instructor's Guide is an important feature for the new instructor.
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What a Difference Five Years Makes!
In  the  last  five  years,  much  has  taken  place  in  regards  to  discrete  mathematics.  A  review  of  these  events  is  in  order  to  see  how  they  have
affected the Second Edition of Applied Discrete Structures for Computer Science.
(1)!Scores  of  discrete  mathematics  texts  have  been  published.  Most  texts  in  discrete  mathematics  can  be  classified  as  one-semester  or  two-
semester texts. The two-semester texts, such as Applied Discrete Structures for Computer Science, differ in that the logical prerequisites for a
more thorough study of discrete mathematics are developed.
(2)!Discrete mathematics has become more than just a computer science support course. Mathematics majors are being required to take it, often
before calculus. Rather than reducing the significance of calculus, this recognizes that the material a student sees in a discrete mathematics/struc-
tures course strengthens his or her understanding of the theoretical aspects of calculus. This is particularly important for today's students, since
many high school courses in geometry stress mechanics as opposed to proofs. The typical college freshman is skill-oriented and does not have a
high level of mathematical maturity. Discrete mathematics is also more typical of the higher-level courses that a mathematics major is likely to
take.
(3)!Authorities such as MAA, ACM, and A. Ralson have all refined their ideas of what a discrete mathematics course should be. Instead of the
chaos  that  characterized  the  early  '80s,  we  now  have  some  agreement,  namely  that  discrete  mathematics  should  be  a  course  that  develops
mathematical maturity.
(4)!Computer science enrollments have leveled off and in some cases have declined. Some attribute this to the lay-offs that have taken place in
the computer industry; but the amount of higher mathematics that is needed to advance in many areas of computer science has also discouraged
many. A year of discrete mathematics is an important first step in overcoming a deficiency in mathematics.
(5)!The Educational Testing Service introduced its Advanced Placement Exam in Computer Science. The suggested preparation for this exam
includes many discrete mathematics topics, such as trees, graphs, and recursion. This continues the trend toward offering discrete mathematics
earlier in the overall curriculum.

Acknowledgments
The authors wish to thank our colleagues and students for their comments and assistance in writing and revising this text.  Among those who
have left their mark on this edition are Susan Assmann, Shim Berkovitz, Tony Penta, Kevin Ryan, and Richard Winslow.
We would also like to thank Jean Hutchings, Kathy Sullivan, and Michele Walsh for work that they did in typing this edition, and our depart-
ment secretaries, Mrs. Lyn Misserville and Mrs. Danielle White, whose cooperation in numerous ways has been greatly appreciated.
We are grateful for the response to the first edition from the faculty and students of over seventy-five colleges and universities. We know that
our second edition will  be a better  learning and teaching tool as a result  of  their  useful  comments and suggestions.  Our special  thanks to the
following reviewers: David Buchthal, University of Akron; Ronald L. Davis, Millersville University; John W Kennedy, Pace University; Betty
Mayfield,  Hood  College;  Nancy  Olmsted,  Worcester  State  College;  and  Pradip  Shrimani,  Southern  Illinois  University.  Finally,  it  has  been  a
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A.W. D. 
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Introduction

What Is Discrete Mathematics/Structures?
What is Discrete Mathematics?
As a general description one could say that discrete mathematics is the mathematics that deals with "separated" or discrete sets of objects rather
than with continuous sets such as the real line. For example, the graphs that we learn to draw in high school are of continuous functions. Even
though we might have begun by plotting discrete points on the plane, we connected them with a smooth, continuous, unbroken curve to form a
straight line, parabola, circle, etc. The underlying reason for this is that hand methods of calculation are too laborious to handle huge amounts of
discrete data. The computer has changed all of this.
Today, the area of mathematics that is broadly called "discrete" is that which professionals feel is essential for people who use the computer as
a fundamental tool. It can best be described by looking at our Table of Contents. It involves topics like sets, logic, and matrices that students
may be already familiar with to some degree. In this Introduction, we give several examples of the types of problems a student will be able to
solve as a result of taking this course. The intent of this Introduction is to provide an overview of the text. Students should read the examples
through once and then move on to Chapter One. After completing their study of discrete mathematics, they should read them over again.
We hope discrete mathematics is as fascinating and enjoyable to the student as it has been to us.

Example l.a. Analog-to-digital Conversion. A common problem encountered in engineering is that of analog-to-digital (a-d) conversion, where
the reading on a dial,  for example,  must be converted to a numerical  value.  In order for this conversion to be done reliably and quickly,  one
must solve an interesting problem in graph theory. Before this problem is posed, we will make the connection between a-d conversion and the
graph problem using a simple example. Suppose a dial in a video game can be turned in any direction, and that the positions will be converted
to one of the numbers zero through seven in the following way. As depicted in Figure La. 1,  the angles from 0 to 360 are divided into eight
equal parts, and each part is assigned a number starting with 0 and increasing clockwise. If the dial points in any of these sectors the conversion
is  to  the  number  of  that  sector.  If  the  dial  is  on  the  boundary,  then  we  will  be  satisfied  with  the  conversion  to  either  of  the  numbers  in  the
bordering sectors. This conversion can be thought of as giving an approximate angle of the dial, for if the dial is in sector k, then the angle that
the dial makes with east is approximately 45 k°.

FIGURE l.a.1

Now that  the  desired  conversion  has  been  described,  we  will  describe  a  "solution"  that  has  one  major  error  in  it,  and  then  identify  how this
problem can be rectified. All digital computers represent numbers in binary form, as a sequence of Os and Is called bits, short for binary digits.
The binary representations of numbers 0 through 7 are:

0! = 000 = 0 µ 4 + 0 µ 2 + 0 µ 1

1! = 001 = 0 µ 4 + 0 µ 2 + 1 µ 1

2! = 010 = 0 µ 4 + 1 µ 2 + 0 µ 1

3! = 011 = 0 µ 4 + 1 µ 2 + 1 µ 1

4! = 100 = 1 µ 4 + 0 µ 2 + 0 µ 1

5! = 101 = 1 µ 4 + 0 µ 2 + 1 µ 1

6! = 110 = 1 µ 4 + 1 µ 2 + 0 µ 1

7! = 111 = 1 µ 4 + 1 µ 2 + 1 µ 1

We will discuss the binary number system in Chapter 1. The way that we could send those bits to a computer is by coating parts of the back of
the dial with a metallic substance, as in Figure I.a.2. For each of the three concentric circles on the dial there is a small magnet. If a magnet lies
under a part of the dial that has been coated with metal, then it will turn a switch ON, whereas the switch stays OFF when no metal is detected
above a magnet. Notice how every ON/OFF combination of the three switches is possible given the way the back of the dial is coated.
If  the  dial  is  placed  so  that  the  magnets  are  in  the  middle  of  a  sector,  we  expect  this  method  to  work  well.  There  is  a  problem  on  certain
boundaries, however. If the dial is turned so that the magnets are between sectors three and four, for example, then it is unclear what the result
will be. This is due to the fact that each magnet will have only a fraction of the required metal above it to turn its switch ON. Due to expected
irregularities in the coating of the dial, we can be safe in saying that for each switch either ON or OFF could be the result, and so if the dial is
between  sectors  three  and  four,  any  number  could  be  indicated.  This  problem  does  not  occur  between  every  sector.  For  example,  between
sectors 0 and 1, there is only one switch that cannot be predicted. No matter what the outcome is for the units switch in this case, the indicated
sector must be either 0 or 1, which is consistent with the original objective that a positioning of the dial on a boundary of two sectors should
produce the number of either sector.
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FIGURE l.a.2

Is there a way to coat the sectors on the back of the dial so that each of the eight patterns corresponding to the numbers 0 to 7 appears once, and
so  that  between  any  two  adjacent  sectors  there  is  only  one  switch  that  will  have  a  questionable  setting?  One  way  of  trying  to  answer  this
question is by using an undirected graph called the 3-cube (Figure I.a.3). In general, an undirected graph consists of vertices (the circled 0's and
1's in the 3-cube) and the edges, which are lines that connect certain pairs of vertices. Two vertices in the 3-cube are connected by an edge if the
sequences of the three bits differ in exactly one position. If one could draw a path along the edges in the 3-cube that starts at any vertex, passes
through  every  other  vertex  once,  and  returns  to  the  start,  then  that  sequence  of  bit  patterns  can  be  used  to  coat  the  back  of  the  dial  so  that
between every sector there is only one questionable switch. Such a path is not difficult to find; so we will leave it to you to find one, starting at
000 and drawing the sequence in which the dial would be coated.

FIGURE l.a.3

Many A-D conversion problems require  many more sectors  and switches  than this  example,  and the same kinds of  problems can occur.  The
solution would be to find a path within a much larger yet similar graph. For example, there might be 1,024 sectors with 10 switches, resulting in
a graph with 1,024 vertices. One of the objectives of this text will be to train you to understand the thought processes that are needed to attack
such large problems. In Chapter 9 we will take a closer look at graph theory and discuss some of its applications.
One question might come to mind at this point. If the coating of the dial is no longer as it is in Figure I.a.2, how would you interpret the patterns
that are on the back of the dial as numbers from 0 to 7? In Chapter 14 we will see that if a certain path is used, this "decoding" is quite easy.
The 3-cube and its generalization, the n-cube, play a role in the design of a multiprocessor called a hypercube. A multiprocessor is a computer
that consists of several independent processors that can operate simultaneously and are connected to one another by a network of connections.
In a hypercube with M = 2n  processors, the processors are numbered 0 to M - 1. Two processors are connected if their binary representations
differ in exactly one bit. The hypercube has proven to be the best possible network for certain problems requiring the use of a "supercomputer."
Denning's article in the May-June 1987 issue of "American Scientist" provides an excellent survey of this topic.
Example l.b. Logic is the cornerstone of all communication, whether we wish to communicate in mathematics or in any other language. It is
the study of sentences, or propositions, that take on the values true or false, 1 or 0 in the binary system. Its importance was recognized in the
very early  days  of  the  development  of  logic  (hardware)  design,  where  Boolean algebra,  the  algebra  of  logic,  was  used to  simplify  electronic
circuitry called gate diagrams. Consider the following gate diagram:

FIGURE I.b.1

Each  symbol  in  this  diagram  is  called  a  gate,  a  piece  of  hardware.  In  Chapter  13  we  will  discuss  these  circuits  in  detail.  Assume  that  this
circuitry can be placed on a chip which will have a cost dependent on the number of gates involved. A classic problem in logic design is to try
to simplify this circuitry to one containing fewer gates. Indeed, the gate diagram can be reduced to
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FIGURE l.b.2

The result is a less costly chip. Since a company making computers uses millions of chips, we have saved a substantial amount of money.

This  use  of  logic  is  only  the  "tip  of  the  iceberg."  The  importance  of  logic  for  computer  scientists  in  particular,  and  for  all  people  who  use
mathematics,  cannot  be overestimated.  It  is  the means by which we can think and write  clearly  and precisely.  Logic  is  used in  writing algo-
rithms, in testing the correctness of programs, and in other areas of computer science.
Example I.c. Suppose two students miss a class on a certain day and borrow the class notes in order to obtain copies. If one of them copies the
notes by hand and the other walks to a "copy shop," we might ask which method is more efficient. To keep things simple, we will only consider
the time spent in copying, not the cost.  We add a few more assumptions:  copying the first  page by hand takes one minute and forty seconds
(100 seconds); for each page copied by hand, the next page will take five more seconds to copy, so that it takes 1:45 to copy the second page,
1:50 to copy the third page, etc.; photocopiers take five seconds to copy one page; walking to the "copy shop" takes ten minutes, each way.
One aspect of the problem that we have not specified is the number of pages to be copied. Suppose the number of pages is n, which could be
any positive integer. As with many questions of efficiency, one method is not clearly better than the other for all cases. Since the only variable
in this problem is the number of pages, we can simply compare the copying times for different values of n. We will denote the time it takes (in
seconds) to copy n  pages manually by thHnL,  and the time to copy n pages automatically by taHnL.  Ideally,  we would like to have formulas to
represent  the  values  of  thHnL  and  taHnL.  The  process  of  finding  these  formulas  is  an  important  one  that  we  will  examine  in  Chapter  8.   The
formula  for  taHnL  is  not  very  difficult  to  derive  from the  given information.  To copy pages  automatically,  one  must  walk  for  twenty  minutes
(1,200 seconds), and then for each page wait five seconds. Therefore, taHnL = 1200 + 5 n  
The  formula  for  thHnL  isn't  quite  as  simple.  First,  let  p HnL  be  the  number  of  seconds  that  it  takes  to  copy  page  n.  From  the  assumptions,
p H1L = 100, and if n is greater than one, p HnL = p Hn - 1L + 5. The last formula is called a recurrence relation. We will spend quite a bit of
time discussing methods for deriving formulas from recurrence relations. In this case p HnL = 95 + 5 n. Now we can see that if n is greater than
one,

 thHnL = pH1L + pH2L +! + pHnL = thHn - 1L + pHnL = thHn - 1L + 5 n + 95

This is yet another recurrence relation. The solution to this one is thHnL = 97.5 n + 2.5 n .

Now that we have these formulas, we can analyze them to determine the values of n  for which hand copying is most efficient, the values for
which photocopying is most efficient, and also the values for which the two methods require the same amount of time.

WHAT IS DISCRETE STRUCTURES?
So far we have given you several examples of that area of mathematics called discrete mathematics. Where does the "structures" part of the title
come from? We will  look not  only at  the  topics  of  discrete  mathematics  but  at  the  structure  of  these  topics.  If  two people  were  to  explain  a
single concept, one in German and one in French, we as observers might at first think they were expressing two different ideas, rather than the
same idea in two different languages. In mathematics we would like to be able to make the same distinction. Also, when we come upon a new
mathematical structure, say the algebra of sets, we would like to be able to determine how workable it will be. How do we do this? We compare
it to something we know, namely elementary algebra, the algebra of numbers. When we encounter a new algebra we ask ourselves how similar
it is to elementary algebra. What are the similarities and the dissimilarities? When we know the answers to these questions we can use our vast
knowledge of basic algebra to build upon rather than learning each individual concept from the beginning.
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chapter 1      

SET THEORY I      

GOALS  
In this chapter we will cover some of the basic set language and notation that will be used throughout the text. Venn diagrams
will be introduced in order to give the reader a clear picture of set operations. In addition, we will describe the binary representa-
tion of positive integers (Section 1.4) and introduce summation notation and its generalizations (Section 1.5).      
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1.1 Set Notation and Relations  
The term set is intuitively understood by most people to mean a collection of objects that are called elements (of the set).  This
concept is the starting point on which we will build more complex ideas, much as in-geometry where the concepts of point and
line are left undefined.  
Because a set is such a simple notion, you may be surprised to learn that it is one of the most difficult concepts for mathemati-
cians to define to their own liking. For example, the description above is not a proper definition because it requires the definition
of a collection.  (How would you define "collection"?)  Even deeper problems arise when you consider  the possibility that  a  set
could contain itself. Although these problems are of real concern to some mathematicians, they will not be of any concern to us.  
Our first concern will be how to describe a set; that is, how do we most conveniently describe a set and the elements that are in
it? If we are going to discuss a set for any length of time, we usually give it a name in the form of a capital letter (or occasionally
some  other  symbol).  In  discussing  set  A,  if  x  is  an  element  of  A,  then  we  will  write  x œ A.  On  the  other  hand,  if  x  is  not  an
element of A, we write x – A. The most convenient way of describing the elements of a set will vary depending on the specific
set.  
Method 1: Enumeration.  When the elements of a set are enumerated (or listed) it is traditional to enclose them in braces. For
example, the set of binary digits is 80, 1<  and the set of decimal digits is 80, 1, 2, 3, 4, 5, 6, 7, 8, 9<.  The choice of a name
for these sets would be arbitrary; but it would be "logical" to call them B and D , respectively. The choice of a set name is much
like  the  choice  of  an  identifier  name  in  programming.  Some  large  sets  can  be  enumerated  without  actually  listing  all  the  ele-
ments. For example, the letters of the alphabet and the integers from 1 to 100 could be described as  
A = 8a, b, c, …, x, y, z<, and G = 81, 2, … , 99, 100<.  

The three consecutive "dots" are called an ellipsis.  We use them when it  is clear what elements are included but not listed. An
ellipsis is used in two other situations. To enumerate the positive integers, we would write 81, 2, 3, … <, indicating that the list
goes  on  infinitely.  If  we  want  to  list  a  more  general  set  such  as  the  integers  between  1  and  n,  where  n  is  some  undetermined
positive integer, we might write 81, …, n<.      
Method 2: Standard Symbols.  Frequently used sets are usually given symbols that are reserved for them alone. For example,
since  we  will  be  referring  to  the  positive  integers  throughout  this  book,  we  will  use  the  symbol  !  instead  of  writing
81, 2, 3, …<. A few of the other sets of numbers that we will use frequently are:  
" = the natural numbers = 80, 1, 2, 3, . . .<.

# = the integers = 8…, -3, -2, -1, 0, 1, 2, 3, …<

$ = the rational numbers.

% = the real numbers.

& = the complex numbers.

Method 3: Set-Builder Notation.  Another way of describing sets  is  to use set-builder  notation.  For example,  we could define
the rational numbers as  

$ = 8a êb : a, b œ #, b ! 0<

Note that in the set-builder description for the rational numbers:  

(1)   a êb indicates that a typical element of the set is a "fraction."  

(2)   The colon is read "such that" or "where," and is used interchangeably with a vertical line, ».  

(3)   a, b œ # is an abbreviated way of saying a and b are integers.  

(4)   All commas in mathematics are read as "and."  

The important  fact  to  keep in mind in set  notation,  or  in  any mathematical  notation,  is  that  it  is  meant  to  be a  help,  not  a  hin-
drance.  We hope that  notation will  assist  us  in a  more complete understanding of  the collection of  objects  under  consideration
and will enable us to describe it in a concise manner. However, brevity of notation is not the aim of sets. If you prefer to write
a œ #  and  b œ #  instead of a, b œ #,  you should do so.  Also,  there are frequently many different,  and equally good, ways of
describing sets. For example, 9x œ % x2 - 5 x + 6 = 0= and 9x x œ % : x2 - 5 x + 6 = 0= both describe the solution set 82, 3<.  

A proper definition of the real numbers is beyond the scope of this text. It is sufficient to think of the real numbers as the set of
points  on  a  number  line.  The  complex  numbers  can  be  defined  using  set-builder  notation  as  C = 8a + b Â : a, b œ %<,
where Â2 = -1.  
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A proper definition of the real numbers is beyond the scope of this text. It is sufficient to think of the real numbers as the set of
points  on  a  number  line.  The  complex  numbers  can  be  defined  using  set-builder  notation  as  C = 8a + b Â : a, b œ %<,
where Â2 = -1.  
In the following definition we will leave the word "finite" undefined.      

Definition: Finite Set. A set is a finite set if it has a finite number of elements. Any set that is not finite is an infinite set.  

Definition: Cardinality. Let A be a finite set. The number of different elements in A is called its cardinality and is denoted
by A . 
As we will see later, there are different infinite cardinalities. We can't make this distinction now, so we will restrict cardinality to
finite sets until later.      

SUBSETS  
Definition: Subset. Let A and B be sets. We say that A is a subset of B (notation A Œ B) if and only if every element of A is

an element of B.  
Example 1.1.1.  

(a) If A = {3, 5, 8} and B = {5, 8, 3, 2, 6}, then A Œ B.  

(b)   " Œ # Œ $ Œ % Œ & 

(c) If A = 83, 5, 8< and B = 85, 3, 8<, then A Œ B and B Œ A.  

Definition: Equality. Let A and B be sets. We say that A is equal to B (notation A = B) if and only if every element of A is
an element of B and conversely every element of B is an element of A; that is, A Œ B and B Œ A.  

Example 1.1.2.  

(a) In Example 1.1.1c, A = B. Note that the ordering of the elements is unimportant.  

(b) The number of times that an element appears in an enumeration doesn't affect a set. For example, if A = 81, 5, 3, 5< and
B = 81, 5, 3<,  then A = B.  Warning to readers of other texts:  Some books introduce the concept of a multiset,  in which the
number of occurrences of an element matters.  
A few comments are in order about the expression "if and only if" as used in our definitions. This expression means "is equiva-
lent to saying," or more exactly, that the word (or concept) being defined can at any time be replaced by the defining expression.
Conversely, the expression that defines the word (or concept) can be replaced by the word.  
Occasionally there is need to discuss the set that contains no elements, namely the empty set, which is denoted by the Norwegian
letter «. This set is also called the null set.  
It  is  clear,  we  hope,  from the  definition  of  a  subset,  that  given  any  set  A  we  have  A Œ A  and  « Œ A.  Both  «  and  A  are  called
improper subsets of A. If B Œ A, B ! «, and B ! A, then B is called a proper subset of A.      
EXERCISES FOR SECTION 1.1  
A Exercises  

1.  List four elements of each of the following sets:  

    (a)  8k œ ! k - 1 is a multiple of 7<  

    (b) 8x x is a fruit and x ' s skin is normally eaten<

    (c)  8x œ $ x œ #<

    (d)  82 n n œ #, n < 0<

    (e)  8s s = 1 + 2 + ! + n, n œ !<

2.  List all elements of the following sets:  

    (a)   9 1
n

n œ 83, 4, 5, 6<=  

    (b)   8a œ the alphabet a precedes F<  

    (c)  8-k k œ !<  

    (d) 9n2 n = -2, -1, 0, 1, 2=  
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    (e) 8n œ ! n is a factor of 24<  

3,   Describe the following sets using set-builder notation.  

    (a)  83, 5, 7, 9, ... , 77, 79<  

    (b) the rational numbers that are strictly between -1 and 1  

    (c)   the even integers

    (d)   8-18, -9, 0, 9, 18, 27, . . .<  

4.  Use set-builder notation to describe the following sets:  

   (a)  {1, 2, 3, 4, 5, 6, 7}  

   (b)  {1, 10, 100, 1,000, 10,000}  

   (c)   {1, 1/2, 1/3, 1/4, 1/5, . . .}  

   (d)   {0}  

5.  Let A = {0, 2, 3}, B = {2, 3}, and C = {1, 5, 9}.  Determine which of the following statements are true. Give reasons for your
answers.  

a. 3 œ A  
b. 83< œ A   
c.  83< Œ A  
d.  B Œ A 
e.  A Œ B
f. « Œ C  
g.  « œ A
h.  A Œ A

C Exercise  

6.   One  reason  that  we  left  the  definition  of  a  set  vague  is  Russell's  Paradox.  Many  mathematics  and  logic  books  contain  an
account of this paradox. Two references are Stoll and Quine. Find one such reference and read it.      
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1.2 Basic Set Operations      
Definition: Intersection.  Let  A and B be sets.  The intersection of A and B (denoted by A › B) is the set  of  all  elements

that are in both A and B. That is, A › B = 8x : x œ A and x œ BL.  
Example 1.2.1.  

(a)  Let A = 81, 3, 8< and B = 8-9, 22, 3<. Then A › B = 83<.  

(b) Solving  a  system  of  simultaneous  equations  such  as  x + y = 7  and  x - y = 3  can  be  viewed  as  an  intersection.  Let
A = 8Hx, yL : x + y = 7, x, y œ %<  and  B = 8Hx, yL : x - y - 3, x, y œ %<.  These  two  sets  are  lines  in  the  plane  and  their
intersection, A › B = 8H5, 2L<, is the solution to the system.  
(c) #›$ = #.  

(d) If A = 83, 5, 9< and B = 8-5, 8<, then A › B = «.  

Definition: Disjoint Sets. Two sete are disjoint if they have no elements in common (as in Example 1.2.1 d). That is, A and
B are disjoint if A › B = «.  

Definition: Union. Let A and B be sets. The union of A and B (denoted by A ‹ B) is the set of all elements that are in A or
in B or in both A and B. That is, A ‹ B = 8x : x œ A or x œ B<.  
It  is  important  to  note  in  the  set-builder  notation  for  A ‹ B,  the  word  "or"  is  used  in  the  inclusive  sense;  it  includes  the  case
where x is in both A and B.  

Example 1.2.2.  

(a) If A = 82, 5, 8< and B = 87, 5, 22<, then A ‹ B = 82, 5, 8, 7, 22<. 

(b) #‹$ = $. 

(c)  A ‹ « = A for any set A.  

Frequently, when doing mathematics, we need to establish a universe or set of elements under discussion. For example, the set
A = 9x : 81 x4 - 16 = 0= contains different elements depending on what kinds of numbers we allow ourselves to use in solving
the equation 81 x4 —16 = 0. This set of numbers would be our universe. For example, if the universe is the integers, then A is «.
If  our  universe  is  the  rational  numbers,  then  A  is  82 ê3, -2 ê3<  and  if  the  universe  is  the  complex  numbers,  then  A  is
82 ê3, -2 ê3, 2 Â ê3, — 2 Â ê3<.  

Definition: Universe. The universe, or universal set, is the set of all elements under discussion for possible membership in
a set.  
We normally reserve the letter U for a universe in general discussions.      

VENN DIAGRAMS  
When working with sets, as in other branches of mathematics, it is often quite useful to be able to draw a picture or diagram of
the situation under consideration. A diagram of a set is called a Venn diagram. The universal set U is represented by the interior
of a rectangle and the sets by disks inside the rectangle.  

Example 1.2.3.  

(a)   A › B is illustrated in Figure 1.2.1 by shading the appropriate region.  
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FIGURE 1.2.1 Venn diagram for intersection      

(b)   A ‹ B  is illustrated in Figure 1.2.2.  

FIGURE 1.2.2 Venn diagram for union      

In a Venn diagram, the region representing A › B does not appear empty; however, in some instances it will represent the empty
set. The same is true for any other region in a Venn diagram.  

Definition: Complement. Let A and B be sets. The complement of A relative to B (notation B - A) is the set of elements
that are in B and not in A. That is, B - A = 8x : x œ B and x – A<. If U is the universal set, then U - A is denoted by Ac  and is
called simply the complement of A. Ac = 8x œ U : x – A<.  

Example 1.2.4.  

(a)  Let S = 81, 2, 3, ... , 10< and A = 82, 4, 6, 8, 10<. Then U - A = 81, 3, 5, 7, 9< and A - U = «

(b)  If U = %, then the complement of the rational numbers is the irrational numbers.  

(c)  Uc = « and «c = U.  

(d)  The Venn diagram of A - B is represented in Figure 1.2.3.  
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FIGURE 1.2.3 Venn diagram for A-B  

(e)   The Venn diagram of Ac is represented in Figure 1.2.4.  

FIGURE 1.2.4 Venn diagram for Ac       

(f) If B Œ A, then the Venn diagram of A - B is in Figure 1.2.5.      

FIGURE 1.2.5 Venn diagram for A-B where B is contained in A.   

(g)   In the universe of integers, the set of even integers, 8… , - 4, -2, 0, 2, 4, …<, has the set of odd integers as its comple-
ment.      

Definition: Symmetric Difference. Let A and B be sets. The symmetric difference of A and B (denoted by A!B) is the set
of all elements that are in AandB but not in both. That is, A ! B = HA ‹ BL - HA › BL.      
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Example 1.2.5.  

(a) Let A = 81, 3, 8< and B = 82, 4, 8<. Then A " B = 81, 2, 3, 4<.  

(b)  A " 0 = A and A " A = «  for any set A.  

(c)  % " $ = the irrational numbers.  

(d)  The Venn diagram of A " B is represented in Figure 1.2.6.      

  Mathematica Note

One of the basic objects in Mathematica is a list.   A list can be treated as a set.  Here are a few examples.  First we define A and
B using the divisor function.  This gives you all positive integers that divide evenly into a given positive integer, such as 525.

A = Divisors@525D

81, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 525<

B = Divisors@300D

81, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300<

Here are the union and intersection of the two sets:

Union@A, BD

81, 2, 3, 4, 5, 6, 7, 10, 12, 15, 20, 21, 25, 30, 35, 50, 60, 75, 100, 105, 150, 175, 300, 525<

Intersection@A, BD

81, 3, 5, 15, 25, 75<

Notice the outputs from both expressions automatically sort the elements in ascending order.   The intersection is quite signifi-
cant.  It is the set of common divisors of both 525 and 300.  The largest of these divisiors, 75, is the greatest common divisor of
525 and 300.   
Here is the complement of B with respect to A.

Complement@A, BD

87, 21, 35, 105, 175, 525<

There is no built-in Symmetric Difference function, but it can be defined:

SymmetricDifference@X_, Y_D := Complement@Union@X, YD, Intersection@X, YDD

Now we can use the function:
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SymmetricDifference@A, BD

82, 4, 6, 7, 10, 12, 20, 21, 30, 35, 50, 60, 100, 105, 150, 175, 300, 525<

The empty set is 8 <.

SymmetricDifference@A, AD

8<

What corresponds to set-builder notation in Mathematica is the function Select.   For example, the set of all integers from 1 to
1000 whose digits add up to 10 could be described in set  builder notation as 8n œ # 1 § n § 1000, sum of digits of n = 10<.
We can produce that set using Select.

Select@Range@1, 1000D, Function@n, Apply@Plus, IntegerDigits@nDD ã 10DD

819, 28, 37, 46, 55, 64, 73, 82, 91, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235,
244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460,
505, 514, 523, 532, 541, 550, 604, 613, 622, 631, 640, 703, 712, 721, 730, 802, 811, 820, 901, 910<

An alternate form of the second argument to this expression, using a "pure function" is 

Select@Range@1, 1000D, Apply@Plus, IntegerDigits@ÒDD ã 10 &D

819, 28, 37, 46, 55, 64, 73, 82, 91, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235,
244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460,
505, 514, 523, 532, 541, 550, 604, 613, 622, 631, 640, 703, 712, 721, 730, 802, 811, 820, 901, 910<

EXERCISES FOR SECTION 1.2  
A Exercises  

1.  Let A = 80, 2, 3<, B = 82, 3<, C = 81, 5, 9<, and let the universal set be U = 80, 1, 2, . . . , 9<. Determine:  

(a)  A › B     

(b)   A ‹ B   

(c)  B ‹ A       

(d) A ‹ C 

(e) A - B

(f) B - A

(g)   Ac  

(h)   Cc 

(i)  A › C

(j)   A"B  

2.   Let A, B, and C be as in Exercise 1, let D = 83, 2<, and let E = 82, 3, 2<. Determine which of the following are true. Give
reasons for your decisions.  
(a)   A = B   

(b)   B = C  

(c)  B = D   

(d)  E = D 

(e) A › B = B › A

 (f) A ‹ B = B ‹ A  
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(g) A - B = B - A  

 (h) A " B = B " A  

3.   Let U = {1, 2, 3, . . . , 9} .  Give examples of sets A, B, and C for which:  

(a)  A › HB › CL = HA › BL › C 

(b)  A › HB ‹ CL = HA › BL ‹ HA › CL

(c)  HA ‹ BLc = Ac › Bc  

(d)  A ‹ Ac = U

(e)  A Œ A ‹ B

(f)  A › B Œ A  

4.  Let U = 81, 2, 3, . . . , 9<. Give examples to illustrate the following facts:  

(a)  If A Œ B and B Œ C, then A Œ C.

(b)   A - B ! B - A  

(c)  If U = A ‹ B and A › B = « , it always follows that A = U - B.  

(d)  A µ HB › CL = HA µ BL › HA µCL      
B Exercises  

5.   What can you say about A if U = 81, 2, 3, 4, 5<, B = 82, 3<, and (separately)  

(a)  A ‹ B = 81, 2, 3, 4<  

(b)  A › B = 82<  

(c)  A " B = 83, 4, 5<  

6.   Suppose that U is an infinite universal set, and A and B are infinite subsets of U. Answer the following questions with a brief
explanation.  
(a)   Must Ac be finite?  

(b)  Must A ‹ B  infinite?  

(c)  Must A › B be infinite?  

7.     Given  that  U  =  all  students  at  a  university,  D  =  day  students,  M  =  mathematics  majors,  and  G  =  graduate  students.  Draw
Venn diagrams illustrating this situation and shade in the following sets:  
(a)   evening students  

(b)   undergraduate mathematics majors  

(c)   non-math graduate students  

(d)   non-math undergraduate students  

8.   Let  the sets  D,  M,  G,  and U  be  as  in  exercise  7.    Let   U = 16, 000,  D = 9, 000,  M = 300,  and G = 1, 000.
Also assume that the number of day students who are mathematics majors is 250, fifty of whom are graduate students, that there
are 95 graduate mathematics majors, and that the total number of day graduate students is 700. Determine the number of students
who are:  
(a)   evening students  

(b)   nonmathematics majors  

(c)   undergraduates (day or evening)  

(d)   day graduate nonmathematics majors  

(e)   evening graduate students  

(f)   evening graduate mathematics majors  
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(g)   evening undergraduate nonmathematics majors  
C Exercise  

9.    (a)  Evaluate the following expressions in Mathematica to learn more about Select and to learn about PrimeQ.

? Select

? PrimeQ

       (b)  Use Mathematica to list all primes between 2000 and 2099, inclusive.

10.  (a)   Evaluate the following expression in Mathematica to learn about SquareFree 

? SquareFreeQ

       (b)  Use Mathematica to list all square-free integers between 2000 and 2099, inclusive.
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1.3 Cartesian Products and Power Sets
Definition:  Cartesian Product.  Let  A  and B be  sets.  The  Cartesian  product  of  A  and B,  denoted  by  AµB,  is  defined  as

follows:  AµB = 8Ha, bL a œ A and b œ B<,  that  is,  AµB  is  the  set  of  all  possible  ordered  pairs  whose  first  component
comes from A and whose second component comes from B.  

Example 1.3.1. Notation in mathematics is often developed for good reason. In this case, a few examples will make clear
why the symbol ×  is used for Cartesian products.  

(a)   Let  A  =  {1,  2,  3}  and  B  =  {4,  5}.  Then  A  ×  B  =  {(1,  4),  (1,  5),  (2,  4),  (2,  5),  (3,  4),  (3,  5)}.  Note  that
A µ B = 6 = A µ B .  

(b) A µ A = 8H1, 1L, H1, 2L, H1, 3L, H2, 1L, H2, 2L, H2, 3L, H3, 1L, H3, 2L, H3, 3L<. Note that A µ A = 9 = A 2.  

These two examples illustrate the general rule: If A and B are finite sets, then A µ B = 6 = A µ B .  

We  can  define  the  Cartesian  product  of  three  (or  more)  sets  similarly.  For  example,
A µ B µ C = 8Ha, b, cL : a œ A, b œ B, c œ C<.  It is common to use exponents if the sets in a Cartesian product are the same: 

A2 = A µ A  ,

 A3 = A µ A µ A
…

and in general, 

An = 8Ha1, a2 , … , an L : each a œ A<.  

Power Sets
Definition: Power Set.  If A is any set, the power set of A is the set of all subsets of A, denoted ! HAL.  

The two extreme cases, theempty set and all of A, are both included in !HAL.

Example 1.3.2.  

(a)   !H«L = 8«<  

(b)  !H81<L = 8«, 81<<

(c)   ! H81, 2<L = 8«, 81<, 82<, 81, 2<<.  

We will leave it to you to guess at a general formula for the number of elements in the power set of a finite set. In Chapter 2, we
will discuss counting rules that will help us derive this formula.      

EXERCISES FOR SECTION 1.3  
A Exercises  

1.  Let A = 80, 2, 3<, B = 82, 3<, C = 81, 4<, and let the universal set be U = 80, 1, 2, 3, 4<. List the elements of  

(a)  A µ B   

(b)   B µ A   

(c)  A µ BµC   

(d)  U µ « 

 (e) A µ Ac

 (f) B2  

 (g) B3

 (h)  Bµ !HBL

2.  Suppose that you are about to flip a coin and then roll a die. Let A = {HEAD, TAIL} and B = {1, 2, 3, 4, 5, 6}.  

(a)  What is A µ B ?  

(b)  How could you interpret the set A µ B ?     
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3.   List all two-element sets in !H8a, b, c<L  

4. List all three-element sets in ! H8a, b, c, d<L.  

5.   How many singleton (one-element) sets are there in !HAL if A = n  ?  

6. A person has four coins in his pocket: a penny, a nickel, a dime, and a quarter. How many different sums of money can he take
out if he removes 3 coins at a time?  
7.  Let A = 8+, -< and B = 800, 01, 10, 11<.  

(a) List the elements of A µ B  

(b)   How many elements do A 4 and HA µ BL3  have?  
B Exercises  

8.  Let A = 8Ê, Ñ , #< and B = 8Ñ , û, Ê<.  

(a) List the elements of A µ B and B µ A. The parentheses and comma in an ordered pair are not necessary in cases such as this
where the elements of each set are individual symbol.  
(b)     Identify  the  intersection  of  A µ B  and  B µ A.  for  the  case  above,  and  then  guess  at  a  general  rule  for  the  intersection  of
A µ B and B µ A. where A and B are any two sets.  
9.  Let A and B be nonempty sets. When are A µ B and B µ A. equal?      
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1.4 Binary Representation of Positive Integers  
Recall that the set of positive integers, !, is {1, 2, 3, . . . }. Positive integers are naturally used to count things. There are many
ways to count and many ways to record, or represent, the results of counting. For example, if we wanted to count five hundred
twenty-three apples, we might group the apples by tens. There would be fifty-two groups of ten with three single apples left over.
The fifty-two groups of ten could be put into five groups of ten tens (hundreds), with two tens left over. The five hundreds, two
tens, and three units is recorded as 523. This system of counting is called the base ten positional system, or decimal system. It is
quite natural for us to do grouping by tens, hundreds, thousands, . . . , since it is the method that all of us use in everyday life.  
The  term positional  refers  to  the  fact  that  each  digit  in  the  decimal  representation  of  a  number  has  a  significance  based  on  its
position. Of course this means that rearranging digits will change the number being described. You may have learned of numera-
ton systems in which the position of symbols does not have any significance (e.g., the ancient Egyptian system). Most of these
systems are merely curiosities to us now.  
The binary number system differs from the decimal number system in that units are grouped by twos, fours, eights, etc. That is,
the group sizes are powers of two instead of powers of ten. For example, twenty-three can be grouped into eleven groups of two
with one left over. The eleven twos can be grouped into five groups of four with one group of two left over. Continuing along the
same  lines,  we  find  that  twenty-three  can  be  described  as  one  sixteen,  zero  eights,  one  four,  one  two,  and  one  one,  which  is
abbreviated 10 111two, or simply 10111 if the context is clear.  
The process that we used to determine the binary representation of 23 can be described in general terms to determine the binary
representation of any positive integer n. A general description of a process such as this one is called an algorithm. Since this is
the  first  algorithm  in  the  book,  we  will  first  write  it  out  using  less  formal  language  than  usual,  and  then  introduce  some
"algorithmic notation."  
Step One: Start with an empty list of bits.  

Step Two: Assign the variable k the value n.  

Step Three: While k's value is positive, continue doing the following three steps, and when k becomes zero, stop. First, divide k
by 2, obtaining a quotient q (often denoted k div 2) and a remainder r (denoted k mod 2). Second, attach r to the left-hand side
of the list of bits. Third, assign the variable k the value of q.      

Example 1.4.1. Determine the binary representation of 41. 

k = 2µq + r ö add r to the list      

41 = 2 µ 20 + 1   List = 1  

20 = 2 µ 10 + 0   List = 01  

10 = 2µ5 + 0   List = 001  

5 = 2µ 2 + 1   List =1001  

2 = 2µ 1 + 0   List = 01001  

1 = 2 µ0 + 1     List = 101001      

Therefore, 41 = 101 001two
The notation that we will use to describe this algorithm and all others is called pseudocode, an informal variation of the instruc-
tions  that  are  commonly  used  in  many  computer  languages.  Read  the  following  description  carefully,  comparing  it  with  the
informal description above. Appendix B, which contains a general discussion of the components of the algorithms in this book,
should clear up any lingering questions. Anything after //  are comments.  

Algorithm 1.4.1: Algorithm for Determining the Binary Representation of a Positive Integer.      
Input: a positive integer n.  
Output: the binary representation of n in the form of a list of bits, with units bit last, twos bit next to last, etc.  
(1) k:=n  //initialize k
(2) L := an empty list  //initialize L
(3) While k > 0 do  
      (3.1)  q := k div 2 //divide k by 2
                r:=  k mod 2  
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      (3.2) L: = prepend r to L   //Add r to the front of L  
      (3.3) k:= q       //reassign k

EXERCISES FOR SECTION 1.4  
A Exercises  

1.  Find the binary representation of each of the following positive integers: (a) 31 (b) 32 (c) 10 (d) 100  

2. Find the binary representation of each of the following positive integers: (a) 64 (b) 67 (c) 28 (d) 256  

3. What positive integers have the following binary representations? (a) 10010 (b) 10011 (c) 101010 (d) 10011110000  

4. What positive integers have the following binary representations?  (a) 100001 (b) 1001001 (c) 1000000000 (d) 1001110000  

5.  The example, decimal 1000 has 10 bits since it is 1 111 101 000two  You might save some time by thinking of how 10 can be
arrived at without finding the exact binary representation. How many bits do the binary representations of the following decimal
numbers have?  

(a) 2011 (b) 4000 (c) 4500 (d) 250  
B Exercises  

6. Let m be a positive integer with n-bit binary representation: an-1 an-2! a1 a0  with an-1 = 1 What are the smallest and largest
values that m could have?  
7. If a positive integer is a multiple of 100, we can identify this fact from its decimal representation, since it will end with two
zeros. What can you say about a positive integer if its binary representation ends with two zeros?  
8. Can a multiple of ten be easily identified from its binary representation?      

C1.nb | 15
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1.5 Summation Notation and Generalizations  
Most operations such as addition of numbers are introduced as binary operations. That is, we are taught that two numbers may be
added together to give us a single number. Before long, we run into situations where more than two numbers are to be added. For
example,  if  four  numbers,  a1,  a2,  a3,  and  a4  are  to  be  added,  their  sum  may  be  written  down  in  several  ways,  such  as
HHa1 + a2L + a3L + a4  or  Ha1 + a2L + Ha3 + a4L.  In  the  first  expression,  the  first  two  numbers  are  added,  the  result  is  added  to  the
third  number,  and  that  result  is  added  to  the  fourth  number.  In  the  second  expression  the  first  two  numbers  and  the  last  two
numbers are added and the results of these additions are added. Of course, we know that the final results will be the same. This is
due to the fact that addition of numbers is an associative operation. For such operations, there is no need to describe how more
than two objects will be operated on. 

A sum of numbers such as a1 + a2 + a3 + a4 is called a series and is often written ⁄
k=1

4
ak in what is called summation notation.  

We first recall some basic facts about series that you probably have seen before. A more formal treatment of sequences and series
is  covered  in  Chapter  8.  The  purpose  here  is  to  give  the  reader  a  working  knowledge  of  summation  notation  and to  carry  this
notation through to intersection and union of sets and other mathematical operations.  

A finite series is an expression such as a1 + a2 + a3 + ... + an = ⁄
k=1

n
ak  

In 2 a,, / is referred to as the index, or the index of summation; the value below the summation symbol is the initial index and the
value above the summation symbol is the terminal index. The a, are called the terms of the series. The initial index of a summa-
tion may be different from 1.  

Example 1.5.1.  

(a)   ⁄
i=1

4
ai = a1 + a2 + a3 + a4

(b)  ⁄
k=0

5
bk = b0 + b1 + b2 + b3 + b4 + b5

(c)  ⁄
i=-2

2
ci = c-2 + c-1 + c0 + c1 + c2

Example 1.5.2. If the terms in series are more specific, the sum can often be simplified. For example,  

(a)   ⁄
i=1

4
i2 = 12 + 22 + 32 + 42 = 30      

(b)  ⁄
i=1

5
H2 i - 1L = H2 µ 1 - 1L + H2 µ 2 - 1L + H2 µ 3 - 1L + H2 µ 4 - 1L + H2 µ 5 - 1L

= 1 + 3 + 5 + 7 + 9
= 25

Summation notation can be generalized to many mathematical operations, for example,  

  A1› A2› A3› A4 = ›
i=1

4
Ai 

Definition: Generalized Set Operations. Let A1, A2, …, An be sets, then:  

(1)     A1 › A2 ›!› An = ›
i=1

n
Ai

(1)     A1 ‹ A2 ‹!‹ An = ‹
i=1

n
Ai

(1)     A1µ A2µ!µ An = µ
i=1

n
Ai

(1)     A1!A2!!!An = !
i=1

n
Ai
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Example 1.5.3. If A1 = 80, 2, 3<, A2 = 81, 2, 3, 6<, and A3 = 8-1, 0, 3, 9<,  then 

›
i=1

4
Ai = A1› A2› A3 = 83<

and

‹
i=1

4
Ai = A1‹ A2‹ A3 = 8-1, 0, 1, 2, 3, 6, 9<

With this notation it is quite easy to write lengthy expressions in a fairly compact form.  For example, the statement 

        A › HB1‹ B2‹!‹ BnL = HA › B1L ‹ HA › B2L ‹!‹ HA › BnL

becomes 

             A › ‹
i=1

n
Bi = ‹

i=1

n
HA › BnL

EXERCISES FOR SECTION 1.5  
A Exercises

 1. Calculate the following series:      

(a)  ⁄
i=1

3
H2 + 3 iL

(b) ⁄
i=-2

1
i2  

(c) ⁄
j=0

n
 2 j   for n = 1, 2, 3, 4

(d)  ⁄
k=1

n
H2 k - 1L  for n = 1, 2, 3, 4 

2. Calculate the following series:  

(a)  ⁄
k=1

3
in for n = 1, 2, 3, 4  

(b)   ⁄
i=1

5
20  

(c)    ⁄
j=0

3
In j + 1M for  n = 1, 2, 3, 4  

(d)     ⁄
k=-n

n
k  for n = 1, 2, 3, 4  

3.   (a) Express the formula  ⁄
i=1

n 1
iHi+1L

= n
n+1

    without using summation notation.  

(b)  Verify this formula for n = 3.  

(c)   Repeat parts (a) and (b) for  ⁄
i=1

n
i3 = n2Hn+1L2

4

4.   Verify the following properties for n = 3.      

(a)   ⁄
i=1

n
Hai + biL = ⁄

i=1

n
ai + ⁄

i=1

n
bi  

(b)     c ⁄
i=1

n
a1 = ⁄

i=1

n
c ai
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(b)     c ⁄
i=1

n
a1 = ⁄

i=1

n
c ai

5. Rewrite the following without summation sign for n = 3. It is not necessary that you understand or expand the notation 
n
k  at

this point.  

    Hx + yLn = ⁄
k=0

n n
k xn-k yk

6. (a) Draw the Venn diagram for ›
i=1

4
Ai.

    (b) Express in "expanded format":  

A ‹ ›
i=1

n
Bi = ›

i=1

n
HA ‹ BnL.

7. For any positive integer k, let Ak = 8x œ $ : k - 1 < x § k< and Bk = 8x œ $ : -k < x < k<. What are the following sets?      

(a) ‹
i=1

5
Ai

(b) ‹
i=1

5
Bi

(c) ›
i=1

5
Ai

 (d) ›
i=1

5
Bi  

8.  For any positive integer k, let A = 8x œ $ : 0 < x < 1 êk< and B k = 8x œ $ : 0 < x < k<. What are the following sets?  

(a) ‹
i=1

¶
Ai

(b) ‹
i=1

¶
Bi

(c) ›
i=1

¶
Ai

 (d) ›
i=1

¶
Bi  

9. The symbol P is used for the product of numbers in the same way that S is used for sums.  For example,

    ¤
i=1

5
xi = x1 x2 x3 x4 x5

Evaluate the following:  

(a)  ¤
i=1

3
i2

(b)   ¤
i=1

3
H2 i + 1L

10. Evaluate  

(a)   ¤
k=0

3
2k

(b)    ¤
k=1

100 k
k+1
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(b)    ¤
k=1

100 k
k+1
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SUPPLEMENTARY EXERCISES FOR CHAPTER 1  
Section 1.1  

1.    Enumerate the elements in the following sets:  

       (a)  { x œ ! » x2 - 3 x + 2 = 0}  

       (b)  {x œ ! » x2 + 1 = 0}  

       (c)  {x œ " » x2 + 1 = 0}  

Section 1.2  

2.    Let U = 80, 1, 2, 3, . . . , 9<, A = 80, 2, 3<, B = 82, 3<, C = 81, 5, 9<. 

       Determine:  

       (a)  (A ‹ B ) › C      

       (b)  Ac ›  Bc  

       (c)  (A ‹ B Lc  

3.    Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {x œ U: x is a multiple of 3}, and B = {x œ U: x2 - 5 ¥ 0}. 

       Determine:  

       (a) A ‹ B 

       (b) A › B  

       (c) Bc

4.   Let A, B, and C be subsets of some universal set U. Draw Venn diagrams to illustrate each of the following expressions:  

       (a)  HA › BLc                            (e) Ac › Bc › Cc

       (b)  Ac ‹ Bc                              (f) Ac › Bc ‹ Cc

       (c)   A  › (B  ‹  C)                    (g) Ac › HB ‹ CLc

       (d)  (A › B) ‹ (A › C)             (h) (Ac › Bc) ‹ (Ac › Cc) 

5.    Let A = {1,2,3,4,5,6}, B = {2,5,7,9, 12}, and C = {4,7,9,15,23}.  

       (a) Verify the formula: #(A ‹ B)  =  #A  +  #B  -  #(A › B) for this 

 example.  

       (b) Use the formula in part (a) to compute: 

 #(A ‹ C), #(B ‹ C), #(A › B)  

          (c) Use the formula of part (a) to derive a formula for #(A ‹ B ‹ C). 

   Verify your formula for this example.  

6.    U = {1, 2, 3, 4, 5, 6, 7, 8}, A = {a œ U » a2 is even}, and B = {a œ U | a + 1 is a multiple of three}  

       (a)  A = {____________________________________________} (List)  

       (b)  B = {____________________________________________} (List)  

       (c)  Ac = ___________________________________________________  

       (d)  A › B =_______________________________________________  

Section 1.3      

7.    Let U = {0, 1, 2, 3, . . . , 9}, A = {2, 4, 6}, B = {4}, C = {1, 5}. 

       Determine:  

       (a)  B2               (d) B × A  

       (b) A × B          (e) (A × B) × C  
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       (b) A × B          (e) (A × B) × C  

       (c)  B3   

8.    Let A, B, and C be sets where A = 2, B = 3, and C = 4.  

       (a) Give an example showing that A × B × C  !  A × C × B, and explain why the two sets are not equal.  

       (b) Is AµBµC  =  A µ C µ B   

9.    Let A = {1, 2}. Determine ! HAL µ ! HAL  and then list all elements  of !(A) × !(A).      

10.  Let A = {a, b, c, d}. Determine which of the following are true:  

       (a)  {b} œ !(A)              (d) b œ !(A)  

       (b)   A œ !(A)                (e) « œ !(A)  

       (c) !(A) œ !(A)            (f) !(A) Œ !(A)  

Section 1.4  

11.  The addition rules for binary numbers are:  

                    0  +  0  =  0,  

                    1  +  0  =  0  + 1  =  1,  

                    1  +  1  =  0 and carry 1 to the next column 

       and   1 + 1 + 1 = 1 and carry 1 to the next column.  

       For example:             11111    ô carries  

                           31ten =    11111 

                           11ten   = 1011  

                                        101010 = 42ten   

       Express and compute the following sums with binary numbers; verify your result by converting back to base ten.  

       (a) 31 + 32              (b) 64 + 11             (c) 13 + 15 + 9  

12.  Compute the following sums; express the result in decimal form.  

       (a) 10010  +  10011            (c) 1101.11  +  100.1  

       (b) 101001  +  1101  

13.  Multiplication of binary numbers is a process similar to decimal multiplication. The rules for binary multiplication are: 0 · 0 = 0, 1 · 0 = 0 · 1 =0, 1 · 1 =
1. Compute the following products and verify by converting numbers to base ten:  
       (a) 1001 · 11              (b) 1001 · 1101  

14.  How are multiplication and division by two accomplished in the binary number system?  

Section 1.5  

15.  Let An = {k œ # : k § 3 n} for each n œ #. List the elements.  

       (a)  An for n = 0, 1, 2, 3            

       (b)  ›
n=1

3
An                                    

       (c)  ›
n=0

3
An

       (d)  ‹
n=1

3
An

       (e)  ‹
n=0

3
An

16.   Expand each of the following and convince yourself that they are true. Assume that m, n œ # with m  <  n, and c, xn œ !.
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16.   Expand each of the following and convince yourself that they are true. Assume that m, n œ # with m  <  n, and c, xn œ !.

HaL ‚
i=1

n

xi = ‚
i=1

n-1

xi + xn

HbL ‚
i=1

n

Hxi + yiL = ‚
i=1

n

xi + ‚
i=1

n

yi

HcL ‚
i=1

n

c xi = c‚
i=1

n

xi

HdL ‚
i=1

n

xi = ‚
i=1

m

xi + ‚
i=m+1

n

xi

17.  Which of the above are true if  +  is replaced with · and ⁄ is replaced with ¤? Explain.
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chapter 2

COMBINATORICS

GOALS
Throughout this book we will be counting things. In this chapter we will outline some of the tools that will help us count.

Counting  occurs  not  only  in  highly  sophisticated  applications  of  mathematics  to  engineering  and  computer  science  but  also  in
many basic  applications.  Like many other  powerful  and useful  tools  in  mathematics,  the  concepts  are  simple;  we only have to
recognize when and how they can be applied.

2.1 Basic Counting Techniques—The Rule of Products

WHAT IS COMBINATORICS?
One of the first concepts our parents taught us was the "art of counting." We were taught to raise three fingers to indicate that we
were  three  years  old.  The  question  of  "how  many"  is  a  natural  and  frequently  asked  question.  Combinatorics  is  the  "art  of
counting."  It  is  the  study  of  techniques  that  will  help  us  to  count  the  number  of  objects  in  a  set  quickly.  Highly  sophisticated
results  can  be  obtained  with  this  simple  concept.  The  following  examples  will  illustrate  that  many  questions  concerned  with
counting involve the same process.

Example 2.1.1.  A snack bar serves five different sandwiches and three different beverages.  How many different lunches
can a person order? One way of determining the number of possible lunches is by listing or enumerating all the possibilities.
One systematic way of doing this is by means of a tree, as in Figure 2.1.1.
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Start

Beef

Cheese

Chicken

Ham

Bologna

Milk

Juice

Coffee

Milk

Juice

Coffee

Milk

Juice

Coffee

Milk

Juice

Coffee

Milk

Juice

Coffee

15 Choices

FIGURE 2.1.1 Tree solution for Example 2.1.1

Every path that  begins at  the position labeled START and goes to the right  can be interpreted as a  choice of  one of  the five
sandwiches followed by a choice of one of the three beverages. Note that considerable work is required to arrive at the number
fifteen this way; but we also get more than just a number. The result  is a complete list  of all  possible lunches. If  we need to
answer a question that starts with "How many . . . ," enumeration would be done only as a last resort. In a later chapter we will
examine more enumeration techniques.
An alternative method of solution for this example is  to make the simple observation that there are five different choices for
sandwiches and three different choices for beverages, so there are 5 · 3 = 15 different lunches that can be ordered.
A  listing  of  possible  lunches  a  person  could  have  is:
8HBEEF, milkL, HBEEF, juiceL, HBEEF, coffeeL, ..., HBOLOGNA, coffeeL<.

Example  2.1.2.  Let  A = 8a, b, c, d, e<  and  B = 81, 2, 3<.  From  Chapter  1  we  know  how  to  list  the  elements  in
A µ B = 8Ha, 1L, Ha, 2L, Ha, 3L, ..., He, 3L<.  The  reader  is  encouraged  to  compare  Figure  2.1.1  for  this  example.  Since  the
first entry of each pair can be any one of the five elements a, b, c, d, and e, and since the second can be any one of the three
numbers 1, 2, and 3, it is quite clear there are 5 · 3 = 15 different elements in A x B.

Example 2.1.3. A person is to complete a true-false questionnaire consisting often questions. How many different ways are
there to answer the questionnaire? Since each question can be answered either of two ways (true or false), and there are a total
of  ten  questions,  there  are  2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 ÿ2 = 210 = 1024  different  ways  of  answering  the  questionnaire.  The  reader  is
encouraged to visualize the tree diagram of this example, but not to draw it!
We formalize the procedures developed in the previous examples with the following rule and its extension.

THE RULE OF PRODUCTS
Rule Of Products:  If  two operations must be performed, and If  the first  operation can always be performed p1  different ways
and the second operation can always be performed p2  different ways, then there are p1 ÿ p2 different ways that the two operations
can be performed.
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Rule Of Products:  If  two operations must be performed, and If  the first  operation can always be performed p1  different ways
and the second operation can always be performed p2  different ways, then there are p1 ÿ p2 different ways that the two operations
can be performed.
Note: It is important that p2 does not depend on the option that is chosen in the first operation. Another way of saying this is that
p2 is independent of the first operation. If p2 is dependent on the first operation, then the rule of products does not apply.

Example 2.1.4. Assume in Example 2.1.1 that coffee is not served with a beef or chicken sandwich, then by inspection of
Figure 2.1.1 we see that there are only thirteen different choices for lunch. The rule of products does not apply, since the choice
of beverage depends on one's choice of a sandwich.
Extended  Rule  Of  Products.  The  rule  of  products  can  be  extended  to  include  sequences  of  more  than  two  operations.  If  n
operations  must  be performed,  and the number  of  options  for  each operation is  p1,  p2,  … ,  and pn,  respectively,  with  each pi
independent of previous choices, then the n operations can be performed

  p1 ÿ p2 ÿ ! ÿ pn = P
i=1

n
pi

Example  2.1.5.  A  questionnaire  contains  four  questions  that  have  two  possible  answers  and  three  questions  with  five
possible answers. Since the answer to each question is independent of the answers to the other questions, the extended rule of
products  applies  and  there  are  2 ÿ2 ÿ2 ÿ2 ÿ5 ÿ5 ÿ5 = 24 53 = 2000  different  ways  to  answer  the  questionnaire.  In  Chapter  1  we
introduced the power set of a set A, P(A), which is the set of all subsets of A. Can we predict how many elements are in P(A)
for a given finite set  A? The answer is  yes,  and in fact  !HAL = 2n.   The ease with which we can prove this fact  demon-
strates the power and usefulness of the rule of products. Do not underestimate the usefulness of simple ideas.

Theorem 2.1.1.   If A is a finite set, then ! HAL = 2 A  .

Proof:  Let  B œ !HAL  and  assume A = n.  Then  for  each  element  x œ A  there  are  two  choices,  either  x œ B  of  x – B.
Since  there  are  n  elements  of  A  we  have,  by  the  rule  of  products,  2 ÿ2 ÿ ! ÿ2

n factors
= 2n  different  subsets  of  A.  Therefore,

!HAL = 2n  ‡

EXERCISES FOR SECTION 2.1
A Exercises

1.   In  horse  racing,  to  bet  the  "daily  double"  is  to  select  the  winners  of  the  first  two  races  of  the  day.  You  win  only  if  both
selections are correct. In terms of the number of horses that are entered in the first two races, how many different daily double
bets could be made?
2.   Professor  Shortcut  records  his  grades  using only  his  students'  first  and last  initials.  What  is  the  smallest  class  size  that  will
definitely force Prof. S. to use a different system?
3.   A certain  shirt  comes  in  four  sizes  and  six  colors.  One  also  has  the  choice  of  a  dragon,  an  alligator,  or  no  emblem on  the
pocket. How many different shirts could you order?
4.  A builder of modular homes would like to impress his potential customers with the variety of styles of his houses. For each
house there are blueprints for three different living rooms, four different bedroom configurations, and two different garage styles.
In addition, the outside can be finished in cedar shingles or brick. How many different houses can be designed from these plans?
5.  The Pi Mu Epsilon mathematics honorary society of Outstanding University wishes to have a picture taken of its six officers.
There will be two rows of three people. How many different way can the six officers be arranged?
6.   An automobile dealer has several options available for each of three different packages of a particular model car: a choice of
two styles of seats in three different colors, a choice of four different radios, and five different exteriors. How many choices of
automobile does a customer have?
7.  A clothing manufacturer has put out a mix-and-match collection consisting of two blouses, two pairs of pants, a skirt, and a
blazer.  How many outfits  can you make? Did you consider  that  the blazer  is  optional?  How many outfits  can you make if  the
manufacturer adds a sweater to the collection?
8.   As  a  freshman,  suppose  you  had  to  take  two  of  four  lab  science  courses,  one  of  two  literature  courses,  two  of  three  math
courses, and one of seven physical education courses. Disregarding possible time conflicts, how many different schedules do you
have to choose from?
9.   (a)  Suppose  each  single  character  stored  in  a  computer  uses  eight  bits.  Then  each  character  is  represented  by  a  different
sequence of eight 0's and l's called a bit pattern. How many different bit patterns are there? (That is, how many different charac-
ters could be represented?)
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     (b) How many bit patterns are palindromes (the same backwards as forwards)?

     (c) How many different bit patterns have an even number of 1's?

10.  Automobile license plates in Massachusetts usually consist of three digits followed by three letters.  The first  digit  is never
zero. How many different plates of this type could be made?
11.  (a) Let A = 8a, b, c, d<. Determine the number of different subsets of A. 

       (b) Let A = 81, 2, 3, 4, 5<. Determine the number of proper subsets of A.

12.  How many integers from 100 to 999 can be written with no 7's?

13.  Consider three persons, A, B, and C, who are to be seated in a row of three chairs. Suppose A and B are identical twins. How
many seating arrangements of these persons can there be:
     (a) If you are a total stranger?

     (b) If you are A and B's mother?

(This problem is designed to show you that different people can have different correct answers to the same problem.)

14.   How  many  ways  can  a  student  do  a  ten-question  true-false  exam  if  he  or  she  can  choose  not  to  answer  any  number  of
questions?
15.  Suppose you have a choice of fish, lamb, or beef for a main course, a choice of peas or carrots for a vegetable, and a choice
of pie, cake, or ice cream for dessert. If you must order one item from each category, how many different dinners are possible?
16.   Suppose you have a  choice of  vanilla,  chocolate,  or  strawberry for  ice  cream,  a  choice of  peanuts  or  walnuts  for  chopped
nuts, and a choice of hot fudge or marshmallow for topping. If you must order one item from each category, how many different
sundaes are possible?
B Exercises

17.  A questionnaire contains six questions each having yes-no answers. For each yes response, there is a follow-up question with
four possible responses.
  (a) Draw a tree diagram that illustrates how many ways a single question in the questionnaire can be answered.

   (b) How many ways can the questionnaire be answered?

18.  Ten people are invited to a dinner party. How many ways are there of seating them at a round table? If the ten people consist
of five men and five women, how many ways are there of seating them if each man must be surrounded by two women around
the table?
19.  How many ways can you separate a set with n elements into two nonempty subsets if the order of the subsets is immaterial?
What if the order of the subsets is important?
20. A gardener has three flowering shrubs and four nonflowering shrubs. He must plant these shrubs in a row using an alternating
pattern, that is, a shrub must be of a different type from that on either side. How many ways can he plant these shrubs? If he has
to  plant  these  shrubs  in  a  circle  using  the  same  pattern,  how many  ways  can  he  plant  this  circle?  Note  that  one  nonflowering
shrub will be left out at the end.
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2.2 Permutations
A number of applications of the rule of products are of a specific type, and because of their frequent appearance they are given a
designation all their own— permutations. Consider the following examples.

Example 2.2.1. How many different ways can we order the three different elements of the set A = {a, b, c}? Since we have
three  choices  for  position  one,  two  choices  for  position  two,  and  one  choice  for  the  third  position,  we  have,  by  the  rule  of
products, 3-2-1 = 6 different ways of ordering the three letters. We illustrate through a tree diagram:

Figure 2.2.1

Each of the six orderings is called a permutation of the set A.

Example  2.2.2.  A  student  is  taking  five  courses  in  the  fall  semester.  How many  different  ways  can  the  five  courses  be
listed? There are 5x4x3x2x1= 120 different permutations of the set of courses.
In each of the above examples of the rule of products we observe that:

(1) We are asked to order or arrange elements from a single set.

(2) Each element is listed exactly once in each list (permutation). So if there are n choices for position one in a list, there are n - 1
choices for position two, n - 2 choices for position three, etc.

Example 2.2.3. The alphabetical ordering of the players of a baseball team is one permutation of the set of players. Other
orderings of the players' names might be done by batting average, age, or height. The information that determines the ordering
is  called  the  key.  We  would  expect  that  each  key  would  give  a  different  permutation  of  the  names.  If  there  are  twenty-five
players on the team, there are 25 ÿ 24 ÿ 23 ÿ! ÿ2 ÿ 1 different permutations of the players.
We now develop notation that will be useful for permutation problems.

Definition: Factorials. If n is a positive integer then n factorial is the product of the first n positive integers and is denoted
ni. Additionally, we define zero factorial to be 1.

0 !   = 1

1 !   = 1

2 !   = 2 ÿ 1 = 2

3 !   = 3 ÿ2 ÿ1 = 6

n ! = n ÿ Hn - 1L ÿ Hn - 2L ÿ ! ÿ 2 ÿ 1 = ¤
k=1

n
k

Note  that  4 !  is  4  times  3 !,  or  24,  and  5 !  is  5  times  4 !,  or  120.   In  addition,  note  that  as  n  grows in  size,  n !  grows extremely
quickly.  For  example,  11 ! = 39 916 800.  If  the  answer  to  a  problem  happens  to  be  25 !,  for  example,  you  would  never  be
expected to write that number out completely. However,

a problem with an answer of 25!
23!

 can be reduced to 25 ÿ 24, or 600.

So if A = n, there are n ! ways of permuting all n elements of A. We next consider the more general situation where we would
like to permute k elements of a set of n objects, k § n.

Example 2.2.4.  A club of twenty-five members will  hold an election for president,  secretary,  and treasurer in that  order.
Assume  a  person  can  hold  only  one  position.  How  many  ways  are  there  of  choosing  these  three  officers?  By  the  rule  of
products there are 25 · 24 · 23 ways of making a selection.

Definition: Permutation. An ordered arrangement of k elements selected from a set of n elements, 0 < k § n, where no two
elements  of  the  arrangement  are  the  same,  is  called  a  permutation  of  n  objects  taken  k  at  a  time.  The  total  number  of  such
permutations is denoted by P Hn; kL.

Theorem  2.2.1.  The  number  of  possible  permutations  of  k  elements  taken  from  a  set  of  n  elements  is

P Hn; kL = n ÿ Hn - 1L ÿ Hn - 2L ÿ! ÿ Hn - k + 1L = n!
Hn-kL!

= ⁄
j=0

k-1
Hn - jL 
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Theorem  2.2.1.  The  number  of  possible  permutations  of  k  elements  taken  from  a  set  of  n  elements  is

P Hn; kL = n ÿ Hn - 1L ÿ Hn - 2L ÿ! ÿ Hn - k + 1L = n!
Hn-kL!

= ⁄
j=0

k-1
Hn - jL 

Proof:  Case I: If k = n we have P Hn; nL = n!
Hn-nL!

= n ! , which is simply the rule of products as applied in Example 2.2.3.

Case II: If 0 < k < n then, as in Example 2.2.4, we have k positions to fill with n elements and

position 1 can be filled by any one of n elements

position 2 can be filled by any one of n - 1 elements

position 3 can be filled by any one of n - 2 elements

"

position k can be filled by any one of n - k + 1 elements. 

Hence, by the rule of products, P Hn; kL = n ÿ Hn - 1L ÿ Hn - 2L ÿ! ÿ Hn - k + 1L. Also,
n!

Hn-kL!
= nÿHn-1LÿHn-2Lÿ!ÿHn-k+1LÿHn-kLÿ!ÿ2ÿ1

Hn-kL!

= n ÿ Hn - 1L ÿ Hn - 2L ÿ! ÿ Hn - k + 1L ‡

  

It is important to note that the derivation of the permutation formula given in Theorem 2.2.1 was done solely through the rule of
products.  This  serves to reiterate  our introductory remarks in this  section that  permutation problems are really rule-of-products
problems. Every permutation problem can be done by the rule of products. We close this section with several examples solved by
both methods.

Example 2.2.5. A club has eight members eligible to serve as president, vice-president, and treasurer. How many ways are
there of choosing these officers?
Solution 1: Using the rule of products. There are eight possible choices for the presidency, seven for the vice-presidency, and
six for the office of treasurer. By the rule of products there are  8 µ 7 µ 6 = 336 ways of choosing these officers.
Solution 2: Using the permutation formula. We want the total number of permutations of eight objects taken three at a time:

  PH8, 3L = 8!
H8-3L!

= 8 µ 7 µ 6 µ 5!
5!

= 8 ÿ7 ÿ6 = 336

Example 2.2.6. Example 2.2.2 revisited. Solution 2: Using the permutation formula. We want the total number of permuta-
tions of five courses taken five at a time:

P H5; 5L = 5!
H5-5L!

= 5!
0!

= 120

Example 2.2.7. Consider the digits 1, 2, 3, 4, and 5.

(a)  How many three-digit numbers can be formed if no repetition of digits can occur?

(b) How many three-digit numbers can be formed if repetition of digits is allowed?

Solution to (a):

Solution 1: Using the rule of products. We have any one of five choices for digit one, any one of four choices for digit two, and
three choices for digit three. Hence, 5 ÿ4 ÿ3 = 60 different three-digit numbers can be formed.
Solution 2; Using the permutation formula. We want the total number of permutations of five digits taken three at a time:

  PH5; 3L = 5!
H5-3L!

= 5
2!

= 5 µ 4 µ 3 µ 2 µ 1
2 µ 1

= 5 µ 4 µ 3 = 60

Solution to (b): The definition of permutation indicates ". . .no two elements in each list are the same." Hence the permutation
formula  cannot  be  used.  However,  the  rule  of  products  still  applies.  We have any one of  five  choices  for  the  first  digit,  five
choices  for  the  second,  and  five  for  the  third.  So  there  are  5·5·5  =  125  possible  different  three-digit  numbers  if  repetition  is
allowed.

EXERCISES FOR SECTION 2.2
A Exercises

1.  If  a  raffle  has  three  different  prizes  and  there  are  1,000  raffle  tickets  sold,  how  many  different  ways  can  the  prizes  be
distributed?
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2.  (a) How many three-digit numbers can be formed from the digits 1, 2, 3 if no repetition of digits is allowed? List the three-
digit numbers.
(b) How many two-digit numbers can be formed if no repetition of digits is allowed? List them.

(c) How many two-digit numbers can be obtained if repetition is allowed?

3.   How many  eight-letter  words  can  be  formed  from the  26  letters  in  the  alphabet?  Even  without  concerning  ourselves  about
whether the words make sense, there are two interpretations of this problem. Answer both.
4.  Let A be a set with A = n .

     (a) Determine A3 .

     (b) Determine  9Ha, b, cL œ A3 each coordinate is different= .

5.   The  state  finals  of  a  high  school  track  meet  involves  fifteen  schools.  How  many  ways  can  these  schools  be  listed  in  the
program?
6.  Consider the three-digit numbers that can be formed from the digits 1, 2, 3, 4, 5 with no repetition of digits allowed.

   (a) How many of these are even numbers?

   (b) How many are greater than 250?

7.   (a) How many ways can the coach at Tall U. fill the five starting positions on a basketball team if each of his 15 players can
play any position? (b) What is the answer if the center must be one of two people?
8.  (a) How many ways can a gardener plant five different species of shrubs in a circle?

(b) What is the answer if two of the shrubs are the same?

(c) What is the answer if all the shrubs are identical?

9.   The  president  of  the  Math  and  Computer  Club  would  like  to  arrange  a  meeting  with  six  attendees,  the  president  included.
There will be three computer science majors and three math majors at the meeting. How many ways can the six people be seated
at a circular table if the president does not want people with the same majors to sit next to each other?
B Exercises

10.  Six people apply for three identical jobs and all are qualified for the positions. Two will work in New York and the other one
will work in San Diego. How many ways can the positions be filled?

11.  (a) Let A = 81, 2, 3, 4<. Determine the cardinality of 9Ha1, a2L œ A2 a1 ! a2=

(b) What is the answer to part (a) if A = n ?

(c) Assume that A is a set with cardinality n. Determine the number of m-tuples in A m where each coordinate is different from
the other coordinates. Break your answer down into cases m > n and m § n.
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2.3 Partitions of Sets and the Laws of Addition
One way of counting the number of students in your class would be to count the number in each row and to add these totals. Of
course  this  problem is  simple  because  there  are  no duplications,  no person is  sitting in  two different  rows.  The basic  counting
technique that you used involves an extremely important first step, namely that of partitioning a set.  The concept of a partition
must be clearly understood before we proceed further.

Definition: Partition. A partition of set A is a set of one or more nonempty subsets of A: A1, A2, … such that:

(a)  A1 ‹ A2 ‹ ! = A and

(b) the subsets are mutually disjoint: that is, Ai › A j = « for i ! j.

The  subsets  in  a  partition  are  often  referred  to  as  blocks.  Note  how  our  definition  allows  us  to  partition  infinite  sets,  and  to
partition a set into an infinite number of subsets. Of course, if A is finite the number of subsets can be no larger than A .
Example 2.3.1. Let A = 8a, b, c, d<. Three partitions of A are:

1.   88a<, 8b<, 8c, d<<

2.   88a, b<, 8c, d<<

3.  88a<, 8b<, 8c<, 8d<<

Example 2.3.2. Two examples of partitions of ! are 88n< n œ !< and 88n n œ !, n < 0<, 80<, 8n n œ !, n > 0<<. The set of
subsets  88n œ ! n ¥ 0<, @n œ ! n § 0<<  is  not  a  partition  because  the  two  subsets  have  a  nonempty  intersection.  A  second
example of a non-partition is 88n œ ! : n = k< k = -1, 0, 1, 2, …<. One of the blocks, 8n œ ! : n = -1< is empty.
One  could  also  think  of  the  concept  of  partitioning  a  set  as  a  "packaging  problem."  How can  one  "package"  a  carton  of,  say,
twenty-four cans? We could use: four six-packs, three eight-packs, two twelve-packs, etc. In all cases: (a) the sum of all cans in
all packs must be twenty-four, and (b) a can must be in one and only one pack.

Basic Law Of Addition: If A is a finite set, and if 8A1, A2, …, An< is a partition of A, then

A = A1 + A2 +! + An = ⁄
k=1

n
Ak

The basic law of addition can be rephrased as follows: If A is a finite set where A = A1‹ A2‹!‹ An  and where Ai › A j = «

whenever i ! j, then
A = A1‹ A2‹!‹ An = A1 + A2 +! + An

Example 2.3.3. The number of students in a class could be determined by adding the numbers of students who are fresh-
men, sophomores, juniors, and seniors, and those who belong to none of these categories. However, you probably couldn't add
the students by major, since some students may have double majors.

Example  2.3.4.  The  sophomore  computer  science  majors  were  told  they  must  take  one  and  only  one  of  the  following
courses,  Cryptography,  Data  Structures,  or  Java  script,  in  a  given  semester.  The  numbers  in  each  course,  respectively,  for
sophomore CS majors, were 75, 60, 55. How many sophomore C.S. majors are there? The Law of Addition applies here. There
are exactly 75 + 60 + 55 = 190 CS majors since the rosters  of  the three courses listed above would be a partition of  the CS
majors

Example 2.3.5. It was determined that all sophomore computer science majors took at least one of the following courses:
Cryptography, Data Structures, or Java script. Assume the number in each course was as in Example 2.3.4. Further investiga-
tion  indicated  ten  of  them  took  all  three  courses,  twenty-five  took  Calculus  and  Data  Structures,  twelve  took  Calculus  and
Compiler  Construction,  and  fifteen  took  Data  Structures  and  Compiler  Construction.  How many  sophomore  C.S.  majors  are
there?
Example 2.3.4 is a simple application of the law of addition; in Example 2.3.5, however, some students are taking two or more
courses, so a simple application of the law of addition would lead to double or triple counting. We rephrase Example 2.3.5 in
the language of sets to describe the situation more explicitly if we let:
A = the set of all sophomore computer science majors

A1 = the set of all sophomore CS majors who took Cryptography

A2 = the set of all sophomore CS majors who took Data Structures

A3 = the set of all sophomore CS majors who took javascript.

Since all sophomore CS majors must take at least one of the courses, the number we want is:
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A = A1 ‹ A2 ‹ A3
= A1 + A 2 + A 2 - duplicates

A  Venn  diagram  is  helpful  to  visualize  the  problem.  In  this  case  the  universal  set  U  can  stand  for  any  reasonable  set,  for
example, the set of all students in the university.

Figure 2.3.1

We see that the whole universal set is naturally partitioned into subsets that are labeled by the numbers 1 through 8, and the set A
is  partitioned into subsets labeled 1 through 7. Note also that students in the subsets labeled 2,3, and 4 are double counted, and
those in the subset labeled 1 are triple counted, in the sense that they have already been subtracted from the total twice. So

A = A1 ‹ A2 ‹ A3
= A1 + A 2 + A 3 - duplicates
= A1 + A 2 + A 3 -Hduplicates - triplicatesL
= A1 + A 2 + A 3 - A1› A2 - A1› A3 - A2› A3 + A1› A2› A3

= 75 + 60 + 55 - 25 - 12 - 15 + 10 = 148
 Note  that  an  alternate  approach  to  this  example  could  be  to  let  A = U;  in  this  case  the  subset  labeled  8,  namely
HA1 ‹ A2 ‹ A3 Lc,  is  the  set  of  sophomore  C.  S.  students  who  took  none  of  the  three  courses,  which  is  «.  The  concepts  dis-
cussed in this latest basic counting technique give rise to the following two formulas:
Laws of Addition (Inclusion-Exclusion Laws)

1.  If A1 and A2 are finite sets, then A1 ‹ A2 = A1 + A 2 - A1› A2
2.    If A1, A2, and A3 are finite sets, then

  A1 ‹ A2 ‹ A3 = A1 + A 2 + A 3
- A1› A2 - A1› A3 - A2› A3

+ A1› A2› A3
In this section we saw that being able to partition a set into disjoint subsets gives rise to a handy counting technique. Given a set,
there are many ways to partition depending on what one would wish to accomplish. One natural partitioning of sets is apparent
when one draws a Venn diagram. This particular partitioning of a set will be discussed further in Chapters 4 and 13.

EXERCISES FOR SECTION 2.3
A Exercises

1. Find all partitions of the set A = 8a, b, c<. 

2. Which of the following collections of subsets of the plane, " µ ", are partitions?

(a)  88Hx, yL x + y = c< c œ "<

(b) The set of all circles in " µ".

(c) The set of all circles in " µ " centered at H0, 0L, together with 8H0, 0L<.

(d) 88Hx, yL< Hx, yL œ "µ"<

3.   A student,  on  an  exam paper,  defined  the  term partition  the  following  way:  "Let  A  be  a  set.  A  partition  of  A  is  any  set  of
nonempty subsets A1, A2, …, An of A such that each element of A is in one of the subsets Ai." Is this definition correct? Why?
4.   Let  A1 and A2 be  subsets  of  a  set  A.   Draw  a  Venn  diagram  of  this  situation  and  shade  in  the  subsets:  A1› A2,  A1c › A2,
A1› A2c ,  and  A1c › A2c .  Use  the  resulting  diagram and  the  definition  of  partition  to  convince  yourself  that  subset  of  these  four
subsets that are nonempty form a partition of A.
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4.   Let  A1 and A2 be  subsets  of  a  set  A.   Draw  a  Venn  diagram  of  this  situation  and  shade  in  the  subsets:  A1› A2,  A1c › A2,
A1› A2c ,  and  A1c › A2c .  Use  the  resulting  diagram and  the  definition  of  partition  to  convince  yourself  that  subset  of  these  four
subsets that are nonempty form a partition of A.
5.  Show that 882 n n œ !L, 82 n + 1 n œ !<< is a partition of !. Describe this partition using only words.

6.  (a) A group of 30 students were surveyed and it was found that 18 of them took Calculus and 12 took C++. If all students took
at least one course, how many took both Calculus and C++? Illustrate using a Venn diagram.
(b) What is the answer to the question in part (a) if five students did not take either of the two courses? Illustrate using a Venn
diagram.
7.  A survey of 90 people indicated that all of them participated in at least one of the following activities. In addition, 25 jogged
and did aerobics,  20 jogged and worked out using Nautilus,  10 worked out in aerobics and Nautilus.  How many of them were
involved in all three activities if 30 were enrolled in each one of the activities?
8. A survey of 300 people indicated:

60 owned an iPhone 75 owned an Blackberry,  and 30 owned an Android.  Further  more,  40 owned both an iPhone and Black-
berry, 12 owned both an iPhone and Android, and 8 owned a Blackberry and an Android. Finally, 3 owned all three phones
(a) How many people surveyed owned none of the three phones?

(b) How many people owned an Blackberry but not an iPhone?

(c) How many owned a Blackberry but not an Android B Exercises

9.   (a) Use Inclusion-exclusion Law 1 to derive Law 2. Note, a knowledge of basic set laws is needed for this exercise, (b) State
and derive the Inclusion-exclusion law for four sets.
10.  To complete your spring schedule,  you must add Calculus and Physics.  At 9:30, there are three Calculus sections and two
Physics sections; while at 11:30, there are two Calculus sections and three Physics sections. How many ways can you complete
your schedule if your only open periods are 9:30 and 11:30?
C Exercise

11.  The definition of # = 8a êb a, b œ !, b ! 0< given in Chapter 1 is at best awkward, since, if we use the definition to list
elements in #, we will have duplications, that is, 1

2
, -1
-2

, 2
4

 etc. Try to write a more precise definition of the rational numbers so
that there is no duplication of elements.
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2.4 Combinations and the Binomial Theorem
COMBINATIONS

In Section 2.1 we investigated the most basic concept in combinatorics, namely, the rule of products. Even though in this section
we investigate other counting formulas, it is of paramount importance to keep this fundamental process in mind. In Section 2.2
we  saw  that  a  subclass  of  rule-of-products  problems  appears  so  frequently  that  we  gave  them  a  special  designation,  namely,
permutations,  and  we  derived  a  formula  as  a  computational  aid  to  assist  us.  In  this  section  we  will  investigate  another  major
subclass of the rule-of-product formula, namely, that given the name combinations.
In many rule-of-products applications the permutation or order is  important,  as in the situation of the order of putting on one's
socks and shoes; in some cases it is not important, as in placing coins in a vending machine or in the listing of the elements of a
set. Order is important in permutations. Order is not important in combinations.

Example  2.4.1.  How  many  different  ways  are  there  to  permute  three  letters  from  the  set  A = 8a, b, c, d<?   From  the
permutation formula of Section 2.2 there are P H4; 3L = 4!

H4-3L!
= 24 different orderings of three letters from A.

Example 2.4.2. How many ways can we simply list, or choose, three letters from the set A = 8a, b, c, d<?  Note here that
we are not concerned with the order of the three letters. By trial and error, certainly abc, abd, acd, and bed are the only listings
possible. A slightly more elegant approach would be to rephrase the question in terms of sets. What we are looking for is all
three-element subsets of the set A. Order is not important in sets.  The notation for choosing 3 elements from 4 is most com-

monly 
4
3  or occasionally C H4; 3L, either of which is read "4 choose 3" or the number of combinations for four objects taken

three at a time.

Definition:  Binomial  Coefficient.   The  binomial  coefficient  K
n
k
O or CHn; kL  represents  the  number  of  combinations  of  n

objects taken k at a time, and is read "n choose k."
We would now like to investigate the relationship between permutation and combination problems in order to derive a formula

for 
n
k .   Let us reconsider the above examples. There are 3 ! = 6 different orderings for each of the three-element subsets of A.

Table 2.4.1 lists each subset of A and all permutations of each subset on the same line.

3 - element subsets of A Permutations of each subset
abc abc, acb, bca, bac, cab, cba
abd abd, adb, bda, bad, dab, dba
acd acd, adc, cda, cad, dac, dca
bcd bcd, bdc, cdb, cbd, dbc, dcb

Table 2.4.1

Hence,  
4
3 = 1

6
PH4; 3L = 4.   We generalize this result in the following theorem:

Theorem 2.4.1. If A is any finite set of n elements, the number of k-element subsets of A is:

K
n
k
O = n!

k! Hn-kL!
,   where 0 § k § n.

Proof: There are k ! ways of ordering each of the k objects in any set of k elements. Therefore 

  
n
k = 1

k!
PHn; kL = 1

k!
ÿ n!
Hn-kL!

= n!
k! Hn-kL!

‡

Alternate Proof: To "construct" a permutation of k objects from a set of n elements, we can first choose one of the subsets
of objects and second, choose one of the k! permutations of those objects. By the rule of products, 

PHn; kL =
n
k k ! 

and solving for 
n
k  we get

n
k = 1

k!
PHn; kL = n!

k! Hn-kL!
  ‡
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n
k = 1

k!
PHn; kL = n!

k! Hn-kL!
  ‡

Example 2.4.3. Assume an evenly balanced coin is tossed five times. In how many ways can three heads be obtained? This is a
combination problem, because the order in which the heads appear does not matter. The number of ways to get three heads is

5
3 = 5!

3! H5-3L!
= 5 µ 4

2 µ 1
= 10

Example 2.4.4. Determine the total number of ways a fair coin can land if tossed five times. The four tosses can produce any one
of the following mutually exclusive, disjoint events: 5 heads, 4 heads, 3 heads, 2 heads, 1 head, or 0 heads. Hence by the law of
addition we have:

 
5
0 +

5
1 +

5
2 +

5
3 +

5
4 +

5
5 = 1 + 5 + 10 + 10 + 5 + 1 = 32

Of course, we could also have applied the extended rule of products, and since there are two possible outcomes for each of the
five tosses, we have 2 µ 2 µ 2 µ 2 µ 2 µ 2 = 2 5 = 32 ways. You might think that doing this counting two ways is a waste of time
but  solving  a  problem two different  ways  often  is  instructive  and  leads  to  valuable  insights.  In  this  case,  it  suggests  a  general

formula for the sum ⁄
k=0

n n
k . In the case of n = 5, we get 25, so it is reasonable to expect that the general sum is 2n, and it is.

Example 2.4.5. A committee usually starts as an unstructured set of people selected from a larger membership. Therefore,
a  committee  can  be  thought  of  as  a  combination.  If  a  club  of  25  members  has  a  five-member  social  committee,  there

are 
25
5 = 53 130 different possible social committees. If any structure or restriction is placed on the way the social commit-

tee  is  to  be  selected,  the  number  of  possible  committees  will  probably  change.  For  example,  if  the  club  has  a  rule  that  the

treasurer must be on the social committee, then the number of possibilities is reduced to 
24
4 = 10 626.  If we further require

that a chairperson other than the treasurer be selected for the social committee, we have  
24
4 µ4 = 42 504 different possible

social committees. The choice of the four non-treasurers accounts for the 
24
4  and the choice of a chairperson accounts for the

4.

Example 2.4.6.  There is 
n
0 = 1 way of choosing a combination of zero elements from a set of n,  and there is K

n
n O = 1

way of choosing a combination of n elements from a set of n. 

THE BINOMIAL THEOREM
The  binomial  theorem  gives  us  a  formula  for  expanding  Hx + yLn  where  n  is  a  nonnegative  integer.  The  coefficients  of  this
expansion  are  precisely  the  binomial  coefficients  that  we  have  used  to  count  combinations.  From  high  school  algebra  we  can
certainly compute Hx + yLn for n = 0, 1, 2, 3, 4, 5 as given in the following table:

Hx + yL0 = 1 1
Hx + yL1 = x + y 1 1

Hx + yL2 = x2 + 2 y x + y2 1 2 1
Hx + yL3 = x3 + 3 y x2 + 3 y2 x + y3 1 3 3 1

Hx + yL4 = x4 + 4 y x3 + 6 y2 x2 + 4 y3 x + y4 1 4 6 4 1
Hx + yL5 = x5 + 5 y x4 + 10 y2 x3 + 10 y3 x2 + 5 y4 x + y5 1 5 10 10 5 1

TABLE 2.4.2 

In the expansion of Hx + yL5   we note that the coefficient of the third term is 
5
2   = 10, and that of the sixth term is   

5
5 = 1.

We can rewrite the expansion as 
5
0 x5 +

5
1 y x4 +

5
2 y2 x3 +

5
3 y3 x2 +

5
4 y4 x +

5
5 y5
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In summary, in the expansion of Hx + yLn  we note:

1.   The first term is xn and the last term is yn .

2.   With each successive term, exponents of x decrease by 1 as those of y increase by 1. For any term the sum of the exponents is
n.

3.  The coefficient of xn-k yk , the H k + 1 Lst  term, is 
n
k  .

4.  The triangular array of numbers in Table 2.4.2 is called Pascal's triangle after the seventeenth-century French mathematician
Blaise Pascal. Note that each number in the triangle other than the 1's at the ends of each row is the sum of the two numbers to
the right and left of it in the row above.

Theorem 2.4.2: The Binomial Theorem. If n ¥ 0, and x and y are numbers, then

Hx + yLn = ⁄
k=0

n
K

n
k
O xn-k yk

This theorem will be proven using a procedure called mathematical induction, which will be introduced in Chapter 3.

Example 2.4.8. Find the third term in the expansion of Hx - yL4. Since Hx - yL4 = Hx + H-yLL 4 , the third term is
4
2 = x4-2H-yL2 = 6 x2 y3.

Example 2.4.9.   Expand H3 x - 2L3. If we replace x and y in the Binomial Theorem with 3 x and -2, respectively you get

H3 x - 2L3 = ⁄
k=0

3 3
k

H3 xL3-k H-2Lk

=
3
0 H3 xL3 H-2L0 +

3
1 H3 xL2 H-2L1 +

3
2 H3 xL1 H-2L2 +

3
3 H3 xL0 H-2L3

= 27 x3 - 54 x2 + 36 x - 8

  Mathematica Note

Mathematica has a built-in function for binomial coefficients, Binomial. Unlike the examples we've concentrated on that can
be done without  technology,  you can compute  extremely large values.  For  example,  a  bridge hand is  a  13 element  subset  of  a
standard  52  card  deck  —  the  order  in  which  the  cards  come  to  the  player  doesn't  matter.  From  the  point  of  view  of  a  single

player, the number of possible bridge hands is 
52
13 , which is easily computed with Mathematica:

Binomial @52, 13D

635 013 559 600

In bridge, the location of a hand in relation to the dealer has some bearing on the game. An even truer indication of the number of
possible hands takes into account  each  player's  possible hand.  It  is  customary to refer  to bridge positions as  West,  North,  East
and South. We can apply the rule of product to get the total number of bridge hands with the following logic. West can get any of

the 
52
13   hands identified above. Then North get 13 of the remaining 39 cards and so has  

39
13  possible hands. East then get 13

of the 26 remaining cards, which has 
26
13   possibilities. South gets the remaining cards. Therefore the number of bridge hands is

Binomial@52, 13D Binomial @39, 13D Binomial @26, 13D

53 644 737 765 488 792 839 237 440 000
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  Sage Note

Sage will do the same calculations for bridge hands just as easily. From a command line interface the calculations look like this:

sage: binomial(52,13)

635013559600

sage: binomial(52,13)*binomial(39,13)*binomial(26,13)

53644737765488792839237440000

The syntax is different, but the results are the same.

EXERCISES FOR SECTION 2.4
A Exercises

1.  The judiciary committee at a college is made up of three faculty members and four students. If ten faculty members and 25
students have been nominated for the committee, how many judiciary committees are possible?
2.  Suppose that a single character is stored in a computer using eight bits.

(a) How many bit patterns have exactly three 1 's?

(b) How many bit patterns have at least two 1 's?

3.  How many subsets of 81, . . . , 10< contain at least seven elements?

4.  The congressional committees on mathematics and computer science are made up of five congressmen each, and a congres-
sional rule is that the two committees must be disjoint. If there are 385 members of congress, how many ways could the commit-
tees be selected?

5.  Expand  H2 x - 3 yL4

6.  Find the fourth term of the expansion of Hx — 2 yL6 .
7.  (a) A poker game is played with 52 cards. How many "hands" of five cards are possible?

     (b) If there are four people playing, how many five-card "hands" are possible on the first deal?

8.  A flush in a five-card poker hand is five cards of the same suit. How many spade flushes are possible in a 52-card deck? How
many flushes are possible in any suit?
9.  How many five-card poker hands using 52 cards contain exactly two aces?

10.     In poker,  a  full  house is  three-of-a-kind and a pair  in one hand; for  example,  three fives and two queens.  How many full
houses are possible from a 52- card deck?
11.  A class of twelve computer science students are to be divided into three groups of 3, 4, and 5 students to work on a project.
How many ways can this be done if every student is to be in exactly one group?
B Exercises

12.   Explain  in  words  why  the  following  equalities  are  true  and  then  verify  the  equalities  using  the  formula  for  binomial
coefficients.

(a)  
n
1 = 1

(b) 
n
k =

n
n - k ,  0 § k § n.

13.  There are ten points P1, P2, …, Pn on a plane, no three on the same line.

(a) How many lines are determined by the points?

(b) How many triangles are determined by the points?

14.   How many ways  can  n  persons  be  grouped into  pairs  when n  is  even?  Assume the  order  of  the  pairs  matters,  but  not  the
order within the pairs. For example, if n = 4, the different groupings would be

881, 2<, 83, 4<< 883, 4<, 81, 2<<
881, 3<, 82, 4<< 882, 4<, 81, 3<<
881, 4<, 82, 3<< 882, 3<, 81, 4<<
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881, 2<, 83, 4<< 883, 4<, 81, 2<<
881, 3<, 82, 4<< 882, 4<, 81, 3<<
881, 4<, 82, 3<< 882, 3<, 81, 4<<

15.  Use the binomial theorem to prove that if A is a finite set, !HAL = 2 A  . Hint: see Example 2.4.7.

16.  (a) A state's lottery involves choosing six different numbers out of a possible 36. How many ways can a person choose six
numbers?
       (b) What is the probability of a person winning with one bet?

17.  Use the binomial theorem to calculate 99983 Note that 99983 = H10 000 - 2L3.
18.  Suppose two gamblers are playing poker and are dealt five cards each. Use technology to determine the number of possible
ways the hands could be dealt. Assume, as in bridge, the order of the hands matters.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 2  
Section 2.1  

1. A university would like to determine how many different three-digit telephone extensions can be made using the digits  0, 1, 2, 3, 4, 5, 6, 7, 8, 9

   (a)!if the three digits must be different

   (b)!if the three digits can include duplications.  

2.!A typical telephone number in most larger cities involves a seven-digit number using the digits 0, 1, 2, . . . , 9. The first three digits are referred to as
the office code, and are frequently the same for smaller cities.  
   (a)!How many different telephone numbers can one create using only the last four digits? What if all four digits must be different?  

   (b)!How many different telephone numbers can be created using all seven digits? What if the first digit cannot be the number 0?   

3. (a) Let A = 8a, b, c, d, e< and B = 81, 2, 3<. Draw a tree diagram similar to Figure 2.1.1 to illustrate A µ B. 

    (b) Let A and B be sets where A = m  and B = n. Use a tree diagram to prove A µB =  A µ B .  

4. In a business meeting involving four executives, each person shakes every other person's hand. How many handshakes will occur?  

5. How many ways can three couples be seated at a round table? (This problem may be harder than it seems.)  

      (a)!The first way to consider seating them is as each couple as a unit.  

      (b)!The second way is that the people in a couple may switch seats. How does this affect the seating plan?  

6. For the main course at a certain restaurant a person has the choice of beef (prepared three ways), chicken (fried or broiled), or any one of two fish dishes.
Baked or french fried potatoes and a choice of three vege tables complement the  main course. Red or white wine or water are the only beverages served.
However,  the owner is  fussy, and he will  serve red wine or water only with meat dishes,  and white wine or water only with the fish dishes.  How many
meals can be ordered?  

Section 2.2  

7. ! (a) How many ways are there to arrange six people in a circle? Two arrangements are to be considered the same if everyone has the same right-hand
neighbor and the same left-hand neighbor regardless of the exact seat each person occupies. 
      (b) How many ways are there to arrange six people in a circle if person p1 cannot sit next to person p2?

8. ! There are five roads from city A to city B and six roads from city B to city C. There are no direct routes from A to C.  

      (a)!How many different ways are there from city A to C?  

      (b) How many different ways are there from A to C and back to A?  

      (c) What is the answer to part b if each road is to be used exactly once?  

Section 2.3  

9. !(a) A contest is entered by ten people. There will be four different prizes awarded among the ten people. No person  will receive more than one prize. In
how many ways can the prizes be distributed? 
    (b) Suppose that instead of awarding four different prizes to the ten people it is decided that there will be four $10  prizes, three $7 prizes, and three $5
prizes. Suppose that each person will win a prize. In how many ways can the prizes be distributed?   

10. A real estate developer has finished constructing twelve houses and must paint them. He has purchased quantities of white and blue paint so that
five of the houses will be blue and the remainder will be white. How many ways can he decide to paint the houses?  

11. Ten persons apply for three identical jobs and all are qualified for the positions. Two of these persons will work in New York and the other one will
work in San Diego. How many ways can the positions be filled?  
Section 2.4  

12.!Let A = 81, 2, 3, ... , 10<.  

      (a) ! Determine the cardinality of ! HAL.  
      (b) ! How many subsets of A contain exactly four elements?  
      (c) ! How many subsets of A contain at least four elements?  
13.  Among eleven senators,  how many ways  are  there  to  select  (a)  a  committee  of  five  members;  (b)  a  committee  of  five  members  so  that  a  particular
senator, Senator A, is always included; (c) a committee of five so that either Senator A or  Senator B will be included?  

14. Use the combination formula to prove that 
n
1

=
n

n - 1
= n.
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14. Use the combination formula to prove that 
n
1

=
n

n - 1
= n.

15. (a) How many ways can three people be seated in a car with four seats? Assume that someone must drive. 
      (b) What is your answer if only two of the three people have a driver's license?  
16. (a) Let T = 81, 2, 3, 4, 5<. How many subsets of T have less than four elements? 

      (b) How many proper subsets of {1, 2, 3, 4, 5}  contain the numbers 1 and 5? How many of them also do not contain the number 2?
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chapter 3

LOGIC
GOALS
In this chapter, we will introduce some of the basic concepts of mathematical logic. In order to fully understand some of the later
concepts in this book, you must be able to recognize valid logical arguments. Although these arguments will usually be applied
to mathematics, they employ the same techniques that are used by a lawyer in a courtroom or a physician examining a patient.
An added reason for the importance of this chapter is that the circuits that make up digital computers are designed using the same
algebra of propositions that we will be discussing.
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3.1 Propositions and Logical Operators

PROPOSITIONS
Definition:  Proposition.  A proposition  is  a  sentence  to  which  one  and  only  one  of  the  terms  true  or  false  can  be  meaningfully
applied.

Example 3.1.1. "Four is even," "4 œ 81, 3, 5<," and "43 > 21" are propositions.

In traditional logic, a declarative statement with a definite truth value is considered a proposition. Although our ultimate aim is to
discuss mathematical logic, we won't separate ourselves completely from the traditional setting. This is natural because the basic
assumptions,  or  postulates,  of  mathematical  logic  are  modeled  after  the  logic  we  use  in  everyday  speech.  Since  compound
sentences are frequently used in everyday speech, we expect that logical propositions contain connectives like the word and. The
statement "Europa supports life or Mars supports life" is a proposition and, hence, must have a definite truth value. Whatever that
truth value is, it should be the same as the truth value of "Mars supports life or Europa supports life."

LOGICAL OPERATORS
There are several ways in which we commonly combine simple statements into compound ones. The words/phrases and, or, not,
if… then,  and if  and only if  can be added to one or more propositions to create a new proposition. To avoid any confusion, we
will  precisely  define  each  one's  meaning  and  introduce  its  standard  symbol.  With  the  exception  of  negation  (not),  all  of  the
operators act on pairs of propositions. Since each proposition has two possible truth values, there are four ways that truth can be
assigned to two propositions. In defining the effect that a logical operator has on two propositions, the result must be specified
for all four cases. The most convenient way of doing this is with a truth table, which we will illustrate by defining the word and.
Conjunction

Definition: Conjunction  (And). If p and q are propositions, their conjunction, p and q (denoted p Ï q), is defined by the
truth table in Table 3.1.1.

p q p Ï q
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.1.1.  Truth Table for And
Notes:

(a)   To read this truth table, you must realize that any one line represents a case: one possible set of values for p and q.

(b)   The numbers 0 and 1 are used to denote false and true, respectively. This is consistent with the way that many programming
languages  treat  logical,  or  Boolean,  variables  since  a  single  bit,  0  or  1,  can  represent  a  truth  value.  Although  Mathematica's
logical expressions have a value of True or False, there is a built in function called Boole which converts the value to 1 or 0, if
desired. 

8Boole@FalseD, Boole@TrueD<

80, 1<

(c)   For each case, the symbol under p represents the truth value of p. The same is true for q. The symbol under p Ï q represents
the truth value of p Ï q for that case. For example, the second row of the truth table represents the case in which p is false, q is
true, and the resulting truth value for p Ï q is false. As in everyday speech, p Ï q is true only when both propositions are true.
(d)   Just as the letters x, y, and z are frequently used in algebra to represent numeric variables, p, q, and r seem to be the most
commonly used symbols for logical variables. When we say that p  is a logical variable, we mean that any proposition can take
the place of p.
(e)     One  final  comment:  The  order  in  which  we  list  the  cases  in  a  truth  table  is  standardized  in  this  book.  If  the  truth  table
involves two simple propositions, the numbers under the simple propositions can be inter preted as the two-digit binary integers
in increasing order, 00, 01, 10, and 11, for  0, 1, 2, and 3.
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Disjunction

Definition: Disjunction (Or). If p and q are propositions, their disjunction is p or q, denoted p fi q, and is defined by the
truth table in Table 3.1.2.

p q p Í q
0 0 0
0 1 1
1 0 1
1 1 1

Table 3.1.2. Truth Table for Or
Note; The only case in which disjunction is false is when both propositions are false. This interpretation of the word or is called
the nonexclusive or. The exclusive or will be discussed when we consider logical design in Chapter 13.
Negation

Definition:  Negation  (Not).  If  p  is  a  proposition,  its  negation,  not  p,  is  denoted  ¬p  and  is  defined  by  the  truth  table  in
Table 3.1.3.

p Ÿ p
0 1
1 0

Table 3.1.3 Truth Table for Not
Note: Negation is the only standard operator that acts on a single proposition; hence only two cases are needed.
The Conditional Operator (If . . . then).

Consider the following propositions from everyday speech:

(a)  I'm going to quit if I don't get a raise.

(b)   If I pass the final, then I'll graduate.

(c)  I'll be going to the movies provided that my car starts.

All  three propositions  are  conditional,  they can all  be  restated to  fit  into  the form if  Condition,  then Conclusion.  For  example,
statement (a) can be rewritten as "If I don't get a raise, then I'm going to quit."
A conditional statement is meant to be interpreted as a guarantee; if the condition is true, then the conclusion is expected to be
true. It says no more and no less.

Definition: Conditional  Operator.  The conditional  statement if  p  then q,  denoted p Ø q,  is  defined by the truth table in
Table 3.1.4.

p q p Ø q
0 0 1
0 1 1
1 0 0
1 1 1

Table 3.1.4 Truth Table for If... then
Example 3.1.2. Assume your instructor told you "If you receive a grade of 95 or better in the final examination, then you

will  receive an A in this course." Your instructor has made a promise to you (placed a condition with you).  If  you fulfill  his
condition you expect the conclusion (getting an A) to be forthcoming. Your graded final has been returned to you. Has your
instructor told the truth (kept the promise) or is your instructor guilty of a falsehood?
Case I: Your final exam score was less than 95 (the condition is false) and you did not receive an A (the conclusion is false).
The instructor told the truth.
Case II: Your final exam score was less than 95, yet you received an A for the course. The instructor told the truth. (Perhaps
your overall course average was excellent.)
Case III: Your final exam score was greater than 95, but you did not receive an A. The instructor lied.
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Case IV: Your final exam score was greater than 95, and you received an A. The instructor told the truth.

To sum up, the only case in which a conditional proposition is false is when the condition is true and the conclusion is false.

The  order  of  the  condition  and  conclusion  in  a  conditional  proposition  is  important.  If  the  condition  and  conclusion  are
exchanged, a different proposition is produced.

Definition: Converse. The converse of the proposition pØ q is the proposition q Ø p.

The converse of "If you receive a grade of 95 or better in the final exam, then you will receive an A in this course," is "If you
receive an A in this course, then you received a grade of 95 or better in the final exam." It should be clear that these two state-
ments say different things.

Definition: Biconditional Operator  (...if  and only if...).  If  p and q are propositions, the biconditional statement "p if and
only if q,"  denoted p¨ q, is defined by the truth table in Table 3.1.5.

p q p ¨ q
0 0 1
0 1 0
1 0 0
1 1 1

Table 3.1.5  Truth table for "... if and only if..."
Note that p ¨ q is true when p and q have the same truth values. It is common to abbreviate "if and only if" to "iff."

Although  "if  .  .  .  then"  and  "if  and  only  if"  are  frequently  used  in  everyday  speech,  there  are  several  alternate  forms  that  you
should be aware of. They are summarized in the following list:
Conditional

If p then q.

p implies q.

q follows from q.

p, only if q.

q, if p.

p is sufficient for q.

q is necessary for p.

Biconditional

p if and only if  q.

p is necessary and sufficient for q.

p is equivalent to q.

If p, then q, and if q, then p.

If p, then q and conversely.

EXERCISES FOR SECTION 3.1
A Exercises

1. Let d = "I like discrete structures" c = "I will pass this course" s = "I will do my assignments" Express each of the following
propositions in symbolic form:
(a) I like discrete structures and I will pass this course.

(b) I will do my assignments or I will not pass this course.

(c) It is not true that I like discrete structures and I will do my assignments.

(d) I will not do my assignment and I will not pass this course.
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2. For each of the following propositions, identify simple propositions, express the compound proposition in symbolic form, and
determine whether it is true or false:
(a) The world is flat or zero is an even integer.

(b) If 432,802 is a multiple of 4, then 432,802 is even.

(c) 5 is a prime number and 6 is not divisible by 4. 

(d) 3 œ !  and 3 œ ".

(e) 2 ê3 œ ! and 2 ê3 œ ".

(f) The sum of two even integers is even and the sum of two odd integers is  odd.

3. Let p = "2 < 5," q = "8 is an even integer," and r = "11 is a prime number." Express the following as a statement in English and
determine whether the statement is true or false:
(a) Ÿ p Í q   

(b)  p Ø q   

(c) Hp Ï qLØ r  

(d) p Ø q Í HŸ rL

(e) p Ø HŸ qL Í HŸ rL

(f) Ÿ q ØŸ p

4. Rewrite each of the following statements using the other conditional forms:

(a) If an integer is a multiple of 4, then it is even.

(b) The fact that a polygon is a square is a sufficient condition that it is a rectangle.

(c) If  x = 5, then x2 = 25.

(d) If x2 - 5 x + 6 = 0, then x = 2 or x = 3.

(e)  x2 = y2 is a necessary condition for x = y.
5. Write the converse of the propositions in exercise 4. Compare the truth of each proposition and its converse.
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3.2 Truth Tables and Propositions Generated by a Set
Consider  the  compound  proposition  c = Hp Ï qL Í HŸ q Ï rL,  where  p,  q,  and  r  are  propositions.  This  is  an  example  of  a
proposition generated by p, q, and r. We will define this terminology later in the section. Since each of the three simple proposi-
tions has two possible truth values, it follows that there are eight different combinations of truth values that determine a value for
c. These values can be obtained from a truth table for c. To construct the truth table, we build c from  p, q, and r and from the
logical operators. The result is Table 3.2.1. Strictly speaking, the first three columns and the last column make up the truth table
for c. The other columns are work space needed to build up to c.

p q r p Ï q Ÿ q Ÿ q Ï r Hp Ï qL Í HŸ q Ï rL
0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 1 0 0
1 0 1 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 0 0 1

Table 3.2.1 Truth Table for c = Hp Ï qL Í Hÿ q Ï rL
Note that the first three columns of the truth table are an enumeration of the eight three-digit binary integers. This standardizes
the order in which the cases are listed. In general, if c is generated by n simple propositions, then the truth table for c will have 2n
rows with the first n columns being an enumeration of the n digit binary integers. In our example, we can see at a glance that for
exactly four of the eight cases, c will be true. For example, if p and r are true and q is false (the sixth case), then c is true.
Let S  be any set of propositions. We will  give two definitions of a proposition generated by S. The first  is a bit  imprecise,  but
should be clear. The second definition is called a recursive definition. If you find it confusing, use the first definition and return
to the second later.

Definition: Proposition Generated by S.
(1) A proposition generated by S is any valid combination of propositions in S with conjunction, disjunction, and negation.
(2) (a) If p œ S, then p is a proposition generated by S.
     (b) If x and y are propositions generated by S, then so are HxL, Ÿ x, x Í y , and x Ï y.

Note: We have not included the conditional and biconditional in the definition because they can both be obtained from conjunc-
tion, disjunction, and negation, as we will see later.
If S is a finite set, then we may use slightly different terminology. For example, if S = 8p, q, r<, we might say that a proposition
is generated by p, q, and r instead of 8p, q, r<. 

Hierarchy of Logical Operations
It is customary to use the following hierarchy for interpreting propositions, with parentheses overriding this order:

First: Negation

Second: Conjunction 

Third: Disjunction

Within any level  of  the hierarchy,  work from left  to  right.  Using these rules,  p Ï q Í r  is  taken to mean Hp Ï qL Ï r.  These
precedence rules are universal, and are exactly those used by computer languages to interpret logical expressions. 
Example 3.2.1. A few shortened expressions and their fully parenthesized versions:

(a)   p Ï q Ï r is Hp Ï qL Ï r.

(b)   Ÿ p Í Ÿ r is HŸ pL Í HŸ rL.

 (c)    Ÿ Ÿ p is Ÿ HŸ pL.

A proposition generated by a set S need not include each element of S in its expression. For example, Ÿ q Ï r  is a proposition
generated by p, q, and r.
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EXERCISES FOR SECTION 3.2
A Exercises

1.   Construct the truth tables of:

(a)  p Í p  

(b)  p Ï HŸ pL  

( c) p Í HŸ pL

 (d) p Ï p

2.   Construct the truth tables of:

(a)   Ÿ Hp Ï q L  

(b)   p Ï HŸ qL   

(c)  Hp Ï qL Ï r   

(d)  Hp Ï qL \ê Hq Ï rL Í Hr Ï pL

(e) HŸ pL Í Ÿ qL

(f)   p Í q Í r Í s

3.   Rewrite the following with as few extraneous parentheses as possible:

 (a) HŸ HHpL Ï HrLLL Í HsL  

 (b) HHpL Í HqLL Ï HHrL Í HqLL

4. In what order are the operations in the following propositions performed?

(a)   p Í Ÿ q Í r Ï Ÿ p

(b)  p Ï Ÿ q Ï r Ï Ÿ p

5.   Determine the number of rows in the truth table of a proposition containing four variables p, q, r, and s.

6. If there are 45 lines on a sheet of paper, and you want to reserve one line for each line in a truth table, how large could S  be
if you can write truth tables of propositions generated by S on a sheet of paper?
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3.3 Equivalence and Implication

Tautologies & Contradictions
Consider  two propositions  generated  by  p  and  q:  Ÿ Hp Ï qL  and  Ÿ p Í Ÿ q.  At  first  glance,  they  are  different  propositions.  In
form, they are different, but they have the same meaning. One way to see this is to substitute actual propositions for p and q; such
as:
p: I've been to Toronto; and q: I've been to Chicago.

Then Ÿ Hp Ï qL translates to "I haven't been to both Toronto and Chicago," while Ÿ p Í Ÿ q. is "I haven't been to Toronto or I
haven't been to Chicago." Determine the truth values of these propositions. Naturally, they will be true for some people and false
for others. What is important is that no matter what truth values they have, Ÿ Hp Ï qL and Ÿ p Í Ÿ q. will have the same truth
value. The easiest way to see this is by examining the truth tables of these propositions ().

p q Ÿ Hp Ï qL Ÿ p Í Ÿ q
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

Table 3.3.1 Truth tables of  ÿ Hp Ï qL and ÿ p Í ÿ q. 
In all four cases, Ÿ Hp Ï qL and Ÿ p Í Ÿ q. have the same truth value. Then when the biconditional operator is applied to them,
the result is a value of true in all cases.

Definition: Tautology. An expression involving logical variables that is true in all cases is called a tautology.

Example 3.3.1. All of the following are tautologies because their truth tables consist of a column of 1's.

(a)  HŸ Hp Ï qLL¨ HŸ p Í Ÿ qL.

(b)   p Í Ÿ p

(c)  Hp Ï qLØ p

(d)  q Ø Hp Í qL

(e)  Hp Í qL¨ Hq Í pL

Definition: Contradiction. An expression involving logical variables that is false for all cases is called a contradiction.

Example 3.3.2. p Ï Ÿ p and Hp Í qL Ï HŸ pL Ï HŸ qL are contradictions.

Equivalence
Definition: Equivalence. Let S be a set of propositions and let r and s be propositions generated by S. r and s are equiva-

lent if and only if r ¨ s is a tautology. The equivalence of r and s is denoted r ! s.
Example 3.3.3. The following are all equivalences:

(a)  Hp Ï qL Í HŸ p Ï qL ! q.

(b)  p Ø q ! Ÿ q Ø Ÿ p

(c)  p Í q ! q Í p.

All tautologies are equivalent to one another. We will use the number 1 to symbolize a tautology.

Example 3.3.4. p Í Ÿ p ! l.

All contradictions are equivalent to one another. We will use the number 0 to symbolize a contradiction.

Example 3.3.5. p Ï Ÿ p ! 0.

Equivalence  is  to  logic  what  equality  is  to  algebra.  Just  as  there  are  many  ways  of  writing  an  algebraic  expression,  the  same
logical meaning can be expressed in many different ways.
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IMPLICATION
Example 3.3.6. Consider the two propositions:

x: The money is behind Door A; and

y: The money is behind Door A or Door B.

Imagine that you were told that there is a large sum of money behind one of two doors marked A and B, and that one of the
two propositions x and y is true and the other is false. Which door would you choose? All that you need to realize is that if x is
true, then y will also be true. Since we know that this can't be the case, y must be the true proposition and the money is behind
Door B.
This is an example of a situation in which the truth of one proposition leads to the truth of another. Certainly, y can be true when
x is false; but x can't be true when y is false. In this case, we say that x implies y.
Look at the truth table of p Ø q in Table 3.1.4 (copied below). If p implies q, then the third case can be ruled out, since it is the
case that makes a conditional proposition false.

p q p Ø q
0 0 1
0 1 1
1 0 0
1 1 1

Definition: Implication. Let S be a set of propositions and let r and s be propositions generated by S. We say that r implies
s if r Ø s is a tautology. We write r fl s to indicate this implication.

Example 3.3.7. A commonly used implication is that p implies p Í q, which is verified by the truth table in Table 3.3.2.
p q p Í q p Ø p Í q
0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 1

Table 3.3.2 Truth Table for p Æ Hp Í qL
If we let p represent "The money is behind Door A" and q represent "The money is behind Door B," p fl Hp Í qL is a formal-
ized version of the reasoning used in Example 3.3.6. A common name for this implication is disjunctive addition. In the next
section we will consider some of the most commonly used implications and equivalences.
When  we  defined  what  we  mean  by  a  proposition  generated  by  a  set  in  Section  3.2,  we  didn't  include  the  conditional  and
biconditional  operators.  This  was  because  of  the  two  equivalences  p Ø q ñ Ÿ p Í q  and
p ¨ q ñ Hp Ï qL Í HŸ p Ï Ÿ qL. Therefore, any proposition that includes the conditional or biconditional operators can be
written in an equivalent way using only conjunction, disjunction, and negation. We could even dispense with disjunction since
p Í q is equivalent to a proposition that uses only conjunction and negation.

EXERCISES FOR SECTION 3.3
A Exercises

1.  Given the following propositions generated by p, q, and r, which are equivalent to one another?

(a)  Hp Ï rL Í q  

(b)  p Í Hr Í qL 

(c)  r Ï p   

(d)  Ÿ r Í p  

 (e)   Hp Í qL Ï Hr Í qL

 (f)   r Ø p

(g)   r Í Ÿ p

 (h)   p Ø r
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2.  (a) Construct the truth table for x = Hp Ï Ÿ qL Í Hr Ï pL.

(b) Give an example other than x itself of a proposition generated by p, q, and r that is equivalent to x.

(c) Give an example of a proposition other than x that implies x.

(d)   Give an example of a proposition other than x that is implied by x.

3.   Is an implication equivalent to its converse? Verify your answer using a truth table.

4. Suppose that x is a proposition generated by p, q, and r that is equivalent to p Í Ÿ q. Write out the truth table for x.
B Exercises

5.   How large is the largest set of propositions generated by p and q with the property that no two elements are equivalent?

6.   Find a proposition that is equivalent to p Í q and uses only conjunction and negation.

7. Explain why a contradiction implies any proposition and any proposition implies a tautology.
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3.4 The Laws of Logic
In this section, we will list the most basic equivalences and implications of logic. Most of the equivalences listed in Table 3.4.1
should be obvious to the reader. Remember, 0 stands for contradiction, 1 for tautology.  Many logical laws are similar to alge-
braic laws.  For example, there is a logical law corresponding to the associative law of addition, a + Hb + cL = Ha + bL + c.  In
fact, associativity of both conjunction and disjunction are among the laws of logic. Notice that with one exception, the laws are
paired in such a way that exchanging the symbols fl, fi, 1 and 0 for fi, fl, 0, and 1, respectively, in any law gives you a second
law. For example,  p Í 0 ñ p results in p Ï 1 ñ p. This called a duality principle. For now, think of it as a way of remember-
ing  two laws  for  the  price  of  one.  We will  leave  it  to  the  reader  to  verify  a  few of  these  laws  with  truth  tables.  However,  the
reader should be careful  in applying duality to the conditional  operator and implication since the dual  involves taking the con-
verse. For example, the dual of p Ï q fl p is p Í q › p, which is usually written p fl p Í q

Example 3.4.1. The identity law:
p 1 p Ï 1 Hp Ï 1L¨ p
0 1 0 1
1 1 1 1

therefore, Hp Ï lL ! p.

Some of the logical laws in Table 3.4.2 might be less obvious to you. For any that you are not comfortable with, substitute actual
propositions for the logical variables. For example, if p is "John owns a pet store" and q is "John likes pets," the detachment law
should make sense.

TABLE 3.4.1 Basic Logical Laws

Commutative Laws

 p Í q ñ q Í p    p Ï q ñ q Ï p

Associative Laws

Hp Í qL Í r ñ p Í Hq Í rL    (p Ï qL Ï r ñ p Ï Hq Ï rL

Distributive Laws

p Ï Hq Í rL ñ Hp Ï q L Í Hp Ï rL         p Í Hq Ï rL ñ Hp Í qL Ï Hp Í rL

Identity Laws

   p Í 0 ñ p    p Ï 1 ñ p

Negation Laws

 p Ï Ÿ p ñ 0   p Í Ÿ P ñ 1

Idempotent Laws

p Í p ñ p    p Ï p ñ p

Null Laws

p Ï 0 ñ 0  p Í 1 <ñ 1

Absorption Laws

p Ï 8p Í qLñ p    p Í Hp Ï qL ñ p

DeMorgan's Laws

 Ÿ Hp Í qL ñ HŸ pL Ï HŸ qL Ÿ Hp Ï qL ñ HŸ pL Í HŸ qL

Involution Law

 Ÿ HŸ pLñ p
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TABLE 3.4.2 Common Implications and Equivalences

Detachment

Hp Ø qL Ï p fl q

Indirect Reasoning

Hp Ø qL Ï Ÿ q fl Ÿ p

Disjunctive Addition

p fl Hp Í qL

Conjunctive Simplification

 Hp Ï qL fl p and Hp Ï qL fl q

Disjunctive Simplification

 Hp Í qL Ï Ÿ p fl q and Hp \ê qL Ï Ÿ q fl p

Chain Rule

Hp Ø qL Ï H q Ø rL fl Hp Ø rL

Conditional Equivalence

 p Ø q ñ Ÿ p Í q

Biconditional Equivalences

 Hp ¨ qL ñ Hp Ø qL Ï Hq Ø pLñ Hp Ï qL Í HŸ p Ï Ÿ qL

Contrapositive

 Hp Ø qL ñ HŸ q ØŸ pL

EXERCISES FOR SECTION 3.4
A Exercises

1.  Write the following in symbolic notation and determine whether it is a tautology: "If I study then I will learn. I will not learn.
Therefore, I do not study."
2. Show that the common fallacy Hp Ø qL Ï Ÿ p fl Ÿ q is not a law of logic.

3. Describe in general how duality can be applied to implications if we introduce the symbol ›, read "is implied by."

4. Write the dual of the following statements:

(a)  Hp Ï qLfl p

(b)  Hp Í qL Ï Ÿ q fl p
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3.5 Mathematical Systems
In  this  section,  we  present  an  overview  of  what  a  mathematical  system  is  and  how  logic  plays  an  important  role  in  one.  The
axiomatic method that we will use here will not be duplicated with as much formality anywhere else in the book, but we hope an
emphasis on how mathematical facts are developed and organized will help to unify the concepts we will present. The system of
propositions and logical operators we have developed will serve as a model for our discussion. Roughly, a mathematical system
can be defined as follows:

Definition: Mathematical System. A mathematical system consists of:

(1) A set or universe, U.

(2) Definitions — sentences that explain the meaning of concepts that relate to the universe. Any term used in describing the
universe itself is said to be undefined. All definitions are given in terms of these undefined concepts of objects.
(3) Axioms — assertions about the properties of the universe and rules for creating and justifying more assertions. These rules
always include the system of logic that we have developed to this point.
(4) Theorems — the additional assertions mentioned above.

Example 3.5.1. In Euclidean geometry the universe consists of points and lines (two undefined terms). Among the defini-
tions is a definition of parallel lines and among the axioms is the axiom that two distinct parallel lines never meet.

Example  3.5.2.  Propositional  calculus  is  a  formal  name  for  the  logical  system  that  we've  been  discussing.  The  universe
consists of propositions. The axioms are the truth tables for the logical operators and the key definitions are those of equiva-
lence and implication. We use propositions to describe any other mathematical system; therefore, this is the minimum amount
of structure that a mathematical system can have.

Definition: Theorem. A true proposition derived from axioms of mathematical system is called a theorem.

Theorems  are  normally  expressed  in  terms  of  a  finite  number  of  propositions,  p1, p2, . . . , pn  ,  called  the  premises,  and  a
proposition, C, called the conclusion. These theorems take the form

p1 Ï p2 Ï ! Ï pn fl C

or more informally,

p1, p2, . . . , and pn imply C

For a theorem of this type, we say that the premises imply the conclusion. When a theorem is stated, it is assumed that the axioms
of the system are true. In addition, any previously proven theorem can be considered an extension of the axioms and can be used
in demonstrating that  the new theorem is  true.  When the proof  is  complete,  the new theorem can be used to  prove subsequent
theorems. A mathematical system can be visualized as an inverted pyramid with the axioms at the base and the theorems expand-
ing out in various directions (Figure 3.5.1).

FIGURE 3.5.1 The body of knowledge In a mathematical system

PROOF
Definition: Proof. A proof of a theorem is a finite sequence of logically valid steps that demonstrate that the premises of a

theorem imply the conclusion.
Exactly  what  constitutes  a  proof  is  not  always clear.  For  example,  a  research mathematician might  require  only a  few steps  to
prove a theorem to a colleague, but might take an hour to give an effective proof to a class of students. Therefore, what consti-
tutes a proof often depends on the audience. But the audience is not the only factor. One of the most famous theorems in graph
theory, The Four Color Theorem, was finally proven in 1976, after over a century of effort by many mathematicians.  Part of the
proof consisted of having a computer check many different graphs for a certain property. Without the aid of the computer, this
checking would  have taken years.  In  the  eyes  of  some mathematicians,  this  proof  was  considered questionable.  Shorter  proofs
have been developed since 1976 and there is no controversy associated with The Four Color Theorem at this time. (The theorem
is stated in Chapter 9.)
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Exactly  what  constitutes  a  proof  is  not  always clear.  For  example,  a  research mathematician might  require  only a  few steps  to
prove a theorem to a colleague, but might take an hour to give an effective proof to a class of students. Therefore, what consti-
tutes a proof often depends on the audience. But the audience is not the only factor. One of the most famous theorems in graph
theory, The Four Color Theorem, was finally proven in 1976, after over a century of effort by many mathematicians.  Part of the
proof consisted of having a computer check many different graphs for a certain property. Without the aid of the computer, this
checking would  have taken years.  In  the  eyes  of  some mathematicians,  this  proof  was  considered questionable.  Shorter  proofs
have been developed since 1976 and there is no controversy associated with The Four Color Theorem at this time. (The theorem
is stated in Chapter 9.)
PROOFS IN PROPOSITIONAL CALCULUS

Theoretically, you can prove anything in propositional calculus with truth tables. In fact, the laws of logic stated in Section 5.4
are all theorems. Propositional calculus is one of the few mathematical systems for which any valid sentence can be determined
true  or  false  by  mechanical  means.  A  program  to  write  truth  tables  is  not  too  difficult  to  write;  however,  what  can  be  done
theoretically is not always practical. For example,

a, a Ø b, b Ø c, . . . , y Ø z fl z

is a theorem in propositional calculus. However, suppose that you wrote such a program and you had it write the truth table for

Ha Ï Ha Ø bL Ï H b Ø cL Ï!Ï Hy Ø zLLØ z

The  truth  table  will  have  226  cases.  At  one  million  cases  per  second,  it  would  take  approximately  one  minute   to  verify  the
theorem.  Now if you decided to check a similar theorem,
 p1, p1 Ø p2, … , p99 Ø p100 fl p100,

you would really have time trouble. There would be 2100 º 1.26765µ1030  cases to check in the truth table.  At one million cases
per second it would take approximately 1.46719µ1019 days to check all cases.  For most of the remainder of this section, we will
discuss an alternate method for proving theorems in propositional calculus. It is the same method that we will use in a less formal
way for  proofs  in  other  systems.  Formal  axiomatic  methods would be too unwieldy to  actually  use in  later  sections.  However,
none of the theorems in later chapters would be stated if they couldn't be proven by the axiomatic method.
We will introduce two types of proof here, direct and indirect.

DIRECT PROOFS
A  direct  proof  is  a  proof  in  which  the  truth  of  the  premises  of  a  theorem  are  shown  to  directly  imply  the  truth  of  the

theorem's conclusion.
Example 3.5.3. Theorem: p Ø r, q Ø s, p Í q fl s fi r.   A direct proof of this theorem is:

Step   Proposition   Justification

(1)   p Í q   Premise

(2)   Ÿ p Ø q    (1), conditional rule

(3)   q Ø s   Premise

(4)    Ÿ p Ø s   (2), (3), chain rule

(5)  Ÿ s Ø p   (4), contrapositive

(6)   p Ø r   Premise

(7)   Ÿ s Ø r   (5), (6), chain rule

(8)  s fi r   (7), conditional rule   ‡

Note that ‡ marks the end of a proof.

Rules for Formal Proofs. Example 3.5.3 illustrates the usual method of formal proof in a formal mathematical system. The rules
governing these proofs are:
(1) A proof must end in a finite number of steps.

(2) Each  step  must  be  either  a  premise  or  a  proposition  that  is  implied  from  previous  steps  using  any  valid  equivalence  or
implication.
(3) For a direct proof , the last step must be the conclusion of the theorem. For an indirect proof (see below), the last step must be
a contradiction.
(4)  Justification  Column.  The  column labeled  "justification"  is  analogous  to  the  comments  that  appear  in  most  good computer
programs. They simply make the proof more readable.

Example 3.5.4. Here are two direct proofs of Ÿ p Í q, s Í p, Ÿ q fl s:
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(1)   Ÿ p Í q   Premise

(2)   Ÿ q   Premise

(3)   Ÿ p   Disjunctive simplification, (1), (2)

(4)   s Í p   Premise

(5)   s    Disjunctive simplification, (3), (4). ‡

You are invited to justify the steps in this second proof:

(1)  Ÿ p Í q

(2)  Ÿ q Ø Ÿ p

(3)   s Í p

(4)   p Í s

(5)   Ÿ p Ø s

(6)   Ÿ q Ø s

(7)   Ÿ q

(8)   s ‡

CONDITIONAL CONCLUSIONS

The conclusion of a theorem is often a conditional proposition. The condition of the conclusion can be included as a premise in
the proof of the theorem. The object of the proof is then to prove the consequence of the conclusion. This rule is justified by the
logical law

p Ø Hh Ø cL ñ Hp Ï hL Ø c.
Example  3.5.5.  The  following  proof  of  p  Ø  (q  Ø  s),  ¬r  \/  p,  q  fl  r  Ø  s  includes  r  as  a  fourth  premise.  The  truth  of  s

concludes the proof.
(1)   Ÿ r \ê p   Premise

(2)  r   Added premise

(3)   p    (1), (2), disjunction simplification

(4)   p Ø Hq Ø sL Premise

(5)    q Ø s   (3), (4), detachment

(6)    q   Premise

(7)  s   (5), (6), detachment. ‡

INDIRECT PROOFS / PROOF BY CONTRADICTION
Consider a theorem P fl C, where P represents p1, p2, . . . , and pn , the premises. The method of indirect proof is based on the
equivalence P Ø C ñŸ HP Ï Ÿ CL.  
In words, this logical law states that if P fl C,  then P Ï Ÿ C  is always false; that is, P Ï Ÿ C  is a contradiction. This means
that a valid method of proof is to negate the conclusion of a theorem and add this negation to the premises. If a contradiction can
be implied from this set of propositions, the proof is complete. For the proofs in this section, a contradiction will often take the
form  t fl Ÿ t.  For  proofs  involving  numbers,  a  contradiction  might  be  1 = 0  or  0 < 0.  Indirect  proofs  involving  sets  might
conclude with x œ «  or (x œ A  and x œ Ac). Indirect proofs are often more convenient than direct proofs in certain situations.
Indirect proofs are often called proofs by contradiction.
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Example 3.5.6. Here is an example of an indirect proof of the theorem in Example 3.5.3:

(1)   Ÿ Hs fi rL   Negated conclusion

(2)    Ÿ s fl Ÿ r   DeMorgan's Law, (1)

(3)    Ÿ s   Conjunctive simplification, (2)

(4)    q Ø s   Premise

(5)   Ÿ q   Indirect reasoning, (3), (4)

(6)  Ÿ r   Conjunctive simplification, (2)

(7)    p Ø r   Premise

(8)    Ÿ p   Indirect reasoning, (6), (7)

(9)    HŸ pL Ï HŸ qL   Conjunctive, (5), (8)

(10)   Ÿ Hp Í qL   DeMorgan's Law, (9)

(11)   p Í q   Premise

(12)   0   (10), (11) ‡

PROOF STYLE
The rules allow you to list the premises of a theorem immediately; however, a proof is much easier to follow if the premises are
only listed when they are needed.

Example 3.5.7. Here is an indirect proof of a Ø b, Ÿ Hb Í c L fl Ÿ a .

(1)    a   Negation of the conclusion

(2)   a Ø b   Premise

(3)    b   (1), (2), detachment

(4)    b Í c    (3), disjunctive addition

(5)    Ÿ Hb Í cL    Premise

(6)   0   (4), (5) ‡

As we mentioned at the outset of this section, we are only presenting an overview of what a mathematical system is. For greater
detail  on  axiomatic  theories,  see  Stoll  (1961).  An  excellent  description  of  how  propositional  calculus  plays  a  part  in  artificial
intelligence  is  contained  in  Hofstadter  (1980).  If  you  enjoy  the  challenge  of  constructing  proofs  in  propositional  calculus,  you
should enjoy the game WFF'N PROOF (1962), by L.E. Allen.

EXERCISES FOR SECTION 3.5
A Exercises

1.  Prove with truth tables:

(a) p Í q, Ÿ q fl p

(b) p Ø q, Ÿ q fl Ÿ p

2. Prove with truth tables:

(a) q, Ÿ q fl p 

(b) p Ø q fl Ÿ p Í q

B Exercises

3. Give direct and indirect proofs of:

(a) a Ø b, c Ø b, d Ø Ha fi cL, d fl b.

(b)  Hp Ø qL Ï Hr Ø sL, Hq Ø tL Ï Hs Ø uL, Ÿ Ht fl uL, p Ø r fl Ÿ p.
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(c) p Ø Hq Ø sL, Ÿ s \ê p, q fl s Ø r.

(d)  p Ø q, q Ø r, Ÿ Hp Ï rL, p Í r fl r.

(e) Ÿ q, p Ø q, p Í t fl t

4. Give direct and indirect proofs of:

(a)  p Ø q, Ÿ r Ø Ÿ q, Ÿ r fl Ÿ p.

(b)  p Ø Ÿ q, Ÿ r Ø q, p fl r.

(c)  a Í b, c Ï d, a Ø Ÿ c fl b.

5. Are the following arguments valid? If they are valid, construct formal proofs; if they aren't valid, explain why not.

(a) If wages increase, then there will be inflation. The cost of living will not increase if there is no inflation. Wages will increase.
Therefore, the cost of living will increase.
(b) If  the  races  are  fixed  or  the  casinos  are  crooked,  then  the  tourist  trade  will  decline.  If  the  tourist  trade  decreases,  then  the
police will be happy. The police force is never happy. Therefore, the races are not fixed.
6. Determine the validity of the following argument: For students to do well in a discrete mathematics course, it is necessary that
they  study  hard.  Students  who  do  well  in  courses  do  not  skip  classes.  Students  who  study  hard  do  well  in  courses.  Therefore
students who do well in a discrete mathematics course do not skip class.
7. Describe how p1, p1 Ø p2, … , p99 Ø p100 fl p100 could be proven in 199 steps.
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3.6 Propositions over a Universe
Example 3.6.1. Consider the sentence "He was a member of the Boston Red Sox." There is no way that we can assign a

truth value to this sentence unless "he" is specified. For that reason, we would not consider it a proposition. However, "he" can
be considered a variable that holds a place for any name. We might want to restrict the value of "he" to all names in the major-
league baseball record books. If that is the case, we say that the sentence is a proposition over the set of major-league baseball
players, past and present.
Definition: Proposition over a Universe. Let U be a nonempty set. A proposition over U is a sentence that contains a variable that
can take on any value in U and that has a definite truth value as a result of any such substitution.

Example 3.6.2.

(a) !A few propositions over the integers are 4 x2 - 3 x = 0,  0 § n § 5, and "k is a multiple of 3."

(b) !A few propositions over the rational numbers are 4 x2 - 3 x = 0,  y2 = 2 , and  Hs - 1L Hs + 1L = s2 - 1.
(c) !A few propositions over the subsets of ! are HA = «L Í HA = ! L, 3 œ A, and  A › 81, 2, 3< ! «.

All  of  the  laws  of  logic  that  we  listed  in  Section  3.4  are  valid  for  propositions  over  a  universe.  For  example,  if  p  and  q  are
propositions over the integers, we can be certain that p Ï q fl p, because Hp Ï qL Ø p is a tautology and is true no matter what
values  the  variables  in  p  and  q  are  given.  If  we  specify  p  and  q  to  be  p HnL : n < 4 and  q HnL : n < 8,  we  can  also  say  that  p
implies p Ï q.  This is  not a usual implication, but for the propositions under discussion, it  is  true.  One way of describing this
situation in general is with truth sets.

TRUTH SETS
Definition: Truth Set. If p is a proposition over U, the truth set of p is Tp = 8a œ U p HaL is true<.

Example 3.6.3. The truth set of the proposition 81, 2< › A = « taken as a proposition over the power set of 81, 2, 3, 4<
is 8«, 83<, 84<, 83, 4<<.

Example 3.6.4.  In  the universe "  (the integers),  the truth set  of  4 x2 - 3 x = 0 is  80<.  If  the universe is  expanded to  the
rational numbers, the truth set becomes 80, 3 ê4<. The term solution set is often used for the truth set of an equation such as the
one in this example.

Definition: Tautology and Contradiction. A proposition over U is a tautology if its truth set is U. It is a contradiction if its
truth set is empty.

Example 3.6.5. Hs - 1L Hs + 1L = s2 - 1 is a tautology over the rational numbers. x2 - 2 = 0 is a contradiction over the
rationals.
The  truth  sets  of  compound  propositions  can  be  expressed  in  terms  of  the  truth  sets  of  simple  propositions.  For  example,  if
a œ TpÏq, then a makes p Ï q true. Therefore, a makes both p and q true, which means that a œ Tp › Tq. This explains why the
truth set of the conjunction of two propositions equals the intersection of the truth sets of the two propositions. The following list
summarizes the connection between compound and simple truth sets:

TpÏq = Tp › Tq

TpÍq = Tp ‹ Tq

TŸp = Tp
c

Tp¨q = ITp › TqM ‹ ITp
c › TqcM

TpØq = Tp
c ‹ Tq

Definition: Equivalence. Two propositions are equivalent if p ¨ q is a tautology. In terms of truth sets, this means that p
and q are equivalent if Tp = Tq .

Example 3.6.6.

(a) ! n + 4 = 9 and n = 5 are equivalent propositions over the integers.
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(b) !A › 84< ! « and 4 œ A  are equivalent propositions over the power set of the natural numbers.

Definition: Implication. If p and q are propositions over U, p implies q if p Ø q is a tautology.

Since the truth set of p Ø q is Tp
c ‹ Tq, the Venn diagram for TpØq in Figure 3.6.1 shows that p fl q when Tp Œ Tq.

FIGURE 3.6.1 Venn diagram for TpØq

Example 3.6.7.

(a) !Over the natural numbers: n < 4 fl n < 8 since 80, 1, 2, 3, 4< Œ 80, 1, 2, 3, 4, 5, 6, 7, 8<.

(b) ! Over the power set of the integers: Ac = 1 implies A › 80, 1< !«.

(c) !A Œ even integers fl A › odd integers = «.

EXERCISES FOR SECTION 3.6
A Exercises

1. !If U = ! H 81, 2, 3, 4<L, what are the truth sets of the following propositions?

(a) !A › 82, 4< = «.

(b) !3 œ A and 1 – A.

(c) !A ‹ 81< = A.

(d) ! A is a proper subset of 82, 3, 4<.

(e) ! A = Ac .

2. ! Over the universe of positive integers, define

p HnL : n is prime and n < 32.

q HnL : n is a power of 3.

r HnL : n is a divisor of 27.

(a) ! What are the truth sets of these propositions?

(b) ! Which of the three propositions implies one of the others?

3. ! If U = 80, 1, 2<, how many propositions over U could you list without listing two that are equivalent?

4. ! Given the propositions over the natural numbers:

p : n < A

q : 2 n > 17

r : n is a divisor of 18

what are the truth sets of:

(a)! q

(b)! p Ï q

(c)! r

2 | C3b.nb

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License. 69



(d)! q Ø r

5. !Suppose that s is a proposition over {1, . . . , 8} . If Ts = 81, 3, 5, 7<, give two examples of propositions that are equivalent to
s.
6. !(a) Determine the truth sets of the following propositions over the

positive integers:

p HnL : n is a perfect square and n < 100. 

q HnL : n = !HAL for some set A

 (b) Determine TpÏq for p and q above.

7. !Let the universe be ", the set of integers. Which of the following propositions are equivalent over "?

a:  !0 < n2 < 9.

b: !0 < n3 < 27.
c:  0 < n < 3.
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3.7 Mathematical Induction
In this section, we will examine mathematical induction, a technique for proving propositions over the positive integers. Mathe-
matical (or finite) induction reduces the proof that all of the positive integers belong to a truth set to a finite number of steps.

Mathematical Induction is sometimes called finite induction.

Example 3.7.1.  Consider the following proposition over the positive integers,  which we will  label  p HnL:  The sum of the
positive integers from 1 to n is n Hn+1L

2
. This is a well-known formula that is quite simple to verify for a given value of n.   For

example, p H5L is: The sum of the positive integers from 1 to 5 is 5 H5+1L
2

. Indeed, 1 + 2 + 3 + 4 + 5 = 15 = 5 H5+1L
2

. Unfortu-
nately, this doesn't serve as a proof that p HnL is a tautology. All that we've established is that 5 is in the truth set of p. Since the
positive integers are infinite, we certainly can't use this approach to prove the formula.
An  Analogy:  Mathematical  induction  is  often  useful  in  overcoming  a  problem  such  as  this  one.  A  proof  by  mathematical
induction is similar to knocking over a row of closely spaced dominos that are standing on end. To
knock over the five dominos in Figure 3.7.1, all you need to do is push Domino 1 to the right. To be assured that they all will be
knocked over, some work must be done ahead of time. The dominos must be positioned so that if any domino is pushed to the
right, it will push the next domino in the line.

FIGURE 3.7.1 Illustration of example 3.7.1

Now imagine  the  propositions  pH1L, p H2L, pH3L, … to  be  an  infinite  line  of  dominos.  Let's  see  if  these  propositions  are  in  the
same formation as the dominos were.  First, we will focus on one specific point of the line: pH99L and pH100L. We are not going
to prove that either of these propositions is true, just that the truth of pH99L implies the truth of p H100L. In terms of our analogy, if
pH99L is knocked over, it will knock over pH100L.
In proving pH99L fl pHl00L, we will use pH99L as our premise. We must prove: The sum of the positive integers from 1 to 100 is
100 H100+1L

2
.  We start by observing that the sum of the positive integers from 1 to 100 is H1 + 2 + ! + 99L + 100. That is, the

sum of the positive integers from 1 to 100 equals  the sum of the first ninety-nine plus the final number, 100. We can now apply
our  premise,  pH99L,  to  the  sum  1 + 2 + ! + 99.  After  rearranging  our  numbers,  we  obtain  the  desired  expression  for
1 + 2 + ! + 100:

1 + 2 + ! + 99 + 100 = H1 + 2 + ! + 99L + 100
= 99 H99+1L

2
+ 100

= 99 µ 100
2

+ 2 µ 100
2

= 100 µ 101
2

= 100 H100+1L
2

What we've just done is analogous to checking two dominos in a line and finding that they are properly positioned. Since we are
dealing with an infinite line, we must check all pairs at once. This is accomplished by proving that pHnL fl pHn + 1L for all n ¥ 1:

1 + 2 + ! + n + Hn + 1L = H1 + 2 + ! + nL + Hn + 1L
= nHn+1L

2
+ Hn + 1L by pHnL

= nHn+1L
2

+ 2 Hn+1L
2

= Hn+1L Hn+2L
2

= Hn+1L HHn+1L+1L
2

They are all lined up! Now look at pH1L : The sum of the positive integers from 1 to l is 1+1
2

. Clearly, pH1L is true. This sets off a
chain reaction. Since p H1L fl p H2L, p H2L is true. Since p H2L fl p H3L, pH3L is true; and so on.   ‡
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The Principle of Mathematical Induction. Let p(n) be a proposition
over the positive integers, then p(n) is a tautology if
(1)  !p(1) is true, and
(2)!  for all n ¥ 1,  pHnL fl pHn + 1L.

Note:  The  truth  of  p H1L  is  called  the  basis  for  the  induction  proof.  The  premise  that  p(n)  is  true  in  Statement  (b)  is  called  the
induction  hypothesis.  The  proof  that  p HnL  implies  p Hn + 1L  is  called  the  induction  step  of  the  proof.  Despite  our  analogy,  the
basis is usually done first in an induction proof. The order doesn't really matter.

Example 3.7.2. Consider the implication over the positive integers

p HnL : q0 Ø q1, q1 Ø q2, … , qn-1 Ø qn, q0 fl qn
 A proof that p HnL is a tautology follows.

Basis:  pH1L  is  q0 Ø q1, q0 fl q1.  This  is  the  logical  law of  detachment  which  we  know is  true.  If  you  haven't  done  so  yet,
write out the truth table of HHq0 Ø q1 L Ï q0LØ q1 to verify this step.
Induction: Assume that  p HnL is true for some n ¥ 1. We want to prove that p Hn + 1L must be true. That is:

q0 Ø q1, q1 Ø q2, … , qn-1 Ø qn , qn Ø qn+1, q0 fl qn+1
 Here is a direct proof of p Hn + 1L:

Steps ! Proposition(s) ! Justification

H1L - H n + 1L  q0 Ø q1, q1 Ø q2, … , qn-1 Ø qn, q0 Premises

Hn + 2L !  qn H1L - Hn + 1L, p HnL

Hn + 3L !  qn Ø qn+1 ! Premise

Hn + 4L !  qn+1 Hn + 2L, Hn + 3L, detachment ‡

Example 3.7.3. For all n ¥ 1, n3 + 2 n  is a multiple of 3.  An inductive proof follows:

Basis:  13 + 2 H1L = 3  is a multiple of 3.
The basis is almost always this easy!

Induction: Assume that n ¥ 1 and n3 + 2 n is a multiple of 3. Consider Hn + 1L3 + 2 Hn + 1L. Is it a multiple of 3?

Hn + 1L3 + 2 Hn + 1L = In3 + 3 n2 + 3 n + 1M + I2 n + 2L
= n3 + 2 n + 3 n2 + 3 n + 3 Rearrange the terms
= In3 + 2 nM + 3 I n2 + n + 1M

.

Yes, Hn + 1L3 + 2 Hn + 1L is the sum of two multiples of 3; therefore, it is also a multiple of 3.  ‡ 
Variations of Induction

Now we will discuss some of the variations of the principle of mathematical induction. The first simply allows for universes that
are similar to !, like 8-2, -1, 0, 1, . . . < or 85, 6, 7, 8, . . . <.

Principle of Mathematical Induction (Generalized). If p HnL is a proposition over 8k0 , k0 + 1, k0 + 2, … <, where k0  is any
integer, then p HnL is a tautology if
(1)! pHk0L is true, and
(2)!!for all n ¥ k0,  pHnL fl pHn + 1L.

Example 3.7.4.  In Chapter 2, we stated that the number of different permutations of k elements taken from an n element
set, P Hn; kL, can be computed with the formula n!

Hn-kL!
. We can prove this statement by induction on n. For n ¥ 0, let q HnL be

the proposition

 P Hn; kL = n!
Hn-kL!

  for all k from 0 to n.

Basis: q H0L states that 

P H0; 0L = the number of ways that 0 elements can be
selected from the empty set and arranged in order

= 0 ! ê0 ! = 1.
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P H0; 0L = the number of ways that 0 elements can be
selected from the empty set and arranged in order

= 0 ! ê0 ! = 1.
This is true — a general law in combinatorics is that there is exactly one way of doing nothing.

Induction:  Assume  that  q HnL  is  true  for  some  natural  number  n.  It  is  left  for  us  to  prove  that  this  assumption  implies  that
q Hn + 1L  is true. Suppose that we have a set of cardinality n + 1 and want to select and arrange k  of its elements.  There are
two cases to consider, the first of which is easy. If k = 0, then there is one way of selecting zero elements from the set; hence

 PHn + 1; 0L = 1 = Hn+1L!
Hn+1+0L!

 

and the formula works in this case.

The more challenging case is to verify the formula when k is positive and less than or equal to n + 1. Here we count the value
of PHn + 1; kL  by counting the number of ways that  the first  element in the arrangement can be filled and then counting the
number of ways that the remaining k - 1 elements can be filled in using the induction hypothesis.
There  are  n + 1 possible  choices  for  the  first  element.  Since  that  leaves  n  elements  to  fill  in  the  remaining k - 1 positions,
there are P Hn; k - 1L ways of completing the arrangement. By the rule of products,
        PHn + 1; kL = Hn + 1L P Hn; k - 1L

= Hn + 1L n!
Hn-Hk-1LL!

= Hn+1L n!
Hn-k+1L!

= Hn+1L!
HHn+1L-kL!

‡

A second  variation  allows  for  the  expansion  of  the  induction  hypothesis.  The  course-of-values  principle  includes  the  previous
generalization.  It is also sometimes called strong induction.
The Course-of-Values Principle of Mathematical Induction.   If p HnL is a proposition over 8k0 , k0 + 1, k0 + 2, … <, where k0
is any integer, then p HnL is a tautology if
(1)!p(k0) is true, and
(2)!for all n ¥ k0,   pHk0L, pHk0 + 1L, . . . , p HnL fl p Hn + 1L.

Example 3.7.5.  A prime number is defined as a positive integer that has exactly two positive divisors, 1 and itself. There
are an infinite number of primes. The list of primes starts with 2, 3, 5, 7, 11,… .  The proposition over 82, 3, 4, . . .<  that we
will  prove  here  is  p HnL :  n  can  be  written  as  the  product  of  one  or  more  primes.   In  most  texts,  the  assertion  that  p HnL  is  a
tautology would appear as:

Theorem. Every positive integer greater than or equal to 2 has a prime decomposition.

If  you were to encounter this theorem outside the context of a discussion of mathematical induction, it  might not be obvious
that the proof can be done by induction. Recognizing when an induction proof is appropriate is mostly a matter of experience.
Now on to the proof!
Basis:  Since 2 is a prime, it is already decomposed into primes (one of them).

Induction:   Suppose  that  for  some k ¥ 2 all  of  the  integers  2, 3, . . . , k  have  a  prime decomposition.   Notice  the  course-of-
value hypothesis.  Consider k + 1. Either k + 1 is prime or it isn't.   If k + 1 is prime, it is already decomposed into primes. If
not, then k + 1 has a divisor, d, other than 1 and k + 1. Hence, k + 1 = c d  where both c and d are between 2 and k. By the
induction hypothesis, c  and d  have prime decompositions, c1 c2! cm  and d1 d2! dm  ,  respectively. Therefore, k + 1 has the
prime decomposition c1 c2! cm d1 d2! dm.   ‡
HISTORICAL NOTE

Mathematical  induction originated in the late  nineteenth century.  Two mathematicians who were prominent  in  its  development
were  Richard  Dedekind  and  Giuseppe  Peano.  Dedekind  developed  a  set  of  axioms  that  describe  the  positive  integers.  Peano
refined these axioms and gave a logical interpretation to them. The axioms are usually called the Peano Postulates.
Peano's  Postulates.  The  system  of  positive  integers  consists  of  a  nonempty  set,  P;  a  least  element  of  P,  denoted  1;  and  a
"successor function," s, with the properties
(1) !If k œ ! , then there is an element of ! called the successor of k, denoted s HkL.
(2) ! No two elements of ! have the same successor.
(3) ! No element of ! has 1 as its successor.
(4) !If S Œ !, 1 œ S, and k œ S fl s HkL œ S, then S = !.
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Peano's  Postulates.  The  system  of  positive  integers  consists  of  a  nonempty  set,  P;  a  least  element  of  P,  denoted  1;  and  a
"successor function," s, with the properties
(1) !If k œ ! , then there is an element of ! called the successor of k, denoted s HkL.
(2) ! No two elements of ! have the same successor.
(3) ! No element of ! has 1 as its successor.
(4) !If S Œ !, 1 œ S, and k œ S fl s HkL œ S, then S = !.

Richard Dedekind Giuseppe Peano

Notes:

(a) You might recognize s HkL as simply being k + 1.

(b) Axiom 4, mentioned above, is  the one that makes mathematical  induction possible.  In an induction proof,  we simply apply
that axiom to the truth set of a proposition.

Exercises for Section 3.7
A Exercises

1. ! Prove that the sum of the first n odd integers equals n2 .
2. ! Prove that if n ¥ 1, then 1 H1 !L + 2 H2 !L + ! + n Hn !L = Hn + 1L ! - 1.

3. !Prove that for n ¥ 1: ⁄
k=1

n
k2 = 1

6
nHn + 1L H2 n + 1L.

4.!Prove that for n ¥ 1: ⁄
k=0

n
2k = 2n+1 - 1.

5. ! Use mathematical induction to show that for n ¥ 1,

  1
1 µ 2

+ 1
2 µ 3

+ ! + 1
nHn+1L

= n
n+1

6. !Prove that if n ¥ 2,  the generalized DeMorgan's Law is true:

Ÿ Hp1 Ï p2 Ï ... Ï pnLñ HŸ p1L Í HŸ p2L Í ! Í HŸ pnL
B Exercises

7.!The number of strings of n zeros and ones that contain an even number of ones is 2n-1.   Prove this fact by induction for n ¥ 1.
8.! Let p HnL be 8n - 3n is a multiple of 5.  Prove that p HnL is a tautology over #.

9.!Suppose that there are n people in a room, n ¥ 1, and that they all shake hands with one another. Prove that nHn-1L
2

 handshakes
will have occurred.
10.!Prove that it is possible to make up any postage of eight cents or more using only three- and five-cent stamps.
C Exercises

11.!  Generalized  associativity.  It  is  well  known  that  if  a1,  a2,  and  a3  are  numbers,  then  no  matter  what  order  the  sums  in  the
expression a1 + a2 + a3 are taken in, the result is always the same. Call this fact pH3L and assume it is true. Prove using course-of-
values induction that if a1, a2, …, and an   are numbers, then no matter what order the sums in the expression a1 + a2 +! + an
are taken in, the result is always the same.
12.!Let S be the set of all numbers that can be produced by applying any of the rules below in any order a finite number of times.
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Rule 1: 1
2
œ S

Rule 2: 1 œ S

Rule 3: If a and b have been produced by the rules, then a b œ S.

Rule 4: If a and b have been produced by the rules, then a+b
2

œ S.

Prove  by  course-of-values  induction  that  a œ S fl 0 < a § 1.  Hint:  The  number  of  times  the  rules  are  applied  should  be  the
integer that you do the induction on.
13. !A recursive definition is similar to an inductive proof. It consists of a basis, usually the simple part of the definition, and the
recursion, which defines complex objects in terms of simpler ones. For example, if x is a real number and n is a positive integer,
we can define xn as follows:

Basis: x1 = x .

Recursion: if n ¥ 2, xn = xn-1 x .

For example, x3 = x2 x = Ix1 xM x = Hx xL x. Proofs involving objects that are defined recursively are often inductive. Prove that if
n, m œ !, xm+n = xm xn.  Hint: Let p HmL be the proposition that xm+n = xm xn  for all n ¥ 1.  There is much more on recursion in
Chapter 8.
14. Let S be a finite set and let Pn„ be defined recursively by P1 = S  and Pn = SµPn-1 for n ¥ 2.

(a)!List the elements of P3 for the case S = {a, b}.

(b)!Determine the formula for Pn , given that S = k, and prove your formula by induction.
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3.8 Quantifiers 
As we saw in Section 3.6, if p HnL is a proposition over a universe U, its truth set Tp is equal to a subset of U. In many cases, such
as when p HnL is an equation, we are most concerned with whether Tp  is empty or not. In other cases, we might be interested in
whether Tp = U; that is, whether p HnL is a tautology. Since the conditions Tp !«  and Tp = U  are so often an issue, we have a
special system of notation for them.

THE EXISTENTIAL QUANTIFIER
If pHnL  is a proposition over U  with Tp !«,  we commonly say "There exists an n  in U  such that pHnL  (is true)." We abbreviate
this with the symbols H$ nLU HpHnLL. The symbol $ is called the existential quantifier.   If the context is clear, the mention of U is
dropped: H$ nL HpHnLL.

Example 3.8.1.

(a)!H$ kL! Ik 2 - k - 12 = 0M is another way of saying that there is an integer that solves the equation k 2 - k - 12 = 0. The fact
that two such integers exist doesn't affect the truth of this proposition in any way.
(b)!!H$ kL! H3 k = 102L simply states that 102 is a multiple of 3, which is true. On the other hand, H$ kL! H3 k = 100L states that
100 is a multiple of 3, which is false.

(c)!H$ xL" Ix2 + 1 = 0M is false since the solution set of the equation x2 + 1 = 0 in the real numbers is empty. It is common to
write H± xL" Ix2 + 1 = 0M  in this case.

There  are  a  wide  variety  of  ways  that  you  can  write  a  proposition  with  an  existential  quantifier.  Table  3.8.1  contains  a  list  of
different variations that could be used for both the existential and universal quantifiers.

THE UNIVERSAL QUANTIFIER
If  p HnL  is  a  proposition  over  U  with  Tp = U,  we  commonly  say  "For  all  n  in  U,  p HnL  (is  true)."  We  abbreviate  this  with  the
symbols  H" nLU HpHnLL.  The  symbol  "  is  called  the  universal  quantifier.   If  the  context  is  clear,  the  mention  of  U  is  dropped:
H" nL HpHnLL.

Example 3.8.2.

(a) ! We can say that the square of every real number is non-negative symbolically with a universal quantifier:  H" xL " Ix 2 ¥ 0M.

(b)  !H" nL ! Hn + 0 = 0 + n = nL  says that  the sum of zero and any integer n  is  n.  This  fact  is  called the identity property of
zero for addition.

Table 3.8.1 Notational Variations  for Existential and Universal Quantifiers

Universal Quantifier !          Existential Quantifier

H" nLU HpHnLL                     ! H$ nLU HpHnLL

H" n œ UL HpHnLL                     !H$ n œ UL HpHnLL

" n œ U, pHnL                 $ n œ U such that pHnL

p HnL, " n œ U                    p HnL is true for some n œ U

p HnL is true for all  n œ U                                                        

THE NEGATION OF QUANTIFIED PROPOSITIONS
When you negate a quantified proposition, the existential and universal quantifiers complement one another.

Example 3.8.3. Over the universe of animals, define F(x) : x is a fish and W(x) : x lives in the water. We know that the proposi-
tion W(x)  Ø  F(x)  is  not  always true.  In  other  words,  ("x)(W(x)  Ø  F(x))  is  false.  Another  way of  stating this  fact  is  that  there
exists an animal that lives in the water and is not a fish; that is,
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 Ÿ H" xL HWHxL Ø FHxLL " H$ xL HŸ HWHxL Ø FHxLLL
" H$ xL HWHxL Ï Ÿ F HxLL

.

Note  that  the  negation  of  a  universally  quantified  proposition  is  an  existentially  quantified  proposition.  In  addition,  when  you
negate an existentially quantified proposition, you obtain a universally quantified proposition.   Symbolically,

Ÿ HH" nLU HpHnLL Lñ H$ nL U HŸ pHnLLL, and

Ÿ HH$ nLU HpHnLL Lñ H" nL U HŸ pHnLLL

Example 3.8.4.

(a)  !  The  ancient  Greeks  first  discovered  that  2  is  an  irrational  number;  that  is,  2  is  not  a  rational  number.
Ÿ IH$ rL# Ir2 = 2MM and H" rL# Ir2 ! 2M both state this fact symbolically.

(b) !Ÿ IH" nL$ In 2 - n + 41 is primeMM is equivalent to H$ nL$ In2 - n + 41 is compositeM. They are both either true or false.

MULTIPLE QUANTIFIERS

If  a  proposition  has  more  than  one  variable,  then  you  can  quantify  it  more  than  once.  For  example,  if
p Hx, yL : x2 - y2 = Hx + yL Hx - yL is a tautology over the set of all pairs of real numbers because it is true for each pair Hx, yL
in $ µ $. Another way to look at this proposition is as a proposition with two variables. The assertion that p Hx, yL is a tautology
could be quantified as H" xL" HH" yL " Hp Hx, yLLL or H" yL" HH" xL " HpHx, yLLL

In general,  multiple  universal  quantifiers  can be arranged in any order  without  logically changing the meaning of  the resulting
proposition. The same is true for multiple existential quantifiers. For example, p Hx, yL : x + y = 4 and x - y - 2 is a proposi-
tion  over  $ µ $.  H$ xL" HH$ yL " Hx + y = 4 and x - y = 2LL  and  H$ yL" HH$ xL " Hx + y = 4 and x - y = 2LL  are  equivalent.  A
proposition  with  multiple  existential  quantifiers  such  as  this  one  says  that  there  are  simultaneous  values  for  the  quantified
variables that make the proposition true. A similar example is q Hx, yL : 2 x - y - 2 and 4 x - 2 y = 5, which is always false;
and the following are all equivalent
Ÿ HH$ xL " HH$ yL " Hq Hx, yLLLL ñ Ÿ H$ yL" HH$ xL" HqHx, yLLLL

ñ H" yL" HŸ HH$ xL" HqHx, yLLL
ñ HH" yL" HH" xL" HŸ qHx, yLLLL
ñ HH" xL" HH" yL" HŸ qHx, yLLLL

When existential and universal quantifiers are mixed, the order cannot be exchanged without possibly changing the meaning of
the  proposition.  For  example,  let  $+  be  the  positive  real  numbers,  x : H" aL"+ HH$ bL"+ Ha b = 1LL  and
y : H$ bL"+ HH" aL"+ Ha b = 1LL have different meanings; x is true, while y is false.
TIPS ON READING MULTIPLY QUANTIFIED PROPOSITIONS

It is understandable that you would find propositions such as x difficult to read. The trick to deciphering these expressions is to
"peel"  one  quantifier  off  the  proposition  just  as  you would  peel  off  the  layers  of  an  onion (but  quantifiers  shouldn't  make you
cry). Since the outermost quantifier in x is universal, x says that z HaL : H$ bL"+ Ha b = 1L is true for each value that a can take on.
Now take the time to select a value for a,  like 6. For the value that we selected, we get zH6L : H$ bL"+ H6 b = 1L,  which is obvi-
ously true since 6 b = 1 has a solution in the positive real numbers. We will get that same truth value no matter which positive
real  number  we  choose  for  a;  therefore,  z HaL  is  a  tautology  over  $+  and  we  are  justified  in  saying  that  x  is  true.  The  key  to
understanding propositions like x on your own is to experiment with actual values for the outermost variables as we did above.
Now consider y. To see that y is false, we peel off the outer quantifier. Since it is an existential quantifier, all that y says is that
some positive real number makes wHbL : H" aL "+ Ha b = 1L true. Choose a few values of b to see if you can find one that makes
w HbL true. For example, if we pick b = 2, we get H" aL "+ H2 a = 1L, which is false, since 2 a is almost always different from 1.
You should be able to convince yourself that no value of b will make w HbL true.  Therefore, y is false.
Another way of convincing yourself that y is false is to convince yourself that Ÿ y is true:

Ÿ HH$ bL"+ HH" aL"+ Ha b = 1LLLñ H" bL"+ Ÿ HH" aL"+ Ha b = 1LL
ñ H" bL"+ HH$ aL"+ Ha b ! 1LL

In words, for each value of b, a value for a that makes a b ! 1.  One such value is a = 1
b
+ 1.  Therefore, Ÿ y is true.
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EXERCISES FOR SECTION 3.8
A Exercises

1. !Let C HxL be "x is cold-blooded," let F HxL be "x is a fish," and let S HxL be "x lives in the sea."

(a)!Translate into a formula: Every fish is cold-blooded.

(b)!Translate into English: H$ xL HS HxL Ï Ÿ F HxLL

and H" xL HF HxL Ø S HxLL.

2.! Let M HxL be "x is a mammal," let A HxL be "x is an animal," and let W HxL be "x is warm-blooded."

(a)!Translate into a formula: Every mammal is warm-blooded.

(b)!Translate into English: H$ xL HA HxL Ï HŸ M HxLLL.

3.!Over the universe of books, define the propositions BHxL:  x  has a blue cover, MHxL:  x  is a mathematics book, C HxL:  x  is pub-
lished in the United States, and R Hx, yL : The bibliography of x includes y. Translate into words:
(a)! H$ xL HŸ B HxLL.

(b)!H" xL HM HxL Ï U HxL Ø B HxLL.

(c)! H$ xL HM HxL Ï Ÿ B HxLL.

(d)!H$ yL HH" xL HMHxLØ RHx, yLLL.

Express using quantifiers:

(e)!Every book with a blue cover is a mathematics book.

(f)!There are mathematics books that are published outside the United States.

(g)!Not all books have bibliographies.
revised

4.!Let the universe of discourse, U, be the set of all people, and let MHx, yL be "x is the mother of y."

(a)!Which of the following is a true statement? Translate it into English. 

(i)  H$ xLU HH" yLU HMHx, yLLL

(ii)  H" yLU HH$ xLU HMHx, yLLL

(b)!Translate the following statement into logical notation using quantifiers and the proposition MHx, yL over U:  "Everyone has a
grandmother,"

5.!Translate into your own words and indicate whether it is true or false that H$ uL ! I4 u2 - 9 = 0M.

6.!Use quantifiers to say that 3  is an irrational number.
7.!What do the following propositions say, where U is the power set of 81, 2, ... , 9<? Which of these propositions are true?

(a)!H" ALU H A ! Ac L.

(b)! H$ ALU H$ BLU H A = 5, B = 5, and A › B = «L

(c)! H" ALU H" BLU HA - B = Bc - AcL

8.!Use quantifiers to state that for every positive integer, there is a larger positive integer.

9.!Use  quantifiers to state that the sum of any two rational numbers is rational.

10.!Over the universe of real numbers, use quantifiers to say that the equation a + x = b has a solution for all values of a and b.
Hint: You will need three quantifiers.
11.!Let n be a positive integer.  Describe using quantifiers:

(a)! x œ ‹
k=1

n
Ak

(b)! x œ ›
k=1

n
Ak
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(b)! x œ ›
k=1

n
Ak

12.!Prove that H$ xL H" yL Hp Hx, yLL fl H" yL H$ xL Hp Hx, yLL, but the converse is not true.
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3.9 A Review of Methods of Proof
One of the major goals of this chapter is  to acquaint the reader with the key concepts in the nature of proof in logic,  which of
course carries over into all areas of mathematics and its applications. In this section we will stop, reflect, and "smell the roses," so
that these key ideas are not lost in the many concepts covered in logic. In Chapter 4 we will use set theory as a vehicle for further
practice and insights into methods of proof.

KEY CONCEPTS IN PROOF
1. !All theorems in mathematics can be expressed in "If P then C" (P fl C) format, or in "C1 if and only if C2" (P ñ C) format.
The latter is equivalent to "If C1  then C2, and if C2  then C1." Alternate ways of expressing conditional propositions are found in
Section 3.1.
2.!In  "If  P  then C,"  P  is  the premise (or  hypothesis)  and C  is  the conclusion.  It  is  important  to  realize  that  a  theorem makes a
statement that is dependent on the premise being true.
3.!There are two basic methods for proving P fl C:

(a)! Direct: Assume P is true and prove C is true; and

(b)!  Indirect  (proof  by  contradiction):  Assume  P  is  true  and  C  is  false  and  prove  that  this  leads  to  a  contradiction  of  some
premise, theorem, or basic concept.
4.!The  method  of  proof  for  "If  and  only  if"  (iff)  theorems  is  found  in  the  law  HP ¨ CL ñ HHP Ø CL Ï HC Ø PLL.  Hence  to
prove an "If and only if" statement one must prove an "if . . . then ..." statement and its converse.
The initial response of most people when confronted with the task of being told they must be able to read and do proofs is:

(a)!Why? or,

(b)!I cannot do proofs.

To  answer  the  first  question,  problem solving,  even  on  the  most  trivial  level,  involves  being  able  to  read  statements.  First  we
must understand the problem and know the hypothesis; second, we must realize when we are done and we must understand the
conclusion. To apply theorems or algorithms we must be able to read theorems and their proofs intelligently.
To be able to do the actual proofs of theorems we are forced to learn:

(1)!the actual meaning of the theorems, and

(2)!the basic definitions and concepts of the topic discussed.

For example, when we discuss rational numbers and refer to a number x as being rational, this means we can substitute a fraction
p
q

 in place of x, with the understanding that p and q are integers and q ! 0. Therefore, to prove a theorem about rational numbers

it is absolutely necessary that you know what a rational number "looks like."
It's easy to comment on the response, "I cannot do proofs."  Have you tried? As elementary school students we were in awe of
anyone  who  could  handle  algebraic  expressions,  especially  complicated  ones.  We  learned  by  trying  and  applying  ourselves.
Maybe we cannot solve all problems in algebra or calculus, but we are comfortable enough with these subjects to know that we
can solve many and can express ourselves intelligently in these areas. The same remarks hold true for proofs.

THE ART OF PROVING P fi C
First  one  must  completely  realize  what  is  given,  the  hypothesis.  The  importance  of  this  is  usually  overlooked  by  beginners.  It
makes sense, whenever you begin any task, to spend considerable time thinking about the tools at your disposal. Write down the
premise  in  precise  language.  Similarly,  you  have  to  know  when  the  task  is  finished.  Write  down  the  conclusion  in  precise
language. Then you usually start with P and attempt to show that C follows logically. How do you begin? Basically you attack
the proof the same way you solve a complicated equation in elementary algebra. You may not know exactly what each and every
step is but you must try something. If we are lucky, C follows naturally; if it doesn't, try something else. Often what is helpful is
to  work backward from C.  Finally,  we have all  learned,  possibly the hard way,  that  mathematics  is  a  participating sport,  not  a
spectator sport. One learns proofs by doing them, not by watching others do them. We give several illustrations of how to set up
the proofs of several examples. Our aim here is not to prove the statements given, but to concentrate on the logical procedure.

Example 3.9.1.  We will  outline a  proof  that  the sum of  any two odd integers  is  even.  Our first  step will  be to write  the
theorem in the familiar  conditional  form: If  j  and k  are odd integers,  then j + k  is  even.  The premise and conclusion of  this
theorem should be clear  now. Notice that  if  j  and k  are not  both odd,  then the conclusion may or  may not  be true.  Our only
objective is to show that the truth of the premise forces the conclusion to be true. Therefore, we can express the integers j and k
in the form that all integers take; that is:
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Example 3.9.1.  We will  outline a  proof  that  the sum of  any two odd integers  is  even.  Our first  step will  be to write  the
theorem in the familiar  conditional  form: If  j  and k  are odd integers,  then j + k  is  even.  The premise and conclusion of  this
theorem should be clear  now. Notice that  if  j  and k  are not  both odd,  then the conclusion may or  may not  be true.  Our only
objective is to show that the truth of the premise forces the conclusion to be true. Therefore, we can express the integers j and k
in the form that all integers take; that is:

n œ " is odd implies H$ m œ"L Hn = 2 m + 1L.

This observation allows us to examine the sum  y + k and to verify that it must be even.

Example 3.9.2. Let n œ ". We will outline a proof that n2 is even if and only if n is even.
Outline of a proof: Since this is an "If and only if theorem we must prove two facts (see key concept number 4 above):

I. (fl) If n2  is even, then n is even. To do this directly, assume that n2  is even and prove that n is even.   To do this indirectly,
assume n2 is even and that n is odd, and reach a contradiction.   It turns out that the latter of the two approaches is easiest here.

II. (›) If n is even, then n2 is even. To do this directly, assume that n is even and prove that n2 is even.   
Now that we have broken the theorem down into two parts and know what to prove, we proceed to prove the two implications.
The final ingredient that we need is a convenient way of describing even integers. When we refer to an integer n (or m, or k,. . .
) as even, we can always replace it with a product of the form 2 q, where q is an integer (more precisely, H$ qL ! Hn = 2 qLL. In
other words, for an integer to be even it must have a factor of two in its prime decomposition.

Example 3.9.3. Our final example will be an outline of the proof that the square root of 2 is irrational (not an element of
%). This is an example of the theorem that does not appear to be in the standard P fl C form. One way to rephrase the theorem
is: If x is a  rational number, then x2 ! 2. A direct proof of this theorem would require that we verify that the square of every
rational number is not equal to 2. There is no convenient way of doing this, so we must turn to the indirect method of proof. In
such a proof, we assume that x is a  rational number and that x2 = 2 (i.e., 2  is a rational number). This will lead to a contradic-
tion. In order to reach this contradiction, we need to use the following facts:
(a)!A rational number is a quotient of two integers.

(b)!Every fraction can be reduced to lowest terms, so that the numerator and denominator have no common factor greater than
1.

(c)!If n is an integer, n2 is even if and only if n is even.

EXERCISES FOR SECTION 3.9
B Exercises

1. !Prove that the sum of two odd positive integers is even.

2.!Write out a complete proof that if n is an integer, n2 is even if and only if n is even.

3.!Write out a complete proof that 2  is irrational.

4.!Prove that 23  is an irrational number.

5.!Prove that if x and y are real numbers such that x + y § 1, then either  x § 1
2

 or y § 1
2

.

6.!Use the following definition of absolute value to prove the given statements: If x is a real number, then the absolute value of x,
x , is defined by:

 x =
x if x ¥ 0
-x if x < 0

(a) For any real number x, x ¥ 0. Moreover, x = 0 implies x = 0.

(b)!For any two real numbers x and y, x ÿ y = x y .

(c)!For any two real numbers x and y, x + y § x + y .
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SUPPLEMENTARY EXERCISES FOR CHAPTER 3
Section 3.1

1. Construct the truth tables of

(a)  p Í p  

(b)  p Ï HŸ pL   

(c) p Í HŸ pL

(d)  p Ï p

2.  Express each of the following in symbolic form and determine whether they are true or false:

(a) If a, b œ !, and if a = 0 or b = 0, then a ÿ b = 0.

(b) If a, b œ !, and if a ÿ b = 0, then a = 0 or b = 0.

(c) Let a, b œ !.   a ÿ b = 0 if and only if a = 0 or b = 0.

(d)  If  85< Œ !, then  2 + 3 = 8.

(e)  If 2 + 3 = 8, then the world is flat.

(f)  5 is an odd integer if and only if 8 is an even integer.

Section 3.2

3. Write the truth table for the expression p Í q Ï Ÿ p.

4. Insert parentheses in the following statements to indicate the order in which the operations are performed:

(a) p Í q Ï r Í Ÿ q  

(b)  p Ï Ÿ q Í Ÿ p Ï q

(c)  p Í q Ï r

(d) p Ï q \ê p Ï r Í q Ï r

Section 3.3

5. Use truth tables to verify that HHp Ø Ÿ qL Ï Hq Í rL Ï HŸ rLL fl Ÿ p is a tautology.

6. Is an implication equivalent to its converse? Verify your answer using a truth table.

7. Prove that an implication is always equivalent to its contrapositive.

8. (a) Construct truth tables for the following propositions generated by p, q, and r.

(i) r Ï Hp Ï qL     (ii) r Í Hp Í qL       (iii) r Ï q

(b)  Which of the propositions i, ii, and iii in part (a) imply proposition i? Explain.

9. Suppose that x is a proposition generated by p and q, and x is equivalent to p Ø p Ï q. What is the truth table for x?

10. The Scheffer Stroke is the logical operator defined by the following truth table:

p q p»q
0 0 1
0 1 1
1 0 1
1 1 0

Truth Table for the Sheffer Stroke

(a)  Prove that p q is equivalent to Ÿ Hp Ï qL.

The significance of the Sheffer Stroke is that it is a "universal" operator. All other operators can be built from it.

(b)   Prove that Ÿ p ñ p p.

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 
License.82



(b)   Prove that Ÿ p ñ p p.

(c)   Build fl using only the Sheffer Stroke.

(d)   Build fi using only the Sheffer Stroke.

Section 3.4

11.   Write the negation of each of the following statements:

(a)   3 is a prime number and it is even.

(b)  4 is a prime number or it is odd.

(c)   If I can exhibit an example of a statement then I have proven it true.

(d)  If x2 - 11 x + 12 = 0, then x = 3 or x = 8.

12.   Prove that all ! defined by has the same property as the Sheffere Stroke (see problem 10) in that is is a "universal" operator.   

p q p ! q
0 0 1
0 1 1
1 0 1
1 1 0

Truth Table for p"q
13.   The following are frequently used and very important tautologies in logic. Use truth tables to prove them.

(a)   Hp Ø qL ñ HŸ q Ø Ÿ pL

(b)   Hp ¨ qLñ HHp Ø qL Ï Hq Ø pLL

14.   Write the following in symbolic notation and prove it is a tautology: "The statement p if and only if q is equivalent to saying if p then q and if q then
p."
15.   Write the following in symbolic notation and determine whether it is a valid argument: "If I quit my job, then I will starve. If I don't do my work, then
I must quit my job. I did my work, therefore I will eat."
16.   Write the dual of each of the following statements:

(a)   HŸ p Í 0L fl 1

(b)   Hp Í qL Ï HŸ p Í rL fl Hr Í qL

Section 3.5

17.     Write  the  following in  symbolic  form and then determine its  validity.  "If  this  car  is  made in  England then parts  are  difficult  to  obtain.  This  car  is
expensive, or it is not difficult to obtain parts. But this car is not expensive. Hence it was not made in England."
18.   In order to attach the Mark 13 printer to the Lemon III computer, you must set eight "dip switches" in the computer according to the following rules.
The switches are labeled a through h and are set to be either ON or OFF.

(1)   Neither a nor c is set the same as d.

(2)   b and g are different if and only if e and g are in the same positions.

(3)   g is OFF if d is OFF, but g is ON if b is OFF.

(4)   d is ON, unless e is the same as/.

(5)   h is not the same as a if either b or e is OFF.

(6)   g is OFF only if e is not the same as h.

(7)   b,f, and g are not all the same.

How should the switches be set?

19.   Consider the following argument:

If person X does not live in France, then X does not speak French.

X does not drive a Chevrolet.

S3.nb  2
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X does not drive a Chevrolet.

If X lives in France, then he rides a bicycle.

Either X speaks French or he drives a Chevrolet.

Therefore, X rides a bicycle.

Let p = "X lives in France."

q = "X speaks French."

r = "X drives a Chevrolet."

s = "X rides a bicycle."

Translate the argument into logical notation using these propositions, and prove it by any method except a truth table.

20. Determine the validity of the following argument: "I will miss class only if I sleep late. I will not sleep late. Therefore, I will not miss class."

21. Mayoral  candidate  Ms.  Perpetual  Candidate  made the  following promise  to  the  voters:  "If  I  am elected,  I  will  bring  industry  to  the  town.  If  I  bring
industry to the town, your taxes will decrease. If your taxes decrease, you will be wealthier. Therefore, if I am elected, you will be wealthier." Express this
argument in symbolic notation and determine whether the mayoral candidate is telling the truth.
22. Professor Smoothtalker made the following promise to his class. "If you receive an A in this course, you are happy. You will do all your assignments or
you are not happy. If you concentrate too hard, you will not do all your assignments. Therefore, if you are happy, do not concentrate too hard." Is Professor
Smoothtalker's argument valid?
23. Determine whether the following argument is  valid:  Taxes will  increase or government spending decreases.  Government spending increases or more
people have jobs. More people do not have jobs or people are rich. Therefore, if taxes decrease, people are rich.
Section 3.6

24. Let p HnL be n < 2 and let q HnL be n2 < 5.

(a) Over the universe of integers, !,   are p and q equivalent? Does one imply the other?

(b) Over the universe of natural numbers, ", are p and q equivalent? Does one imply the other?

25.  Prove that: TpÏq = Tp › Tq.

26. Prove that: TpØq = Tp
c ‹ Tq. 

Section 3.7

27.   Express 60 and 120 as a product of primes.

28.  Prove that for n ¥ 1

    ⁄
i=1

n
i3 = 1

4
n2 Hn + 1L2 = J

1
2

n Hn + 1LN
2

29. (a) Prove that 
n

k - 1
+

n
k

=
n + 1

k
  for k > 1 and n ¥ k + 1. 

      (b) Use mathematical induction to prove the binomial theorem: 

Hx + yLn = ⁄
k=0

n n
k

xn-k yk  for  n ¥ 0.

30. Use mathematical induction to prove for all n ¥ 1 and for all real numbers c, ai, and bi, i = 1, 2, …, n: 

(a)   ⁄
i=1

n
Hai + biL = ⁄

i=1

n
ai + ⁄

i=1

n
bi

(b)  ⁄
i=1

n
c ai = c ⁄

i=1

n
ai

Section 3.8

31. Write the negation of: "Some sailing is dangerous and all fishing is tedious" in graceful English.

32. Prove: Ÿ HH$ uL H" vL HpLL ñ H" uL HH$ vL HŸ pLL

33. Translate the following sentences into expressions using quantifiers:
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33. Translate the following sentences into expressions using quantifiers:

(a)   All fish except sharks are kind to children.

(b)   Either every wine-drinker is very communicative, or some pawn broker is honest and doesn't drink wine.

(c)     If  all  clever  philosophers  are  cynics,  and  only  women are  clever  philosophers,  then,  if  there  are  any  clever  philosophers,  some women are
cynics.

34. First write each of the following in logical notation using quantifiers, then write the negative of each logical expression using symbols and complete
English sentences. If possible, determine which of the statements are true.

(a)   All people in this classroom are over six feet tall.

(b)   Some of the people in this classroom are over six feet tall and are bald.

(c)   Let U = 82, 3, 4, 5< and let p HnL denote the statement "n is a prime number." Apply the above directions to the statement: Every number in U
is a prime number.

(d)   All prime numbers are odd.

(e)   You will all pass the course Discrete Structures or you will all fail.

(f) You can fool some of the people some of the time.

35. Use quantifiers to state that for every positive integer, there is a larger positive integer.

36. Over the universe of students in your class, let N Hx, yL be "x knows y's name." Interpret in English:

(a)  H$ xL HH" yL HN Hx, yLLL

(b)   H" yL HH$ xL HNHx, yL and x ! yLL

(c)  How would you symbolically say that everyone knows everyone's name?

(d)  How would you symbolically say that everyone knows your name?

(e)  How would you symbolically say that someone in the class has amnesia?

Section 3.9

37. For any nonzero real number x,

x2 = 1 ñ x = 1 or x = -1

(a) Outline the logical procedure you would use to prove this statement.

(b) Fill in the proof.

38. Let a, b, c œ # and read a b as "a divides evenly into b." Consider the statements

(i)    b a and a b implies a = b.

(ii)   If p is prime and p a2 , then p a.

(a) Are these statements true? Explain your answers.

(b) Is the converse of each of these statements true? Explain your answers.

(c) Is the contrapositive of each of these statements true? Explain your answers.

39. Let a, b œ $. A necessary and sufficient condition for a ÿb = 0 is that a = 0 or b = 0.

(a) Is this statement true? Explain your answer.

(b) Outline the logical procedure you would use to prove this statement.
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Chapter 4

MORE ON SETS

GOALS
In  this  chapter  we  shall  look  more  closely  at  some  basic  facts  about  sets.  One  question  we  could  ask  ourselves  is:  Can  we  manipulate  sets
similarly to the way we manipulated expressions in basic algebra, or to the way we manipulated propositions in logic? In basic algebra we are
aware  that a ÿ Hb + cL = a ÿ b + a ÿ c   for  all  real  numbers  a,  b,  and  c.  In  logic  we  verified  an  analogue  of  this  statement,  namely,
p Ï H q Í rL ñ Hp Ï qL Í Hp Ï rLL,  where  p, q, and r  were  arbitrary  propositions.  If  A,  B,  and  C  are  arbitrary  sets,  is
A › HB ‹ CL = HA › BL ‹ HA › CL?  How  do  we  convince  ourselves  of  its  truth  or  falsity?  Let  us  consider  some  approaches  to  this
problem, look at their pros and cons, and determine their validity. Many of the ideas expressed are true, in general, in mathematics. Partitions of
sets and min sets will be introduced.

4.1 Methods of Proof for Sets 
There are a variety of ways that we could attempt to prove that the distributive law for intersection over union is true; that is, that for any three
sets,  A,  B,  and  C,  A › HB ‹ CL = HA › BL ‹ HA › CL.  We  start  with  a  common  "nonproof"  and  then  work  toward  more  acceptable
methods.

EXAMPLES AND COUNTEREXAMPLES
We could, for example, let A = 81, 2<, B = 85, 8, 10<, and C = 83, 2, 5<, and determine whether the distributive law is true. Obviously, in
doing  this  we  will  have  only  determined  that  the  distributive  law  is  true  for  this  one  example.  It  does  not  prove  the  distributive  law  for  all
possible sets A, B, and C and hence is an invalid method of proof. However, trying a few examples has considerable merit insofar as it makes us
more comfortable with the statement in question, and indeed if the statement is not true for the example, we have disproved the statement.

Definition: Counterexample. An example that disproves a statement is called a counterexample.

Example 4.1.1. From basic algebra we learned that multiplication is distributive over addition.  Is addition distributive over multiplica-
tion;  that  is,  is  a + Hb ÿ cL = Ha + bL ÿ Ha + cL?   If  we  choose  the  values  a = 3,  b = 4,  and  c = 1,  we  find  that
3 + H4 ÿ 1L ! H3 + 4L ÿ H3 + 1L. Therefore, this set of values serves as a counterexample to a distributive law of addition over multiplication.

PROOF USING VENN DIAGRAMS
In  this  method,  we  illustrate  both  sides  of  the  statement  via  a  Venn  diagram  and  determine  whether  both  Venn  diagrams  give  us  the  same
"picture," For example, the left  side of the distributive law is developed in Figure 4.1.1 and the right side in Figure 4.1.2.  Note that the final
results give you the same shaded area.
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›

Figure 4.1.1 Left side of distributive law developed

The  advantage  of  this  method  is  that  it  is  relatively  quick  and  mechanical.  The  disadvantage  is  that  it  is  workable  only  if  there  are  a  small
number of sets under consideration. In addition, it doesn't work very well in a static environment like a book or test paper.   Venn diagrams tend
to work well if you have a potentially dynamic environment like a blackboard or video. 

‹

Figure 4.1.2 Right side of distributive law developed

PROOF USING SET-MEMBERSHIP TABLES
Let A  be a subset of a universal set U  and let u œ U.   To use this method we note that exactly one of the following is true: u œ A  or u – A.
Denote  the  situation  where  u œ A  by  1  and  that  where  u – A  by  0.  Working  with  two sets,  A  and  B,  and  if  u œ U,  there  are  four  possible
outcomes of "where u can be." What are they? The set-membership table for A ‹ B is :

A B A ‹ B
0 0 0
0 1 1
1 0 1
1 1 1

This table illustrates that u œ A ‹ B if and only if a œ A or u œ B.

In order to prove the distributive law via a set-membership table, write out the table for each side of the set statement to be proved and note that
if S and T are two columns in a table, then the set statement S is equal to the set statement T if and only if corresponding entries in each row are
the same.
To prove A›(B ‹ C) = (A›B) ‹ (A ›C), first note that the statement involves three sets, A, B, and C, So there are 23 = 8 possibilities for the
membership of an element in the sets.
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Since each entry in Column 7 is the same as the corresponding entry in Column 8, we have shown that A ‹ HB ‹ CL = HA › BL ‹ HA › CL
for any sets A, B, and C. The main advantage of this method is that it is mechanical. The main disadvantage is that it is reasonable to use only
for a relatively small number of sets. If we are trying to prove a statement involving five sets, there are 25 = 32 rows, which would test anyone's
patience doing the work by hand. 

PROOF USING DEFINITIONS
This  method  involves  using  definitions  and  basic  concepts  to  prove  the  given  statement.  This  procedure  forces  one  to  learn,  relearn,  and
understand basic definitions and concepts. It helps individuals to focus their attention on the main ideas of each topic and therefore is the most
useful  method of  proof.  One does not  learn a topic by memorizing or  occasionally glancing at  core topics,  but  by using them in a variety of
contexts. The word proof panics most people; however, everyone can become comfortable with proofs. Do not expect to prove every statement
immediately. In fact, it is not our purpose to prove every theorem or fact encountered, only those that illustrate methods and/or basic concepts.
Throughout the text we will focus in on main techniques of proofs. Let's illustrate by proving the distributive law.

Proof Technique 1. State or restate the theorem so you understand what is given (the hypothesis) and what you are trying to prove (the
conclusion).

Theorem 4.1.1.   If A, B, and C are sets, then A › HB ‹ CL = HA › BL ‹ HA › CL

Assume: ! A, B, and C are sets.

Prove: !A › HB ‹ CL = HA › BL ‹ HA › CL.

Commentary: What am I trying to prove? What types of objects am I working with: sets? real numbers? propositions? The answer is sets: sets
of elements that can be anything you care to imagine. The universe from which we draw our elements plays no part in the proof of this theorem.
We  need  to  show  that  the  two  sets  are  equal.  Let's  call  them  the  left-hand  set  HL.H.S.)  and  the  right-hand  set  (R.H.S.  )  To  prove  that
L.H.S. = R.H.S., we must prove two things: (a) L.H.S. Œ R.H.S. and (b) R.H.S. Œ L.H.S.
To prove part a and, similarly, part b, we must show that each element of L.H.S. is an element of R.H.S. Once we have diagnosed the problem
we are ready to begin.

Proof of Theorem 4.1.1: We must prove:

(a) A › HB ‹ CL Œ HA › BL ‹ HA › CL.

Let x œ A › HB ‹ CL to show x œ HA › BL ‹ HA › CL.

x œ A › HB ‹ CL
Definition of ‹, › fl x œ A and Hx œ B or x œ CL
Distributive Law of Logic fl Hx œ A and x œ BL or Hx œ A and x œ CL
Definition of › fl Hx œ A › BL orHx œ A › CL
Definition of ‹ fl x œ HA › BL ‹ HA › CL

and (b) HA › BL ‹ HA › CL Œ A › HB ‹ CL

x œ HA › BL ‹ HA › CL
Why? fl Hx œ A › BL or Hx œ A › CL
Why? fl Hx œ A and x œ BL or Hx œ A and x œ CL
Why? fl x œ A and Hx œ B or x œ CL
Why? fl x œ A › HB ‹ CL ‡

Proof Technique 2.

(1) !To prove that A Œ B, we must show that if x œ A, then x œ B.

(2) !To prove that A = B, we must show:
(a) !A Œ B, and
(b) !B Œ A.

To further illustrate the Proof-by-Definition technique, let's prove the following:

Theorem 4.1.2. Let A, B, and C be sets, then
A µ HB › CL = HA µ BL › HA µ CL.
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Commentary; We again ask ourselves: What are we trying to prove? What types of objects are we dealing with?  We realize that we wish to
prove two facts: (a) L.H.S. Œ R.H.S. and (b) R.H.S. Œ L.H.S.
To prove part a, and similarly part b, we'll begin the same way. Let

___ œ L.H.S. to show ___ œ R.H.S. What should ___ be?

What does a typical object in the L.H.S. look like?

Proof of Theorem 4.1.2: We must prove:

(a) A µ HB › CL Œ HA µ BL › HA µ CL.

Let Hx, yL œ A µ HB › CL to prove Hx, yL œ HA µ BL › HA µ CL.

Hx, yL ! œ A µ HB!› CL.
Why? !              fl  ! x œ A and y œ HB › CL.
Why? !              fl  ! x œ A and Hy œ B and y œ CL.
Why? !              fl  ! Hx œ A and y œ BL and Hx œ A and y œ CL.
Why? !              fl  ! Hx, yL œ HA µ BL and Hx, yL œ HA µ CL.
Why? !              fl ! Hx, yL œ HA µ BL › HA µ CL.

 and (b)  HA µ BL › HA µ CL Œ A µ H B › CL.

Let Hx, yL œ HA µ BL › HA µ CL to prove Hx, yL œ A › H B µ CL.

Hx, yL œ HA µ BL › HA µ CL.
Why? !                    fl  ! Hx, yL œ A µ B and Hx, yL œ A µ C.
Why? !                    fl  ! Hx œ A and y œ BL and Hx œ A and y œ CL.
Why? !                    fl  ! x œ A and Hy œ B and y œ CL.
Why? !                    fl  ! x œ A and y œ HB › CL.
Why? !                    fl  ! Hx, yL œ A µ HB › CL ‡

EXERCISES FOR SECTION 4.1
A Exercises
1. ! Prove the following:

(a) !Let A, B, and C be sets. If A Œ B and B Œ C, then A Œ C.

(b) !Let A and B be sets. Then A - B = A › Bc .

(c) !Let A, B, and C be sets. If (A Œ B and A Œ C) then A Œ B › C.

(d) !Let A and B be sets. A Œ B If and only if Bc Œ Ac .

(e) !Let A, B, and C be sets. If A Œ B  then A µ C Œ B µ C.

2. ! Write the converse of parts (a), (c), and (e) of Exercise 1 and prove or disprove them.

3. ! Disprove the following, assuming A, B, and C are sets;

(a) ! A - B = B - A.

(b)  !A µ B = B µ A.

(c) ! A › B = A › C implies B = C.

4. !Let A, B, and C be sets. Write the following in "if . . . then . . ." language and prove:

(a) ! x œ B is a sufficient condition for x œ A ‹ B.

(b) !A › B › C = « is a necessary condition for A › B = «.

(c) !A ‹ B = B is a necessary and sufficient condition for A Œ B.

B Exercises
5. !Prove by induction that if A, B1  B2 , . . . , Bn, are sets, n ¥ 2, then 

A › H B1 ‹ B2 ‹ ÿ ÿ ÿ ‹BnL = HA › B1L ‹ HA › B2 L ‹ ÿ ÿ ÿ‹HA › BnL
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4.2 Laws of Set Theory
The following basic set laws can be derived using either the Basic Definition or the Set-Membership approach and can be illustrated by Venn
diagrams.

Commutative Laws

(1) !A ‹ B = B ‹ A              ! (1') !A › B = B › A 

Associative Laws

(2) !A ‹ HB ‹ CL = HA ‹ BL ‹ C !         (2') A › (B › C) = (A › B) › C

Distributive Laws

(3) !A › HB ‹ CL = HA › B L ‹ HA › CL  ! (3') !A ‹ (B › C) = (A ‹ B ) › (A‹ C)

Identity Laws

(4) !A ‹ « = « ‹ A = A. !              (4') A › U = U › A = A

Complement Laws

(5) ! A ‹ Ac = U!                        (5') A › Ac = «

Idem potent Laws

(6) !A ‹ A = A                         ! (6') A › A = A

Null Laws

(7) !A ‹ U = U                            (7')  A › « = «

Absorption Laws

(8) !A ‹ HA › BL = A.             ! (8') A › HA ‹ BL = A.

DeMorgan's Laws

(9) !HA ‹ BLc = Ac › Bc . ! (9') HA › BLc = Ac ‹ Bc

Involution Law 

(10) HAcLc = A.

It is quite clear that most of these laws resemble or, in fact, are analogues of laws in basic algebra and the algebra of propositions.

PROOF USING PREVIOUSLY PROVEN THEOREMS
Once  a  few  basic  laws  or  theorems  have  been  established,  we  frequently  use  them  to  prove  additional  theorems.  This  method  of  proof  is
sometimes more efficient than that of Proof by Definition. To illustrate, let us prove the following:

Theorem 4.2.1. Let A and B be sets. Then HA › BL ‹ HA › Bc L = A.

Proof : HA › BL ‹ HA › Bc L = A › HB ‹ Bc L       ! Why?
= A › U !                          Why?
= A Why? ‡

PROOF USING THE INDIRECT METHOD/ CONTRADICTION
The procedure one most  frequently uses to prove a theorem in mathematics is  the Direct  Method,  as illustrated in Theorems 4.1.1 and 4.1.2.
Occasionally there are situations where this method is not applicable. Consider the following:

Theorem 4.2.2. Let A, B, C be sets. If A Œ B and B › C = «, then  A › C = «.

Commentary: The usual and first approach would be to assume A Œ B and B › C = « is true and to attempt to prove  A › C = « is true. To
do this you would need to show that nothing is contained in the set A › C.  Think about how you would show that something doesn't exist.  It
is very difficult to do directly.
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Commentary: The usual and first approach would be to assume A Œ B and B › C = « is true and to attempt to prove  A › C = « is true. To
do this you would need to show that nothing is contained in the set A › C.  Think about how you would show that something doesn't exist.  It
is very difficult to do directly.
The Indirect Method is much easier: If we assume the conclusion is false and we obtain a contradiction—then the theorem must be true. This
approach is on sound logical footing since it is exactly the same method of indirect proof that we discussed in Section 3.5.

Proof of Theorem 4.2.2; Assume A Œ B and B › C = «, and  A › C ! «. To prove that this cannot occur, let x œ A › C.
Why? ! fl ! x œ A and x œ C,

Why? ! fl ! x œ B and x œ C.

Why? ! fl ! x œ B › C.

But this contradicts the second premise.   Hence, the theorem is proven. ‡

EXERCISES FOR SECTION 4.2
In the exercises that follow it is most important that you outline the logical procedures or methods you use.

A Exercises
1. ! (a) Prove the associative law for intersection (Law 2') with a Venn diagram.

      (b) ! Prove DeMorgan's Law (Law 9) with a membership table.

       (c) ! Prove the Idempotent Law (Law 6) using basic definitions.

2. ! (a) Prove the Absorption Law (Law 8') with a Venn diagram.

      (b) ! Prove the Identity Law (Law 4) with a membership table.

       (c) ! Prove the Involution Law (Law 10) using basic definitions.

3. ! Prove, using the set theory laws, as well as any other theorems proved so far;

(a) ! A ‹ HB - AL = A ‹ B

(b) ! A - B = Bc - A c .

(c) ! A Œ B, A › C ! « fl B › C ! «

(d) ! A › HB - CL = HA › BL - HA › CL.

(e) ! A - HB ‹ CL = HA - BL › HA - CL

4. ! Use previously proven theorems to prove:

(a) ! A › HB › CLc = HA › BcL ‹ HA › Cc L

(b) ! A › HB › HA › BLcL = «

(c) ! HA › BL ‹ Bc = A ‹ Bc

(d) ! A ‹ HB - CL = HA ‹ BL - HC - AL.

5. ! Hierarchy of Set Operations. The rules that determine the order of evaluation in a set expression that involves more than one operation are
similar to the rules for logic. In the absence of parentheses, complementations are done first, intersections second, and unions third. Parentheses
are used to override this order. If the same operation appears two or more consecutive times, evaluate from left to right. In what order are the
following expressions performed?
(a)  A ‹ Bc › C. 

(b)  A › B ‹ C › B. 

(c) A ‹ B ‹ Cc .

C Exercise
6. There are several ways that can be used to format the proofs in this chapter. One that should be familiar to you from Chapter 3 is illustrated
with the following proof. Alternate proof of part (a) in Theorem 4.1.1:

(1) ! x œ A › HB ‹ CL  Premise

(2) ! Hx œ AL Ï Hx œ B ‹ CL ! (1), definition of intersection

(3) ! (x œ AL Ï HHx œ BL Í Hx œ CLL ! (2), definition of union 

(4) ! Hx œ AL Ï Hx œ BL Í Hx œ AL Ï Hx œ CL! (3), distribute fl over fi
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(5) ! Hx œ A › BL V Hx œ A › CL! (4), definition of intersection

(6) ! x œ HA › BL ‹ HA › CL ! (5), definition of union 

C4.nb | 7
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4.3 Minsets 
Let B1 !  and B2   be subsets of a set A. Notice that the Venn diagram of Figure 4.3.1 is naturally partitioned into the subsets A1, A2, A3, and A4.
Further we observe that  A1, A2, A3, and A4 can be described in terms of  B1 and B2 as follows:

A1 = B1 ‹ B2c 

A2 = B1 › B2

A3 = B1c › B2

A4 = B1c › B2c

B1 B2

A1 A2 A3 A4

A

Figure 4.3.1

Each  Ai  is called a minset generated by B1  and B2  . We note that each minset is formed by taking the intersection of two sets where each may
be either Bk or its complement Bk

c    Note also, given two sets, there are 22 = 4 minsets.
Minsets are occasionally called minterms.

The reader should note that if we apply all possible combinations of the operations intersection, union, and complementation to the sets B1  and
B2 of Figure 4.3.1, the smallest sets generated will be exactly the minsets, the minimum sets. Hence the derivation of the term minset.
Next  consider  the  Venn  diagram containing  three  sets,  B1,   B2,  and  B3.  What  are  the  minsets  generated  by  B1,   B2,  and  B3?  How many are
there? Following the procedures outlined above, we note that

B1 › B2 › B3c

B1 › B2c › B3

B1 › B2c › B3c

are three of the 23 = 8 minsets. See Exercise 1 of this section.

Definition:  Minset.  Let  {B1,   B2,… ,Bn}  be  a  set  of  subsets  of  a  set  A.   Sets  of  the  form D1 › D2 ›!› Dn,  where  each Di,  may be
either Bi or Bi

c " is called a minset generated by B1,  B2,… ,Bn.
Example 4.3.1.  For another view, consider the following: Let A = 81, 2, 3, 4, 5, 6<  with subsets B1 = 81, 3, 5<  and B2 = 81, 2, 3<.

How can we, using set operations applied to B1 and B2 , produce a list of sets that contain elements of A efficiently without duplication? As a
first attempt, we note that:

B1 › B2 = 81, 3<,

B1c = 82, 4, 6< , and

B2c = 84, 5, 6<.

We  have  produced  all  elements  of  A  but  we  have   4  and  6  repeated  in  two  sets.  In  place  of  B1c  and  B2c  ,  let  us  try  B1c › B2  and  B1 › B2c ,
respectively:

B1c › B2 = 82< and 

B1 › B2c = 85<.

We have now produced the elements 1, 2, 3, and 5 using B1 › B2  ,   B1c › B2  and B1 › B2c  yet we have not listed the elements 4 and 6. Most
ways that we could combine B1 and B2 such as  B1 ‹ B2  or B1 ‹ B2c  will produce duplications of listed elements and will not produce both 4
and 6.  However we note that B1c › B2c = 84, 6<, exactly the elements we need.   Each element of A appears exactly once in one of the four
minsets B1 › B2 ,   B1c › B2,  B1 › B2c  and B1c › B2c   . Hence, we have a partition of A.

Theorem 4.3.1.  Let  A be  a  set  and let  B1,  B2  … ,  Bn   be  subsets  of  A.  The set  of  nonempty  minsets  generated by   B1,  B2  … ,  Bn  is  a
partition of A.
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The proof of this theorem is left to the reader.  The most significant fact about minsets is that any subset of A that can be obtained from  B1, B2
… , Bn, using the standard set operations can be obtained in a standard form by taking the union of selected minsets.

Definition: Minset Normal Form.   A set is said to be in minset normal form when it is expressed as the union of zero or more distinct
nonempty minsets.
Notes:

(a)   The union of zero sets is the empty set, «.

(b)   Minset normal form is also called canonical form.

Example 4.3.2.  Let U = 8-2, -1, 0, 1, 2<, B1 = 80, 1, 2<, and B2 = 80, 2<.   Then

B1 › B2 = 80, 2< 

B1c › B2 = « 

B1 › B2c = 81< 

 B1c › B2c = 8-2, -1< 

In  this  case,  there  are  only  three  nonempty  minsets,  producing  the  partition  880, 2<, 81<, 8-2, -1<<.   An  example  of  a  set  that  could  not  be
produced from just B1  and B2  is the set of even elements of U, 8-2, 0, 2<.  This is because  -2 and -1 cannot be separated — they are in the
same minset and any union of minsets needs either include or exclude them both.   In general, there are 23 = 8 different minset normal forms
because there are three nonempty minsets.  This means that only 8 of the 25 = 32 subsets of U can be generated from B1 and B2. 

EXERCISES FOR SECTION 4.3
A Exercises
1. ! Consider the subsets A = 81, 7, 8<, B = 81, 6, 9, 10<, and C = 81, 9, 10<, where U = 81, 2, . . . , 10<.

(a) ! List the nonempty minsets generated by A, B, and C.

(b) ! How many elements of the power set of U can be generated by A, B, and C?  Compare this number with !HUL . Give an example of one
subset that cannot be generated by A, B, and C.
2. ! (a) Partition {1, 2, .... 9} into the minsets generated by B1 = 85, 6, 7<,  B2 = 82, 4, 5, 9<,  and B3 = 83, 4, 5, 6, 8, 9<.

      (b) ! How many different subsets of 81, 2, . . . , 9< can you create using B1, B2, and B3 with the standard set operations?

       (c) ! Do there exist subsets C1, C2, C3 whose minsets will generate every subset of 81, 2, . . . , 9<?

3.  !  Partition  the  set  of  strings  of  0's  and  1's  of  length  two  or  less,  using  the  minsets  generated  by  B1 = 8s s has length 2<,  and
B2 = 8s s starts with a 0<.
4. ! Let  B1, B2, and B3 be subsets of a universal set U,

(a) ! Find all minsets generated by  B1, B2, and B3.

(b) ! Illustrate with a Venn diagram all minsets obtained in part (a).

(c) !Express the following sets in minset normal form: B1c , B1 › B2 , B1 ‹ B2c .
5. !(a) Partition A = 80, 1, 2, 3, 4, 5< with the minsets generated by  B1 = 80, 2, 4< and  B2 = 81, 5<. 
     (b) How many different subsets of A can you generate from  B1 and B2?

B Exercises
6. ! If  8B1, B2, …, Bn< is a partition of A, how many minsets are generated by B1, B2, …, Bn?

7. ! Prove Theorem 4.3.1.

C Exercise
8. !Let S be a finite set of n elements. Let Bi  ,, i = 1, 2, … , k be nonempty subsets of S. There are 22k  minset normal forms generated by the k
subsets. The number of subsets of S is 2n. Since we can make 22k > 2n  by choosing k ¥ log2 n, it is clear that two distinct minset normal-form
expressions  do  not  always  equal  distinct  subsets  of  S.  Even  for  k < log2 n,  it  may  happen  that  two  distinct  minset  normal-form expressions
equal the same subset of S. Determine necessary and sufficient conditions for distinct normal-form expressions to equal distinct subsets of S.
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4.4 The Duality Principle
In Section 4.2 we observed that each of the set laws labeled 1 through 9 had an analogue 1' through 9'. We notice that each of the laws in one
column 2 can be obtained from the corresponding law in the other column by replacing ‹ by ›, (› by ‹, « by U, U by «, and leaving the
complement unchanged.

Definition: Duality Principle for Sets. Let S be any identity involving sets and the operations complement, intersection and union, . If S*
is obtained from S by making the substitutions ‹ Ø › , ›Ø‹ , « Ø U , and U Ø«, then the Statement S* is also true and it is called the
dual of the Statement S.

Example 4.4.1. The dual of HA › BL ‹ HA › Bc L = A is  HA ‹ BL › HA ‹ BcL = A

One should not underestimate the importance of this concept. It gives us a whole second set of identities, theorems, and concepts. For example,
we can consider the dual of minsets and minset normal form to obtain what is called maxsets and maxset normal form.

EXERCISES FOR SECTION 4.4
A Exercises
1. State the dual of:

(a) !A ‹ HB › AL = A.

(b) !A ‹ HHBc ‹ AL › BLc = U,

(c) ! HA ‹ BcLc › B = Ac › B

2. ! Consider Table 3.4.1 and then write a description of the principle of duality for logic.

3. ! Write the dual of:

(a) !p Í Ÿ HHŸ q Í pL Ï qL ñ 1

(b) ! HŸ Hp Ï HŸ q LL Í q ñ HŸ p Í qL.

B Exercises
4. ! Use the principle of duality and the definition of minset to write the definition of maxset. {Hint, just replace›by ‹.)

5. ! Let A = 81, 2, 3, 4, 5, 6< and let B1 = 81, 3, 5< and B 2 = 81, 2, 3<. Find the maxsets generated by B1  and B2.  Note the set of maxsets
does not constitute a partition of A. Can you explain why?

(a) ! Write out the definition of maxset normal form.

(b) ! Repeat Problem 4 of Section 4.3 for maxsets.

6. ! Is the dual of Exercise 5 of Section 4.1 true?
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SUPPLEMENTARY EXERCISES FOR CHAPTER 4

Section 4.1
1.   Let A and B be subsets of a universal set U. Use basic definitions to prove each statement. Be sure to outline carefully the logical structure of the proof.

(a)  A Œ S if and only if A › HU - BL = «.

(b)  If U = A ‹ B and A › B = «, then A = U - B.

(c)  A and B are disjoint if and only if A Œ U ~ B.

2.   Let A and B be subsets of a universal set U. Verify the statements using a Venn diagram.

(a)  A Œ B if and only if A › B = A.

(b)  A Œ B if and only if A ‹ B = B.

(c)  A › B Œ A ‹ B.

3.   (a) Prove that if A, B, and C are sets, then HA ‹ BLµC is a subset

of HAµCL ‹ HBµCL.

(b) Explain how you would proceed following part a if you wanted to prove that HA ‹ BLµC = HAµCL ‹ HBµCL.

4.   Simplify the following:

(a) HA › Bc › CL ‹ B ‹ HB › CL ‹ HAc › CL.

(b) HA ‹ HB › CcLL › HHAc › BcL ‹ CL.

Section 4.2

5.   Prove with an indirect proof that if A, B, and C are subsets of universe U, A is a subset of B, and B is a subset of C, then Cc is a subset of Ac.

6.   Basic laws and theorems in different algebraic structures can be recalled easily by thinking in terms of analogous situations in elementary algebra.

(a) Complete the following table:

Algebra
of Sets

Algebra
of Logic

Elementary
Algebra

Objects Used
Basic Operations

Other Connectives

Sets
‹

Œ

fl
Ÿ

ñ

Real Numbers
ÿ
+

-Hor multiplicative
inverse

b

=

(b)  Write analogous statements in the algebras of sets and logic.

 Which are true?

(i) If x, y, and z are real numbers and if x § y and y b z, then x b z.

(ii) -H-xL = x for any real number x.

(iii) If x , y, and z are real numbers and x + y = x + z, then y = z .

(iv) Let x, y œ !. x = y if and only if x b y and y b x.

(v) For x œ !, x + 0 = 0 + x = x and x ÿ 1 = 1 ÿ x = x.

7.   Prove or disprove:

(a)  Let A, B, and C be sets. If A ‹ C ! B ‹ C, then A ! B.

(b)  If A ! B , then Ac ! Bc.

8.   Let 8A1, A2, …An< be a partition of set A, and let B be any nonempty subset of A, Prove that 9Ai › B Ai › B ! «= is a partition of A › B.
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8.   Let 8A1, A2, …An< be a partition of set A, and let B be any nonempty subset of A, Prove that 9Ai › B Ai › B ! «= is a partition of A › B.

Section 4.3

9.  Let U = 81, 2, 3, 4, 5, 6<, B1 = 81, 3<, and B2 = 82, 3, 5<.

(a)   List the minsets generated by B1 and B2.

(b)   Show that the set of minsets form a partition of U.

Section 4.4

10.   State the dual of each statement in Exercise 3, Section 4.2.

11.   Show that the dual of each of the basic set laws 1 through 9 are the corresponding laws 1' through 9'.
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chapter 5

INTRODUCTION TO MATRIX ALGEBRA
GOALS

The purpose of this chapter is to introduce you to matrix algebra, which has many applications. You are already familiar with several algebras:
elementary  algebra,  the  algebra  of  logic,  the  algebra  of  sets.  We  hope  that  as  you  studied  the  algebra  of  logic  and  the  algebra  of  sets,  you
compared them with elementary algebra and noted that the basic laws of each are similar. We will see that matrix algebra is also similar. As in
previous discussions, we begin by defining the objects in question and the basic operations.

5.1 Basic Definitions 
Definition: Matrix. A matrix is a rectangular array of elements of the form 

A =

a11 a12 a13 ! a1 n
a21 a22 a23 ! a2 n
a31 a32 a33 ! a3 n
ª ª ª " ª

am1 am2 am3 ! amn
A convenient way of describing a matrix in general is to designate each entry via its position in the array. That is, the entry a34  is the entry in
the third row and fourth column of the matrix A. Depending on the situation, we will decide in advance to which set the entries in a matrix will
belong.  For example,  we might assume that  each entry aij  (1 § i § m,  1 § j § n)  is  a real  number.  In that  case we would  use MmµnH!L  to
stand for the set of all m by n matrices whose entries are real numbers.   If we decide that the entries in a matrix must come from a set S, we use
MmµnHSL to denote all such matrices.

Definition: Order of a Matrix.  The matrix A that has m rows and n columns is called an mµ n (read "m by n") matrix, and is said to
have order m µ n.
Since it is rather cumbersome to write out the large rectangular array above each time we wish to discuss the generalized form of a matrix, it is
common practice to replace the above by A = AaijE.   In general,  matrices are often given names that are capital letters and the corresponding
lower case letter is used for individual entries.  For example the entry in the third row, second column of a matrix called C would be c32.
Example 5.1.1.

A = K
2 3
0 -5 O , B =

0
1
2

15
 , and D =

1 2 5
6 -2 3
4 2 8

are 2 µ 2, 3 µ 1, and 3 µ 3 matrices, respectively

Since we now understand what  a  matrix looks like,  we are in a  position to investigate the operations of  matrix algebra for  which users  have
found the most applications.

 Example 5.1.2.  First we ask ourselves: Is the matrix A = K
1 2
3 4 O  equal to

the  matrix  B = K
1 2
3 5 O?   No,  they  are  not  because  the  corresponding  entries  in  the  second  row,  second  column of  the  two matrices  are  not

equal.  Next, is   A = K
1 2 3
4 5 6 O  equal to B = K

1 2
4 5 O? No, although the corresponding entries in the first two columns are identical, B doesn't

have a third column to compart to that of A.  We formalize these observations in the following definition.
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 Example 5.1.2.  First we ask ourselves: Is the matrix A = K
1 2
3 4 O  equal to

the  matrix  B = K
1 2
3 5 O?   No,  they  are  not  because  the  corresponding  entries  in  the  second  row,  second  column of  the  two matrices  are  not

equal.  Next, is   A = K
1 2 3
4 5 6 O  equal to B = K

1 2
4 5 O? No, although the corresponding entries in the first two columns are identical, B doesn't

have a third column to compart to that of A.  We formalize these observations in the following definition.
Definition; Equality of Matrices. A matrix A is said to be equal to  matrix B (written A = B) if and only if:

(1) A and B have the same order, and

(2)  all corresponding entries are equal: that is, aij = bij for all appropriate i and j.

5.2 Addition and Scalar Multiplication
Example 5.2.1. Concerning addition, it seems natural that if

A = K
1 0
2 -1 O  and B = K

3 4
-5 2 O  , then A + B = K

1 + 3 0 + 4
2 - 5 -1 + 2 O = K

4 4
-3 1 O . 

However, if A = K
1 2 3
0 1 2 O and B = K

3 0
2 8 O, can we find A + B?  No, the orders of the two matrices must be identical.

Definition: Matrix Addition. Let A and B be mµ n matrices. Then A + B  is an mµ n matrix where HA + BLij = aij + bij  (read "the ith
jth entry of the matrix A + B is obtained by adding the ith jth entry of A to the ith jth entry of B").  If the orders of A and B are not identical,
A + B  is not defined.
It should be clear from Example 5.2.1 and the definition of addition that A + B is defined if and only if A and B are of the same order.

Another frequently used operation is that of multiplying a matrix by a number, commonly called a scalar in this context.  Scalars normally come
from the same set as the entries in a matrix.  For example, if A œ MmµnH!L, a scalar can be any real number.

Example  5.2.2.  If  c = 3  and  if  A = K
1 -2
3 5 O   and  we  wish  to  find  c A,   it  seems  natural  to  multiply  each  entry  of  A  by  3  so  that

3 A = K
3 -6
9 15 O , and this is precisely the way scalar multiplication is defined.

Definition: Scalar Multiplication. Let A be an m µ n matrix and c a scalar. Then c A is the mµ n matrix obtained by multiplying c times
each entry of A; that is HcALij = c aij.

5.3 Multiplication of Matrices

 - For a video introduction to this section, go to http://faculty.uml.edu/klevasseur/ads2/videos/matrixmultiplication/

A definition that is more awkward to motivate (and we will not attempt to do so here) is the product of two matrices. In time, the reader will see
that the following definition of the product of matrices will be very useful, and will provide an algebraic system that is quite similar to elemen-
tary algebra.

Definition: Matrix Multiplication. Let A be an mµ n matrix and let B be an nµ p matrix. The product of A and B, denoted by AB, is an
mµ p matrix whose ith row jth column entry is

HA BLi j = ai 1 b1 j + ai 2 b2 j + ! + ai n bn j

= ⁄
k=1

n
ai k bk j  

 

for  1 § i § m  and 1 § j § p.

The mechanics of computing one entry in the product of two matrices is illustrated in Figure 5.3.1.
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Figure 5.3.1  Computation of one entry in the product of two 3 by 3 matrices

The computation of a product can take a considerable amount of time in comparison to the time required to add two matrices. Suppose that A
and B are n µ n matrices; then HABLij  is determined performing n multiplications and n - 1 additions. The full product takes n3  multiplications

and n3 — n2  additions. This compares with n2  additions for the sum of two n µ n  matrices. The product of two 10 by 10 matrices will require
1,000 multiplications and 900 additions, clearly a job that you would assign to a computer.  The sum of two matrices requires a more modest
100 additions. This analysis is based on the assumption that matrix multiplication will be done using the formula that is given in the definition.
There  are  more  advanced  methods  that,  in  theory,  reduce  operation  counts.  For  example,  Strassen's  algorithm
(http://mathworld.wolfram.com/StrassenFormulas.html)  computes  the  product  of  two  n  by  n  matrices  in  7 ÿ 7log2 n - 6 ÿ 4log2 n º 7 n2.808  opera-
tions.  There are practical issues involved in actually using the algorithm in many situations.   For example,  round-off error can be more of a
problem than with the standard formula.  

Example 5.3.1.    Let A =
1 0
3 2

-5 1
, a 3 µ 2 matrix, an let  B = K

6
1 O, a 2 µ 1 matrix.  Then A B  is a 3 µ 1 matrix:

A B =
1 0
3 2

-5 1
K

6
1 O =

1 ÿ 6 + 0 ÿ 1
2 ÿ 1 + 3 ÿ 6

-5 ÿ 6 + 1 ÿ 1
=

6
20

-29
Remarks:

(1)     The  product  A B  is  defined  only  if  A  is  an  m µ n  matrix  and  B  is  an  n µ p  matrix;  that  is,  the  two  "inner"  numbers  must  be  the  equal.
Furthermore, the order of the product matrix A B is the "outer" numbers, in this case m µ p.
(2)    It  is wise to first determine the order of a product matrix. For example, if A  is a 3 µ 2 matrix and B  is a 2 µ 2 matrix, then A B  is a 3 µ 2
matrix of the form

A B =
c11 c12
c21 c22
c31 c32

 

Then to obtain, for example, C31, we multiply corresponding entries in the third row of A times the first column of B and add the results.

Example 5.3.2.
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Let A = K
1 0
0 3 O,  and  B = K

3 0
2 1 O .  Then

A B = K
1 ÿ 3 + 0 ÿ 2 1 ÿ 0 + 0 ÿ 1
0 ÿ 3 + 3 ÿ 2 0 ÿ 0 + 3 ÿ 1 O = K

3 0
6 3 O

Note: B A = K
3 0
2 3 O ! A B

Remarks;

(1)  An n µ n matrix is called a square matrix.

(2)  If A is a square matrix, A A is defined and is denoted by A2 , and A A A = A3, etc. 
(3)   The m µ n matrices whose entries are all 0 are denoted by 0mµn, or simply 0, when no confusion arises regarding the order.

EXERCISES FOR SECTIONS 5.1 THROUGH 5.3
A Exercises

1. Let A = K
1 -1
2 3 O,  B = K

0 1
3 -5 O , and C = K

0 1 -1
3 -2 2 O  

(a)  Compute  A B and B A.

(b)  Compute A + B and B + A.

(c)  If c = 3, show that cHA + BL = c A + c B.

(d)  Show that HA BL C = A HB CL.

(e)   Compute A2 C.
(f)   Compute  B + 0

(g)   Compute A 02µ2 and 02µ2 A, where 02µ2 is the 2 µ 2 zero matrix,

(h)  Compute  0 A, where 0 is the real number (scalar) zero.

(i) Let c = 2 and d = 3. Show that Hc + dL A = c A + d A.

2. Let A =
1 0 2
2 -1 5
3 2 1

  , B =
0 2 3
1 1 2

-1 3 -2
 , and C =

2 1 2 3
4 0 1 1
3 -1 4 1

Compute, if possible;

(a)   A - B

(b)   A B   

(c)   A C - B C   

(d)   A HB CL

(e)  C A - C B

(f)   C

x
y
z
w

3.  Let A = K
2 0
0 3 O . Find a matrix B such that A B = I and B A = I, where I = K

1 0
0 1 O

4.   Find A I and B I where I is as in Exercise 3, where

A = K
1 8
9 5 O  and  B = K

-2 3
5 -7 O.  

      What do you notice?

5.   Find A3 if A =
1 0 0
0 2 0
0 0 3

 . What is A15 equal to?
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5.   Find A3 if A =
1 0 0
0 2 0
0 0 3

 . What is A15 equal to?

B Exercises

6.   (a) Determine I2  and I3 if  I =
1 0 0
0 1 0
0 0 1

.

       (b)  What is In equal to for any n ¥ 1?

       (c)   Prove your answer to part (b) by induction.

7.  (a) If A = K
2 1
1 -1 O,  X = K

x1
x2

O,  and B = K
3
1 O , show that A X = B is a way of expressing the system     2 x1 + x2 = 3

x1 - x2 = 1
   using matrices.

    (b) Express the following systems of equations using matrices:

(i)   2 x1 - x2 = 4
x1 + x2 = 0

(ii)    x1 + x2 + 2 x3 = 1
x1 + 2 x2 - x3 = -1
x1 + 3 x2 + x3 = 5

(iii)   x1 + x2 = 3
x2 = 5

x1 + 3 x3 = 6

C5.nb | 5
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5.4 Special Types of Matrices
We have already investigated one special type of matrix, namely the zero matrix, and found that it behaves in matrix algebra in an analogous
fashion to the real number 0; that is, as the additive identity. We will now investigate the properties of a few other special matrices.

Definition: Diagonal Matrix. A square matrix D is called a diagonal matrix if dij = 0 whenever i ! j.

Example 5.4.1.

     A =
1 0 0
0 2 0
0 0 5

,  B =
3 0 0
0 0 0
0 0 -5

,  and I =
1 0 0
0 1 0
0 0 1

  are all diagonal matrices.

In Example 5.4.1, the 3 µ 3 diagonal matrix I  whose diagonal entries are all  1's has the singular property that for any other 3 µ 3 matrix A  we
have A I = I A = A.  For example:

Example 5.4.2.   If A =
1 2 5
6 7 -2
3 -3 0

, then

A I =
1 2 5
6 7 -2
3 -3 0

  and

I A =
1 2 5
6 7 -2
3 -3 0

.

In other words, the matrix I behaves in matrix algebra like the real number 1; that is, as a multiplicative identity. In matrix algebra the matrix I
is called simply the identity matrix. Convince yourself that if A is any n µ n matrix A I = I A = A.

Definition:  Identity  Matrix.   The  nµ n  diagonal  matrix  whose  diagonal  components  are  all  1's  is  called  the  identity  matrix  and  is
denoted by I or In .
In the set of real numbers we realize that, given a nonzero real number x, there exists a real number y such that x y = y x = 1. We know that
real numbers commute under multiplication so that the two equations can be summarized as x y = 1. Further we know that y = x-1 = 1

x
.  Do

we  have  an  analogous  situation  in  MnµnH!L?  Can  we  define  the  multiplicative  inverse  of  an  n µ n  matrix  A?  It  seems  natural  to  imitate  the
definition of multiplicative inverse in the real numbers.

Definition: Matrix Inverse. Let A be an nµ n matrix. If there exists an nµ n matrix B such that A B = B A = I, then B is the multiplica-
tive inverse of A (called simply the inverse of A) and is denoted by A-1 (read "A inverse").

When we are doing computations involving matrices,  it  would be helpful  to  know that  when we find A-1,   the answer we obtain is  the only
inverse of the given matrix.
Remark: Those unfamiliar with the laws of matrices should go over the proof of Theorem 5.4.1 after they have familiarized themselves with the
Laws of Matrix Algebra in Section 5.5.

Theorem 5.4.1.  The inverse of an nµ n matrix A, when it exists, is unique.

Proof: Let A be an n µ n matrix. Assume to the contrary, that A has two (different) inverses, say B and C. Then

                 B = B I                       Identity property of I
= B HA C L           Assumption that C is an inverse of A
= HB AL C           Associativity of matrix multiplication
= I C                      Assumption that B is an inverse of A
= C                         Identity property of I ‡

Example 5.4.3.  Let A = K
2 0
0 3 O  .    What is A-1  ? Without too much difficulty,  by trial  and error,  we determine that A-1 =

1
2

0

0 1
3

 .   This

might  lead  us  to  guess  that  the  inverse  is  found  by  taking  the  reciprocal  of  all  nonzero  entries  of  a  matrix.   Alas,  it  isn't  that  easy!    If

A = K
1 2

-3 5 O , the "reciprocal rule" would tell us that the inverse of A is B =
1 1

2
-1
3

1
5

.  Try computing A B and you will see that you don't get

the identity matrix.    So, what is A-1?  In order to understand more completely the notion of the inverse of a matrix, it would be beneficial to
have a formula that would enable us to compute the inverse of at least a 2 µ 2 matrix. To do this, we need to recall the definition of the determi-
nant of a 2 µ 2 matrix. Appendix A gives a more complete description of the determinant of a 2 µ 2 and higher-order matrices.

Definition: Determinant of a 2¥ 2 Matrix. Let A = K
a b
c d O.  The determinant of  A is the number det A = a d - b c.

In addition to det A, common notation for the determinant of matrix A is A .   This is particularly common when writing out the whole matrix,

which case we would write 
a b
c d   for the determinant of the general 2 µ 2 matrix.
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In addition to det A, common notation for the determinant of matrix A is A .   This is particularly common when writing out the whole matrix,

which case we would write 
a b
c d   for the determinant of the general 2 µ 2 matrix.

Example 5.4.4.  

If A = K
1 2

-3 5 O   then det A = 1 ÿ 5 - 2 ÿ H-3L = 11.  

If B = K
1 2
2 4 O   then det B = 1 ÿ 4 - 2 ÿ 2 = 0

Theorem 5.4.2.  Let A = K
a b
c d O.   If det A ! 0,  then A-1 = 1

det A
K

d -b
-c a O

Proof:  See Exercise 4 at the end of this section.

Example 5.4.5.  Can we find the inverses of the matrices in Example 5.4.4? 

If A = K
1 2

-3 5 O   then  A-1 = 1
11

K
5 -2
3 1 O =

5
11

- 2
11

3
11

1
11

The reader should verify that A A-1 = A-1 A = I.
The second matrix, B  has a determinant equal to zero.  We we tried to apply the formula in Theorem 5.4.2, we would be dividing by zero.
For this reason, the formula can't be applied and in fact B-1 does not exist. 
Remarks:

(1)   In general, if A is a 2 µ 2 matrix and if det A = 0, then A-1 does not exist.
(2)  A formula for the inverse of n µ n matrices n ¥ 3 can be derived that also involves det A, Hence, in general, if the determinant of a matrix is
zero,  the  matrix  does  not  have  an  inverse.   However  the  formula  for  even  a  3 µ 3  matrix  is  very  long  and  is  not  the  most  efficient  way  to
compute the inverse of a matrix.
(3)   In Chapter 12 we will develop a technique to compute the inverse of a higher-order matrix, if it exists.

(4)   Matrix inversion comes first in the hierarchy of matrix operations; therefore, A B-1 is AHB-1L.

EXERCISES FOR SECTION 5.4
A Exercises
1. For the given matrices A find  A-1 if it exists and verify that  A A-1 = A-1 A = I  If A-1 does not exist explain why.

(a)   A = K
1 3
2 1 O 

(b)  A = K
6 -3
8 -4 O

(c)  A = K
1 -3
0 1 O 

(d)   A = K
1 0
0 1 O

(e) Use the definition of the inverse of a matrix to find A-1:

 A =

3 0 0

0 1
2

0

0 0 -5

2.   For the given matrices A find  A-1 if it exists and verify that  A A-1 = A-1 A = I  If A-1 does not exist explain why.

(a)   A = K
2 -1

-1 2 O

(b)   A = K
0 1
0 2 O

(c)   A = K
1 c
0 1 O
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(d)   A = K
a b
b a O,  were a > b > 0.

3.  (a) Let A = K
2 3
1 4 O and B = K

3 -3
2 1 O.  Verify that HA BL-1 = B-1 A-1 . 

    (b) Let A and B be n µ n invertible matrices. Prove that HA BL-1 = B-1 A-1. Why is the right side of the above statement written "backwards"?
Is this necessary?  Hint: Use Theorem 5.4.1. 

B Exercises

4.  Let Let A = K
a b
c d O. Derive the formula for A-1.

5.  (a) Let A and B be as in problem 3 above.  Show that detHA BL = Hdet AL Hdet BL.

    (b)     It  can  be  shown  that  the  statement  in  part  (a)  is  true  for  all  n µ n  matrices.  Let  A  be  any  invertible  n µ n  matrix.  Prove  that
detHA-1L = Hdet AL-1. Note: The determinant of the identity matrix In is 1 for all n,  see Appendix A for details.
(c)   Verify that the equation in part (b) is true for the matrix in exercise l(a) of this section.

6.  Prove by induction that for n ¥ 1,  K
a 0
0 b O

n 
= K

an 0
0 bn

O.

7.  Use the assumptions in exercise 5 to prove by induction that if n ¥ 1, detHAnL = Hdet ALn.

8.   Prove: If the determinant of a matrix A is zero, then A does not have an inverse. Hint: Use the indirect method of proof and exercise 5.

C Exercise
9.     (a)  Let  A, B, and D  be  n µ n  matrices.  Assume that  B  is  invertible.   If  A = B D B-1  ,  prove by induction that  Am = B Dm B-1  is  true for
m ¥ 1.

       (b) Given that A = K
-8 15
-6 11 O = B K

1 0
0 2 O B-1 where B = K

5 3
3 2 O  what is A10 ?
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5.5 Laws of Matrix Algebra
The following is a summary of the basic laws of matrix operations. Assume that the indicated operations are defined; that is, that the orders of
the matrices A, B, and C are such that the operations make sense.

(1)  A + B = B + A

(2)  A + HB + CL = HA + BL + C

(3)   c HA + BL = c A + c B, where c œ !.

(4)   Hc1 + c2 L A = c1 A + c2 A, where c1, c2 œ !.

(5)  c1 Hc2 AL = Hc1 ÿ c2 L A, where c1, c2 œ !.

(6)  0 A = 0, where 0 is the zero matrix.

(7)  0 A = 0, where 0 on the left is the number 0.

(8)  A + 0 = A.  

(9)  A + H-1L A = 0.  

(10)   A HB + CL = A B + A C.  

(11)   HB + CL A = B A + C A.  

(12)  AHB CL = HA BL C.

(13)  I A = A and A I = A.

(14) If A-1 exists, HA-1 L-1 = A.

(15) If A-1 and B-1 exist,  HA BL-1 = B-1 A-1 

Example  5.5.1.  If  we  wished  to  write  out  each  of  the  above  laws  more  completely,  we  would  specify  the  orders  of  the  matrices.  For
example, Law 10 should read:
(10) Let A, B, and C be m µ n, n µ p, and n µ p matrices, respectively, then A HB + CL = A B + A C

Remarks:

(1)  Notice the absence of the "law" A B = B A. Why?

(2)   Is it really necessary to have both a right (No. 11) and a left (No. 10) distributive law? Why?

(3)   What does Law 8 define? What does Law 9 define?

EXERCISES FOR SECTION 5.5
A Exercises
1.   Rewrite the above laws specifying as in Example 5.5.1 the orders of the matrices.

2.   Verify each of the Laws of Matrix Algebra using examples.

3.  Let A = K
1 2
0 -1 O, B = K

3 7 6
2 -1 5 O, and  C = K

0 -2 4
7 1 1 O.  Compute the following as efficiently as possible by using any of the Laws of

Matrix Algebra:
(a)   A B + A C

(b)   A-1

(c)  A HB + CL
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(d)   HA2L-1

(e)   HC + BL-1 A-1

4. Let A = K
7 4
2 1 O  and B = K

3 5
2 4 O.  Compute the following as efficiently as possible by using any of the Laws of Matrix Algebra:

(a)   A B   

(b)  A + B   

(c)  A2 + A B + B A + B 2

(d)   B-1 A-1

(e)  A2 + A B

5.  Let A and B be n µ n matrices of real numbers. Is  A2 - B2 = HA - BL HA + BL "?   Explain
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5.6 Matrix Oddities
We have seen that matrix algebra is similar in many ways to elementary algebra. Indeed, if we want to solve the matrix equation A X = B for
the unknown X, we imitate the procedure used in elementary algebra for solving the equation a x = b. Notice how exactly the same properties
are used in the following detailed solutions of both equations.
Solution of a x = b          Solution of A X = B

a x = b   A X = B

a-1Ha xL = a-1 b if a ! 0   A-1HA XL = A-1 B if A-1 exists

Ha-1 aL x = a-1 b      associative law              HA-1 AL X = A-1 B      associative law

1 x = a-1 b               definition of inverse I X = A-1 B                definition of inverse 

x = a-1 b                 identity property of 1 X = A-1 B                  identity property of I

Certainly the solution process for A X = B is the same as that of a x = b.

The solution of x a = b is x = b a-1 = a-1 b. In fact, we usually write the solution of both equations as x = b
a

. In matrix algebra, the solution of

X A = B is X = B A-1  , which is not necessarily equal to A-1 B.  So in matrix algebra, since the commutative law (under multiplication) is not
true, we have to be more careful in the methods we use to solve equations.

It is clear from the above that if we wrote the solution of A X = B as X = B
A

, we would not know how to interpret the answer B
A

. Does it mean

A-1 B or B A-1?   Because of this, A-1 is never written as 1
A

.

Some of the main dissimilarities between matrix algebra and elementary algebra are that in matrix algebra:

(1)   A B may be different from B A.

(2)   There exist matrices A and B such that A B = 0, and yet A ! 0 and B ! 0.

(3)  There exist matrices A where A ! 0, and yet A2 = 0.

(4)   There exist matrices A where A2 - A with A ! I and A ! 0

(5)  There exist matrices A where A2 = I , where A ! I and A ! -I

EXERCISES FOR SECTION 5.6
A Exercises
1.   Discuss each of the above "oddities" with respect to elementary algebra.

2.   Determine 2 µ 2 matrices which show each of the above "oddities" are true.

B Exercises

3.   Prove the following implications, if possible:

(a)   A2 = A and det A ! 0 fl A = I

(b)  A2 = I and det A ! 0 fl A = I or A = -I.

4.     Let  MnµnH!L  be  the  set  of  real  n µ n  matrices.  Let  P Œ MnµnH!L   be  the  subset  of  matrices  defined  by  A œ P if and only if A2 = A.   Let
Q Œ P be defined by A œ Q  if and only if det A ! 0.
(a)   Determine the cardinality of Q.

(b)     Consider  the  special  case  n = 2 and prove  that  a  sufficient  condition  for  A œ P Œ M2µ2H!L  is  that  A  has  a  zero  determinant  (i.e.,  A  is
singular) and tr HAL = 1 where tr HAL = a11 + a 22 is the sum of the main diagonal elements of A.
(c)   Is the condition of part b a necessary condition?
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C Exercises
5.   Write each of the following systems in the form A X = B, and then solve the systems using matrices.

(a)   2 x1 + x2 = 3
x1 - x2 = 1

(b)    2 x1 - x2 = 4
x1 - x2 = 0

(c)   2 x1 + x2 = 1
x1 - x2 = 1

(d)   2 x1 + x2 = 1
x1 - x2 = -1

(e)   3 x1 + 2 x2 = 1
6 x1 + 4 x2 = -1

6.   Recall that p HxL = x2 - 5 x + 6 is called a polynomial, or more specifically, a polynomial over !, where the coefficients are elements of !
and x œ !. Also, think of the method of solving, and solutions of, x2 - 5 x + 6 = 0. We would like to define the analogous situation for 2 µ 2
matrices.  First  define  where  A  is  a   2 µ 2  matrix  p HAL = A2 - 5 A + 6 I.   Discuss  the  method  of  solving  and  the  solutions  of
A2 - 5 A + 6 I = 0.
7.  (For those who know calculus)

(a)  Write the series expansion for  ‰a centered around a = 0.

(b) Use the idea of exercise 6 to write what would be a plausible definion of ‰A where A is an n µ n  matrix.

(c)  If  A = K
1 1
0 0 O  and B = K

0 -1
0 0 O , use the series in part (b) to show that  ‰A = K

‰ ‰ - 1
0 1 O and ‰B = K

1 -1
0 1 O.

(d)  Show that ‰A ‰B ! ‰B ‰A

(e)  Show that   ‰A+B = K
‰ 0
0 1 O

(f)   Is  ‰A ‰B = ‰A+B?

12 | C5.nb

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License.

109



SUPPLEMENTARY EXERCISES FOR CHAPTER 5

Sections 5.1 through 5.3
1.   Determine x and y in the following:

x + y 5
-2 x - y

=
3 5
-2 4

2.   Let A =
1 0 -1
2 1 5
3 -4 1

, B =
0 0 2
3 -1 1
1 2 -1

, C =
3
4
5

. Compute:

     (a) 2 A - 3 B
     (b) 2 A - 5 A
     (c) AC + BC

3. Let A and B be two mµm matrices with AB = BA. Prove by induction on n that ABn = Bn A for n greater than or equal to 1.

4. Prove by induction that if n is a positive integer, and 

A =
1 1 0
0 1 1
0 0 1

, then An =
1 n nHn - 1L ê2
0 1 n
0 0 1

Section 5.4

5. Determine A-1 A3 if A =
2 3
1 4

6. Let A =
4 -2
-2 5

 and B =
2 0
1 1

   Compute A + B, A2 + AB+BA + B2, and B-1 A-1. You may save some time by thinking before plunging into the computations.

7. For what real number c will the matrix D have no inverse? Explain your answer.

    D =
3 15
4 c

8.  Let P = :
a b
c d

œ M2µ2H!L ad ! bc>.

Fact: The inverse of a diagonal matrix belonging to P can be found simply by reciprocating the diagonal elements of the matrix.

     (a) Determine 
3 0
0 6

-1
.

     (b) Suppose 
a b
c d

œ P and 
a b
c d

-1
=

1 êa b
c 1 êd

In general, is 
a b
c d

 a diagonal matrix? If yes, explain why; if no, give the most general form of such a matrix 
a b
c d

.

Section 5.5

9. (a) Let A and B be nµn matrices. Expand HA + BL2.

    (b) Is HA + BL2 ever equal to A2 + 2 AB + B2? Explain.

10. Solve the following matrix equation for X. Be careful to explain under which conditions each step is possible.

AX + C = BX

Section 5.6

11. Prove or disprove: A-1 = A and B-1 = B fl HABL-1 = AB.

12. The following is true for all real numbers a and b: a ÿb = 0 if and only if a = 0 or b = 0. Is any part of this statement true for nµn matrices A and B?
Explain. Give an example and proof.

13.  Let  A =
a b
c d

,  where  a, b, c, d œ !.  Show  that  the  matrices  of  the  form  A = ±
1 0
c -1

,  and  A = ±
1 b
0 -1

 are  also  solutions  to  the  equation

A2 = I, confirming that a quadratic matrix equation can have an infinite number of solutions. Are there any others?
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13.  Let  A =
a b
c d

,  where  a, b, c, d œ !.  Show  that  the  matrices  of  the  form  A = ±
1 0
c -1

,  and  A = ±
1 b
0 -1

 are  also  solutions  to  the  equation

A2 = I, confirming that a quadratic matrix equation can have an infinite number of solutions. Are there any others?
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chapter 6

RELATIONS AND GRAPHS

GOALS
One understands a set  of  objects  completely only if  the structure of  that  set  is  made clear  by the interrelationships between its  elements.  For
example, the individuals in a crowd can be compared by height, by age, or through any number of other criteria. In mathematics, such compar-
isons are called relations. The goal of this chapter is to develop the language, tools, and concepts of relations.

6.1 Basic Definitions 
In Chapter 1 we introduced the concept of the Cartesian product of sets. Let's assume that a person owns three shirts and two pairs of slacks.
More precisely, let A = 8blue shirt, tan shirt, mint green shirt< and B = 8grey slacks, tan slacks<. Then certainly A × B is the set of all possible
combinations (six) of shirts and slacks that the individual can wear. However, the individual may wish to restrict himself or herself to combina-
tions which are color coordinated, or "related." This may not be all possible pairs in A µ B but will certainly be a subset of A µ B. For example,
one such subset may be 8Hblue shirt, grey slacksL, Hblue shirt, tan slacksL, Hmint green shirt, tan slacksL<.

Definition: Relation.  Let A and B be sets. A relation from A into B is any subset of A×B.

Example 6.1.1. Let A = 81, 2, 3< and B = 84, 5<. Then 8H1, 4L, H2, 4L, H3, 5L< is a relation from A into B.  Of course, there are many
others we could describe; 64, to be exact.

Example  6.1.2.  Let  A = 82, 3, 5, 6<  and  define  a  relation  r  from  A  into  A  by  Ha, bL œ r  if  and  only  if  a  divides  evenly  into  b.  So
r = 8H2, 2L, H3, 3L, H5, 5L, H6, 6L, H2, 6L, H3, 6L<.

Definition: Relation on a Set. A relation from a set A into itself is called a relation on A.

The relation "divides" in Example 6.1.2 is will appear throughout the book.  Here is a general definition on the whole set of integers.

Definition:  Divides.  Let a, b œ ! .    
a b if and only if there exists an integer k such that a k = b.

Based on the equation a k = b, we can say that a b is equivalent to  k = b
a

, or a divides evenly into b.  In fact the "divides" is short for "divides

evenly  into."   You  might  find  the  equation  k = b
a

 initially  easier  to  understand,  but  in  the  long  run  we  will  find  the  equation  a k = b  more
useful. 
Sometimes it is helpful to illustrate a relation. Consider Example 6.1.1. A picture of r can be drawn as in Figure 6.1.1. The arrows indicate that
1 is related to 4 under r. Also, 2 is related to 4 under r, and 3 is related to 5, while the upper arrow denotes that r is a relation from the whole set
A into the set B.
A typical element in a relation r is an ordered pair Hx, yL. In some cases, r can be described by actually listing the pairs which are in r, as in the
previous  examples.  This  may  not  be  convenient  if  r  is  relatively  large.  Other  notations  are  used  depending  on  personal  preference  or  past
practice. Consider the following relations on the real numbers:
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FIGURE 6.1.1 Illustration of a relation

r = 8Hx, yL y is the square of x<, and s = 8Hx, yL x § y<.

The notation H4, 16L œ r or H3, 7.2L œ s makes sense in both cases. However, r would be more naturally expressed as r HxL = x2  or r HxL = y,
where y = x2  . But this notation when used for s is at best awkward. The notation x § y is clear and self-explanatory; it is a better notation to
use than Hx, yL œ s.
Many of the relations we will work with "resemble" the relation §, so x s y is a common way to express the fact that x is related to y through the
relation s.

Relation Notion.  Let s be a relation from a set A into a set B. Then the fact that Hx, yL œ s is frequently written x s y.

Let  A = 82, 3, 5, 8<,  B = 84, 6, 16<,  and  C = 81, 4, 5, 7<;  let  r  be  the  relation  "divides,"  denoted  by  »,  from  A  into  B;  and  let  s  be  the
relation § from B into C. So r = 8H2, 4L, H2, 6L, H2, 16L, H3, 6L, H8, 16L< and s = 8H4, 4L, H4, 5L, H4, 7L, H6, 7L<.
Notice from Figure 6.1.2 that we can, for certain elements of A, go through elements in B to results in C. That is:

2 4 and 4 § 4 

2 4 and 4 § 5

2 4 and 4 § 7

2  6 and 6 § 7

3  6 and 6 § 7

Based on this observation, we can define a new relation, call it  rs,  from A  into C.  In order for Ha, cL  to be in rs,  it  must be possible to travel
along  a  path  in  Figure  6.1.2  from  a  to  c.  In  other  words,  Ha, cL œ rs  if  and  only  if  H$ bLB Ha r b and b s cL.  The  name  rs  was  chosen  solely
because  it  reminds  us  that  this  new relation  was  formed  by  the  two  previous  relations  r  and  s.  The  complete  listing  of  all  elements  in  rs  is
8H2, 4L, H2, 5L, H2, 7L, H3, 7L<. We summarize in a definition.

FIGURE 6.1.2 Illustration of relation "divides"

Definition:  Composition  of  Relations.  Let  r  be  a  relation  from a  set  A  into  a  set  B,  and  let  s  be  a  relation  from B into  a  set  C.  The
composition of r and s, written rs, is the set of pairs of the form Ha, cL œ AµC, where Ha, cL œ rs if and only if there exists b œ B such that
Ha, bL œ r and Hb, cL œ s.
Remark: A word of warning to those readers familiar with composition of functions. (For those who are not, disregard this remark. It will be
repeated at an appropriate place in Chapter 7.) As indicated above, the traditional way of describing a composition of two relations is rs where r
is the first relation and s the second. However, function composition is traditionally expressed "backwards"; that is, as sr (or s Îr), where r is the
first function and s is the second.

EXERCISES FOR SECTION 6.1
A Exercises
1.   For each of the following relations r defined on P, determine which of the given ordered pairs belong to r.

(a)   x r y iff x y;   (2, 3), (2, 4), (2, 8), (2, 17)

(b)   x r y iff x § y; (2, 3), (3, 2), (2, 4), (5, 8)

(c)   x r y iff y = x2  ; (1,1), (2, 3), (2, 4), (2, 6)
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2.   The following relations are on {1, 3, 5} . Let r be the relation x r y iff y = x + 2 and s the relation x s y iff x § y.

(a)   Find rs.

b)   Find sr.

(c)   Illustrate rs and sr via a diagram.

(d)   Is the relation (set) rs equal to the relation sr? Why?

3.  Let A = 81, 2, 3, 4 , 5< and define r on A by x r y iff x + 1 = y. We

define r2 = rr  and  r3 = r2 r. Find:
(a) r   

(b) r2  

(c) r3

4.  Given s and t, relations on !, s = 8H1, nL : n œ !< and t = 8Hn, 1L : n œ !<, what are st and ts?

B Exercises
5.   Let r be the relation on the power set, !HS L, of a finite set S of cardinality n. Define r by HA, BL œ r iff A › B = «,
(a)   Consider the specific case n = 3, and determine the cardinality of the set r.

(b)   What is the cardinality of r for an arbitrary n? Express your answer in terms of n. (Hint: There are three places that each element of S can
go in building an element of r.)
6.   Let r1, r2, and r3 be relations on any set A. Prove that if r1 Œ r2then r1 r3 Œ r2 r3.
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6.2 Graphs of Relations
In this section we will give a brief explanation of procedures for graphing a relation. A graph is nothing more than an illustration that gives us,
at  a  glance,  a  clearer  idea  of  the  situation  under  consideration.  A  road  map  indicates  where  we  have  been  and  how to  proceed  to  reach  our
destination. A flow chart helps us to zero in on the procedures to be followed to code a problem and/or organize the flow of information.   The
graph of the function y = 2 x + 3 in algebra helps us to understand how the function behaves. Indeed, it tells us that the graph of this function
is a straight line. The pictures of relations in the previous section gave us an added insight into what a relation is. They indicated that there are
several different ways of graphing relations. We will investigate two additional methods.

Example 6.2.1, Let A = 80, 1, 2, 3<, and let 

r = 8H0, 0L, H0, 3L, H1, 2L, H2, 1L, H3, 2L, H2, 0L<. 

The elements of A are called the vertices of the graph. They are represented by labeled points or occasionally by small circles. Connect vertex
a to vertex b with an arrow, called an edge of the graph, going from vertex a to vertex b if and only if a r b.   This type of graph of a relation r
is called a directed graph or digraph. The result is Figure 6.2.1.  Notice that since  1 r 2 and 2 r 1, we draw a single edge between 1 and 2 with
arrows in both directions.

1

2

3

0

FIGURE 6.2.1

The actual location of the vertices is immaterial. The main idea is to place the vertices in such a way that the graph is easy to read. Obviously,
after a rough-draft graph of a relation, we may decide to relocate and/or order the vertices so that the final result will be neater. Figure 6.2.1
could be presented as in Figure 6.2.2.

1 2

30

FIGURE 6.2.2 

A vertex of a graph is also called a node,  point, or a junction. An edge of a graph is also referred to as an arc, a line, or a branch. Do not be
concerned if two graphs of a given relation look different. It is a nontrivial problem to determine if two graphs are graphs of the same relation.

Example 6.2.2. Consider the relation s whose digraph is Figure 6.2.3. What information does this give us?  Certainly we know that s is a
relation of a set A, where A = 81, 2, 3< and

s = 8H1, 2L, H2, 1L, H1, 3L, H3, 1L, H2, 3L, H3, 3L<,
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1

2

3

FIGURE 6.2.3

Example 6.2.3. Let B = 8a, b<, and let A = ! HBL = 80, 8a<, 8b<, 8a, b<<. Then Œ is a relation on A whose digraph is Figure 6.2.4.

«

8a< 8b<

8a,b<

FIGURE 6.2.4

This graph is helpful insofar as it  reminds us that each set is a subset of itself  (How?) and shows us at  a glance the relationship between the
various subsets in  ! HBL. Some relations, such as this one, can also be conveniently depicted by what is called a Hasse, or ordering, diagram. To
read a Hasse diagram for a relation on a set A, remember:
(1)   Each vertex of A must be related to itself, so the arrows from a vertex to itself are not necessary.

(2)   If vertex b appears above vertex a and if vertex a is connected to vertex b by an edge, then a r b, so direction arrows are not necessary.

(3)   If vertex c is above vertex a and if c is connected to a by a sequence of edges, then arc.

(4)   The vertices (or nodes) are denoted by points rather than by "circles."

The Hasse diagram of the directed graph depicted in Figure 6.2.4 is Figure 6.2.5.
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«

81< 82<

81, 2<

FIGURE 6.2.5 

Example 6.2.4. Consider the relation s whose Hasse diagram is Figure 6.2.6.

1

2 3

4

5

FIGURE 6.2.6

How do we read this diagram? What is  A? What is  s? What does the digraph of s  look like? Certainly A = 81, 2, 3, 4, 5<  and 1 s 2,  3 s 4,
1 s 4, 1 s 5,  etc., so
s = 8H1, 1L, H2, 2L, H3, 3L, H4, 4L, H5, 5L, H1, 3L, H1, 4L, H1, 5L, H1, 2L, H3, 4L, H3, 5L, H4, 5L, H2, 5L<

A digraph for s is Figure 6.2.7.  It is certainly more complicated to read than the Hasse diagram.

1

2

3

4

5

FIGURE 6.2.7 Digraph of Example 6,2.4
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EXERCISES FOR SECTION 6.2
A Exercises
1.   Let A = 81, 2, 3, 4<, and let r be the relation § on A.  Draw a digraph and a Hasse diagram for r.

2.   Let B = 81, 2, 3, 4, 6, 8, 12, 24<, and let s be the relation  "divides," on B.  Draw a Hasse diagram for s.

3.  Draw a Hasse diagram of the relation Œ on !HAL, where A = 8a, b, c<.

4. (a) Let A be the set of strings of 0's and 1's of length 3 or less. Define the relation of d on A by x d y if x is contained within y. For example,
01 d 101. Draw a Hasse diagram for this relation. 
    (b) Do the same for the relation p defined by x p y if x is a prefix of y. For example, 10 p 101, but 01 p 101 is false.

5. Draw the digraph for the relation r in Exercise 5 of Section 6.1, where S = 8a, bL. Explain why a Hasse diagram could not be used to depict
r.
6.  Let C = 81, 2, 3, 4, 6, 8, 12, 24< and define t on C  by

a t b  if and only if  a and b share a common divisor greater than 1.

     Draw a digraph for t.
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6.3 Properties of Relations
Consider the set B = 81, 2, 3, 4, 6, 12, 36, 48< and the relations "divides" and § on B. We notice that these two relations on B have several
properties in common. In fact:
(1) Every element in B divides itself and is less than or equal to itself. This is called the reflexive property.

(2) If we search for two  elements from B where the first divides the second and the second divides the first, then we are forced to choose the
same  first  and  second  number.  The  reader  can  verify  that  a  similar  result  is  true  for  the  relation  §  on  B.  This  is  called  the  antisymmetric
property,
(3) Next if we choose three numbers from B such that the first divides (or is §) the second and the second divides (or is §) the third, then this
forces the first number to divide (or be §) the third. This is called the transitive property.
Sets on which relations are defined which satisfy the above properties are of special interest to us. More detailed definitions follow.

Definitions: Reflexive, Antisymmetric, and Transitive Relations. Let A be a set and let r be a relation on A, then:

(1) r is reflexive if and only if a r a for all a œ A.

(2) r is antisymmetric  if  and only if  whenever a r b and a ! b then b r a is false; or equivalently whenever a r b and b r a then a = b. (The
reader is encouraged to think about both conditions since they are frequently used.)
(3) r is transitive if and only if whenever a r b and b r c then a r c.

A word of warning about antisymmetry: Students frequently find it difficult to understand this definition. Keep in mind that this term is defined
through an "If . .. then . . ." statement. The question that you must ask is: Is it true that whenever there are elements a and b from A where a r b
and a ! b, it follows that b is not related to a? If so, then the relation r is antisymmetric.
Another way to determine whether a relation is antisymmetric is to examine its graph. The relation is not antisymmetric if there exists a pair of
vertices that are connected by edges in both directions. Note that the negation of antisymmetric is not symmetric We will define the symmetric
property later.

Definition: Partial Ordering. A relation on a set A that is reflexive, antisymmetric, and transitive is called a partial ordering on A.  A set
on which there is a partial ordering relation defined is called a partially ordered set or poset.

Example 6.3.1.  Let A be a set. Then ! HAL together with the relation Œ is a poset. To prove this we observe that the three properties hold:

(1)   Let B œ ! HAL, We must show that B Œ B. This is true by definition of subset. Hence, the relation is reflexive.

(2)  Let B1, B2 œ ! HAL and assume that B1 Œ B2 and B1 ! B2 . Could it be that B2 Œ B1?  No. Why? Hence, the relation is anti symmetric.

(3)   Let B1, B2, B3 œ ! HAL  and assume that B1 Œ B2 and B2 Œ B3 . Does it follow that B1 Œ B3 ?  Yes. Hence, the relation is transitive.

Example 6.3.2. Consider the relation s defined by the Hasse diagram in Figure 6.2.6. A relation defined by a Hasse diagram is always a
partial ordering. Let's convince ourselves of this.
(1)   First, s is reflexive?  Yes, a Hasse diagram always implies that each element is related to itself.

(2)    Next,  s  is antisymmetric.  From the diagram, can we find two different elements,  say c1  and c2  ,  such that c1 s c2  and c2 s c1?    No. If
c1 s c2,  then c1 and c2 are connected by a series of edges in the Hasse diagram and  c1 is below c2.    In order for  c2 s c1to be true,  c2 would
need to be below c1, which is impossible. 
(3)   Finally, s is transitive. Again, this follows from the way Hasse diagrams are always interpreted.   If c1 s c2, then c1 and c2 are connected
by a series of edges in the Hasse diagram and  c1  is below c2.  Similarly  if c2 s c3   then c2 and c3  are connected by a series of edges in the
Hasse diagram and  c2 is below c3.  Thus,  c1is below c3 and we can patch together the two series of edges through c2 to connect c1 to c3.
Another property that is frequently referred to is that of symmetry.

Definition: Symmetry. Let r be a relation on a set A. r is symmetric if and only if whenever a r b, it follows that b r a.

Consider the relation of equality (=) defined on any set A. Certainly a = b implies that b = a so equality is a symmetric relation on A.

Surprisingly, equality is also an antisymmetric relation on A. This is due to the fact that the condition that defines the antisymmetry property,
a = b and a ! b, is a contradiction. Remember, a conditional proposition is always true when the condition is false. So a relation can be both
symmetric and antisymmetric on a set! Again recall that these terms are not negatives of one other.

Definition: Equivalence Relation. A relation r on a set A is called an equivalence relation if and only if it is reflexive, symmetric, and
transitive.
The classic example of an equivalence relation is equality on a set A. In fact, the term equivalence relation is used because those relations which
satisfy the definition behave quite like the equality relation.

Example 6.3.3.  Let !* be the set of nonzero integers.  One of the most basic equivalence relations in mathematics is the relation q  on
!µ!* defined by Ha, bL q Hc, dL if and only if a d = b c. We will leave it to the reader to, verify that q is indeed an equivalence relation.  Be
aware  that  since  the  elements  of  !µ!*are  ordered  pairs,  proving  symmetry  involves  four  numbers  and  transitivity  involves  six  numbers.
Two ordered pairs, Ha, bL and Hc, dL, are related if the fractions a

b
 and c

d
  are numerically equal.

!µ!* defined by Ha, bL q Hc, dL if and only if a d = b c

Example  6.3.4.  Consider  the  relation  s  described  by  the  digraph  in  Figure  6.3.1.  This  relation  is  reflexive  (Why?),  not  symmetric
(Why?), and not transitive (Why?). Is s an equivalence relation?  A partial ordering? It is neither, and among the valid reasons of stating this
is that s isn't transitive.
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a b

c

FIGURE 6.3.1.

A classic example of a partial  ordering relation is §  on the real numbers,  ".  Indeed, when graphing partial  ordering relations,  it  is  natural  to
"plot" the elements from the given poset starting with the "least" element to the "greatest" and to use terms like "least," "greatest," etc. Because
of  this  the  reader  should  be  forewarned  that  many  texts  use  the  §  notation  when  describing  an  arbitrary  partial  ordering.  This  can  be  quite
confusing for the novice, so we continue to use the general notation r, s, etc., when speaking of relations.

EXERCISES FOR SECTION 6.3
A Exercises
1.  (a) Let B = 8a, b< and U = !HBL. Draw a Hasse diagram for Œ on U.

     (b)   Let A = 81, 2, 3, 6<. Show that divides, |,  is a partial ordering on A. 

     (c)  Draw a Hasse diagram for divides on A.

     (d)   Compare the graphs of parts a and c.

2.  Repeat Exercise 1 with B = 8a, b, c< and  A = {1, 2, 3, 5, 6, 10, 15, 30} .

3.   (a) Consider the relations defined by the digraphs in Figure 6.3.2.  Determine whether the given relations are reflexive, symmetric, antisym-
metric, or transitive. Try to develop procedures for determining the validity of these properties from the graphs, 
      (b) Which of the graphs in Figure 6.3.2 are of equivalence relations or of partial orderings?
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Figure 6.3.2

4.   Determine which of the following are equivalence relations and/or partial ordering relations for the given sets:

(a)   A = 8lines in the plane<; x r y if and only if x is parallel to y.

(b)   A = ";  x r y if and only if x — y § 7.

5.   Consider the following relation on 81, 2, 3, 4, 5, 6<.   r = 8Hi, jL : i - j = 2<.

(a)   Is r reflexive?

(b)   Is r symmetric?

(c)   Is r transitive?
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(d)   Draw a graph of r.

6.     For the set  of  cities on a map, consider the relation x r y  if  and only if  city x  is  connected by a road to city y.  A city is  considered to be
connected  to  itself,  and  two  cities  are  connected  even  though  there  are  cities  on  the  road  between  them.  Is  this  an  equivalence  relation  or  a
partial ordering? Explain.
7.  Let A = 80, 1, 2, 3< and let

 r = 8H0, 0L, H1, 1L, H2, 2L, H3, 3L, H1, 2L, H2, 1L, H3, 2L, H2, 3L, H3, 1L, H1, 3L<.

  (a)   Show that r is an equivalence relation on A.

  (b)  Let a œ A and define c HaL = 8b œ A a r b<. c(a) is called the equivalence class of  a under r. Find c HaL for each element a œ A.

   (c)  Show that 8c HaL a œ A< forms a partition of A for this set A.

  (d)   Let r be an equivalence relation on an arbitrary set A. Prove that the set of all equivalence classes under r constitutes a partition of A.

8.   Define r on the power set of 81, 2, 3< by A r B ñ A = B . Prove that r is an equivalence relation. What are the equivalence classes
under r?
9.     Consider  the following relations on !8 = 80, 1, . . . , 7<.  Which are equivalence relations? For the equivalence relations,  list  the equiva-
lence classes.
(a)   a r b iff the English spellings of a and b begin with the same letter.

(b)   a s b iff a - b is a positive integer.

(c)   a t b iff a - b is an even integer.

10.  Define t on A = 81, 2, . . . , 9< by x t y iff x + y = 10. Is t an equivalence relation on A?  If yes, list its equivalence classes. If no, why
not?

B Exercises
11.   In this exercise, we prove that implication is a partial ordering. Let A be any set of propositions.

(a)  Verify that q Ø q is a tautology, thereby showing that fl is a reflexive relation on A.

(b)   Prove that fl is antisymmetric on A. Note: we do not use = when speaking of propositions, but rather equivalence, ñ.

(c)   Prove that fl is transitive on A.

(d)  Given that qi is the proposition n < i on #, draw the Hasse diagram for the relation fl on 8q1, q2, q3, …<.

C Exercise
12.     Let  S = 81, 2, 3, 4, 5, 6, 7<  be  a  poset  HS, §L  with  the  Hasse  diagram shown in  Figure  6.3.3.  Another  relation  r Œ S µ S  is  defined  as
follows: Hx, yL œ r if and only if there exists z œ S such that z < x and z < y in the poset HS, §L.
(a)   Prove that r is reflexive.

(b)   Prove that r is symmetric.

(c)    A compatible with respect to relation r  is any subset Q  of set S  such that x œ Q and y œ Q fl Hx, yL œ r.  A compatible g  is a maximal
compatible if Q is not a proper subset of another compatible. Give all maximal compatibles with respect to relation r defined above.
(d)   Discuss a characterization of the set of maximal compatibles for relation r when HS, §L is a general finite poset. What conditions, if any,
on a general finite poset HS, §L will make r an equivalence relation?

1 2

3 4 5

6 7

FIGURE 6.3.3
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6.4 Matrices of Relations 
We have discussed two of the many possible ways of representing a relation, namely as a digraph or as a set of ordered pairs. In this section we
will discuss the representation of relations by matrices and some of its applications.

Definition: Adjacency Matrix. Let A = 8a1, a2, …, am< and B = 8b1, b2, …, bn< be finite sets of cardinality m and n, respectively.  Let r
be a relation from A into B. Then r can be represented by the mµ n matrix R defined by

       Rij = :
1 if ai r b j
0 otherwise

 R is called the adjacency matrix (or the Boolean matrix, or the relation matrix) of r.

Example 6.4.1.   Let A = 82, 5, 6<  and let r  be the relation 8H2, 2L, H2, 5L, H5, 6L, H6, 6L<  on A.  Since r  is a relation from A  into the
same set A (the B of the definition), we have a1 = 2, a2 = 5, and a3 = 6, and b1 = 2, b2 = 5, and b3 = 6. Next, since
2 r 2, we have R11 = 1;

2 r 5, we have R12 = 1; 

5 r 6, we have R23 = 1; and

6 r 6, we have R33 = 1;

All other entries of R are 0, so

R =
1 1 0
0 0 1
0 0 1

From the definition of r and of composition, we note that

r2 = 8H2, 2L H2, 5L H2, 6L H5, 6L H6, 6L<,

The adjacency matrix of r2 is

R2 =
1 1 1
0 0 1
0 0 1

We do not write R2  only for notational purposes. In fact, R2  can be obtained from the matrix product R R; however, we must use a slightly
different form of arithmetic.

Definition: Boolean Arithmetic. Boolean arithmetic is the arithmetic defined on {0,1} using Boolean addition and Boolean multiplica-
tion, defined as:

0 + 0 = 0  0 + 1 = 1 + 0 = 1           1 + 1 = 1

0 ÿ 0 = 0              0 ÿ 1 = 1 ÿ 0 = 0              1 ÿ 1 = 1.

Notice that from Chapter 3, this is the "arithmetic of logic," where + replaces "or" and · replaces "and."

Example 6.4.2. 

If   R =

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

    and   S =

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

.

Then using Boolean arithmetic,  R S =

0 0 1 1
0 1 1 1
0 0 1 1
0 0 0 1

   and  S R =

1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 0

.

Theorem 6.4.1.  Let A1, A2, and A3 be finite sets where r1 is a relation from A1 into A2 and r2 is a relation from A2 into A3. If R1 and R2
are  the  adjacency  matrices  of  r1  and  r2  ,  respectively,  then  the  product  R1 R2  using  Boolean  arithmetic  is  the  adjacency  matrix  of  the
composition r1 r2.
Remark:  A convenient  help  in  constructing  the  adjacency matrix  of  a  relation  from a  set  A  into  a  set  B  is  to  write  the  elements  from A  in  a
column preceding the first  column of the adjacency matrix,  and the elements of B  in a row above the first  row. Initially,  R  in Example 6.4.1
would be

2 5 6
2
5
6
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2 5 6
2
5
6

  

and Rij is 1 if and only if Iai, b jM œ r. So that, since the pair H2, 5L œ r, the entry of R corresponding to the row labeled 2 and the column labeled
5 in the matrix is a 1.

Example 6.4.3, This final example gives an insight into how relational data base programs can systematically answer questions pertain-
ing to large masses of information. Matrices R (on the left) and S (on the right) define the relations r and s where a r b if software a can be run
with operating system b, and b s c if operating system b can run on computer c.

  

OS1 OS2 OS3 OS4
P1
P2
P3
P4

1 0 1 0
1 1 0 0
0 0 0 1
0 0 1 1

              

C1 C2 C3
OS1
OS2
OS3
OS4

1 1 0
0 1 0
0 0 1
0 1 1

Although the relation between the software  and computers is not implicit from the data given, we can easily compute this information. The
matrix of rs is RS, which is

 

C1 C2 C3
P1
P2
P3
P4

1 1 1
1 1 0
1 1 1
0 1 1

This matrix tells us at a glance which software will run on the computers listed. In this case, all software will run on all computers with the
exception of program P2, which will not run on the computer C3, and program P4, which will not run on the computer C1.

EXERCISES FOR SECTION 6.4
A Exercises
1. Let A1 = 81, 2, 3, 4<,  A2 = 84, 5, 6<,  and A3 = 86, 7, 8<.  Let r1  be the relation from A1  into A2  defined by r1 = 8Hx, yL y - x = 2<,
and let r2 be the relation from A2 into A3 defined by r2 = 8Hx, yL y - x = 1<.
     (a)   Determine the adjacency matrices of r1 and r2 .

     (b)   Use the definition of composition to find r1 r2 .

     (c)   Verify the result in part by finding the product of the adjacency matrices of  r1 and r2.

2.  (a) Determine the adjacency matrix of each relation given via the digraphs in Exercise 3 of Section 6.3.

     (b)   Using the matrices found in part (a) above, find r2 of each relation in Exercise 3 of Section 6.3.

     (c)   Find the digraph of r2 directly from the given digraph and compare your results with those of part (b).
3.   Suppose that the matrices in Example 6.4.2 are relations on 81, 2, 3, 4<. What relations do R and S describe?

4.  Let D be the set of weekdays, Monday through Friday, let  W be a set of employees 81, 2, 3<   of a  tutoring center,  and let V be a set of
computer languages for which tutoring is offered,   {A(PL), B(asic), C(++), J(ava), L(isp), P(ython)}. We define s (schedule) from D into W by
d s w if w is scheduled to work on day d. We also define r from W into V by w r l if w can tutor students in language l. If s and r  are defined by
matrices

 S =

1 2 3
M
T
W
Th
F

1 0 1
0 1 1
1 0 1
0 1 0
1 1 0

         and  R =  

A B C J L P
1
2
3

0 1 1 0 0 1
1 1 0 1 0 1
0 1 0 0 1 1

 (a) compute S R using Boolean arithmetic and give an interpretation of the relation it defines, and

 (b) compute S R using regular arithmetic and give an interpretation of the result describes.

5.   How many different reflexive, symmetric relations are there on a set with three elements? (Hint: Consider the possible matrices.)

6.   Let A = 8a, b, c, d<.   Let r be the relation on A with adjacency matrix

a b c d
a
b
c
c

1 0 0 0
0 1 0 0
1 1 1 0
0 1 0 1

C6.nb | 13
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(a)   Explain why r is a partial ordering on A.

(b)   Draw its Hasse diagram.

7.   Define relations p and q on 81, 2, 3, 4< by p = 8Ha, bL : a - b = 1< and  q = 8Ha, bL a - b is even<

(a)   Represent p and q as both graphs and matrices.

(b)   Determine p q, p2, and q2; and represent them clearly in any way.

B Exercises
8.   (a) Prove that if r is a transitive relation on a set A, then r2 Œ r. 

      (b) Find an example of a transitive relation for which r2 ! r.
9.     We define §  on the set of all  n µ n  relation matrices by the rule that if  R  and S are any two n µ n  relation matrices,   R § S  if  and only if
Rij § Sij for all 1 § i, j § n.

(a)   Prove that § is a partial ordering on all n µ n relation matrices.

(b)  Prove that R § S fl R2 § S2 , but the converse is not true.
(c)   If R and S are matrices of equivalence relations and R § S, how are the equivalence classes defined by R related to the equivalence classes
defined by S?
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6.5 Closure Operations on Relations
In Section 6.1, we studied relations and one important operation on relations, namely composition. This operation enables us to generate new
relations from previously known relations. In Section 6.3, we discussed some key properties of relations. We now wish to consider the situation
of constructing a new relation r+ from a previously known relation r where, first, r+ contains r and, second,  r+ satisfies the transitive property.
Consider  a  telephone  network  in  which  the  main  office  a  is  connected  to,  and  can  communicate  to,  individuals  b  and  c.  Both  b  and  c  can
communicate to another person, d; however, the main office cannot communicate with d. Assume communication is only one way, as indicated.
This situation can be described by the relation r = 8Ha, bL, Ha, cL, Hb, dL, Hc, dL<. We would like to change the system so that the main office
a can communicate with person d and still maintain the previous system. We, of course, want the most economical system.
This  can  be  rephrased  as  follows;  Find  the  smallest  relation   r+ which  contains  r  as  a  subset  and  which  is  transitive;
r+ = 8Ha, bL, Ha, cL, Hb, dL, Hc, dL, Ha, dL<.

Definition:  Transitive  Closure.  Let  A  be  a  set  and  r  be  a  relation  on  A.  The  transitive  closure  of  r,  denoted  by  r+  ,  is  the  smallest
transitive relation that contains r as a subset.

Example  6.5.1.  Let  A = {1, 2, 3, 4} ,  and  let  " = 8H1, 2L, H2, 3L, H3, 4L<  be  a  relation  on  A.  This  relation  is  called  the  successor
relation on A since each element is related to its successor. How do we compute "+ ?  By inspection we note that H1, 3L must be in "+ . Let's
analyze why. This is so because H1, 2L œ " and H2, 3L œ ", and the transitive property forces H1, 3L to be in "+. 
In general, it follows that if Ha, bL œ " and Hb, cL œ S, then (a, c) œ" + . This condition is exactly the membership requirement for the pair
(a, c) to be in the composition "" = "2. So every element in "2  must be an element in "+  . So far, "+  contains at least " ‹ "2  . In particu-
lar, for this example, since " = 8H1, 2L, H2, 3L, H3, 4L< and "2 = 8H1, 3L, H2, 4L<, we have 

" ‹ "2 = 8H1, 2L, H2, 3L, H3, 4L, H1, 3L, H2, 4L<.

Is the relation " ‹ "2 transitive? Again, by inspection, H1, 4L is not an element of " ‹ "2 , but it must be an element of "+ since H1, 3L and
H3, 4L  are  required  to  be  in  "+.  From above,  H1, 3L œ "2  and  H3, 4L œ ",  and  the  composite  "2" = "3  produces  H1, 4L.   This  shows  that
"3 Œ " +  .  This  process  must  be  continued  until  the  resulting  relation  is  transitive.  If  A  is  finite,  as  is  true  in  this  example,  the  transitive
closure will be obtained in a finite number of steps.  For this example, 

 "+ = " ‹ " 2 ‹ " 3 = 8H1, 2L, H2, 3L, H3, 4L, H1, 3L, H2, 4L, H1, 4L< .
Theorem 6.5.1.  If r is a relation on a set A and A = n,  then the transitive closure of r is the union of the first n powers of r.   That is, 

r+ = r ‹ r2 ‹ r 3 ‹! ‹ rn.
Let's now consider the matrix analogue of the transitive closure.

Example 6.5.2.  Consider the relation 

r = 8H1, 4L, H2, 1L, H2, 2L, H2, 3L, H3, 2L, H4, 3L, H4, 5L, H5, 1L< 

on the set A = 81, 2, 3, 4, 5<.  The matrix of r is

  R =

0 0 0 1 0
1 1 1 0 0
0 1 0 0 0
0 0 1 0 1
1 0 0 0 0

Recall that r2, r3, … can be determined through computing the matrix powers R2, R3, ….   Here,

  R2 =

0 0 1 0 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 0

 , R3 =

1 1 0 0 0
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
0 0 1 0 1

,

  R4 =

1 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 0 0 0

 ,  and R5 =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0

,

How do we relate ‹
i=1

5
ri to the powers of #R?

Theorem  6.5.2.  Let  r  be  a  relation  on  a  finite  set  and  let  R+  be  the  matrix  of  r+  ,  the  transitive  closure  of  r.    Then
R+ = R + R2 +! + Rn,  using Boolean arithmetic.
Using this theorem, we find R+ is the 5 µ 5 matrix consisting of all 1 ' s, thus, r+ is all of A µ A.
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WARSHALL'S ALGORITHM
Let r be a relation on the set 81, 2, ... , n< with relation matrix R. The matrix of the transitive closure R+  , can be computed by the equation
R+ = R + R 2 + ! + Rn. By using ordinary polynomial evaluation methods, you can compute R+ with n - 1 matrix multiplications: 

R+ = RHI + RHI + H! RHI + RL!LLL. 

For example, if n = 3, R = RHI + RHI + RLL.

We  can  make  use  of  the  fact  that  if  T  is  a  relation  matrix,  T + T = T  due  to  the  fact  that  1 + 1 = 1  in  Boolean  arithmetic.  Let
Sk = R + R2 + ! + Rk . Then

R = S1

S1 (I + S1) = R (I + R) = R + R2 = S2
S2 HI + S 2L = HR + R2 L HI + R + R2 L

= IR + R 2M + IR2 + R 3 M + HR3 + R4 L
= R + R2 + R 3 + R 4 = S4

Similarly, 

S4HI + S4L = S8

etc..

Notice  how  each  matrix  multiplication  doubles  the  number  of  terms  that  have  been  added  to  the  sum  that  you  currently  have  computed.  In
algorithmic form, we can compute R2 as follows.

Algorithm 6.5.1: Transitive Closure Algorithm 1. Let  R be a known relation matrix and let R+ be its transitive closure matrix, which is to be
computed.
1.0. T := R 

2.0. Repeat

2.1  S := T

2.2  T := S HI + SL   // using Boolean arithmetic

       Until T = S

3.0. Terminate with T = R+.

Notes:

(a)  Often  the  higher-powered  terms  in  Sn  do  not  contribute  anything  to  R+.   When  the  condition  T = S  becomes  true  in  Step  2,  this  is  an
indication that no higher-powered terms are needed.
(b) To compute R+  using this algorithm, you need to perform no more than `log2 np matrix multiplications, where `xp is the least integer that is
greater than or equal to x. For example, if r is a relation on 25 elements, no more than `log2 25p = 5 matrix multiplications are needed.
A second algorithm, Warshall's Algorithm, reduces computation time to the time that it takes to perform one matrix multiplication.

Algorithm 6.5.2; Warshall's Algorithm. Let R be a known relation matrix and let R+ be its transitive closure matrix, which is to be computed.

1.0  T := R

2.0   FOR  k : = 1 to n  DO

                  FOR  i : = 1 to n DO

                        FOR j := 1 to n      DO

                              T@i, jD := T@i, jD + T@i, kD ÿ T@k, jD

3.0 Terminate with T = R+.

EXERCISES FOR SECTION 6.5
A Exercises
1.   Let A and " be as in Example 6.5.1. Compute "+  as in Example 6.5.2. Verify your results by checking against the relation "+  obtained in
Example 6.5.1.
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2.   Let A and r be as in Example 6.5.2. Compute the relation r+ as in Example 6.5.1. Verify your results.

3.  (a) Draw digraphs of the relations ", "2, "3 , and "+ of Example 6.5.1. 

(b) Verify that in terms of the graph of ", a "+ b if and only if b is reachable from a along a path of any finite nonzero length.

4.   Let r be the relation represented by the digraph in Figure 6.5,1.

(a)   Find r+ .

(b)   Determine the digraph of r+ directly from the digraph of r.

(c)   Verify your result in part (b) by computing the digraph from your result in part (a).

5 4

1 3

2

FIGURE 6.5.1

5. (a) Define reflexive closure and symmetric closure by imitating the definition of transitive closure.

    (b)   Use your definitions to compute the reflexive and symmetric closures of Examples 6.5.1 and 6.5.2.

    (c)   What are the transitive reflexive closures of these examples?

    (d)   Convince yourself that the reflexive closure of the relation < on the set of positive integers $ is §.

6.   What common relations on ! are the transitive closures of the following relations?

(a)   a S b if and only if a + 1 = b.

(b)   a R b if and only if a - b = 2.

B Exercise
7.  (a) Let A be any set and r a relation on A, prove that  Hr+L+ = r+.

     (b) Is the transitive closure of a symmetric relation always both symmetric and reflexive? Explain.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 6

Section 6.1
1. Give an example to illustrate how the relation "is a grandparent of" is a composition of the relation "is a parent of" on people.

2. Three students, Melissa, John, and Ted, would like to set up a tutorial program in the languages Pascal, FORTRAN, and COBOL. Melissa is
proficient in all three languages, John in Pascal and FORTRAN, and Ted in just FORTRAN.

(a) Let S = 8three students<, L = 8three Languages<, and let p be the relation "is proficient in the language of". Describe this relation as
a set of ordered pairs and illustrate the relation by a diagram similar to that of Figure 6.1.1.

(b) Two P.C.s are available for tutoring purposes; one has software for Pascal and FORTRAN, and the second only for Pascal. Describe
by a composite relation which student can tutor on each machine. Illustrate this composite relationship.

Section 6.2
3. Let A = 8-1, 0, 1, 2<. List the ordered pairs and draw the digraphs of each of the following relations on A.

(a)   r = 8Hx, yL y = x + 1<
(b)  s = 8Hx, yL x2 = y 2<
(c)   t = 8Hx, yL x ! y<

4. List the ordered pairs and draw the digraph of the relation s2 for the relation s of Exercise 2, Section 6.2.
5. In Figure 6.2, 1, assume the nodes stand for four separate cities where a manufacturer has warehouses, while the arrows represent one-way
streets. Where should the manufacturer place his main office? Where is the least desirable location? How can we interpret the arrows in both
directions between nodes 1 and 2?
6. The problem of computer compatibility is an important one. In Figure 6.2.2 interpret the four nodes as representing computers, and an arrow
from one node to another as "is compatible with". Note that some software does not go both ways.

(a)   Is there any one computer that is not compatible with any other?
(b)   Is it possible to create a network where any computer could be linked with any other using at most two links? If not, what soft ware

should be created to enhance compatibility?
(c)   If an arrow from a node to itself is interpreted as "high flexibility" of the system, does this affect your answer in part b?

Section 6.3
7. In Figure 6.3.2 (vii), interpret the four nodes as representing people, and an arrow from one node to another as "being friendly toward". Note
that some friendships are not mutual.

(a)   Is there any individual in this group unfriendly to everyone else?
(b)   If this group were a committee, who is most likely to be the chairperson; that is, who is friendly toward the most people?
(c)   If an arrow from one vertex to itself is interpreted as "great person ality," does your answer to part b still hold?
(d)   The four people are to be seated at a round table. A person is to be seated between two people only if he is friendly toward both of

them. Does a seating arrangement exist? Is there more than one?
8. Let A = 8a, b, c, d, e< and let r, s, and t be the following relations on A:

r = 8Ha, aL, Ha, bL, Hb, bL, Hb, cL, Hc, cL, Hc, dL, Hd, dL, Hd, eL, He, eL, He, aL< 
s = 8Ha, aL, Ha, bL, Ha, dL, Hb, aL, Hb, bL, Hb, dL, Hc, cL, Hd, aL, Hd, bL, Hd, dL, He, eL< 
t = 8Ha, aL, Ha, bL, Hb, bL, Hc, bL, Hc, cL, Hd, dL, He, aL, He, bL, He, cL, He, dL, He, eL<
(a) Which relation is a partial ordering? Draw its Hasse diagram.
(b) Which relation is an equivalence relation? List its equivalence classes.

9. Demonstrate that the relation "living in the same house" on the set of people in a given city is an equivalence relation. State the necessary
assumption for this to be the case.
10. Let A = 800, 01, 10, 11<, the set of strings of 0s and 1s with length two. Given r and s defined by

   x r y ñ x and y differ in exactly one position (for example 01 r 11, but not 10 r 01), and
    x s y ñ x and y have the same number of 0s.

(a)   Draw a directed graph of r.
(b)   Which of the adjectives, reflexive, symmetric, antisymmetric, and transitive, describe r? Explain your answers.
(c)   Which of the adjectives, reflexive, symmetric, antisymmetric, and transitive, describe s?
(d)   Describe with a directed graph the relation rs.

11. Determine whether the following relations are partial orderings and/or equivalence relations on the given set:

(a)   C = 8students in this class<; x r y iff x and y have the same grade point average.
(b)  C = 8students in this class<; x s y iff x is taller than y,
(c)   Rephrase (slightly) the relation in part b so it is a partial ordering relation.
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12. Let A = 8a, b, c, d<. Draw the graph of a relation where the relation is:

(a)   reflexive, symmetric, but not transitive.
(b)   transitive, but not symmetric and not reflexive.
(c)   both an equivalence relation and a partial ordering.

Section 6.4
13.   How many symmetric relations can there be on a four-element set? Hint: Think of the possible relation matrices.

14.   Let A = 81, 2, 3, 4, 5, 6< and let p = 8Hi, jL i divides j< be a relation on A.

(a)   List the elements in p.
(b)   Determine the relation matrix of p.
(c)   Construct the digraph and the Hasse diagram of p.

15.  Let A = 8a, b, c<. The following matrices describe relations on A:

(i)
1 1 0
1 1 0
0 0 1

(ii)
1 0 1
0 0 0
1 1 1

(a)   Draw the graph of the relation.
(b)   Describe each relation as a set of ordered pairs.
(c)   Compute r2 for each relation r.

Section 6.5
16.  Let the relation s on the set 8a, b, c, d, e< be given by the matrix

a b c d e
a
b
c
d
e

0 0 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 0 0

(a)   Draw the digraph of s.
(b)   Find the transitive closure of s. Give the adjacency matrix or the digraph or the set of ordered pairs.

17.   Consider the relation r on 81, 2, 3, 4< whose Boolean matrix is

R =

1 2 3 4
1
2
3
4

0 0 1 1
0 1 0 0
0 0 1 0
1 0 0 0

(a)   Draw the graph of r.
(b)  Determine whether r is reflexive, symmetric, antisymmetric, and/or transitive. Explain fully.
(c)  Find the transitive closure of r and draw the graph of r+.

18.   In a small town a bank HbL, school HsL, town hall HtL, and shopping mall HmL are connected by a series of narrow one-way streets; a street
from the town hall to the bank, one from the bank to the school, one from the school to the shopping mall, and one from the shopping mall to
the town hall.

(a) Draw a digraph of this system of roads.
(b) Find the matrix representation of the digraph in part a.
(c)  Assuming that  the  given streets  cannot  be  widened,  assist  the  mayor  in  planning the  construction of  new roads  to  increase  traffic

flow. Assume that if there is a one-way street from point a to b and one from point b to c, there should be one from point a to c.
(d) If you have not done so yet, draw the matrix representation and the graph of your answer to part c and interpret the results for the

mayor.
19. The ambassadors of four countries are to meet with the ambassador of the United States HA1) to discuss world problems. Some countries are
friendly to each other, some are not, and in certain situations the friendship is one-way. The U.S. ambassador's daughter (who obviously took a
discrete structures course) assists her father in diagnosing this complex situation and, using the relation "is friendly toward," has come up with
the following digraph.
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(a)   Is there any person friendly to no one?
(b)   Who should be the chairman of this committee; that is, who is friendly to most people?
(c)   The U.S. ambassador would like to graph all friendships that can be developed through intermediaries on the committee. That is, if

person a is friendly toward person b and person b is friendly toward person c, then a can communicate to c through b. Draw this digraph. Can
the U.S. ambassador communicate to every person on the committee through some person(s)? If not, what friendships should he develop to do
so?
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chapter 7

FUNCTIONS

GOALS
In this  chapter  we will  consider some basic concepts of  the relations that  are called functions.  A large variety of  mathematical
ideas and applications can be more completely understood when expressed through the function concept.
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7.1 Definition of a Function and Notation
Definition: Function. A function from a set A into a set B is a relation from A into B such that each element of A is related

to exactly one element of the set B. The set A is called the domain of the function and the set B is called the codomain.
The reader should note that a function f is a relation from A into B with two important restrictions:

1.  Each element in the set A, the domain of f, must be related to some element of B, the codomain.

2.   The phrase "is related to exactly one element of the set B" means that if Ha, bL œ f  and Ha, cL œ f , then b = c.

Example  7.1.1.  Let  A = 8-2, -1, 0, 1, 2<  and  B = 80, 1, 2, 3, 4<,  and  if
s = 8H-2, 4L, H-1, 1L, H0, 0L, H1, 1L, H2, 4L<, then s is a function from A into B.

Example 7.1.2. Let ! be the real numbers. Then L = 8Hx, 3 xL x œ!< is a function from ! into !, or, more simply, L is a
function on !.
We will use a different system of notation for functions than the one we used for relations. If f is a function from the set A into
the set B, we will write f : A Ø B.
The reader is probably more familiar with the notation for describing functions that is used in basic algebra or calculus courses.
For  example,  y = 1

x
  or   f HxL = 1

x
  both  define  the  function  9Ix, 1

x
M x œ!, x ! 0=.  Here  the  domain  was  assumed  to  be  those

elements of ! whose substitutions for x make sense, the nonzero real numbers, and the codomain was assumed to be !. In most
cases,  we  will  make  a  point  of   listing  the  domain  and  codomain  in  addition  to  describing  what  the  function  does  in  order  to
define a function. 
The terms mapping, map, and transformation are also used for functions.

One  way  to  imagine  a  function  and  what  it  does  is  to  think  of  it  as  a  machine.  The  machine  could  be  mechanical,  electronic,
hydraulic, or abstract. Imagine that the machine only accepts certain objects as raw materials or input. The possible raw materials
make up the domain. Given some input, the machine produces a finished product that depends on the input. The possible finished
products that we imagine could come out of this process make up the codomain.

Example 7.13.  f: ! Ø ! defined by f HxL = x2 is an alternate description of  f = 9Ix, x 2M x œ !=.

Definition: Image of an Element. Let f : A Ø B, (read "let f be a function from the set A into the set B").  If a œ A, then
f HaL is used to denote that element of B to which a is related. f HaL is called the image of a, or, more precisely, the image of a
under f.  We write f HaL = b to indicate that the image of a is b.
In  Example  7.1.3,  the  image  of  2  under  f  is  4;  that  is,  f H2L = 4.  In  Example  7.1.1,  the  image  of  -1  under  s  is  1;  that  is,
s H-1L = 1.

Definition: Range of a Function. The range of a function is the set of images of its domain. If f:X Ø Y, then the range of f
is denoted f HXL, and   

f HXL = 8 f HaL a œ X<
= 8b œ Y $ a œ X such that f HaL = b<

.

Note that the range of a function is a subset of its codomain. f HXL is also read as "the image of the set X under the function f" or
simply "the image of f."
In Example 7.1.1, s HAL = 80, 1, 4<.  Notice that 2 and 3 are not images of any element of A.  In addition, note that both 1 and 4
are related to more than one element of the domain sH1L = sH-1L = 1 and s H2L = s H-2L = 4.  This does not violates the defini-
tion of a function. Go back and read the definition if this isn't clear to you.
In Example 7.1.2, the range of L is equal to its codomain, !. If b is any real number, we can demonstrate that it belongs to L(!)
by finding a real number x for which L HxL = b. By the definition of L, L HxL = 3 x, which leads us to the equation 3 x = b. This
equation always has a solution, b

3
; thus L H!L = !.

The formula that we used to describe image of a real number under L, L HxL = 3 x, is preferred over the set notation for L due to
its brevity.  Any time a function can be described with a rule or formula, we will use this form of description. In Example 7.1.1,
the  image  of  each  element  of  A  is  its  square.  To  describe  that  fact,  we  write  sHaL = a2  (a œ A),  or S : A Ø B  defined  by
S HaL = a2.
There are many ways that a function can be described. The complexity of the function often dictates its representation.

Example  7.1.4.  Suppose  a  survey  of  1,000  persons  is  done  asking  how many hours  of  television  each  watches  per  day.
Consider the function W : 80, 1, ... , 24< Ø 80, 1, 2, …, 1000< defined by 
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WHtL = number of persons who gave a response of t hours. 

This function will probably have no formula such as the ones for s and L above. Besides listing the data in a table, a bar graph
might be a good way to represent W.

Example 7.1.5.  Consider the function m : " Ø # defined by the set

m = 8H1, 1L, H2, 1 ê2L, H3, 9L, H4, 1 ê4L, H5, 25L, . . . <. 

No simple single  formula could describe m, but if we assume that the pattern given continues, we can write

 mHxL = :
x2 if x is odd

1 êx if x is even

FUNCTIONS OF TWO VARIABLES
If  the  domain  of  a  function  is  the  Cartesian  product  of  two  sets,  then  our  notation  and  terminology  is  changed  slightly.  For
example,  consider  the  function  C : $ µ$Ø $  defined  by  CHHn1, n2LL = n12 + n22 - n1 n2 + 10.    For  this  function,  we would  drop
one set  of parentheses and write C H4, 2L = 22, not C HH4, 2LL = 22. We call  C  a  function of two variables.  From one point  of
view,  this  function  is  no  different  from any others  that  we have  seen.  The elements  of  the  domain  happen to  be  slightly  more
complicated. On the other hand, we can look at the individual components of the ordered pairs as being separate. If we interpret
C as giving us the cost of producing quantities of two products, we can imagine varying n1 while n2 is fixed, or vice versa.

  Mathematica Note

There  are  several  ways  to  define  a  function  in  Mathematica.   One  way  is  using  a  Function  expression.   For  example  the
function f : %Ø%, where f HxL = x2 can be defined by evaluating the expression

f = FunctionAx, x2E

x ! x2

Then we can compute the image of various numbers.   Since Mathematica isn't a typed programming language the concept of a
domain doesn't apply unless you specify a bit more structure.  As it stands we can take the image of numbers, strings, matrices,
or symbols, among other things:

:f@-5D, f@2.5D, f@"Hello"D, fBJ 1 2
3 -1 NF, f@qD>

:25, 6.25, Hello2,
1 4
9 1 , q2>

Notice the syntax of Mathematica  is  to use square brackets such as f[x]  instead of parentheses,  f(x)  for  computing images
under f.    Notice that the square of the matrix isn't the matrix product, rather it is simpler componentwise product.  
If we want to restrict the possible inputs to a function that implements f, we might use the following alternate way of defining a
function. 

fa@x_?IntegerQD := x2

If  the  "?IntegerQ"  had  been left  out,  fa  and  f  would  be  identical,  but  as  it  is  defined,  the  formula  for  fa  only  applies  to
integers.   This makes fa more similar to f.   We get what we expect when we ask for the image of an integer:

8fa@-5D, fa@25!D<

825, 240 597 637 008 332 048 087 335 626 345 604 448 256 000 000 000 000<

If we ask for the image of anything that isn't an integer, the expression is left unevaluated.  

:fa@2.5D, fa@"Hello"D, faBJ 1 2
3 -1 NF, fa@qD>

8fa@2.5D, fa@HelloD, fa@881, 2<, 83, -1<<D, fa@qD<

It is also possible to program Mathematica to issue an error message for these unintended cases.
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  Sage Note

There are several ways to define a function in Sage. The simplest way to implement f is as follows.

sage: f(x)=x^2
sage: f
x |--> x^2
 sage : f (4)
16
sage : f (-5.1)
26.0100000000000

Sage is built upon the programming language Python, which is a strongly typed language and so you can't evaluate expressions
such as f("Hello").  However a function like f above will accept any type of number, so a bit more work is needed to restrict
the inputs of f to the integers.  
A second way to define a function in Sage is based on Python syntax.

sage: def fa(x): return x^2
....: 
sage: fa(-4)
16
sage: fa(5.1)
26.0100000000000

We close this section with two examples of relations that are not functions.

Example  7.1.6.  Let  A = B = 81, 2, 3<  and  let  f = 8H1, 2L, H2, 3L<.  Here  f  is  not  a  function  since  f  does  not  act  on,  or
"use," all elements of A.

Example  7.1.7.  Let  A = B = 81, 2, 3<  and  let  g = 8H1, 2L, H2, 3L, H2, 1L, H3, 2L<.  We  note  that  g  acts  on  all  of  A.
However, g  is still  not a function since H2, 3L œ g  and H2, 1L œ g  and the condition on each domain being related to exactly
one element of the codomain is violated.

EXERCISES FOR SECTION 7.1
A Exercises

1.  Let A = 81, 2, 3, 4< and B = 8a, b, c, dL. Determine which of the

following are functions. Explain.

(a)   f Œ A µ B, where f = 8H1, aL, H2, bL, H3, cL, H4, dL<.

(b)  g Œ AµB, where g = 8H1, aL, H2, aL, H3, bL, H4, dL<.

(c)   h Œ A µ B, where A = 8H1, aL, H2, bL, H3, cL<.

(d)   k Œ Aµ B, where k = 8H1, aL, H2, bL, H2, cL, H3, aL, H4, aL<.

(e)  L Œ AµA, where L = 8H1, 1L, H2, 1L, H3, 1L, H4, 1L<.

2.   Let A be a set and let S be any subset of A. Let cS : A Ø 80, 1<  be defined by

cSHxL = :
1 if x œ S
0 if x – S

The function cS, is called the characteristic function of S,

(a)  If A = 8a, b, c< and S = 8a, b<, list the element of cS .

(b)  If A = 8a, b, c, d, e< and S = 8a, c, e<, , list the element of cS.

(c)  If A = 8a, b, c<, what are c« and cA.

3.   Find the ranges of each of the relations that are functions in Exercise 1.

4 | C7.nb

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License. 135



4.   Find the ranges of the following functions on %:

(a)   g = 8Hx, 4 x + 1L x œ %<

(b)   h HxL = least integer that is greater than or equal to x .
(c)   P HxL = x + 10.

B Exercise

5.   If A  and B  are both finite, how many different functions are there from A into B?

6.   Let  f  be  a  function  with  domain  A  and  codomain  B.  Consider  the  relation  K Œ A µ A   defined  on  the  domain  of  f  by
Hx, yL œ K if and only if f HxL = f HyL. The relation K is called the kernel of f.
(a) Prove that K is an equivalence relation.

(b) For the specific case of A = %, where % is the set of integers, let f : % Ø % be defined by f HxL = x2. Describe the equiva-
lence classes of the kernel for this specific function.
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7.2 Injective, Surjective, and Bijective Functions 
Consider the following functions;

Example 7.2.1.  Let A = 81, 2, 3, 4< and B = 8a, b, c, d<, and defined f : A Ø B by 

f H1L = a,  f H2L = b,  f H3L = c and f H4L = d.

Example 7.2.2.  Let A = 81, 2, 3, 4< and B = 8a, b, c, d<, and defined g : A Ø B by  

gH1L = a , g H2L = b,  g H3L = a  and g H4L = b.

The function in the first example gives us more information about the set B than the second function. Since A clearly has four
elements,/tells us that the set B contains at least four elements since each element of the set A is mapped onto one and only one
element of the set B, The properties that / has and g does not have are the most basic properties that we look for in a function.
The following definitions summarize the basic vocabulary for function properties.

Definition  Injective Function: A  function f: A Ø B is injective if 

 a, bœ A,  a ! b  fl  f HaL ! f HbL.

Notice that the condition for a injective function is equivalent to

  a, b œ A, f HaL = f HbL fl a = b 

Injective functions are also called injections, or one-to-one functions.

Definition   Surjective Function   A  function f: A Ø B is surjective if  its range, f HAL,  is equal to its codomian B

 Notice that the condition for a surjective function is equivalent to 

For all b œ B, there exists a œ A such that  f HaL = b.

Surjective functions are also called surjections, or onto functions.

Definition  Bijective Function: A function f: A Ø B is bijective if it is both injective and surjective.

Bijective functions are also called one-to-one, onto functions.

Example 7.2.3. The function f of Example 7.2.1 is bijective.  The function g of Example 7.2.2 is neither injective nor surjective.

Example 7.2.4. Let A = 81, 2, 3< and B = 8a, b, c, d<, and define f : A Ø B by f H1L = b, f H2L = c, and f H3L = a. Then f is
injective but not surjective.
Example 7.2.5. The characteristic function, cS  in Exercise 2 of Section 7.1, is surjective if S is a proper subset of A, but never
injective if A > 2.
Example 7.2.6. Let A be the set of students who are sitting in a classroom, and let B be the set of seats in the classroom, and let s
be  the  function  which  maps  each  student  into  the  chair  he  or  she  is  sitting  in.  When  is  s  one  to  one?  When is  it  onto?  Under
normal circumstances, s would always be one to one since no two different students would be in the same seat.   In order for s to
be onto, we need all seats to be used, so s  is onto if the classroom is filled to capacity.
Functions  can  also  be  used  for  counting  the  elements  in  large  finite  sets  or  in  infinite  sets.  Let's  say  we  wished  to  count  the
occupants in an auditorium containing 1,500 seats.  If  each seat is occupied, the answer is obvious, namely 1,500 people. What
we have done is to set up a one-to-one correspondence, or bijection, from seats to people. We formalize in a definition.

Definition: Cardinality. Two sets are said to have the same cardinality if there exists a bijection between them.

The function f  in Example 7.2.1 serves to show that the two sets A = 81, 2, 3, 4< and B = 8a, b, c, d< have the same cardinal-
ity.  Notice in applying the definition of cardinality, we don't actually appear to count either set, we just match up the elements.
However, matching the letters in B with the number 1, 2, 3, an 4. is precisely how we count the letters.

Definition:   Countable  Set.   If  a  set  is  finite  or  has  the  same  cardinality  as  the  set  of  positive  integers,  it  is  called  a
countable set.
 If a set is finite, and its cardinality is n, then it has the same cardinality as the set 81, 2, 3, …, n<. 

Example  7.2.7.  The  alphabet  8A, B, C, . . . , Z<  has  cardinality  26  through  the  following  bijection  into  the  set
81, 2, 3, …, 26<

A B C ! Z
!

1 2 3 ! 26
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A B C ! Z
!

1 2 3 ! 26

Reminder:  2 " = 8b œ " b = 2 k for some k œ "<

Example 7.2.8.  The set  2 "  of even positive integers has the same cardinality as the set  "  of positive integers.  To prove
this,  we  must  find  a  bijection  from  "  to  2 ".    Such  a  function  isn't  unique,  but  this  one  is  the  simplest:   f : " Ø 2 "  by
f HmL = 2 m.   Two statements must be proven to justify our claim that f is a bijection.
(1)  f is one-to-one.

Proof: Let a, b œ " and assume that  f HaL = f HbL. We must prove that a = b. 

f HaL = f HbL ï 2 a = 2 b ï a = b.      ‡

(2)  f is onto.

Proof:   Let b œ 2 ". We want to show that there exists an element a œ " such that f HaL = b.  If b œ 2 ", b = 2 k  for some
k œ " by the definition of 2 ".  So we have f HkL = 2 k = b. Hence, each element of 2" is the image of some element of ".  ‡
An even easier way to look at any function with "  as its domain by creating a list of the form f H1L, f H2L, f H3L, …, which is
2, 4, 6, …  for  the  function  we've  just  defined.    This  infinite  list  clearly  has  no  duplicate  entries  and  every  even  positive
integer appears in the list eventually.

Bijections with domain !:    A function f : "Ø A is a bijection if the infinite list f H1L, f H2L, f H3L, …  contains no dupli-
cates, and every element of A appears on in the list.
Readers  who have  studied  real  analysis  should  realize  that  the  set  of  rational  numbers  is  a  countable  set,  while  the  set  of  real
numbers is not a countable set.  See the exercises at the end of this section for an example of such a set.
We  close  this  section  with  an  theorem called  the  Pigeonhole  Principle,  which  has  numerous  applications  even  though  it  is  an
obvious,  common-sense statement.  Never underestimate the importance of simple ideas.  The Pigeonhole Principle states that if
there are more pigeons than pigeonholes, then two or more pigeons must share the same pigeonhole. A more rigorous mathemati-
cal statement of the principle follows.

The Pigeonhole Principle. Let f be a function from a finite set X onto a finite set Y.  If n ¥ 1 and  X > n Y , then there
exists an element of Y that is the image of at least n + 1 elements of X.

Example  7.2.9.  Assume that  a  room contains  four  students  with  the  first  names  John,  James,  and  Mary.  Prove  that  two
students have the same first name. We can visualize a mapping from the set of students to the set of first names; each student
has a first name. The pigeonhole principle applies with n = 1, and we can conclude that two of the students have the same first
name.

EXERCISES FOR SECTION 7.2
A Exercises

1.   Determine which of the functions in Exercise 1 of Section 7.1 are one- to-one and which are onto.

2.   (a) Determine all bijections from the 81, 2, 3< into 8a, b, c<.

       (b) Determine all bijections from 81, 2, 3< into 8a, b, c, d<.

3.   Which of the following are one-to-one, onto, or both?

(a)   f1 : ! Ø !  defined by f1HxL = x3 - x.
(b)   f2 : % Ø % defined by f2 HxL = -x + 2.

(c)    f3 : $ µ$Ø $ defined by f3H j, kL = 2 j 3k.
(d)   f4 : " Ø " defined by f4 HnL = `n ê2p, where `xp is the ceiling of x, the smallest integer greater than or equal to x.

(e)   f5 : $ Ø $ defined by f5 HnL = n2 + n.
(f)  f6 : $ Ø $ µ $ defined by f6 HnL = H2 n, 2 n + 1L.

4.   Which of the following are injections, surjections, or bijections on !, the set of real numbers?

(a)   f HxL = -2 x.
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(b)   g HxL = x2 - 1.

(c)   hHxL = :
x x < 0
x2 x ¥ 0

(d)  qHxL = 2x

(e)  rHxL = x3

(f)  sHxL = x3 - x.
5.    Suppose that m  pairs of socks are mixed up in your sock drawer. Use the Pigeonhole Principle to explain why, if you pick
m + 1 socks at random, at least two will make up a matching pair,
6.   In your own words explain the statement "The sets of integers and even integers have the same cardinality."

7.   Let A = 81, 2, 3, 4, 5<.  Find functions, if they exist that have the properties specified below 

(a) A function that is one-to-one and onto.

(b) A function that is neither one-to-one nor onto

(c)  A function that is one-to-one but not onto.

(d) A function that is onto but not one-to-one.

8.   (a)  Define functions, if they exist, on the positive integers, ", with the same properties as in Exercise 7 (if possible).

     (b)    Let A and B be finite sets where A = B .   Is  it  possible to define a function f : A Ø B  that is  one-to-one but not
onto? Is it possible to find a function  g : A Ø B that is onto but not one-to-one?
B Exercises

9.   (a) Prove that the set of natural numbers is countable.

      (b)   Prove that the set of integers is countable.

      (c)   Prove that the set of rational numbers is countable.

10. (a) Prove that the set of finite strings of 0's and 1's is countable.

      (b) Prove that the set of odd integers is countable.

       (c)  Prove that the set   $µ $ is countable.

11.   Use the Pigeonhole Principle to prove that an injection cannot exist between a finite set A and a finite set B if the cardinality
of A is greater than the cardinality of B.
12.   The important properties of relations are not generally of interest for functions. Most functions are not reflexive, symmetric,
antisymmetric, or transitive. Can you give examples of functions that do have these properties?
13.   Prove that the set of all infinite sequences of 0's and 1's is not a countable set (i. e., that it is an uncountable set). 

14.   Prove that the set of all functions on the integers is an uncountable set.
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7.3 Composition, Identity, and Inverse
Now that we have a good understanding of what a function is, our next step is to consider an important operation on functions.
Our purpose is not to develop the algebra of functions as completely as we did for the algebras of logic, matrices, and sets, but
the reader should be aware of the similarities between the algebra of functions and that of matrices. We first define equality of
functions.

Definition: Equality of Functions. Let f , g : A Ø B; that is, let f and g both be functions from A into  B.   Then  f is equal
to g  (i. e., f = g)  if and only if f HxL = g HxL for all x œ A. 

Two  functions  that  have  different  domains  cannot  be  equal.   For  example,    f : %Ø%  defined  by  f HxL = x2  and  g : !Ø!

defined by gHxL = x2 are not equal even though the formula that defines them is the same.
On  the  other  hand,  it  is  not  uncommon  for  two  functions  to  be  equal  even  though  they  are  defined  differently.   For  example
consider the functions h and k, where    h : 8-1, 0, 1, 2<Ø 80, 1, 2< is defined by  hHxL = x   and  k : 8-1, 0, 1, 2<Ø 80, 1, 2< is

defined  by  kHxL = - x3

3
+ x2 + x

3
 appear  to  be  very  different  functions.   However,  they  are  equal  because  hHxL = kHxL  for

x = -1, 0, 1, and 2.

COMPOSITION
One of the most important operations on functions is that of composition.

Definition:  Composition  of  Functions.  Let  f : A Ø B  and  g : B Ø C.  Then  the  composition  of  f  followed  by  g,  written
gÎ f  is a function from A into C defined by Hg Î f L HxL = g H f HxLL, which is read " g of f of x."
The reader should note that it is traditional to write the composition of functions from right to left. Thus, in the above definition,
the first function performed in computing g Î f , which is f. On the other hand, for relations, the composition r s is read from left
to right, so that the first relation is r.

Example 7.3.1.

(a)   Let   f : 81, 2, 3<Ø 8a, b<  be  defined  by  f H1L = a,  f H2L = a,  and  f H3L = b.  Let  g : 8a, b< Ø 85, 6, 7<  be  defined  by
g HaL = 5 and g HbL = 7. Then gÎ f : 81, 2, 3<Ø 85, 6, 7< is defined by HgÎ f L H1L = 5, HgÎ f L H2L = 5, and HgÎ f L H3L = 7. For
example, HgÎ f L H1L = g H f HlLL = g HaL = 5. Note that fÎg is not defined. Why?

(b)   Let f : ! Ø ! be defined by f HxL = x3 and let g : ! Ø ! be defined by g HxL = 3 x + 1. Then, since

 HgÎ f L HxL = g H f HxLL = gIx3M = 3 x3 + 1, 

we  have  gÎ f : ! Ø !  is  defined  by HgÎ f L HxL = 3 x3 + 1.  Here  f Îg  is  also  defined  and  f Îg : !Ø!  is  defined  by
H f ÎgL HxL = H3 x + 1L3  .  Moreover,  since  3 x 3 + 1 ! H3 x + 1L3   for  at  least  one  real  number,  gÎ f ! f Îg.    Therefore,   the
commutative law is  not  true for functions under the operation of composition.  However,  the associative law is  true for func-
tions under the operation of composition.

Theorem  7.3.1.  Function  composition  is  associative.   That  is,  if  f : A Ø B, g : B Ø C,  and  h : C Ø D,  then
hÎ HgÎ f L = HhÎgLÎ f .
Proof Technique: In order to prove that two functions are equal, we must use the definition of equality of functions. Assuming
that the functions have the same domain, they are equal if,  for each domain element, the images of that element under the two
functions are equal.
Proof; We wish to prove that HhÎ HgÎ f LL HxL = HHhÎgLÎ f L HxL for all x œ A, which is the domain of both functions.

HhÎ HgÎ f LL HxL = hHHgÎ f L HxLL by the definition of composition of h with gÎ f
= hHgH f HxLLL by the definition of composition of g with f

 

Similarly,

HHhÎgLÎ f L HxL = HhÎgL H f HxLL by the definition of composition of hÎg with f
= hHgH f HxLLL by the definition of composition of h withg

 

Notice that no matter how the functions the expression hÎgÎ f  is grouped, the final image of any element of x œ A is h Hg H f HxLLL
and so hÎ HgÎ f L = HhÎgLÎ f .   ‡

If  f  is  a  function  from  a  set  A  onto  itself,  we  can  find  f Î f ,  f Î f Î f ,   …  ,which  we  write  as  f 2  ,   f 3  ,  ....  This  idea  can  be
expressed more elegantly as follows; If f : A Ø A, the repeated composition of f with itself is defined recursively as;

Definition:  Powers of Functions.  Let  f : A Ø A.
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(1)  f 1 = f ;   that is,  f 1HaL = f HaL, for  a œ A.  

(2)  For n ¥ 1, f n+1 = f Î f n;   that is,  f n+1 HaL = f H f nHaLL  and a œA.
Two useful theorems concerning composition are given below. The proofs are left for the exercises.

Theorem 7.3.2. If  f : A Ø B and g : B Ø C are injections, then gÎ f : A Ø C is an injection.

Theorem 7.3.3. If f : A Ø B and g ; B Ø C are surjections, then gÎ f : A Ø C is a surjection.

We would now like to define the concepts of identity and inverse for functions under composition. The motivation and descrip-
tions of the definitions of these terms come from the definitions of the terms in the set of real numbers and for matrices. For real
numbers, the numbers 0 and 1 play the unique role that x + 0 = 0 + x = x and x ÿ1 = 1 ÿ x = x for any real number x.   0 and
1 are the identity elements for the reals under the operations of addition and multiplication, respectively. Similarly, the n µ n zero
matrix 0 and the n µ n identity matrix  I are such that for any n µ n matrix A, A + 0 = 0 + A = A and A I = I A = I. Hence, an
elegant way of defining the identity function under the operation of composition would be to imitate the above well-known facts.
IDENTITY FUNCTION

Definition; Identity Function. For any set A, the identity function on A is a function from A onto A, denoted by i (or, more
specifically, iA) such that iHaL = a   for all a œ A 
Based on the definition of i, we can show that for all functions f : A Ø A,  f Î i = iÎ f = f .

An alternate  description is  that  the  identity  function on A is  the  function j*(a)  = a  for  all  a  œ  A.  This  can be proven from the
above definition.

Example 7.3.2. If A = 81, 2, 3<, then the identity function i : A Ø A is defined by iH1L = 1,  i H2L = 2, and i H3L = 3.

Example 7.3.3. The identity function on ! is  i : ! Ø ! defined by i HxL = x.
INVERSE FUNCTIONS

We will introduce the inverse of a function with a special case: the inverse of a function on a set. After you've taken the time to
understand  this  concept,  you  can  read  about  the  inverse  of  a  function  from  one  set  into  another.  The  reader  is  encouraged  to
reread the definition of the inverse of a matrix in Section 5.4 to see that the following definition of the inverse function is a direct
analogue of that definition.

Definition:  Inverse  Function.  Let  f : A Ø A.  If  there  exists  a  function  g : A Ø A such  that  gÎ f = f Îg = i,  then  g  is
called the inverse of  f and is denoted by f -1 , read "f inverse."
Notice that in the definition we refer to "the inverse" as opposed to "an inverse."   It can be proven that a function can never have
more than one inverse (see exercises).
An alternate description of the inverse of a function, which can be proven from the definition, is as follows:

Let  f : A Ø A  be  such that  f HaL = b.  Then when it  exists,  f -1  is  a  function from A  to  A  such that  f -1HbL = a.   Note  that  f -1
"undoes" what f does.  

Example  7.3.4.  Let  A = 81, 2, 3<  and  let  f  be  the  function  defined  on  A  such  that  f H1L = 2,  f H2L = 3,  and  f H3L = 1.
Then f -1 : A Ø A is defined by  f -1HIL = 3, f -1H2L = 1, and f -1H3L = 2.

Example 7.3.5. If g : ! Ø ! is defined by gHxL = x3 , then g-1 is the function that undoes what g does. Since g cubes real
numbers, g-1 must be the "reverse" process, namely, takes cube roots. Therefore, g-1 : ! Ø ! is defined by g-1HxL = x

3 . We
should show that g-1 Îg = i and gÎg-1 = i.  We will do the first, and the reader is encouraged to do the second.

Ig-1 ÎgM HxL = g-1HgHxLL Definition of composition
= g-1Ix3M Definition of g

= x33 Definition of g-1

= x Definition of cube root
= iHxL Definition of the identity function

Therefore, g-1 Îg = i.  Why?
The definition of the inverse of a function alludes to the fact that not all functions have inverses. How do we determine when the
inverse of a function exists?

Theorem 7.3.4.  Let f : A Ø A.   f -1 exists if and only if  f is a bijection; i. e. f is one-to-one and onto.

Proof:  (fl)   In this half of the proof, assume that f -1  exists and we must prove that f is one-to-one and onto.  To do so, it
is convenient for us to use the relation notation, where f HsL = t is equivalent to Hs, tL œ f . To prove that f is one-to-one, assume
that  f HaL = f HbL = c.   Alternatively,  that  means  Ha, cL  and  Hb, cL  are  elements  of   f  .   We  must  show  that  a = b.   Since
Ha, bL, Hc, bL œ f ,  Hc, aL and Hc, bL are in f -1 . By the fact that f -1 is a function and c cannot have two images, a and b must
be equal, so f is one-to-one. 
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Proof:  (fl)   In this half of the proof, assume that f -1  exists and we must prove that f is one-to-one and onto.  To do so, it
is convenient for us to use the relation notation, where f HsL = t is equivalent to Hs, tL œ f . To prove that f is one-to-one, assume
that  f HaL = f HbL = c.   Alternatively,  that  means  Ha, cL  and  Hb, cL  are  elements  of   f  .   We  must  show  that  a = b.   Since
Ha, bL, Hc, bL œ f ,  Hc, aL and Hc, bL are in f -1 . By the fact that f -1 is a function and c cannot have two images, a and b must
be equal, so f is one-to-one. 

Next, to prove that f is onto, observe that for f -1  to be a function, it must use all of its domain, namely A.  Let b be any
element of A. Then b has an image under f -1 , f -1HbL. Another way of writing this is Ib, f -1HbLM œ f -1, By the definition of the
inverse, this is equivalent to I f -1HbL, bM œ f . Hence, b is in the range of f.  Since b was chosen arbitrarily, this shows that the
range of f must be all of A.

(› )  Assume f is one-to-one and onto and we are to prove f -1 exists. We leave this half of the proof to the reader. ‡
Definition; Permutation. A bijection of a set A into itself is called a permutation of A,

Next, we will consider the situation where f: AØB and B is not necessarily equal to A. How do we define the inverse in
this case?

Definition:  Inverse  of  a  Function  (General  Case).   Let  f : A Ø B,  If  there  exists  a  function  g : B Ø A  such  that
g Î f = iA  and f Î g = iB , then g is called the inverse of f and is denoted by f -1 , read "f inverse."
Note the slightly more complicated condition for the inverse in this case because the domains of f Î g and g Î f  are different if A
and B are different.  The proof of the following theorem isn't really very different from the special case where A = B.

Theorem 7.3.5. Let f : A Ø B.  f -1 exists if and only if f is a bijection.
Example  7.3.6.   Let  A = 81, 2, 3<  and B = 8a, b, c<.  Define  f : A Ø B  by   f H1L = a,   f H2L = b,  and  f H3L = c.  Then

g : B Ø A defined by g HaL = 1,  gHbL = 2, and g HcL = 3 is the inverse of f.
HgÎ f L H1L = 1
HgÎ f L H2L = 2
HgÎ f L H3L = 3

>fl gÎ f = iA  and 
H f ÎgL HaL = a
H f ÎgL HbL = b
H f ÎgL HcL = c

>fl f Îg = iB

  Mathematica Note

 Computer languages have many functions that also have inverses.  Here are a few examples in Mathematica:

RotateRight and RotateLeft are both functions on lists.   For example,

RotateRight@81, 2, 3, 4, 5<D

85, 1, 2, 3, 4<

RotateLeft@81, 2, 3, 4, 5<D

82, 3, 4, 5, 1<

RotateLeft@RotateRight@81, 2, 3, 4, 5<DD

81, 2, 3, 4, 5<

IntegerDigits and FromDigits are inverses of one another, with domains being the positive  integers and lists of digits,
respectively.   For example

IntegerDigits@1492D

81, 4, 9, 2<

FromDigits@81, 4, 9, 2<D

1492

FromDigits@IntegerDigits@193 410DD

193 410
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IntegerDigits@FromDigits@84, 3, 1, 7, 8<DD

84, 3, 1, 7, 8<

EXERCISES FOR SECTION 7.3
A Exercises

1.   Let  A = 81, 2, 3, 4, 5<,  B = 8a, b, c, d, e, f <,  and  C = 8+, -<.  Define   f : A Ø B  by  f HkL  equal  to  the  kth  letter  in  the
alphabet, and define g : B Ø C by gHaL = + if a is a vowel and gHaL = - if a is a consonant.
(a)  Find gÎ f .

(b)  Does it make sense to discuss f Îg?  If not, why not?

(c)  Does f -1 exist? Why?

(d)   Does g-1 exist? Why?

2.  Let A = 81, 2, 3<. Define f : A Ø A by  f H1L = 2,  f H2L = 1, and f H3L = 3. Find f 2 , f 3 , f 4 and f -1.
3.  Let A = 81, 2, 3<.

(a)   List all permutations of A.

(b)   Find the inverse of each of the permutations of part a.

(c)   Find the square of each of the permutations of part a.

(d)  Show that the composition of any two permutations of A is a permutation of A.

(e)  Prove that if A be any set where the A = n, then the number of permutations of A is n !.

4.  Define s, u, and d, all functions on the integers, by sHnL = n2 , u HnL = n + 1, and d HnL = n - 1. Determine:
(a)   u Î s Î d

(b)   s Î uÎ d

(c)   d Î s Î u

5.   Based on the definition of the identity function,  show that for all functions f : A Ø A,  f Î i = iÎ f = f .

6.     Inverse images.  If  f  is  any function from A  into  B,  we can describe the inverse  image of  from B into  "HAL,  which is  also
commonly denoted f -1. If b œ B,  f -1HbL = 8a œ A f HaL = bM. If f does have an inverse, the inverse image of b is 9 f -1HbL=.

(a)  Let g : ! Ø ! be defined by gHxL = x2. What are g-1H4L, g-1H0L  and g-1H-1L?

(b)  If r : !Ø%, where  rHxL = `xp,   what is r-1H1L?

7.  Let f, g, and h all be functions from % into % defined by f HnL = n + 5, g HnL = n - 2, and  hHnL = n2. Define:
(a)   f Îg

(b)   f 3

(c)   f Îh

8.  Define the following functions on the integers by f HkL = k + 1, g HkL = 2 k, and  hHkL = `k ê2p 

(a)   Which of these functions are one-to-one?

(b)   Which of these functions are onto?

(c)  Express in simplest terms the compositions f Îg, g Î f , g Î h,  h Î g,  and h2 ,
B Exercises

9.   State and prove a theorem on inverse functions analogous to Theorem 5.4.1 (if a matrix has an inverse, that inverse is unique).

10.  Let f and g be functions whose inverses exist. Prove that H f ÎgL-1 = g-1 Î f -1. (Hint: See Exercise 3 of Section 5.4.)
11.  Prove Theorems 7.3.2 and 7.3.3.
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12.   Prove the second half of Theorem 7.3.4.

13.   Prove  by  induction  that  if  n ¥ 2  and   f1,  f2  ,  …  ,  fn  are  invertible  functions  on  some  nonempty  set  A,  then
H f1 Î f2 Î ! Î fn L-1 = fn-1 Î!Î f2-1 Î f1-1.  The basis has been taken care of in Exercise 10.
C Exercises

14.   (a) Our definition of cardinality states that two sets, A and B, have the same cardinality if there exists a bijection between the
two sets. Why does it not matter whether the bijection is from A into B or B into A? (b) Prove that "has the same cardinality as" is
an equivalence relation on sets.
15.   Construct a table listing as many "Laws of Function Composition" as you can identify. Use previous lists of laws as a guide.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 7
Section 7.1

1.   If f : ! Ø ! is defined by f HaL = 2 †a§ + 1,

(a)  What is the domain of f ?

(b)  What is the codomain of f ?

(c)  What is the image of -5 under f ?

(d)  What is the range of f ?

(e)   Given that f HaL = 11, can you tell exactly what a must be?

2.     Let  f : " Ø ",  where f HaL  is  the largest  power of  two that  evenly divides a;  for  example,  f H12L = 4, f H9L = 1, and f H8L = 8.  Describe the equivalence
classes of the kernel of f.
3.   Are any of the relations given in Figure 6.3.2 functions on the set A of nodes? Explain.

4.   Let U be a set with subsets A and B.

(a)  Show that g : U Ø 80, 1< defined by gHaL = minHCAHaL, CBHaLL is the characteristic function of A › B. (See Exercise 2 of Section 7.1.)

(b)  What characteristic function is h : U Ø 80, 1< defined by hHaL = maxHCAHaL, CBHaLL?

(c)   How are the characteristic functions of A and Ac related?

Section 7.2

5.   Recall that every function is a relation. Suppose that f is a function on {1, 2, …, n<, where n is a positive integer.

(a)   What must the matrix of f look like? In other words, what distinguishes the matrix of f from the matrix of the typical relation? How many 1 s appear in
the matrix?
(b)     If  f  is  a  bijection,  what  further  property does the matrix of  f  have? (Hint  for  those who know chess:  We will  call  the matrix of  a  bijection a "rook
matrix.")
6.   Let S = 8a, b, c< and let T = 81, 2, 3, 4<

(a)   Give an example of a relation from S to T that is not a function.

(b)   Give an example of a relation from S to T that is an injection.

(c)   How many injections are there from S to T?

(d)   How many surjections are there from S to T?

7.   Prove that the following sets are countable.

(a)   9n2 : n œ #=

(b)  : 1
n

: n œ ">

(c)   83, 9, 27, 81, …< ‹ 82, 4, 8, 16, …<

8.   Prove that if A and B are countable sets, then their union is also countable.

9. Prove that if A and B are any two sets, then †HAäBL§ = †HBäAL§; that is, prove that AäB and BäA have the same cardinality.

10.   Let A be a finite set.

(a)   Is every injection f : A Ø A a surjection? Explain.

(b)   Is every surjection f : A Ø A an injection? Explain.

(c)  Are parts a and b true if A is an infinite set? Give a counterexample.

11.   Two children playing "spy" have devised a code that consists of spelling each word backwards and replacing the letters a and t by m and q, respec-
tively. Let A  be the set of letters in the English alphabet. Assume the boys use characters only from A.  Explain this code using the concept of functions.
Explain why this code will or will not work, using the concept of functions.
Section 7.3
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Section 7.3

12.  Consider the functions f , g : $ Ø $ defined by f HxL = 8 x + 5 and gHxL = x2.

(a)   Show that f is injective.

(b)   Show that f is surjective.

(c)   Find f -1HxL.

(d)  Find g Î f HxL.

(e)  Find f ÎgHxL.

13.  If f , g, h : # Ø #, where f HaL = 10 a, gHaL = a + 10, and hHaL = a div 10 Hthe quotient in a¸10L, calculate

(a)   H f ÎgL HaL.

(b) g2HaL = Hg ÎgL HaL.

(c)  Hh Î f L HaL.

(d) Hh ÎgL HaL.

14.  If f , u, d : # Ø #, where f HaL = 2 a, uHaL = a + 1, and dHaL = maxH0, a - 1L, calculate

(a)   H f ÎuL HaL.

(b)   f 2HaL.

(c) Hd Î H f ÎuLL HaL.

(d)  Hd ÎuL HaL = a; therefore, what is d Îu?

(e)   Explain why d is not the inverse of u.

15.   Let f be a function on A = 8a, b, c, d< such that f HaL = c, and f HdL = b.

  (a)  What are f HbL and f HcL if f Î f = f ?

  (b)  What are f HbL and f HcL if f Î f = i?

16.   Let A be a nonempty set. Prove that if f is a bijection on A and f Î f = f , then f is the identity function, i. Hint: You have seen a similar proof in matrix
algebra.

17.   For the real matrix A =
a b
c d

, det A = ad-bc.

A bijection from a set to itself is also referred to as a permutation of the set. Let p be a permutation of 8a, b, c, d< such that a becomes pHaL, b becomes pHbL,
etc.

Let B =
pHaL pHbL
pHcL pHdL

. How many permutations of p leave the determinant of A invariant, that is, det A = det B?

18.   (For those who have had calculus): Let V be the set of all functions that are defined and have infinitely many derivatives over some fixed interval of
the real line. Let  f œ V  and define D : V Ø V by DH f L = f ', that is, D is the act of taking the derivative. Hence: DIx2 + 3 x + 5M = 2 x + 3.

(a)   Is D a function? Explain.

(b)   Is D a bijection? Explain.

(c)  What is the interpretation of D2 = D ÎD, D3, …, Dn?

(d)   Does D-1 exist? If not, is there a function in calculus that is "close to" D-1? What is it?

19.   The exponential function f : $ Ø $+ defined by f HxL = bx has as its inverse the logarithmic function gHxL = logb x.

(a)   What are the domain and codomain of g?

(b)  Prove that g is the inverse of f.

20.   In high school, many of us saw the notation sin-1 x. Why is this notation used?
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chapter 8

RECURSION AND RECURRENCE RELATIONS

GOALS
An  essential  tool  that  anyone  interested  in  computer  science  must  master  is  how  to  think  recursively.  The  ability  to  understand  definitions,
concepts,  algorithms,  etc.,  that  are  presented recursively  and the  ability  to  put  thoughts  into  a  recursive  framework are  essential  in  computer
science. One of our goals in this chapter is to help the reader become more comfortable with recursion in its commonly encountered forms.
A second goal is to discuss recurrence relations. We will concentrate on methods of solving recurrence relations, including an introduction to
generating functions.

8.1 The Many Faces of Recursion
Consider the following definitions, all of which should be somewhat familiar to you. When reading them, concentrate on how they are similar.

Example 8.1.1. A very common alternate notation for the binomial coefficient K
n
k O is C Hn; kL. We will use the latter notation in this chapter.

Here is a recursive definition of binomial coefficients.

Definition:  Binomial Coefficients.   Assume  n ¥ 0 and  n ¥ k ¥ 0.
CHn; 0L = 1
CHn, nL = 1

and      C Hn; kL = CHn - 1; kL + CHn - 1; k - 1L if n > k > 0.

POLYNOMIALS AND THEIR EVALUATION
Definition:  Polynomial  Expression  in  x  over  S  (Non-Recursive).  Let  n  be  an  integer,  n ¥ 0.  An  nth  degree  polynomial  in  x  is  an

expression  of  the  form  an xn + an-1 xn-1 + ! + a1 x + a0,  where  an, an-1, …, a1, a0  are  elements  of  some  designated  set  of  numbers,  S,
called the set of coefficients and an ! 0.

We  refer  to  x  as  a  variable  here,  although  the  more  precise  term  for  x  is  an  indeterminate.   There  is  a  distinction  between  the  terms
indeterminate and variable, but that distinction will not come into play in our discussions.
Zeroth degree polynomials are called constant polynomials and are simply elements of the set of coefficients.

This definition is often introduced in algebra courses to describe expressions such as f HnL = 4 n3 + 2 n2 - 8 n + 9, a third-degree, or cubic,
polynomial  in  n.  This  definitions  has  has  drawbacks  when the  variable  is  given  a  value  and the  expression  must  be  evaluated,  For  example,
suppose that n = 7. Your first impulse is likely to do this:

f H7L = 4 µ 73 + 2 µ 72 - 8 µ 7 + 9
= 4 µ 343 + 2 µ 49 - 8 µ 7 + 9 = 1423

A count of the number of operations performed shows that five multiplications and three additions/subtractions were performed.  The first two
multiplications compute 72 and 73, and the last three mutiply the powers of 7 times the coefficients. This gives you the four terms; and adding/-
subtacting a list of  k numbers requires k - 1 addition/subtractions. The following definition of a polynomial expression suggests another more
efficient method of evaluation.Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
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A count of the number of operations performed shows that five multiplications and three additions/subtractions were performed.  The first two
multiplications compute 72 and 73, and the last three mutiply the powers of 7 times the coefficients. This gives you the four terms; and adding/-
subtacting a list of  k numbers requires k - 1 addition/subtractions. The following definition of a polynomial expression suggests another more
efficient method of evaluation.

Definition: Polynomial Expression in x over S (Recursive). Let S be a set of coefficients and x any variable.

(a) ! A zeroth degree polynomial expression in x over S is a nonzero element of S.
(b) ! For n ¥ 1, an nth degree polynomial expression in x over S is an expression of the form p HxL x + a where p HxL is an Hn - 1Lst degree

polynomial expression in x and a œ S.
We can easily verify that f(n) is a third-degree polynomial expression in n over the ! based on this definition:

 f HnL = H4 n2 + 2 n - 8L n + 9 = HH4 n + 2L n - 8L n + 9
Notice that 4 is a zeroth degree polynomial since it is an integer. Therefore 4 n + 2 is a first-degree polynomial; therefore, H4 n + 2L n - 8 is a
second-degree  polynomial  in  n  over  !;  therefore,  f HnL  is  a  third-degree  polynomial  in  n  over  !.  The  final  expression  for  f HnL  is  called  its
telescoping  form.  If  we  use  it  to  calculate  f H7L,  we  need  only  three  multiplications  and  three  additions  /subtractions.  This  is  called  Horner's
method for evaluating a polynomial expression.
Example  8.12.   (a)  !The  telescoping  form  of  p HxL = 5 x4 + 12 x3 - 6 x2 + x + 6 is   HHH5 x + 12L x - 6L x + 1L x + 6.  Using  Horner's
method, computing the value of pHcL requires four multiplications and four additions/subtractions for any real number c.

(b) ! g HxL = -x5 + 3 x4 + 2 x2 + x  has the telescoping form HHHH- x + 3L x L x + 2L x + 1L x.
Many  computer  languages  represent  polynomials  as  lists  of  coefficients,  usually  starting  with  the  constant  term.   For  example,
gHxL = -x5 + 3 x4 + 2 x2 + x  would be represented with the list 80, 1, 2, 0, 3, -1<.   In both Mathematica and Sage, polynomial expressions
can be entered and manipulated, so the list representation is only internal.  Some lower-leveled languages do require users to program polyno-
mial operations with lists.  We will leave these programming issues to another source.

Example  8.1.3.  A  recursive  algorithm for  a  binary  search  of  a  sorted  list  of  items:  r = 8rH1L, rH2L … , rHnL<  represent  a  list  of  n  items
sorted  by  a  numeric  key  in  descending  order.  The  jth  item  is   denoted  rH jL  and   its  key  value  by  r H jL.key.  For  example,  each  item  might
contain  data  on  the  buildings  in  a  city  and  the  key  value  might  be  the  height  of  the  building.  Then  r H1L  would  be  the  item for  the  tallest
building. The algorithm BinarySearch H j, kL can be applied to search for an item in r with key value C. This would be accomplished by the
execution of BinarySearch H1, nL. When the algorithm is completed, the variable Found will have a value of true if an item with the desired
key value was found, and the value of location will be the index of an item whose key is C. If Found stays false, no such item exists in
the list. The general idea behind the algorithm is illustrated in Figure 8.1.2.

FIGURE 8.1.2 Illustration of BinarySearch

In this algorithm, Found and location are  "global" variables to execution of the algorithm.

BinarySearch H j, kL :
Found = False
If J < K

Then
Mid = d( j + k ) / 2t
If rHMidL.key == C

Then
location = Mid
Found = TRUE

Else
If rHMidL.key < C

Then execute BinarySearch(j, Mid - 1)
Else execute BinarySearchHMid + 1 , kL

For the next two examples, consider a sequence of numbers to be a list of numbers consisting of a zeroth number, first number, second number,
… .  If a sequence is given the name S, the kth number of S, is usually written Sk  or  SHkL.

Example 8.1.4 Define the sequence of numbers B by

B0 = 100 and 

Bk = 1.08 Bk-1  for k ¥ 1

These rules stipulate that each number in the list is 1.08 times the previous number, with the starting number equal to 100.   For example

B3 = 1.08 B2
= 1.08 H1.08 B1L
= 1.08 H1.08 H1.08 B0LL
= 1.08 H1.08 H1.08!100LL
= 1.083 100
= 125.971
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B3 = 1.08 B2
= 1.08 H1.08 B1L
= 1.08 H1.08 H1.08 B0LL
= 1.08 H1.08 H1.08!100LL
= 1.083 100
= 125.971

Example 8.1.5.  The Fibonacci sequence is the sequence F defined by 

F0 = 1,   F1 = 1 and 

Fk = Fk-2 + Fk-1 for  k ¥ 2.

RECURSION

All  of  the  previous  examples  were  presented  recursively.  That  is,  every  "object"  is  described  in  one  of  two  forms.  One  form is  by  a  simple
definition, which is usually called the basis for the recursion. The second form is by a recursive description in which objects are described in
terms  of  themselves,  with  the  following  qualification.  What  is  essential  for  a  proper  use  of  recursion  is  that  the  objects  can  be  expressed  in
terms of simpler objects, where "simpler" means closer to the basis of the recursion. To avoid what might be considered a circular definition,
the basis must be reached after a finite number of applications of the recursion.
To determine, for example, the fourth item in the Fibonacci sequence  we repeatedly apply the recursive rule for F until we are left with an
expression involving F0 and F1:

F4 = F2 + F3
= HF0 + F1L + HF1 + F2L
= HF0 + F1L + HF1 + HF0 + F1LL
= H1 + 1L + H1 + H1 + 1LL
= 5

ITERATION

On the other hand, we could compute a term in the Fibonacci sequence, say F5 by starting with the basis terms and working forward as follows:

F2 = F0 + F1 = 1 + 1 = 2
F3 = F1 + F2 = 1 + 2 = 3
F4 = F2 + F3 = 2 + 3 = 5
F5 = F3 + F4 = 3 + 5 = 8

This  is  called  an  iterative  computation  of  the  Fibonacci  sequence.  Here  we  start  with  the  basis  and  work  our  way  forward  to  a  less  simple
number, such as. Try to compute F5 using the recursive definition for F as we did for F4 . It will take much more time than it would have taken
to  do  the  computations  above.  Iterative  computations  usually  tend  to  be  faster  than  computations  that  apply  recursion.  Therefore,  one  useful
skill  is  being  able  to  convert  a  recursive  formula  into  a  nonrecursive  formula,  such  as  one  that  requires  only  iteration  or  a  faster  method,  if
possible.
An  iterative  formula  for  C Hn; kL  is  also  much  more  efficient  than  an  application  of  the  recursive  definition.  The  recursive  definition  is  not
without its merits, however. First, the recursive equation is often useful in manipulating algebraic expressions involving binomial coefficients.
Second,  it  gives  us  an  insight  into  the  combinatoric  interpretation  of  C Hn; kL.  In  choosing  k  elements  from  81, 2, . . . , n<,  there  are
C Hn - 1; kL  ways  of  choosing  all  k  from  81, 2, . . . , n - 1<,  and  there  are  CHn - 1; k - 1L  ways  of  choosing  the  k  elements  if  n  is  to  be
selected  and  the  remaining  k - 1  elements  come  from  81, 2, . . . , n - 1<.  Note  how  we  used  the  Law  of  Addition  from  Chapter  2  in  our
reasoning.

BinarySearch Revisited. In the binary search algorithm, the place where recursion is used is easy to pick out. When an item is examined
and the key is not the one you want, the search is cut down to a sublist of no more than half the number of items that you were searching in
before. Obviously, this is a simpler search. The basis is hidden in the algorithm. The two cases that complete the search can be thought of as
the basis. Either  you find an item that you want, or the sublist that you have been left to search in is empty (j > k).
BinarySearch can be translated without much difficulty into any language that allows recursive calls to its subprograms. The advantage to such
a program is that its coding would be much shorter than a nonrecursive program that does a binary search. However, in most cases the recursive
version will be slower and require more memory at execution time.

INDUCTION AND RECURSION
The definition of the positive integers in terms of Peano's Postulates (Section 3.7) is a recursive definition. The basis element is the number 1
and the recursion is that if n is a positive integer, then so is its successor. In this case, n is the simple object and the recursion is of a forward
type. Of course, the validity of an induction proof is based on our acceptance of this definition. Therefore, the appearance of induction proofs
when recursion is used is no coincidence.

Example 8.1.6. A formula for the sequence B in Example 8.1.4 is B = 100 H1.08Lk for k ¥ 0. A proof by induction follows: If k = 0, then
B = 100 H1.08L0 = 100, as defined. Now assume that for some k ¥ 1, the formula for Bk is true.
           Bk+1 = 1.08 Bk by the recursive definition

= 1.08 I100 H1.08LkM by the induction hypothesis
= 100 H1.08Lk+1 hence the formula is true for k + 1
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The formula that we have just proven for B is called a closed form expression. It involves no recursion or summation signs.

Definition: Closed Form Expression. Let E = EHx1, x2, …, xnL he an algebraic expression involving variables x1, x2, …, xn  which are
allowed to take on values from some predetermined set.   E is a closed form expression if there exists a number B such that the evaluation of
E with any allowed values of the variables will take no more than B operations (alternatively, B time units).

Example  8.1.7.  The  sum   EHnL = ⁄
k=1

n
k  is  not  a  closed  form  expression  because  the  number  of  additions  needed  evaluate  EHnL  grows

indefinitely with n.   A closed form expression that computes the value of EHnL  is   nHn+1L
2

, which only requires B = 3 operations. 

EXERCISES FOR SECTION 8.1
A Exercises
1. !By the recursive definition of binomial coefficients,  C H5; 2L = C H4; 2L + C H4; 1L.  Continue expanding C H5; 2L  to express it  in terms of
quantities defined by the basis. Check your result by applying the factorial definition of C Hn; kL.

2. ! Define the sequence L by L0 = 5 and for k ¥ 1, L k = 2 Lk-1 - 7.   Determine L4! and prove by induction that Lk = 7 - 2k+1.

3. ! Let p HxL = x5 + 3 x4 - 15 x3 + x - 10.
(a) ! Write pHxL in telescoping form.

(b) ! Use a calculator to compute p H3L using the original form of pHxL. 

(c) !  Use a calculator to compute p H3L using the telescoping form of pHxL.

(d) ! Compare your speed in parts b and c.

B Exercises
4. !Suppose that a list of nine items, (r(l), r(2), . . . , r(9)), is sorted by key in decending order so that r H3L. key = 12 and r H4L.key = 10. List the
executions of BinarySearch that would be needed to complete BinarySearch(1,9) for:

(a) !C = 12
(b)  C = 11

Assume that distinct items have distinct keys.

5. !What is wrong with the following definition of f : " Ø "? 

f H0L = 1 and f HxL = f Hx ê2L ê2 if x ! 0.
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8.2 Sequences
Definition:  Sequence.   A  sequence  is  a  function  from  the  natural  numbers  into  some  predetermined  set.  The  image  of  any  natural

number k can be written interchangeably as S HkL or Sk  and is called the kth  term of S. The variable k  is called the index or argument of the
sequence.
For example, a sequence of integers would be a function S : # Ø ! .

Example 8.2.1.

(a) The sequence A defined by A HkL = k2 - k,   k ¥ 0, is a sequence of integers.
(b) !The sequence B  defined recursively by BH0L = 2 and B HkL = BHk - 1L + 3 for k ¥ 1 is a sequence of integers. The terms of B  can be
computed either by applying the recursion formula or by iteration.  For example;

BH3L = BH2L + 3
= HBH1L + 3L + 3
= HHBH0L + 3L + 3L + 3L
= HH2 + 3L + 3L + 3
= 11

or

BH1L = BH0L + 3 = 2 + 3 = 5

BH 2L = BH1L + 3 = 5 + 8 = 8 

B H3L = B H2L + 3 = 8 + 3 = 11.

(c) ! Let Cr be the number of strings of 0's and 1's of length r having no consecutive zeros. These terms define a sequence C of integers.

Remarks;

(1) ! A sequence is often called a discrete function.

(2)  !  Although  it  is  important  to  keep  in  mind  that  a  sequence  is  a  function,  another  useful  way  of  visualizing  a  sequence  is  as  a  list.  For
example,  the  sequence  A  could  be  written  as  H0, 0, 2, 6, 12, 20, . . . L.  Finite  sequences  can  appear  much the  same way when they  are  the
input to or output from a computer. The index of a sequence can be thought of as a time variable. Imagine the terms of a sequence flashing on a
screen every second. The sk  would be what you see in the kth  second. It is convenient to use terminology like this in describing sequences. For
example, the terms that precede the kth term of A would be A H0L, A H1L, . . . , AHk - 1L.  They might be called the earlier terms.

A FUNDAMENTAL PROBLEM
Given the definition of  any sequence,  a  fundamental  problem that  we will  concern ourselves with is  to  devise a  method for  determining any
specific term in a minimum amount of time. Generally, time can be equated with the number of operations needed. In counting operations, the
application of a recursive formula would be considered an operation.
Example 8.2.2.

(a)  !  The  terms  of  A  in  Example  8.2.1  are  very  easy  to  compute  because  of  the  closed  form expression.  No matter  what  term you  decide  to
compute, only three operations need to be performed.
(b) ! How to compute the terms of B is not so clear. Suppose that you wanted to know B H100L. One approach would be to apply the definition
recursively:

B H100L = B H99L + 3 = HBH98L + 3L + 3 = …

The recursion equation for B would be applied 100 times and 100 additions would then follow. To compute B HkL by this method, 2 k operations
are needed. An iterative computation of B HkL is an improvement: 

BH1L = BH0L + 3 = 2 + 3 = 5
BH2L = BH1L + 3 = 5 + 3 = 8
etc.

Only  k  additions  are  needed.  This  still  isn't  a  good  situation.  As  k  gets  large,  we  take  more  and  more  time  to  compute  B HkL.  The  formula
BHkL = BHk - 1L + 3 is  called a recurrence relation on B.  The process of  finding a closed form expression for  B HkL,  one that  requires no more
than some fixed number of operations, is called solving the recurrence relation.
(c)  !  The determination of  Ck  is  a  standard kind of  problem in combinatorics.  One solution is  by way of  a  recurrence relation.  In fact,  many
problems in combinatorics are most easily solved by first searching for a recurrence relation and then solving it. The following observation will
suggest the recurrence relation that we need to determine Ck  : If k ¥ 2, then every string of 0's and 1's with length k and no two consecutive 0's
is  either  1 sk-1  or  01 sk-2,  where  sk-1  and  sk-2  are  strings  with  no  two  consecutive  0's  of  length  k - 1  and  k - 2  respectively.  From  this
observation  we  can  see  that  Ck = Ck-2 + Ck-1  for  k ¥ 2.  The  terms  C0 = 1  and  C1 = 2  are  easy  to  determine  by  enumeration.  Now,  by
iteration, any Ck  can be easily determined. For example, C5 = 21 can be computed with five additions. A closed form expression for Ck  would
be an improvement. Note that the recurrence relation for Ck  is identical to the one for the Fibonacci sequence (Example 8.1.4). Only the basis is
different.
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EXERCISES FOR SECTION 8.2
A Exercises
1. Prove by induction that B HkL = 3 k + 2, k ¥ 0, is a closed form expression for the sequence B in Example 8.2.1.

2. ! (a) Consider sequence Q defined by QHkL = 2 k + 9, k ¥ 1. Complete the table below and determine a recurrence relation that describes Q. 

k QHkL QHkL - QHk - 1L
2
3
4
5
6
7

(b)  Let  A HkL = k2 - k,   k ¥ 0 .  Complete  the  table  below  and  determine  a  recurrence  relation  for  A  .  Notice  that
HAHkL - AHk - 1L - HAHk - 1L - AHk - 2LL = AHkL - 2 AHk - 1L + AHk - 2L

 

k AHkL AHkL - AHk - 1L AHkL - 2 AHk - 1L + AHk - 2L
2
3
4
5

3.  !  Given k  lines (k ¥ 0) on a plane such that  no two lines are parallel  and no three lines meet  at  the same point,  let  P HkL  be the number of
regions into which the lines divide the plane (including the infinite ones (see Figure 8.2.1). Describe geometrically how the recurrence relation
P HkL = P Hk — 1L + k can be obtained. Given that P H0L = 1, determine P H5L.

FIGURE 8.2.1 Exercise 3

4. ! A sample of a radioactive substance is expected to decay by 0.15 percent each hour. If wt, t ¥ 0, is the weight of the sample t hours into an
experiment, write a recurrence relation for w.

B Exercise
5.  !  Let  M HnL  be  the  number  of  multiplications  needed  to  evaluate  an  nth  degree  polynomial.  Use  the  recursive  definition  of  a  polynomial
expression to define M recursively.
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8.3 Recurrence Relations
In this section we will begin our study of recurrence relations and their solutions. Our primary focus will be on the class of finite order linear
recurrence relations with constant coefficients (shortened to finite order linear relations). First, we will examine closed form expressions from
which  these  relations  arise.  Second,  we  will  present  an  algorithm  for  solving  them.  In  later  sections  we  will  consider  some  other  common
relations (8.4) and introduce two additional tools for studying recurrence relations: generating functions (8.5) and matrix methods (Chapter 12).

Definition: Recurrence Relation.  Let S be a sequence of numbers, A recurrence relation on S is a formula that relates all but a finite
number of terms of S to previous terms of S. That is, there is a k0  in the domain of S such that if k ¥ k0, then S(k) is expressed in terms of
some (and possibly all) of the terms that precede S(k).   If the domain of S is 80, 1, 2, ...<, the terms S H0L, SH1L, . . . , SHk0 - 1L are not defined
by the recurrence formula.  Their values are the initial conditions (or boundary conditions, or basis) that complete the definition of S.

Example 8.3.1.

(a) !The Fibonacci sequence is defined by the recurrence relation Fk = Fk-2 + Fk-1,  k ¥ 2!, with the initial conditions F0 = 1  and F1 = 1. The
recurrence relation is called a second-order relation because Fk  depends on the two previous terms of F. Recall that the sequence C in Section
8.2 can be defined with the same recurrence relation, but with different initial conditions.
(b) !The relation T HkL = 2 THk - 1L2 - k THk - 3L is a third-order recurrence relation. If values of T H0L, TH1L, and T H2L are specified, then T
is completely defined.
(c)  !The recurrence relation S HnL = S Hdn ê2tL + 5,  n > 0,  with SH0L = 0 has infinite  order.  To determine S HnL  when n  is  even,  you must  go
back n ê2 terms. Since n ê2  grows unbounded with n, no finite order can be given to S.

SOLVING RECURRENCE RELATIONS
Sequences are often most easily defined with a recurrence relation; however, the calculation of terms by directly applying a recurrence relation
can be time consuming. The process of determining a closed form expression for the terms of a sequence from its recurrence relation is called
solving  the  relation.  There  is  no  single  technique  or  algorithm  that  can  be  used  to  solve  all  recurrence  relations.  In  fact,  some  recurrence
relations  cannot  be  solved.  The  relation  that  defines  T  above  is  one  such  example.  Most  of  the  recurrence  relations  that  you  are  likely  to
encounter in the future as classified as finite order linear recurrence relations with constant coefficients. This class is the one that we will spend
most of our time with in this chapter.

Definition: nth  Order Linear Recurrence Relation. Let S be a sequence of numbers with domain k ¥ 0.  An nth  order linear recurrence
relation on S with constant coefficients is a recurrence relation that can be written in the form

SHkL + C1 SHk - 1L + . . . + Cn S Hk - nL = f HkL   for k ¥ n

where C1, C2, …, Cn are constants and f is a numeric function that is defined for k ¥ n.

Note: We will shorten the name of this class of relations to nth order linear relations. Therefore, in further discussions, S HkL + 2 k SHk — 1L = 0
would not be considered a first-order linear relation.

Example 8.3.2.

(a) ! The Fibonacci sequence is defined by the second-order linear relation because Fk - Fk-1 - Fk-2 = 0

(b) !The relation P H jL + 2 P H j — 3L = j2 is a third-order linear relation.  In this case,  C1 = C2 = 0.
(c) !The relation AHkL = 2 HA Hk - 1L + kL can be written as A HkL - 2 AHk - 1L = 2 k. Therefore, it is a first-order linear relation.

RECURRENCE RELATIONS OBTAINED FROM "SOLUTIONS"
Before giving an algorithm for  solving finite  order  linear  relations,  we will  examine  recurrence relations that  arise from certain closed form
expressions. The closed form expressions are selected so that we will obtain finite order linear relations from them. This approach may seem a
bit contrived, but if you were to write down a few simple algebraic expressions, chances are that most of them would be similar to the ones we
are about to examine.

Example 8.3.3.

(a) !Consider D, defined by DHkL = 5 ÿ 2k  , k ¥ 0.   If k ¥ 1,

DHkL = 5 ÿ 2k = 2 ÿ 5 ÿ 2k-1 = 2 DHk - 1L.
Therefore, D satisfies the first order linear relation D HkL - 2 D Hk - 1L = 0 and the initial condition D H0L = 5 serves as an initial condition
for D.

(b) !If CHkL = 3k-1 + 2k+1 + k , k ¥ 0, quite a bit more algebraic manipulation is required to get our result:

C HkL = 3k-1 + 2k+1 + k Original equation
3 CHk - 1L = 3k-1 + 3 ÿ 2k + 3 Hk - 1L Substitute k - 1 for k and multipy by 3

Subtract the second equation from the first
CHkL - 3 CHk - 1L = -2k - 2 k + 3 3k-1 term is eliminated, this is a first order relation

2 C Hk - 1L - 6 C Hk - 2L = -2k - 2 H2 Hk - 1L + 3L Substitute k - 1 for k in the 3rd equation, mult. by 2
Subtract the fourth equation from the third equation

CHkL - 5 CHk - 1L - 6 CHk - 2L = 2 k - 7 2k+1 term eliminated, this is a 2nd order relation
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C HkL = 3k-1 + 2k+1 + k Original equation
3 CHk - 1L = 3k-1 + 3 ÿ 2k + 3 Hk - 1L Substitute k - 1 for k and multipy by 3

Subtract the second equation from the first
CHkL - 3 CHk - 1L = -2k - 2 k + 3 3k-1 term is eliminated, this is a first order relation

2 C Hk - 1L - 6 C Hk - 2L = -2k - 2 H2 Hk - 1L + 3L Substitute k - 1 for k in the 3rd equation, mult. by 2
Subtract the fourth equation from the third equation

CHkL - 5 CHk - 1L - 6 CHk - 2L = 2 k - 7 2k+1 term eliminated, this is a 2nd order relation
The recurrence relation that we have just obtained, defined for k ¥ 2, together with the initial conditions C H0L = 7 ê3 and C H1L = 5, define
C.  We could do more algebra to obtain a third-order linear relation in this case.
Table  8.3.1  summarizes  our  results  together  with  a  few  other  examples  that  we  will  let  the  reader  derive.  Based  on  these  results,  we  might
conjecture that any closed form expression for a sequence that combines  exponential expressions and polynomial expressions will be solutions
of finite order linear relations. Not only is this true, but the converse is true: a finite order linear relation defines a closed form expression that is
similar to the ones that were just examined. The only additional information that is needed is a set of initial conditions.

 

Closed Form Expression Recurrence Relation
DHkL = 5 ÿ 2k DHkL - 2 DHk - 1L = 0

CHkL = 3k-1 + 2k+1 + k CHkL - 2 C Hk - 1L - 6 C Hk - 2L = 2 k - 7
QHkL = 2 k + 9 QHkL - QHk - 1L = 2
AHkL = k2 - k AHkL - 2 AHk - 1L + AHk - 2L = 2

BHkL = 2 k2 + 1 BHkL - 2 BHk - 1L + BHk - 2L = 4
GHkL = 2 ÿ 4k - 5 H-3Lk GHkL - GHk - 1L + 12 GHk - 2L = 0

JHkL = H3 + kL 2k JHkL - 4 JHk - 1L + 4 JHk - 2L = 0
Table 8.3.1

Recurrence Relation Obtained from Certain Sequences

Definition: Homogeneous Recurrence Relation.  An nth  order linear relation is  homogeneous  if f HkL = 0 for all k.  For each recur-
rence  relation  S HkL + C1 SHk - 1L + … + Cn SHk — nL = f HkL,  the  associated  homogeneous  relation  is
SHkL + C1 SHk - 1L + … + Cn SHk — nL = 0

Example 8.3.4.   D HkL - 2 D Hk - 1L = 0 is  a first-order homogeneous relation.  Since it  can also be written as D HkL = 2 D Hk — 1L,  it
should be no surprise that it arose from an expression that involves powers of 2 (see Example 8.3.3a). More generally, you would expect that
the solution of L HkL - a LHk - 1L  would involve ak  .  Actually, the solution is L HkL = LH0L ak  ,  where the value of L H0L  is given by the the
initial condition.

Example  8.3.5.  Consider  the  second-order  homogeneous  relation  S HkL — 7 S Hk - 1L + 12 SHk - 2L = 0  together  with  the  initial
conditions S H0L = 4 and S H1L = 4. From our discussion above,  we can predict  that  the solution to this  relation involves terms of the form
b ak, where b and a are nonzero constants that must be determined. If the solution were to equal this quantity exactly, then

 
SHkL = b ak

SHk - 1L = b ak-1

SHk - 2L = b ak-2

Substitute these expressons into the recurrence relation to get

 b ak - 7 b ak-1 + 12 b ak-1 = 0 HEq 8.3 aL

Each term on the left-hand side of the equation has a factor of b ak-2, which is nonzero. Dividing through by this common factor yields

a2 - 7 a + 12 = Ha - 3L Ha - 4L = 0. ! (Eq 8.3b)
Therefore, the only possible values of a are 3 and 4. Equation (8.3b) is called the characteristic equation of the recurrence relation. The fact is
that our original recurrence relation is true for any sequence of the form SHkL = b1 3k + b2 4k, where b1  and b2  are real numbers. This set of
sequences is called the general solution of the recurrence relation. If we didn't have initial conditions for S,  we would stop here. The initial
conditions make it possible for us to obtain definite values for b1 and b2.

 :
SH0L = 4
SH1L = 4 > fl :

b1 30 + b2 40 = 4
b1 31 + b2 41 = 4

> fl :
b1 + b2 = 4

3 b1 + 4 b2 = 4 >

The solution of this set of simultaneous equations is b1 = 12 and b2 = -8 and so the solution is  S HkL = 12 3k - 8 4k.

Definition:  Characteristic  Equation.  The  characteristic  equation  of  the  homogeneous  nth  order  linear  relation
SHkL + C1 SHk - 1L + … + Cn SHk — nL = 0  is the nth degree polynomial equation

an + ⁄
j=1

n
C j an- j = an + C1 an-1 + ! + Cn-1 x + Cn = 0 
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The left-hand side of this equation is called the characteristic polynomial.

Example 8.3.6.

(a) ! The characteristic equation of F HkL - F Hk - 1L - F Hk - 2L = 0 is a2 - a - 1 = 0.

(b)  !The  characteristic  equation  of  Q HkL + 2 Q Hk - 1L - 3 Q Hk - 2L - 6 QHk - 4L = 0  is  a4 + 2 a3 - 3 a2 - 6 = 0.   Note  that  the
absence of  a Q Hk - 3L term means that there is not an x4-3 = x term appearing in the characteristic equation.

Algorithm 8.3.1: Algorithm for Solving Homogeneous nth Order Linear Relations.
(a)  !  Write  out  the  characteristic  equation  of  the  relation  SHkL + C1 SHk - 1L + … + Cn SHk — nL = 0,  which  is

an + C1 an-1 +! + Cn-1 x + Cn = 0.
(b) ! Find all roots of the characteristic equation, called characteristic roots.

(c)  !If  there  are  n  distinct  characteristic  roots,  a1,  a2, ...,  an,  then  the  general  solution  of  the  recurrence  relation  is
S HkL = b1 a1k + b2 a2k +! + bn ank. If there are fewer than n characteristic roots, then at least one root is a multiple root. If a j  is a double
root,  then the b j a jk  term is replaced with Ib j 0 + b j 1 kM a jk.  In general,  if  a j  is  a root of multiplicity p,  then the b j a jk  term is replaced with
Ib j 0 + b j 1 k +! + b jHp-1L kp-1M a jk.

(d) ! If n initial conditions are given, obtain n linear equations in n unknowns (the b j ' s from Step (c)) by substitution. If possible, solve
these equations to determine a final form for SHkL.

Although this algorithm is valid for all values of n, there are limits to the size of n for which the algorithm is feasible. Using just a pencil and
paper, we can always solve second-order equations. The quadratic formula for the roots of a x2 + b x + c = 0  is

x =
-b! b2-4 a c

2 a

The solutions of a2 + C1 a + C2 = 0 are then

  1
2

-C1 + C12 - 4 C2 and 1
2

-C1 - C12 - 4 C2

Although cubic and quartic formulas exist,  they are too lengthy to introduce here. For this reason, the only higher-order relations (n ¥ 3) that
you could be expected to solve by hand are ones for which there is an easy factorization of the characteristic polynomial.

Example  8.3.7.  Suppose  that  T  is  defined  by  THkL = 7 THk - 1L - 10 THk - 2L,  with  ,  T H0L = 4  and  T H1L = 17.  We  can  solve  this
recurrence relation with Algorithm 8.3.1:
(a) ! Note that we had written the recurrence relation in "nonstandard" form. To avoid errors in this easy step, you might consider a rearrange-
ment of the equation to, in this case, THkL - 7 THk - 1L + 10 THk - 2L = 0.  Therefore, the characteristic equation is a2 - 7 a + 10 = 0. 

(b) !The characteristic roots are 1
2
J7 + 49 - 40 N = 5 and 1

2
J7 - 49 - 40 N = 2. These roots can be just as easily obtained by factoring the

characteristic polynomial into Ha - 5L Ha - 2L.

(c) ! The general solution of the recurrence relation is THkL = b1 2k + b2 5k ,

(d)  :
TH0L = 4
TH1L = 17 > fl :

b1 20 + b2 50 = 4
b1 21 + b2 51 = 4

> fl :
b1 + b2 = 4

2 b1 + 5 b2 = 17 >

The simulations equations have the solution b1 = 1 and b2 = 3, Therefore, THkL = 2k + 3 ÿ 5k.
Here is one rule that might come in handy: If the coefficients of the characteristic polynomial are all integers, with the constant term equal to
m, then the only possible rational characteristic roots are divisors of m (both positive and negative).
With the aid of a computer (or possibly only a calculator), we can increase n. Approximations of the characteristic roots can be obtained by
any of several well-known methods, some of which are part of standard software packages. There is no general rule that specifies the values
of n  for which numerical approximations will  be feasible.  The accuracy that you get will  depend on the relation that you try to solve. (See
Exercise 17 of this section.)

Example 8.3.8. Solve S HkL - 7 S Hk - 2L + 6 S Hk - 3L = 0, where SH0L = 8, S H1L = 6, and S H2L = 22.

(a) !The characteristic equation is a3 - 7 a + 6 = 0.
(b) ! The only rational roots that we can attempt are " 1, "2, "3, and " 6. By checking these, we obtain the three roots 1, 2, and —3.

(c) ! The general solution is SHkL = b1 1k + b2 2k + b3H-3Lk. The first term can simply be written b1 .

(d) ! :
SH0L = 8
SH1L = 6

SH20 = 22
> fl :

b1 + b2 + b3 = 8
b1 + 2 b2 - 3 b3 = 6

b1 + 4 b2 + 9 b3 = 22
>
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You can solve this system by elimination to obtain b1 = 5, b2 = 2, and b3 = 1.   Therefore,

S HkL = 5 + 2 ÿ 2k + H-3Lk = 5 + 2k+1 + H-3Lk

Example 8.3.9. Solve D HkL - 8 D Hk - IL + 16 D Hk - 2L = 0, where D H2L = 16 and D H3L = 80.

(a) !Characteristic equation; a2 - 8 a + 16 = 0.

(b) ! a2 - 8 a + 16 = Ha - 4L2. Therefore, there is a double characteristic root, 4.

(c) ! General solution: D HkL = Hb10 + b11 kL 4k.

(d)  :
DH2L = 16
DH3L = 80 > fl :

Hb10 + b11 2L 42 = 16
Hb10 + b11 3L 43 = 80

> fl :
16 b10 + 32 b11 = 16

64 b10 + 192 b11 = 80 > fl :
b10 = 1

2

b11 = 1
4

>

Therefore D HkL = H1 ê2 + H1 ê4L kL 4k = H2 + kL 4k-1.

SOLUTION OF NONHOMOGENEOUS FINITE ORDER LINEAR RELATIONS
Our algorithm for nonhomogeneous relations will not be as complete as for the homogeneous case. This is due to the fact that different right-
hand sides (f(k)'s) call for different procedures in obtaining a particular solution in Steps (b) and (c).

Algorithm 8.3.2: Algorithm for Solving Nonhomogeneous Finite Order Linear Relations. 

To solve the recurrence relation S HkL + C1 SHk - 1L + … + Cn SHk — nL = f HkL:

(a) ! Write the associated homogeneous relation and find its general solution (Steps (a) through (c) of Algorithm 8.3.1). Call this the homoge-
neous solution, SHhLHkL.

(b)  !  Start  to  obtain  what  is  called  a  particular  solution,   SHpLHkL  of  the  recurrence  relation  by  taking  an  educated  guess  at  the  form  of  a
particular solu tion.  For a large class of  right-hand sides,  this  is  not  really a guess,  since the particular solution is  often the same type of
function as f HkL (see Table 8.3.2).

 

Right Hand Side, f HkL Form of a particular Solution, SHpLHkL
constant, q constant, d

linear function q0 + q1 k linear function d0 + d1 k
mth degree polynomial,

q0 + q1 k +! + qm km
mth degree polynomial,

d0 + d1 k +! + dm km

exponential function q ak exponential function d ak

Table 8.3.2
Particular Solutions for Given Right-hand Sides

(c) ! Substitute your guess from Step (b) into the recurrence relation. If you made a good guess, you should be able to determine the unknown
coefficients of your guess. If you made a wrong guess, it should be apparent from the result of this substitution, so go back to Step (b).
(d) ! The general solution of the recurrence relation is the sum of the homogeneous and particular solutions. If no conditions are given, then
you are finished. If n initial conditions are given, they will translate to n linear equations in n unknowns and solve the system, if possible, to
get a complete solution.

Example 8.3.10. Solve  S HkL + 5 S Hk - 1L = 9,  with S H0L = 6.

(a)  !  The  associated  homogeneous  relation,   S HkL + 5 S Hk — 1L = 0  has  the  characteristic  equation  a + 5 = 0;  therefore,  a = -5.  The
homogeneous solution is SHhLHkL = b H-5Lk.
(b) ! Since the right-hand side is a constant, we guess that the particular solution will be a constant, d.

(c) !If we substitute SHpLHkL = d into the recurrence relation, we get d + 5 d = 9, or 6 d = 9. Therefore, SHpLHkL = 1.5
(d) !The general solution of the recurrence relation is 

SHkL = SHhLHkL + SHpLHkL = b H-5Lk + 1.5
The initial condition will give us one equation to solve in order to determine b.

S H0L = 6 fl bH-5L0 + 1.5 = 6 fl b + 1.5 = 6

Therefore, b = 4.5 and S HkL = 4.5 H-5Lk + 1.5.
Example 8.3.11. Consider T HkL - 7 T Hk - 1L + 10 T Hk - 2L = 6 + 8 k with T H0L = 1 and T H1L = 2.

(a) ! From Example 8.3.7, we know that THhLHkL = b1 2k + b2 5k.  Caution:  Don't apply the initial conditions to THhL until you add THpL!

(b) ! Since the right-hand side is a linear polynomial, THpL is linear; that is, THpLHkL = d0 + d1 k.
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(c) ! Substitution  into the recurrence relation yields:

    Hd0 + d1 kL - 7 Hd0 + d1Hk - 1LL + 10 Hd0 + d1Hk - 2LL = 6 + 8 k

fl H4 d0 - 13 d1L + H4 d1L k = 6 + 8 k

Two polynomials are equal only if their coefficients are equal. Therefore,

 :
4 d0 - 13 d1 = 6

4 d1 = 8 > fl :
d0 = 8
d1 = 2 >

(d) ! Use the general solution THkL = b1 2k + b2 5k + 8 + 2 k  and the initial conditions to get a final solution:

  :
TH0L = 1
TH1L = 2 > fl :

b1 + b2 + 8 = 1
2 b1 + 5 b2 + 10 = 2 >

fl :
b1 + b2 = -7

2 b1 + 5 b2 = -8 >

fl :
b1 = -9
b2 = 2 >

Therefore,  THkL = -9 ÿ 2k + 2 ÿ 5k + 8 + 2 k
A quick  note  on  interest  rates:   When  a  quantity,  such  as  a  savings  account  balance,  is  increased  by  some  fixed  percent,  it  is  most

easily computed with a multipier.  In the case of an 8% increase, the multier is 1.08 because any original amount A, has 0.08 A added to it, so
that the new balance is

 A + 0.08 A = H1 + 0.08L A = 1.08 A .  

Another example is that if the interest rate is 3.5%, the multiplier would be 1.035.   This presumes that the interest is applied a the end of year
for 3.5% annual interest, often called simple interest.  If the interest is applied monthly, and we assume a simplifed case where each month
has the same length, the multiplier after every month would be  J1 + 0.35

12
N º 1.0292.  After a year passes, this multiplier would be applied 12

times, which is the same as multiplying by  1.029212 º 1.3556.   That increase from 1.035 to 1.3556 is the effect of compound interest.
Example 8.3.12. Suppose you open a savings account that pays an annual interest rate of 8%. In addition, suppose you decide to deposit

one dollar when you open the account,  and you intend to double your deposit  each year.   Let B HkL  be your balance after k  years.  B  can be
described by the relation B HkL = 1.08 B Hk - 1L + 2k, with S H0L = 1. If, instead of doubling the deposit each year, you deposited a constant
amount, q, the 2k term would be replaced with q, A sequence of regular deposits such as this is called an annuity.

Returning to the original situation, we can obtain a closed form expression for BHhL:

(a) ! BHhLHkL = b1H1.08Lk

(b) ! BHpLHkL should be of the form d 2k.

(c) ! d 2k = 1.08 d 2k-1 + 2k

fl H2 dL 2k-1 = 1.08 d 2k-1 + 2 ÿ 2k-1
fl 2 d = 1.08 d + 2
fl .92 d = 2
fl d = 2.174 Hto the nearest thousandthL

Therefore   BHpLHkL = 2.174 ÿ 2k

(d) !BH0L = 1 fl b1 + 2.174 = 1
fl b1 = -1.174

       BHkL = -1.174 ÿ 1.08k + 2.174 ÿ 2k.

Example 8.3.13. Find the general solution to S HkL - 3 S Hk - 1L - 4 S Hk - 2L = 4k.

(a) ! The characteristic roots of the associated homogeneous relation are -1 and 4. Therefore, SHhLHkL = b1H-1Lk + b2 4k.

(b) ! A function of the form d 4k  will not be a particular solution of the nonhomogeneous relation since it solves the associated homogeneous
relation. When the right-hand side involves an exponential function with a base that equals a characteristic root,   you should multiply your
guess at a particular solution by k. Our guess at SHpLHkL  would then be d k 4k . See below for a more complete description of this procedure.

(c) ! Substitute d k 4k into the recurrence relation for S HkL:

    d k 4k - 3 d Hk - 1L 4k-1 - 4 d Hk - 2L 4k-2 = 4k

16 d k 4k-2 - 12 d Hk - 1L 4k-2 - 4 d Hk - 2L 4k-2 = 4k

C8a.nb | 11

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License.

157



Each term on the left-hand side has a factor of 4k-2 

      I6 d k - 12 d Hk - 1L - 4 dHk - 2L = 42
20 d = 16 fl d = 0.8

Therefore, SHpLHkL = 0.8 k 44

(d) ! The general solution to the recurrence relation is

SHkL = b1H-1Lk + b2 4k + 0.8 k 4k

BASE OF RIGHT-HAND SIDE EQUAL TO CHARACTERISTIC ROOT
If  the right-hand side of a nonhomogeneous relation involves an exponential  with base a,  and a  is  also a characteristic root of multiplicity p,
then multiply your guess at a particular solution as prescribed in Table 8,3.2 by kp , where k is the index of the sequence.

Example 8.3.14.

(a) !If S HkL - 9 S Hk - 1L + 20 SHk - 2L = 2 ÿ 5k, the characteristic roots are 4 and 5. SHpLHkL will take  the form d k 5k.

(b) !If S HnL - 6 S Hn - 1L + 9 S Hn - 2L = 3n+1  the only characteristic root is 3, but it is a double root (multiplicity 2).  Therefore, the form
of the particular solution is d n2 3n.
(c)  !If  QH jL - QH j - 1L - 12 QH j - 2L = H-3L j + 6 ÿ 4 j,  the  characteristic  roots  are  -3  and  4.  The  form  of  the  particular  solution  will  be
d1 j H-3L j + d2 j ÿ 4 j.

(d) !If S HkL - 9 S Hk - 1L + 8 SHk - 2L = 9 k + 1 = H9 k + 1L 1k   ,  the characteristic roots are 1 and 8.  If the right-hand side is a polyno-
mial, as it is in this case, then the exponential factor 1k can be introduced. The particular solution will take the form kHd0 + d1 kL.
We conclude this  section with a  comment  on the situation in  which the characteristic  equation gives  rise  to  complex roots.  If  we restrict  the
coefficients of our finite order linear relations to real numbers, or even to integers, we can still encounter characteristic equations whose roots
are  complex.  Here,  we  will  simply  take  the  time  to  point  out  that  our  algorithms  are  still  valid  with  complex  characteristic  roots,  but  the
customary  method  for  expressing  the  solutions  of  these  relations  is  different.  Since  an  understanding  of  these  representations  requires  some
background  in  complex  numbers,  we  will  simply  suggest  that  an  interested  reader  can  refer  to  a  more  advanced  treatment  of  recurrence
relations (see also difference equations).

EXERCISES FOR SECTION 8.3
A Exercises
Solve the following sets of recurrence relations and initial conditions:

1. ! S HkL - 10 S Hk - 1L + 9 S Hk - 2L = 0, ! S H0L = 3,  S H1L = 11

2. !S HkL - 9 S Hk - 1L + 18 S Hk - 2L = 0 ! S H0L = 0,  S H1L = 3

3. ! S HkL - 0.25 S Hk - 1L = 0 ,! S H0L = 6

4. ! S HkL - 20 S Hk - 1L + 100 S Hk - 2L = 0, ! S H0L = 2,  S H1L = 50

5. ! S HkL - 2 S Hk - 1L + S Hk - 2L = 2 ! S H0L = 25, S H1L = 16

6. ! S HkL - S Hk - 1L - 6 S Hk - 2L = -30 ! S H0L = 7, S H1L = 10

7. ! S HkL - 5 S Hk - 1L = 5k,  ! S H0L = 3
8. ! S HkL - 5 S Hk - 1L + 6 S Hk - 2L = 2,  ! S H0L = -1, S H1L = 0

9. ! S HkL - 4 S Hk - 1L + 4 S Hk - 2L = 3 k + 2k. ! S H0L = 1, S H1L = 1
10. !S HkL = r SHk - 1L + a ,  ! S H0L = 0, r, a ¥ 0, r ! 1

11. !S HkL - 4 S Hk - 1L - 11 S Hk - 2L + 30 S Hk - 3L = 0, 

    ! S H0L = 0, ! S H1L = -35, S H2L = -85

12. ! Find a closed form expression for P HkL in Exercise 3 of Section 8.2.

13. ! (a) Find a closed form expression for the terms of the Fibonacci sequence (see Example 8.1.4). 

       (b) The sequence C  was defined by Cr!  = the number of strings of zeros and ones with length r  having no consecutive zeros (Example
8.2.1(c)). Its recurrence, relation is the same as that of the Fibonacci sequence. Determine a closed form expression for Cr,  r ¥ 1,

14. ! If SHnL = ⁄
j=1

n
gH jL,  n ¥ 1, then S can be described with the recurrence relation S HnL = S Hn - 1L + g HnL. For each of the following sequences

that are defined using a summation, find a closed form expression:

(a) !SHnL = ⁄
j=1

n
j,    n ¥ 1
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(a) !SHnL = ⁄
j=1

n
j,    n ¥ 1

(b) ! Q HnL = ⁄
j=1

n
j2,   n ¥ 1

(c) ! P HnL = ⁄
j=1

n
I
1
2
M
j,  n ¥ 0

(d) ! T HnL = ⁄
j=1

n
j3,   n ¥ 1

B Exercises
15. ! Let D HnL be the number of ways that the set 81, 2, . . . , n<, n ¥ 1, can be partitioned into two nonempty subsets.

(a) ! Find a recurrence relation for D. (Hint: It will be a first-order linear relation.)

(b) ! Solve the recurrence relation.

16. ! If you were to deposit a certain amount of money at the end of each year for a number of years, this sequence of payment would be called
an annuity (see Example 8.3.12,).
(a) ! Find a closed form expression for the balance or value of an annuity that consists of payments of q dollars at a rate of interest of i. Note
that for a normal annuity, the first payment is made after one year.
(b) ! With an interest rate of 12.5%, how much would you need to deposit into an annuity to have a value of one million dollars after 18 years?

(c) !  The payment of a loan is a form of annuity in which the initial value is some negative amount (the amount of the loan) and the annuity
ends when the value is raised to zero. How much could you borrow if you can afford to pay $5,000 per year for 25 years at 14% interest?

C Exercises
17. ! Suppose that C is a small positive number. Consider the recurrence relation B HkL - 2 B Hk - 1L + I1 - C 2M B Hk — 2L = C2, with initial
conditions B H0L = 1 and B HlL = 1. If C is small enough, we might consider approximating the relation by replacing 1 - C2 with 1 and C2 with
0. Solve the original relation and its approximation. Let Ba  a be the solution of the approximation. Compare closed form expressions for B HkL
and  BaHkL.  Their  forms  are  very  different  because  the  characteristic  roots  of  the  original  relation  were  close  together  and  the  approximation
resulted in one double characteristic root.  If characteristic roots of a relation are relatively far apart, this problem will not occur.  For example,
compare the general solutions of 

S HkL + 1.001 SHk - 1L - 2.004002 SHk - 2L = 0.0001 and

SaHkL + SaHk - 1L - 2 SaHk - 2L = 0.
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8.4 Some Common Recurrence Relations
In this section we intend to examine a variety of recurrence relations that are not finite-order linear with constant coefficients. For
each part of this section, we will consider a concrete example, present a solution, and, if possible, examine a more general form
of the original relation.

Example 8.4.1. Consider the homogeneous first-order linear relation S HnL - n S Hn - 1L = 0, n ¥ 1, with initial condition
S H0L = 1. Upon close examination of this relation, we see that the nth term is n times the Hn - 1Lst term, which is a property of
n factorial.  S HnL = n ! is a solution of this relation, for if n ¥ 1,

S HnL = n ! = n ÿ Hn - 1L ! = n ÿ S Hn - 1L.

In addition, since 0 ! = 1, the initial condition is satisfied. It should be pointed out that from a computational point of view, our
"solution" really isn't much of an improvement since the exact calculation of n ! takes n - 1 multiplications.

If  we  examine  a  similar  relation,  G HkL - 2 k G Hk - 1L,  k ¥ 1  with  G H0L = 1,  a  table  of  values  for  G  suggests  a  possible
solution:

 
k 0 1 2 3 4 5

GHkL 1 2 23 26 210 215

The exponent of 2 in GHkL is growing according to the relation E HkL = E Hk - 1L + k,  with EH0L = 0. Thus EHkL = kHk+1L
2

 and
G HkL = 2kHk+1Lê2 . Note that G HkL could also be written as 20 21 22!2k, for k ¥ 0, but this is not a closed form expression.
In general, the relation P HnL = f HnL P Hn - 1L for n ¥ 1 with P H0L = f H0L, where f is a function that is defined for all n ¥ 0, has
the "solution"

 PHnL = ¤
k=0

n
f HkL

This product form of P HnL  is not a closed form expression because as n  grows, the number of multiplications grow. Thus, it  is
really not a true solution.  Often, as for G HkL above, a closed form expression can be obtained from the product form.

Example  8.4.2.  Analysis  of  a  Binary  Search  Algorithm.  Suppose  you  intend  to  use  a  binary  search  algorithm  (see
Example 8.1 .3) on lists of zero or more sorted items, and that the items are stored in an array, so that you have easy access to
each item. A natural question to ask is "How much time will it take to complete the search?" When a question like this is asked,
the time we refer to is often the so - called worst - case time. That is, if we were to search through n items, what is the longest
amount of time that we will need to complete the search? In order to make an analysis such as this independent of the computer
to be used, time is measured by counting the number of steps that are executed. Each step (or sequence of steps) is assigned an
absolute time, or weight; therefore, our answer will not be in seconds, but in absolute time units. If the steps in two different
algorithms  are  assigned  weights  that  are  consistent,  then  analyses  of  the  algorithms  can  be  used  to  compare  their  relative
efficiencies. There are two major steps that must be executed in a call of the binary search algorithm:
(1)   If the lower index is less than or equal to the upper index, then the middle of the list is located and its key is compared to
the value that you are searching for.
(2)   In the worst case, the algorithm must be executed with a list that is roughly half as large as in the previous execution. If we
assume that Step 1 takes one time unit and T HnL is the worst - case time for a list of n items, then

T HnL = 1 + T Hdn ê2 tL for n > 0 (8.4 a)

For simplicity, we will assume that

T H0L = 0 (8.4 b)

even though the conditions of Step 1 must be evaluated as false if n = 0. You might wonder why n ê2 is truncated in 8.4a. If n
is odd, then n = 2 k + 1 for some k ¥ 0, the middle of the list will be the Hk + 1Lst  item, and no matter what half of the list the
search is directed to, the reduced list will have k = dn ê2t items. On the other hand, if n is even, then n = 2 k   for k > 0 . The
middle of the list will be the kth  item, and the worst case will occur if we are directed to the k items that come after the middle
(the Hk + lLst through H2 kLth items). Again the reduced list has dn ê2t items.
Solution to 8.4 a and 8.4 b.  To determine T HnL, the easiest case is when n is a power of two. If we compute T H2mL, m ¥ 0 , by
iteration, our results are

T H1L =   1 + T H0L = 1
T H2L =   1 + T H1L = 2
T H4L =   1 + T H2L = 3
T H8L =   1 + T H4L = 4.
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T H1L =   1 + T H0L = 1
T H2L =   1 + T H1L = 2
T H4L =   1 + T H2L = 3
T H8L =   1 + T H4L = 4.

The  pattern  that  is  established  makes  it  clear  that  TH2mL = m + 1.  This  result  would  seem  to  indicate  that  every  time  you
double the size of your list, the search time increases by only one unit.
A more complete solution can be obtained if we represent n in binary form. For each n ¥ 1, there exists a non - negative integer
r such that

2r-1 § n < 2r  (8.4 c)

For  example,  if  n = 21,  24 § 21 < 25;  therefore,  r = 5.  If  n  satisfies  (8.4c),  its  binary  representation  requires  r  digits.  For
example, 21ten = 10 101two.
In  general,  n = Ha1 a2 … arLtwo.  where  a1 = 1.  Note  that  in  this  form,  dn ê2t  is  easy  to  describe:  it  is  the  r - 1  digit  binary
number Ha1 a2 … ar-1Ltwo
Therefore,

           T HnL = THa1 a2 … arL
= 1 + THa1 a2 … ar-1L
= 1 + H1 + THa1 a2 … ar-2LL
= 2 + THa1 a2 … ar-2L
ª
= Hr - 1L + THa1L
= Hr - 1L + 1 since TH1L = 1
= r

From the pattern that we've just established, T HnL reduces to r. A formal inductive proof of this statement is possible. However,
we  expect  that  most  readers  would  be  satisfied  with  the  argument  above.  Any  skeptics  are  invited  to  provide  the  inductive
proof. If n = 21:
  T H21L = TH10 101L

= 1 + TH1010L
= 1 + H1 + T H101LL
= 1 + H1 + H1 + T H10LLL
= 1 + H1 + H1 + H1 + T H1LLLL
= 1 + H1 + H1 + H1 + H1 + TH0LLLLL
= 5

Conclusion; The solution to 8.4 a and 8.4b is that for n ¥ 1,  T HnL = r, where 2r-1 § n < 2r.
A less cumbersome statement of this fact is that THnL = dlog2 nt + 1. For example,  TH21L = dlog2 21t + 1 = 4 + 1 = 5   .
REVIEW OF LOGARITHMS

Any discussion of logarithms must start by establishing a base, which can be any positive number other than 1. With the excep-
tion of Theorem 8.4.1, our base will be 2. We will see that the use of a different base (10 and e º 2.171828 are the other common
ones) only has the effect of multiplying each logarithm by a constant. Therefore, the base that you use really isn't very important.
Our choice of base 2 logarithms is convenient for the problems that we are considering.
The base 2 logarithm of a positive number represents an exponent and is defined by the following equivalence for any positive
real number a.

 log2 a = x ñ 2x = a . 

For  example,  log2 8 = 3  because  23 = 8  and  log2 1.414 º 0.5  because  20.5 º 1.414  .  A  graph  of  the  function  f HxL = log2 x  in
Figure  8.4.la  shows that  if  a < b,  the  log2 a < log2 b;  that  is,  when  x  increases,  log2 x  also  increases.  However,  if  we  move  x
from 210 = 1024 to 211 = 2048, log2 x  only increases from 10 to 11. This slow rate of increase of the logarithm function is an
important  point  to  remember.  An  algorithm  acting  on  n  pieces  of  data  that  can  be  executed  in  log2 n  time  units  can  handle

significantly larger sets of data than an algorithm that can be executed in n ê100 or even n  time units (see Figure 8.4.1b). The
graph of THnL = dlog2 nt + 1 would show the same behavior.
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Figure 8.4.1  Log graphs

A few more properties that we will use in subsequent discussions involving logarithms are summarized in the following theorem.

Theorem 8.4.1. Fundamental Properties of Logarithms.   Let a and b be positive real numbers, and r a real number.

log2 1 = 0 (8.4 d)

log2 a b = log2 a + log2 b (8.4 e)

log2
a
b

= log2 a - log2 b (8.4 f)

log2 ar = r log2 a (8.4 g)

2log2 a = a (8.4 h)
Returning to the binary search algorithm, we can derive the final expression for T HnL using the properties of logarithms, includ-
ing that the logarithm function is increasing so that inequalities are maintained when taking logarithms of numbers.

THnL = r ñ 2r-1 § n < 2r

ñ log2 2r-1 § log2 n < log2 2r

ñ r - 1 § log2 n < r
ñ r - 1 = dlog2 nt
ñ THnL = r = dlog2 nt + 1

 

We can apply several of these properties of logarithms to get an alternate expression for THnL:

 dlog2 nt + 1 = dlog2 n + 1t
= dlog2 n + log2 2t
= dlog2 2 n t
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 dlog2 nt + 1 = dlog2 n + 1t
= dlog2 n + log2 2t
= dlog2 2 n t

Definition: Logarithms base b,  If  b > 0,  b ! 1, then for a > 0, 

 logb a = x ñ bx = a

Theorem  8.4.2.  Let  b  >  0,   b ! 1.  Then  for  all  a  >  0,   logb a =
log2 a
log2 b

.   Therefore,  if  b  >  1,  base  b  logarithms  can  be

obtained from base 2 logarithms by dividing by the positive scaling factor log2 b.  If b < 1, this scaling factor is negative.

Proof: By an analogue of 8.4f, a = blogb a. Therefore, if we take the base 2 logarithm of both sides of this equality we obtain:

log2 a = log2Iblog2 aM
fl log2 a = logb a log2 b

To obtain the desired result, divide both sides of this last equation by log2 b.      ‡

Note: log2 10 º 3.32192 and log2 ‰ = 1.55269.

If the time that was assigned to Step 1 of the binary search algorithm is changed, we wouldn't expect the form of the solution to
be very different. If THnL = a + T Hdn ê2 tL with T H0L = c, then T HnL = c + a dlog2 2 nt.
A further generalization would be to add a coefficient to T Hdn ê2 tL: THnL = a + b T Hdn ê2 tL with T H0L = c, where a, b, c œ !,
and b ! 0 is not quite as simple to derive. First, if we consider values of n that are powers of 2:

TH1L = a + b TH0L = a + b c
TH2L = a + bHa + b cL = a + a b + c b2

TH4L = a + bIa + a b + c b2M = a + a b + a b2 + c b3

ª
TH2rL = a + a b + a b2 + ! + a br + c br+1

If n is not a power of 2, by reasoning that is identical to what we used to solve 8.4a and 8.4b,

 THnL = ⁄
k=0

r
a bk + c br+1

where r = dlog2 nt.

The first term of this expression can be written in closed form. Let x be that sum:

 x = a + a b + a b2 + ! + a br

b x = a b + a b2 + ! + a br + a br+1

We've multiplied each term of x by b and aligned the identical terms in x and bx. Now if we subtract the two equations,

x - b x = a - a b r+1

xH1 - bL = aI1 - br+1M
 

Therefore, 

x = a br+1-1
b-1

A closed form expression for T HnL is

THnL = a br+1-1
b-1

+ c br+1 where r = dlog2 nt

Example  8.4.3.  The  efficiency  of  any  search  algorithm  such  as  the  binary  search  relies  on  fact  that  the  search  list  is  sorted
according to a key value and that the search is based on the key value. There are several methods for sorting a list. One example
is  the  bubble  sort.  You  might  be  familiar  with  this  one  since  it  is  a  popular  "first  sorting  algorithm."  A  time  analysis  of  the
algorithm  shows  that  if  B HnL  is  the  worst-case  time  needed  to  complete  the  bubble  sort  on  n  items,  then
BHnL = Hn - 1L + BHn - 1L  and BH1L = 0. The solution of this relation is a quadratic function BHnL = 1

2
In2 - nM.  The growth rate

of a quadratic function such as this one is controlled by its squared term. Any other terms are dwarfed by it as n gets large. For
the bubble sort,  this  means that  if  we double the size of  the list  that  we are to  sort,  n  changes to  2 n  and so n2  becomes 4 n2  .
Therefore, the time needed to do a bubble sort is quadrupled. One alternative to bubble sort is the merge sort. Here is a simple
version of this algorithm for sorting F = 8rH1L, rH2L, …, rHnL<, n ¥ 1. If n = 1, the list is sorted trivially. If n ¥ 2 then:
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according to a key value and that the search is based on the key value. There are several methods for sorting a list. One example
is  the  bubble  sort.  You  might  be  familiar  with  this  one  since  it  is  a  popular  "first  sorting  algorithm."  A  time  analysis  of  the
algorithm  shows  that  if  B HnL  is  the  worst-case  time  needed  to  complete  the  bubble  sort  on  n  items,  then
BHnL = Hn - 1L + BHn - 1L  and BH1L = 0. The solution of this relation is a quadratic function BHnL = 1

2
In2 - nM.  The growth rate

of a quadratic function such as this one is controlled by its squared term. Any other terms are dwarfed by it as n gets large. For
the bubble sort,  this  means that  if  we double the size of  the list  that  we are to  sort,  n  changes to  2 n  and so n2  becomes 4 n2  .
Therefore, the time needed to do a bubble sort is quadrupled. One alternative to bubble sort is the merge sort. Here is a simple
version of this algorithm for sorting F = 8rH1L, rH2L, …, rHnL<, n ¥ 1. If n = 1, the list is sorted trivially. If n ¥ 2 then:
(1)  Divide F into F1 = 8rH1L, …, rHdn ê2tL< and F2 = 8rHdn ê2t + 1L, …, rHnL<.

(2)  Sort F1 and F2 using a merge sort.

(3)   Merge the sorted lists F1 and F2 into one sorted list. If the sort is to be done in descending order of key values, you continue
to choose the higher key value from the fronts of  F1 and F2 and place them in the back of F.
Note that F1 will always have dn ê2t items and F2 will have `n ê2p items; thus, if n is odd, F2 gets one more item than F1. We will
assume that the time required to perform Step 1 of the algorithm is insignificant compared to the other steps; therefore, we will
assign a time value of zero to this step. Step 3 requires roughly n comparisons and n movements of items from  F1  and F2  to F;
thus,  its  time  is  proportional  to  n.  For  this  reason,  we  will  assume  that  Step  3  takes  n  time  units.  Since  Step  2  requires
THdn ê2tL + TH`n ê2pL time units,

T HnL = n + THdn ê2tL + TH`n ê2pL (8.4i)

with the initial condition

TH1L = 0.   (8.4j)

Instead  of  an  exact  solution  of  8.4i  and  8.4j,  we  will  be  content  with  an  estimate  for  T HnL.   First,  consider  the  case  of  n = 2r,
r ¥ 1:

TI21M = TH2L = 2 + TH1L + TH1L = 2 = 1 ÿ 2
TI22M = TH4L = 4 + TH2L + TH2L = 8 = 2 ÿ4
TI23M = TH8L = 8 + TH4L + TH4L = 24 = 3 ÿ8

ª
TH2rL = r 2r = 2r log2 2r

Thus,  if  n  is  a  power of  2,  T HnL = n log2 n.   Now if,  for  some r ¥ 2,  2r-1 § n § 2r  ,  then Hr - 1L 2r-1 § THnL < r 2r.  This  can be
proven  by  induction  on  r.  As  n  increases  from  2r-1  to  2r,  T HnL  increases  from  Hr - 1L 2r-1to  r 2r   and  is  slightly  larger  than
dn log2 nt.  The discrepancy is  small  enough so that  TeHnL = dn log2 nt  can be considered a  solution of  8.4i  and 8.4j  for  the pur-
poses of comparing the merge sort with other algorithms. Table 8.4.1 compares B HnL with TeHnL for selected values of n.

Table 8.4.1
Comparison of Times for Bubble Sort and Merge Sort

 

n BHnL TeHnL
10 45 34
50 1225 283
100 4950 665
500 124 750 4483
1000 499 500 9966

Definition:  Derangement.  A  derangement  of  a  set  A  is  a  permutation  of  A  (i.e.,  a  bijection  from  A  into  A)  such  that
f HaL ! a  for all a œ A.
Example 8.4.4. If A = 81, 2, . . . , n<, an interesting question might be "How many derangements are there of A?" We know that
our answer is bounded above by n !. We can also expect our answer to be quite a bit smaller than n ! since n is the image of itself
for Hn - 1L ! of the permutations of A.
Let D HnL be the number of derangements of 81, 2, . . . , n<. Our answer will come from discovering a recurrence relation on D.
Suppose that  n ¥ 3.  If  we are to construct  a  derangement of  81, 2, ... , n<,  f,  then f HnL = k ! n.  Thus,  the image of n  can be
selected in n - 1 different ways. No matter which of the n - 1 choices we make, we can complete the definition of f in one of two
ways.  First, we can decide to make f HkL = n,  leaving D Hn — 2L ways of completing the definition of f, since f will be a derange-
ment of 81, 2, ..., n< - 8n, k<. Second, if we decide to select f HkL ! n, each of the D Hn - 1L derangements of 81, 2, …, n - 1<
can be used to define f. If g is a derangement of 81, 2, . . . , n - 1< such that g HpL = k, then define f by

f H jL = :

n if j = p
k if j = n

gH jL otherwise
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f H jL = :

n if j = p
k if j = n

gH jL otherwise

Note that  with our second construction of  f,  f H f HnLL = f HkL ! n,  while in the first  construction,   f H f HnLL = f HkL = n.  There-
fore, no derangement of 81, 2, . . . , n< with f HnL = k can be constructed by both methods.
To recap our result, we see that  f is determined by first choosing one of n - 1 images of n and then constructing the remainder
of  f in one of D Hn - 2L + D Hn - 1L ways. Therefore,

D HnL = Hn - 1L HD Hn - 2L + D Hn - 1LL.    (8.4k)

This  homogeneous  second-order  linear  relation  with  variable  coefficients,  together  with  the  initial  conditions  DH1L = 0  and
D H2L = 1, completely defines D. Instead of deriving a solution of this relation by analytical methods, we will give an empirical
derivation of an approximation of D HnL.  Since the derangements of 81, 2 . . . , n<  are drawn from a pool of n !  permutations, we
will  see  what  percentage of  these  permutations  are  derangements  by listing the  values  of  n !,  D HnL,   and D HnL

n!
.   The results  we

obtain (see Table 8.4.2) indicate that as n grows, DHnL
n!

 hardly changes at all. If this quotient is computed to eight decimal places,
for  n ¥ 12,  D HnL ên ! = 0.36787944.  The  reciprocal  of  this  number,  which  D HnL ên !  seems  to  be  tending  toward,  is,  to  eight
places, 2.71828182. This number appears in so many places in mathematics that it has its own name, ‰. An approximate solution
of our recurrence relation on D is then DHnL º n!

‰

n DHnL DHnLên!

1 0 0
2 1 0.50000000
3 2 0.33333333
4 9 0.37500000
5 44 0.36666667
6 265 0.36805556
7 1854 0.36785714
8 14 833 0.36788194
9 133 496 0.36787919
10 1 334 961 0.36787946
11 14 684 570 0.36787944
12 176 214 841 0.36787944
13 2 290 792 932 0.36787944
14 32 071 101 049 0.36787944
15 481 066 515 734 0.36787944

Table 8.4.2 
D HnL compared to n !

EXERCISES FOR SECTION 8.4
A Exercises

1. Solve the following recurrence relations. Indicate whether your solution is an improvement over iteration.

(a)   n S HnL - S Hn - 1L = 0,  S H0L = 1.

(b)   T HkL + 3 k T Hk - 1L = 0, T H0L = 1.

(c)  UHkL - k-1
k

UHk - 1L = 0, k ¥ 2, UH1L = 1.

2.  Prove that if n ¥ 0,  dn ê2t + `n ê2p = n.  (Hint: Consider the cases of n odd and n even separately.)
B Exercises

3.   Solve as completely as possible:
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(a)   T HnL = 3 + T Hdn ê2tL, T H0L = 0.

(b)   T HnL = 1 + 1
2

THdn ê2tL,  T H0L = 2.

(c)   V HnL = 1 + V dn ê8tL, V H0L = 0. (Hint: Write n in octal form.)

4.   Prove  by  induction  that  if  THnL = 1 + T Hdn ê2 tL,  T H0L = 0,  and  2r-1 § n < 2r  ,  r ¥ 1,  then  T HnL = r.   (Hint:   Prove  by
induction on r.)
5.  Use the substitution S HnL = THn + 1L êT HnL to solve

THnL THn - 2L - THnL2 = 1 for n ¥ 2, with T H0L = 1, T H1L = 6, and T HnL ¥ 0.

6.  Use the substitution GHnL = THnL2  to solve

THnL2 - THn - 1L2 = 1 for n ¥ 1, with T H0L = 10.
7.   Solve as completely as possible:

(a)  QHnL = 1 + QIe n uM, n ¥ 2, Q H1L = 0.

(b )  RHnL = n + RHdn ê2tL, n ¥ 1, R H0L = 0.

8.   Suppose Step 1 of the merge sort algorithm did take a significant amount of time. Assume it takes 0.1 time unit, independent
of the value of n:
(a)   Write out a new recurrence relation for T HnL that takes this factor into account;

(b)  Solve for TH2rL, r ¥ 0;

(c)   Assuming the solution for powers of 2 is a good estimate for all n, compare your result to the solution in the text. As gets
large, is there really much difference?

8.5 Generating Functions
This  section  contains  an  introduction  to  the  topic  of  generating  functions  and  how they  are  used  to  solve  recurrence  relations,
among other problems. Methods that employ generating functions are based on the concept that you can take a problem involv-
ing sequences and translate it into a problem involving generating functions. Once you've solved the new problem, a translation
back to sequences gives you a solution of the original problem.

This section covers:
(a)   The definition of a generating function;
(b)  Solution of a recurrence relation using generating functions to identify the skills needed to use generating functions;
(c)   An introduction and/or review of the skills identified in point b;
(d)   Some applications of generating functions.
Definition:  Generating Function of a Sequence.  The generating function of a sequence S with terms S0, S1, S2, …  is the

infinite sum

 GHS; zL = ⁄
n=0

¶
Sn zn = S0 + S1 z + S2 z2 + S3 z3 + !

The domain and codomain of generating functions will not be of any concern to us since we will only be performing algebraic
operations on them.

Example 8.5.1.

(a)  If Sn = 3n, n ¥ 0, then

G HS; zL = 1 + 3 z + 9 z2 + 27 z3 + !

= ⁄
n=0

¶
3n zn

= ⁄
n=0

¶
H3 zLn

We can get a closed form expression for G HS; zL by observing that G HS; zL - 3 z GHS; zL = 1. Therefore,
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G HS; zL = 1
1-3 z

.

(b)     Finite  sequences  have  generating  functions.  For  example,  the  sequence  of  binomial  coefficients  C Hn; 0L,  C Hn; 1L,
…, C Hn; nL, n ¥ 1 has generating function

G HC Hn; ÿL; zL = C Hn; 0L + C Hn; 1L z + ! + C Hn; nL zn

= ⁄
k=0

¶
CHn; kL zk

= H1 + zLn

by application of the binomial formula.

(c)  If Q HnL = n2,

GHQ; zL = ⁄
n=0

¶
n2 zn = ⁄

k=0

¶
k2 zk

Note that the index that is used in the summation has no significance. Also, note that the lower limit of the summation could
start at 1 since QH0L = 0.

SOLUTION OF A RECURRENCE RELATION USING GENERATING FUNCTIONS
Problem: Solve S HnL - 2 S Hn - 1L - 3 S Hn - 2L = 0, n ¥ 2, with S H0L = 3 and S H1L = 1.

(1)  Translate the recurrence relation into an equation about generating functions.

In our example, let V HnL = S HnL - 2 S Hn - 1L - 3 S Hn - 2L, n ¥ 2, with V H0L = 0 and VH1L = 0.  Therefore,

G HV; zL = 0 + 0 z + ⁄
n=2

¶
HSHnL - 2 S Hn - 1L - 3 S Hn - 2LL zn = 0

(2)   Solve for the generating function of the unknown sequence,  GHS, zL = ⁄
n=0

¶
Sn zn.

 0 = ⁄
n=2

¶
HSHnL - 2 S Hn - 1L - 3 S Hn - 2LL zn

= ⁄
n=2

¶
SHnL zn - 2 ⁄

n=2

¶
SHn - 1L zn - 3 ⁄

n=2

¶
SHn - 2L zn

Close examination of the three sums above shows:

(a) ⁄
n=2

¶
Sn zn = ⁄

n=0

¶
Sn zn - SH0L - SH1L z

= GHS; zL - 3 - z

since S H0L = 3 and S H1L = 1.

(b) ⁄
n=2

¶
SHn - 1L zn = z ⁄

n=2

¶
SHn - 1L zn-1

= z ⁄
n=1

¶
SHnL zn

= z ⁄
n=0

¶
SHnL zn - SH0L

= zHGHS; zL - 3

 (c) ⁄
n=2

¶
SHn - 2L zn = z2 ⁄

n=2

¶
SHn - 2L zn-2

= z2 GHS; zL

Therefore, 

HGHS; zL - 3 - zL - 2 zHGHS; zL - 3L - 3 z2 GHS; zL = 0
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fl GHS; zL - 2 z GHS; zL - 3 z2 GHS; zL = 3 - 5 z

fl GHS; zL = 3-5 z
1-2 z-3 z2

.

(3)  Determine the sequence whose generating function is the one obtained in Step 2,

For our example, we need to know one general fact about the closed form expression of an exponential sequence (a proof will be
given later):

THnL = b an , n ¥ 0 ñ GHT; zL = b
1-a z 

 (8.5a)

Now,  in  order  to  recognize  S  in  our  example,  we  must  write  our  closed  form  expression  for  G HS; zL  as  a  sum  of  terms  like
G HT; zL above. Note that the denominator of G HS; zL can be factored:

 GHS; zL = 3-5 z
1-2 z-3 z2

= 3-5 z
H1-3 zL H1+zL

If you look at this last expression for G HS; zL closely, you can imagine how it could be the result of addition of two fractions,

 3-5 z
H1-3 zL H1+zL

= A
1-3 z

+ B
1+z

(8.5b)

where A and B are two real numbers that must be determined. Starting on the right of 8.5b, it should be clear that the sum, for any
A  and B,  would look like the left-hand side.  The process of  finding values of  A  and B  that  make 8.5b true is  called the partial
fractions decomposition of the left-hand side:

 A
1-3 z

+ B
1+z

= AH1+zL
H1-3 zL H1+zL

+ BH1-3 zL
H1-3 zL H1+zL

= HA+BL+HA-3 BL z
H1-3 zL H1+zL

Therefore,

 :
A + B = 3

A - 3 B = -5 > fl :
A = 1
B = 2 >

and

GHS; zL == 1
1-3 z

+ 2
1+z

We can apply 8.5a to each term of G(S;z):
1

1-3 z
 is the generating function for S1HnL = 1 ÿ 3n = 3n  and 

2
1+z

 is the generating function for S2HnL = 2 H-1Ln.

Therefore, SHnL = 3n + 2 H-1Ln.

From this  example,  we see  that  there  are  several  skills  that  must  be  mastered in  order  to  work with  generating functions.  You
must be able to:
(a)   Manipulate summation expressions and their indices (in Step 2).
(b)  Solve algebraic equations and manipulate algebraic expressions, including partial function decompositions (Steps 2 and 3).
(c)    Identify sequences with their generating functions (Steps 1 and 3).
We will concentrate on the last skill first, a proficiency in the other skills is a product of doing as many exercises and reading as
many examples as possible.
First, we must identify the operations on sequences and on generating functions.

Operations on Sequences: Let S and T be sequences of numbers and let c be a real number. Define the sum S + T , the scalar
product  c S,  the  product  S T ,  the  convolution  S *T ,  the  pop  operation  S  (read  "S  pop"),  and  the  push  operation  S  (read  "S
push") term-wise for k ¥ 0 by

HS + TL HkL = S HkL + T HkL

Hc SL HkL = c SHkL

HS TL HkL = S HkL T HkL

HS *TL HkL = ⁄
j=0

k
SH jL THk - jL
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HS *TL HkL = ⁄
j=0

k
SH jL THk - jL

HS L HkL = S Hk + 1L     and

HS L HkL = :
0 if k = 0

SHk - 1L if k > 0.

If  one  imagines  a  sequence  to  be  a  matrix  with  one  row  and  an  infinite  number  of  columns,  S + T  and  c S  are  exactly  as  in
matrix addition and scalar multiplication. There is no obvious similarity between the other operations and matrix operations.
The pop and push operations can be understood by imagining a sequence to be an infinite stack of numbers with S H0L at the top,
SH1L  next, etc., as in Figure 8.5.1a. The sequence S  is obtained by "popping" S(0) from the stack, leaving a stack as in Figure
8.5.1b, with S(1) at the top, S(2) next, etc. The sequence S I is obtained by placing a zero at the top of the stack, resulting in a
stack as in Figure 8.5.1c. Keep these figures in mind when we discuss the pop and push operations.

SH0L
SH1L
SH2L
SH3L
SH4L
ª

SH1L
SH2L
SH3L
SH4L
SH5L
ª

0
SH0L
SH1L
SH2L
SH3L
ª

HaL HbL HcL

FIGURE 8.5.1 
Stack interpretation of pop and push operation

Example 8.5.2. If S HnL = n, T HnL = n2, U HnL = 2n, and RHnL = n 2n ,

(a)  HS + TL HnL = n + n2

(b)  HU + RL HnL = 2n + n 2n = H1 + nL 2n

(c)   H2 UL HnL = 2 ÿ2n = 2n+1

(d)  I 1
2

RM HnL = 1
2

n 2n = n 2n-1

(e)  HS TL HnL = n n2 = n3 2 = n 3

(f)  HS *TL HnL = ⁄
j=0

n
SH jL THn - jL = ⁄

j=0

n
j Hn - jL2

= ⁄
j=0

n
I j n2 - 2 n j2 + j3M

= n2 ⁄
j=0

n
j - 2 n ⁄

j=0

n
j2 + ⁄

j=0

n
j 3

= n2 I n Hn+1L
2

M - 2 nI H2 n+1L Hn+1L n
6

M + 1
4

n2 Hn + 1L2

by Exercise 14 of Section 8.3.

= n2Hn+1L Hn-1L
12

(g)   HU *UL HnL = ⁄
j=0

n
UH jL UHn - jL

= ⁄
j=0

n
2 j 2n- j

= Hn + 1L 2n

(h) HS L HnL = n + 1
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(i)  HS L HnL = maxH0, n - 1L

(j) HHS L L HnL = maxH0, n - 2L

(k) HU L HnL = :
2n-1 if n > 0

0 if n = 0

(l) HHU L L HnL = HU L Hn + 1L = 2n = UHnL

(m)   HHU L L HnL = :
0 if n = 0

UHnL if n > 0

Note that HU L ! HU L

Definition: Multiple Pop and Push: If S is a sequence of numbers, define

S p = HS Hp - 1LL  if  p ¥ 2 and S 1 = S . 

Similarly, define

S p = HS Hp - 1LL  if  p ¥ 2 and S 1 = S . 

Notice that

HS 2L HkL = HHS 1L L HkL = HHS L L HkL = HS L Hk + 1L = k + 2

In general,

HS pL HkL = SHk + pL, and

HS pL HkL = :
0 if k < p

SHk - pL if k ¥ p
Operations on Generating Functions

If

GHzL = ⁄
k=0

¶
ak zk and HHzL = ⁄

k=0

¶
bk zk

are generating functions and c  is  a real  number,  then the sum G + H,  scalar product c G,  product G H,  and monomial product
zp G, p ¥ 1 are generating functions, where

HG + HL HzL = ⁄
k=0

¶
Hak + bkL zk

 Hc GL HzL = ⁄
k=0

¶
c ak zk

HG HL HzL = ⁄
k=0

¶
c zk   where ck = ⁄

j=0

k
a j bk- j

Hzp GL HzL = zp ⁄
k=0

¶
ak zk = ⁄

k=0

¶
ak zk+p = ⁄

n=p

¶
an-p zn

The last sum is obtained by substituting n - p for k in the previous sum.

Example 8.5.3.  If

DHzL = ⁄
k=0

¶
k zk and HHzL = ⁄

k=0

¶
2k zk 

then

HD + HL HzL = ⁄
k=0

¶
Ik + 2kM zk 

H2 HL HzL = ⁄
k=0

¶
2 ÿ2k zk = ⁄

k=0

¶
2k+1 zk

   Hz DL HzL = z ⁄
k=0

¶
k zk = ⁄

k=0

¶
k zk+1 = ⁄

k=1

¶
Hk - 1L zk

= DHzL - ⁄
k=1

¶
zk
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   Hz DL HzL = z ⁄
k=0

¶
k zk = ⁄

k=0

¶
k zk+1 = ⁄

k=1

¶
Hk - 1L zk

= DHzL - ⁄
k=1

¶
zk

HD HL HzL = ⁄
k=0

¶
⁄
j=0

k
j 2k- j zk

HH HL HzL = ⁄
k=0

¶
⁄
j=0

k
2 j 2k- j zk = ⁄

k=0

¶
Hk + 1L 2k zk

Note:  D HzL = G HS; zL,  and  H HzL = GHU; zL  from Example  8.5.2.   Now we establish  the  connection  between the  operations  on
sequences and generating functions. Let S and T be sequences and let c be a real number;

 

G HS + T; zL = G HS; zL + G HT; zL H8.5 cL
GHc S; zL = c GHS; zL H8.5 dL

G HS *T; zL = GHS; zL GHT; zL H8.5 eL
GHS ; zL = HGHS; zL - SH0LL êz H8.5 f L

GHS ; zL = z GHS; zL H8.5 gL

In words, 8.5c says that the generating function of the sum of two sequences equals the sum of the generating functions of those
sequences. Take the time to write out the other four identities in your own words. From the previous examples, these identities
should be fairly obvious, with the possible exception of the last two. We will prove 8.5f as part of the next theorem and leave the
proof of 8.5g to the interested reader. Note that there is no operation on generating functions that is related to sequence multiplica-
tion; that is, G HS T; zL cannot be simplified.

Theorem 8.5.1. If p > 1,

(a)   G HS p; zL = GHS; zL - ⁄
k=0

p-1
SHkL zk ìzk

(b)  G HS p; zL = zp G HS; zL.

Proof of Part (a):  The proof is by induction.  Basis:

 GHS , zL = ⁄
k=0

¶
SHk + 1L zk = ⁄

k=1

¶
SHkL zk-1

= ⁄
k=1

¶
SHkL zk ìz

= SH0L + ⁄
k=1

¶
SHkL zk - SH0L ìz

= HGHS; zL - SH0LL êz
Therefore, part (a) is true for p = 1.

Induction, Suppose that for some p ¥ 1, the statement in part (a) is true:

   GHS Hp + 1L; zL = GHHS pL ; zL
= HGHS p ; zL - HS pL H0LL êz by the basis

=

GHS;zL- ⁄
k=0

p-1
SHkL zk

zp
-SHpL

z

by the induction hypothesis. Now write SHpL in the last expression above as HSHrL zp L êzp so that it fits into the finite summation:

 GHS Hp + 1L; zL =
GHS;zL-⁄

k=0

p
SHkL zk

zp 
ìz

= GHS; zL - ⁄
k=0

p
SHkL zk ìzp+1
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 GHS Hp + 1L; zL =
GHS;zL-⁄

k=0

p
SHkL zk

zp 
ìz

= GHS; zL - ⁄
k=0

p
SHkL zk ìzp+1

      

Therefore the statement is true for p + 1.    ‡

CLOSED FORM EXPRESSIONS FOR GENERATING FUNCTIONS
The most basic tool used to express generating functions in closed form is the closed form expression for the geometric series,
which is an expression of the form a + a r + a r2 + ! . It can either be terminated or extended infinitely.

Finite Geometric Series: a + a r + a r2 + ! + a rn = aJ 1-r
n+1

1-r
N (8.5h)

Infinite Geometric Series:  a + a r + a r2 + ! = a
1-r

   (8.5i)

Restrictions:  a and r represent constants and the right sides of the two equations apply under the following conditions:

(1)  r must not equal 1 in the finite case. Note that a + a r + ! a rn = Hn + 1L a if  r = 1.

(2)  In the infinite case, the absolute value of r must be less than 1.

These  restrictions  don't  come  into  play  with  generating  functions.  We  could  derive  8.5h  by  noting  that  if
S HnL = a + a r + ! + a rn,  n > 0,  then  S HnL = r S Hn - 1L + a  (See  Exercise  10  of  Section  8.3).  An  alternative  derivation
was used in Section 8.4. We will take the same steps to derive 8.5i.   Let

x = a + a r + a r2 + !
r x = a r + a r2 + !

x - r x = a

Therefore, x = a
1-r

.

Example 8.5.4.

(a)  If S HnL = 9 ÿ5n, n ¥ 0, G HS; zL is an infinite geometric series with a = 9 and r = 5 z.  Therefore, 

G HS; zL = 9
1- 5 z

.

(b)  If T HnL = 4, n ¥ 0, then GHT; zL = 4 ê H1 - zL.

(c) If UHnL = 3 H-1Ln, then G HU; zL = 3 ê H1 + zL.

(d) Let C HnL = S HnL + T HnL + U HnL = 9 ÿ 5 + 4 + 3 H-1Ln.  Then

G HC; zL = GHS; zL + CHT; zL + GHU; zL
= 9

1-5 z
+ 4

1-z
+ 3

1+z

= - 14 z2+34 z-16
5 z3-z2-5 z+1

Given a choice between the last form of G HC; zL and the previous sum of three fractions, we would prefer leaving it as a sum of
three  functions.  As  we  saw in  an  earlier  example,  a  partial  fractions  decomposition  of  a  fraction  such  as  the  last  expression
requires some effort to produce.

(e)   If  G HQ; zL = 34 ê H2 - 3 zL,  then  Q  can  be  determined  by  multiplying  the  numerator  and  denominator  by  1/2  to  obtain

17

1-
3

2
z
.  We  recognize  this  fraction  as  the  sum  of  the  infinite  geometric  series  with  a = 17  and  r = 3

2
z.  Therefore

QHnL = 17 H3 ê2Ln.

(f)     If  G HA; zL = H1 + zL3  ,  then  we  expand  H1 + zL3   to  l + 3 z + 3 z2 + z Ñ  .  Therefore  A H0L = 1,  AH1L = 3  A H2L = 3,
AH3L = 1,  and,  since  there  are  no  higher-powered  terms,  A HnL = 0,  n ¥ 4.  A  more  concise  way  of  describing  A  is
A HkL = CH3; kL, since CHn; kL is usually interpreted as 0 of k > n.
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Table 8.5.1 contains some closed form expressions for the generating functions of some common sequences.

 

Sequence Generating Function

SHkL = b ak GHS; zL = b
1-a z

SHkL = k GHS; zL = z
H1-zL2

SHkL = b k ak GHS; zL = a b z
H1-a zL2

SHkL = 1
k!

GHS; zL = ‰z

SHkL = :
CHn; kL 0 § k § n

0 k > n
GHS; zL = H1 + zLn

Table 8.5.1
Closed Form Expressions of some Generating Functions

Example  8.5.5.  Solve  S HkL + 3 SHk - 1L - 4 S Hk - 2L = 0,  k ¥ 2,  with  S H0L = 3  and  S H1L = -2.  The  solution  will  be
obtained using the same steps that were used earlier in this section, with one variation.
(1)   Translate to an equation about generating functions. First, we change the index of the recurrence relation by substituting
n + 2  for  k.  The  result  is  S Hn + 2L + 3 S Hn + 1L - 4 S HnL = 0,  n ¥ 0.   Now,  if  V HnL = S Hn + 2L + 35 Hn + 1L - 4 SHnL,
then V is the zero sequence, which has a zero generating function. Furthermore, V = S 2 + 3 HS L - 4 S . Therefore,

0 = G HV; zL
= GHS 2; zL + 3 GHS ; zL - 4 GHS; zL

= GHS;zL- SH0L- SH1L z
z2

+ 4 HGHS;zL- SH0LL
z

- 4 G HS; zL

.

(2)   We want to now solve the following equation for G HS; zL:

 GHS;zL- SH0L- SH1L z
z2

+ 4 HGHS;zL- SH0LL
z

- 4 GHS; zL = 0

Multiply by z2 :

G HS; zL - 3 + 2 z + 3 zHGHS; zL - 3L - 4 z2 G HS; zL = 0
Expand and collect all terms involving GHS; zL  on one side of the equation:

G HS; zL + 3 z GHS; zL - 4 z2 G HS; zL = 3 + 7 z 

I1 + 3 z - 4 z2 M GHS; zL = 3 + 7 z 

Therefore,

GHS; zL = 3+7 z
1+ 3 z- 4 z2

(3) Determine S from its generating function.

 1 + 3 z - 4 z2 = H1 + 4 zL H1 - zL
thus a partial fraction decomposition of G HS; zL would be:

 A
1+4 z

+ B
1-z

= A z-A-4 B z-B
Hz-1L H4 z+1L

= HA+BL+H4 B-AL z
Hz-1L H4 z+1L

Therefore, A + B = 3 and 4 B - A = 7. The solution of this set of equations is A = 1 and B = 2.

GHS; zL = 1
1+4 z

+ 2
1-z

1
1+4 z

 is the generating function of S1HnL = H-4Ln, and

2
1-z

 is the generating function of S2HnL = 2 H1Ln = 2.
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In conclusion, since G HS; zL = GHS1; zL + GHS 2; zL, S HnL = 2 + H-4Ln.

Example 8.5.6. Let A = 8a, b, c, d, e< and let A*  be the set of all strings of length zero or more that can be made using
each of the elements of A zero or more times. By the generalized rule of products, there are 5n  such strings that have length n,
n ¥ 0, Suppose that Xn  is the set of strings of length n with the property that all of the a's and b's precede all of the c's, d's, and
e's. Thus aaabde œ X6, but abcabc – X6.   Let RHnL = Xn .  A closed form expression for R can be obtained by recognizing R
as the convolution of two sequences. To illustrate our point, we will consider the calculation of R H6L.
Note that if a string belongs to X6,  it starts with k  characters from 8a, b<  and is followed by 6 - k  characters from 8c, d, e<.
Let  S HkL  be  the  number  of  strings  of  a's  and b's  with  length  k  and let  T HkL  be  the  number  of  strings  of  c's,  d's,  and e's  with
length k.  By the generalized rule of products,  S HkL = 2k  and T HkL = 3k.  Among the strings in X6  are the ones that start  with
two  a's  and  b's  and  end  with  c's,  d's,  and  e's.  There  are  S H2L T H4L  such  strings.  By  the  law  of  addition,

X6 = R H6L = S H0L T H6L + SH1L TH5L + ! + SH5L TH1L + S H6L TH0L.  Note  that  the  sixth  term  of  R  is  the  sixth  term  of  the
convolution  of  S  with  T,  S *T .  Think  about  the  general  situation  for  a  while  and  it  should  be  clear  that  R = S *T .  Now,  our
course of action will be to:

(a)   Determine the generating functions of S and T,
(b)   Multiply G HS; zL and G HT; zL to obtain G HS *T; zL = G HR; zL (by 10.5e), and
(c)   Determine R on the basis of G HR; zL.

(a)   G HS; zL = ⁄
k=0

¶
2k zk = 1

1-2 z
 , and GHT; zL = ⁄

k=0

¶
3k zk = 1

1-3 z

(b)  G HR; zL = G HS; zL G HT; zL = 1
H1-2 zL H1-3 zL

(c) To recognize R from G HR; zL, we must do a partial fractions decomposition:

 1
H1-2 zL H1-3 zL

= A
1-2 z

+ B
1-3 z

= -3 A z+A-2 B z+B
H2 z-1L H3 z-1L

= HA+BL+H-3 A-2 B L z
H2 z-1L H3 z-1L

Therefore, A + B = 1 and -3 A - 2 B = 0. The solution of this pair of equations is A = - 2 and B = 3.

Since

 GHR; zL = -2
1-2 z

+ 3
1-3 z

,

which is the sum of the generating functions of -2 H2Lk and 3 H3Lk,

RHkL = -2 H2Lk + 3 H3Lk = 3k+1 - 2k+1 

For example, R H6L = 37 - 27 = 2187 - 128 = 2059. Naturally, this equals the sum that we get from HS *TL H6L.  To put this
number  in  perspective,  the  total  number  of  strings  of  length  6  with  no  restrictions  is  56 = 15 625,  and  2059

15625
º 0.131776.

Therefore approximately 13% of the strings of length 6 satisfy the conditions of the problem.

EXTRA FOR EXPERTS
The remainder of this section is intended for readers who have had, or who intend to take, a course in combinatorics. We do not
advise that it be included in a typical course. The method that was used in Example 8.5.6 is a very powerful one and can be used
to solve many problems in combinatorics. We close this section with a general description of the problems that can be solved in
this way, followed by some examples.
Consider the situation in which P1, P2, …, Pm are m actions that must be taken, each of which results in a well-defined outcome.
For each k = 1, 2, . . . , m define Xk  to be the set of possible outcomes of Pk  . We will assume that each outcome can be quanti-
fied  in  some  way  and  that  the  quantification  of  the  elements  of  Xk  is  defined  by  the  function  Qk : Xk Ø 80, 1, 2, . . .<.  Thus,
each  outcome  has  a  non-negative  integer  associated  with  it.  Finally,  define  a  frequency  function
Fk : 80, 1, 2, . . .< Ø 80, 1, 2, . . .< such that FkHnL is the number of elements of Xk that have a quantification of n.
Now,  based  on  these  assumptions,  we  can  define  the  problems  that  can  be  solved.  If  a  process  P  is  defined  as  a  sequence  of
actions P1, P2, …, Pm as above, and if the outcome of P, which would be an element of X1µ X2µ!µ Xm, is quantified by

 QHa1, a2, …, amL = ⁄
k=1

m
QkHakL,

then the frequency function, F,  for P  is  the convolution of the frequency functions for  P1,  P2,  …, Pm,  which has a generating
function equal to the product of the generating functions of the frequency functions  F1, F2, …, Fm.  That is,

G HF; zL = GHF1; zL GHF2; zL!GHFm; zL          (8.5j)

Example 8.5.7. Suppose that you roll a die two times and add up the numbers on the top face for each roll. Since the faces on the
die  represent  the  integers  1  through  6,  the  sum  must  be  between  2  and  12.  How  many  ways  can  any  one  of  these  sums  be
obtained? Obviously, 2 can be obtained only one way, with two 1's. There are two sequences that yield a sum of 3: 1-2 and 2-1.
To obtain all  of  the frequencies with which the numbers 2 through 12 can be obtained,  we set  up the situation as follows.  For
j = 1, 2;   P j  is  the  rolling  of  the  die  for  the  jth  time.  X j = 81, 2, . . . , 6<  and  Q j : X j— > 80, 1, 2, 3, …<  is  defined  by
Q jHxL = x.  Since  each  number  appears  on  a  die  exactly  once,  the  frequency  function  is  F jHkL = 1  if  1 § k § 6,  and  F jHkL = 0
otherwise.  The process of  rolling the die two times is  quantified by adding up the Q j ' s;  that  is,  QHa1, a2L = Q1 Ha1L + Q2Ha2L  .
The generating function for the frequency function of rolling the die two times is then
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Example 8.5.7. Suppose that you roll a die two times and add up the numbers on the top face for each roll. Since the faces on the
die  represent  the  integers  1  through  6,  the  sum  must  be  between  2  and  12.  How  many  ways  can  any  one  of  these  sums  be
obtained? Obviously, 2 can be obtained only one way, with two 1's. There are two sequences that yield a sum of 3: 1-2 and 2-1.
To obtain all  of  the frequencies with which the numbers 2 through 12 can be obtained,  we set  up the situation as follows.  For
j = 1, 2;   P j  is  the  rolling  of  the  die  for  the  jth  time.  X j = 81, 2, . . . , 6<  and  Q j : X j— > 80, 1, 2, 3, …<  is  defined  by
Q jHxL = x.  Since  each  number  appears  on  a  die  exactly  once,  the  frequency  function  is  F jHkL = 1  if  1 § k § 6,  and  F jHkL = 0
otherwise.  The process of  rolling the die two times is  quantified by adding up the Q j ' s;  that  is,  QHa1, a2L = Q1 Ha1L + Q2Ha2L  .
The generating function for the frequency function of rolling the die two times is then

G HF; zL = GHF1; zL GHF2; zL

= Jz6 + z5 + z4 + z3 + z2 + zM2

= Iz12 + 2 z11 + 3 z10 + 4 z9 + 5 z8 + 6 z7 + 5 z6 + 4 z5 + 3 z4 + 2 z3 + z2M

Now, to get FHkL, just read the coefficient of zk.  For example, the coefficient of z5 is 4, so there are four ways to roll a total of 5 .
To apply this method, the crucial step is to decompose a large process in the proper way so that it fits into the general situation
that we've described.
Example 8.5.8.  Suppose that an organization is divided into three geographic sections, A, B, and C. Suppose that an executive
committee of 11 members must be selected so that no more than 5 members from any one section are on the committee and that
Sections A, B, and C must have minimums of 3, 2, and 2 members, respectively, on the committee. Looking only at the number
of  members  from  each  section  on  the  committee,  how  many  ways  can  the  committee  be  made  up?  One  example  of  a  valid
committee would be 4 A's, 4 B's, and 3 C's.
Let PA  be the action of deciding how many members (not who) from Section A will serve on the committee. XA = 83, 4, 5< and
QAHkL = k.  The frequency function, FA , is defined by FAHkL = 1 if k œ Xk  , with FAHkL = 0 otherwise. GHFA; zL is then z3 + z4 + z5

.  Similarly,  GHFB; zL = z2 + z3 + z 4 + z5 = GHFC ; zL.  Since  the  committee  must  have  11  members,  our  answer  will  be  the
coefficient of z11 in GHFA; zL GHFB; zL GHFC; zL, which is 10:

GHFA; zL GHFB; zL GHFC; zL = Iz3 + z4 + z5M Iz2 + z3 + z 4 + z5M2

= z15 + 3 z14 + 6 z13 + 9 z12 + 10 z11 + 9 z10 + 6 z9 + 3 z8 + z7

EXERCISES FOR SECTION 8.5
A Exercises

1.   What sequences have the following generating functions?

(a)   1   

(b)  10
2-z

(c)   1 + z

(d) 3
1+2 z

+ 3
1-3 z

2.   What sequences have the following generating functions?

(a) 1
1+z

(b) 1
4-3 z

(c) 2
1-z

+ 1
1+z

(d)  z+2
z+3

B Exercises

3.   Find closed form expressions for the generating functions of the following sequences:

(a)   V HnL = 9n
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(b)   P, where P HkL - 6 P Hk - 1L + 5 P Hk - 2L = 0 for k ¥ 2, with P H0L = 2 and PH1L = 2.

(c)  The Fibonacci sequence: F Hk + 2L = F Hk + 1L + F HkL, k ¥ 0, with F H0L = FH1L = 1.

4.   Find closed form expressions for the generating functions of the following sequences:

(a)  W HnL = CH5; nL 2n for 0 § n § 5 and W HnL = 0 for n > 5.

(b)  Q, where Q HkL + Q Hk - 1L - 42 Q Hk - 2L = 0 for k ¥ 2, with Q H0L = 2 and QH1L = 2.

(c)  G, where G Hk + 3L = G Hk + 2L + G Hk + 1L + G HkL for k ¥ 0, with G H0L = G H1L = G H2L = 1.

5.   For each of the following expressions, find the partial fraction decomposition and identify the sequence having the expression
as a generating function.

 (a)   5+2 z
1-4 z2

(b)   32-22 z
2-3 z+z2

(c)   6-29 z
1-11 z+ 30 z2

6.   Find the partial fraction decompositions and identify the sequence having the following expressions:

 (a)   1
1-9 z2

(b)   1+3 z
16-8 z+z2

(c)   2 z
1-6 z-7 z2

7.  Given that S HkL = k and T HkL = 10 k, what is the kth term of the generating function of each of the following sequences:
(a)   S + T

(b)   S * T   

(c)   S * T

(d)   S *S

8.     Given  that  P HkL = C H10; kL  and  Q HkL = k !,  what  is  the  kth  term  of  the  generating  function  of  each  of  the  following
sequences:

(a)   P * P   

(b)   P + P    

 (c)  P * Q

(d)   Q * Q
C Exercises

9.   A game is played by rolling a die five times. For the kth roll, one point is added to your score if you roll a number higher than
k.  Otherwise,  your  score  is  zero  for  that  roll.  For  example,  the  sequence  of  rolls  2, 3, 4, 1, 2  gives  you  a  total  score  of  three;
while a sequence of 1,2,3,4,5 gives you a score of zero. Of the 65 = 7776 possible sequences of rolls, how many give you a score
of zero?, of one? … of five?
10. Suppose that you roll a die ten times in a row and record the square of each number that you roll. How many ways could the
sum of the squares of your rolls equal 40?  What is the most common outcome?
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8.6 Recursion and Computer Algebra Systems
There  is  frequently  debate  as  to  if,  how,  and  when  computers  should  be  introduced  teaching  a  topic  such  as  recurrence  relations.   We  have
chosen to append this information at the end of the chapter.   If desired, instructors can intersperse the following subsections with the previous
sections,  cover  this  section  a  the  end,  or  simply  ignore  this  section.   Motivated  students  are  welcome  to  read  it  at  any  time,  but  should  be
warned that many instructors will still prefer that they do some of the calculations "by hand" within their courses.
Note: At the present time, this section only describes the topics in Mathematica.   If any readers with a knowledge of Sage  or any other com-
puter  algebra  system  would  like  to  contribute  to  this  section,  contact  us  through  the  addresses  that  appear  at   http://faculty.uml.edu/kl-
evasseur/ads2/.

Recursive Definitions (8.1 and 8.2)
Mathematica
Functions can be defined recursively in Mathematica.  For example, the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, . . .   (each number is the sum of
the previous two)  can be defined with the following input.  

fib@0D = 1;
fib@1D = 1;
fib@i_ ê; i > 1D := fib@i - 2D + fib@i - 1D

The left side of the third line, fib[i_/;i>1]  indicates that fib is being defined in this case  for a "pattern" called i satisfying the condition
that i is greater than 1.  Any "input" that fits this pattern will have this rule applied to it.  Notice that the definitions for fib[0] and fib[1]
coexist with this general rule and define fib for two numbers that don't fit the pattern described in the general rule.
With the input above evaluated, we can determine the 12th Fibonacci number.

fib@12D

233

This particular definition is not efficient because previously computed values of fib  are not saved.  As a result, the time it takes to compute
fib[i] is roughly proportional to the value of fib[i], which grows exponentially.  This can be demonstrated with the following bit of code.

fp = ListPlot@H8Ò1, fib@Ò1D< &L êü Range@3, 21, 3D,
Joined Ø True, PlotLabel Ø "Plot of fib@iD"D;

tfp = ListPlot@H8Ò1, First@Timing@fib@Ò1DDD< &L êü Range@3, 21, 3D,
Joined Ø True, PlotLabel Ø "Timing Plot for computing fib@iD"D;

Show@GraphicsRow@8fp, tfp<, ImageSize Ø 1.5 8288, 84.75`<DD

10 15 20

5000

10000

15000

Plot of fib@iD

10 15 20

0.01

0.02

0.03

0.04

Timing Plot for computing fib@iD

Taking over three seconds to compute the 30th Fibonacci number is unacceptable.
8Timing@fib@30DD, $System<

883.32795, 1 346 269<, Mac OS X x86 H64-bitL<

The timing result above depends on the system you use, so you might want to execute this expression for comparison.

How to get around the timing problem.  You could never get a value like fib[100] using the recursive definition because of the obvious
time growth.    To get around the problem, you can define a variation of the function that saves it's results.
The following definition allows for saving the results that are computed.  Notice that the SetDelay (:=) involves a Set (=).

fib2@0D = 1;
fib2@1D = 1;
fib2@i_ ê; i > 1D := fib2@iD = fib2@i - 2D + fib2@i - 1D

Now let's compute the 30th number in the sequence with this new definition
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Timing@fib2@30DD

80.000317, 1 346 269<

Now that the value of fib[30] has been computed, it's value is returned almost instantly

Timing@fib2@30DD

80.000012, 1 346 269<

Now you can see what fib2[100] equals in a reasonable time.

Timing@fib2@100DD

80.000499, 573 147 844 013 817 084 101<

There is still a problem with using recursion.  If we were to ask for the 500th Fibonacci number at this point, Mathematica would have difficulty
because it  still  had 400 levels of recursion to negotiate.   For this reason, getting to the 500th  Fibonacci number is best  reached by evaluating
every 50th or so of the numbers instead of directly asking for the 500th

Do@fib2@50 kD, 8k, 3, 10<D;
fib2@500D
225 591 516 161 936 330 872 512 695 036 072 072 046 011 324 913 758 190 588 638 866 418 474 627 738 686 883 405 015 987 052 796Ö

968 498 626

Solution of Recurrence Relations (8.3 and 8.4)
Mathematica
Mathematica  has  a  function  called  RSolve  that  will  solve  some  recurrence  relations,  including  linear  recurrence  relations  with  constant
coefficients.  In addition, it can handle some systems of recurrence relations, which we will discuss in a Chapter 12.

? RSolve

RSolve@eqn, a@nD, nD solves a recurrence equation for a@nD.
RSolve@8eqn1, eqn2,…<, 8a1@nD, a2@nD,…<, nD solves a system of recurrence equations.
RSolve@eqn, a@n1, n2,…D, 8n1, n2,…<D solves a partial recurrence equation.  à

Example.   Consider the sequence S  defined as follows.

 SHkL = 1.3 SHk - 1L - 0.7 with SH0L = 3

We can get the general solution to the recursive part of the definition, if desired.

recurence = S@kD ã 1.3 S@k - 1D - 0.7;
RSolve@recurence, S@kD, kD

99SHkLØ 1.3k-1. I2.33333 µ 2.718280.262364-0.262364 k - 3.03333M + c1 1.3k-1.==

Or we can add the initial condition to the first argument of RSolve and get a unique solution

solution = RSolve@8recurence, S@0D ã 3<, S@kD, kD

99SHkLØ 0.769231 µ 2.71828-0.262364 k I3.03333 µ 1.3k + 0.866667 µ 1.3k 2.718280.262364 kM==

Notice that since approximate numbers 1.3 and 0.7 are involved in the definition of S, the solution involves approximate numbers.   If we had
used 13

10
 and 7

10
, respectively, the solution would be exact.

Next we assemble a list of ordered pairs based on the solution.
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points = Table@8k, S@kD< ê. First@solutionD, 8k, 0, 8<D

0 3.
1 3.2
2 3.46
3 3.798
4 4.2374
5 4.80862
6 5.55121
7 6.51657
8 7.77154

Here is a plot of the first few terms of the solution.

ListPlot@points, PlotStyle Ø 8Red, PointSize@0.03D<, AxesOrigin Ø 80, 0<D

2 4 6 8

2

4

6

8

Example.  Here is the solution to a second order linear recurrence relations with constant coefficients.  Initial conditions included.  Notice that
the exact data in the system produces exact expressions.

RSolve@8T@kD - 6 T@k - 1D + 3 T@k - 2D ã 2^k, T@0D ã 2, T@1D ã 3<, T@kD, kD

::THkLØ - 5 µ 31-k -19 2 3k+
1

2 K3 - 6 O
k
- 28 µ 3k+1 K3 - 6 O

k
+ 19 2 3k+

1

2 K3 + 6 O
k
-

28 µ 3k+1 K3 + 6 O
k
+ 3 µ 2k+4 KK3 - 6 O K3 + 6 OO

k
ì 4 K2 6 - 3O

2
K3 + 2 6 O

2
>>

Example.   Here is the solution to a recurrence relation similar to the ones described in Section 8.4.   The solution is in terms of the Gamma
function, which is a generalization of the factorial function.

Usol = U@kD ê. FirstARSolveA9U@kD - k U@k - 1D == 2-k, U@0D ã 1=, U@kD, kEE

‰ G k + 1,
1

2
Here is a table of the first few terms of the solution.

C8c.nb | 3

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License.

179



Table@8j, N@Usol ê. 8k Ø j<D<, 8j, 0, 10<D

0 1.
1 1.5
2 3.25
3 9.875
4 39.5625
5 197.844
6 1187.08
7 8309.55
8 66 476.4
9 598 288.
10 5.98288µ106

Example.   Here is the solution to the recurrence for the number of derangements of a set of n elements, !HnL.  We use !  instead of D here
because Mathematica reserves the name D for the derivative function.

derangementSol = RSolve@8!@nD ã Hn - 1L H !@n - 1D + !@n - 2DL, !@1D ã 0, !@2D ã 1<, !@nD, nD

::!HnLØ
GH2, -1L GHn + 1L - GHn + 1, -1L

2 GH2, -1L - GH3, -1L
>>

Table@8n, !@nD< ê. First@derangementSolD ê. 8n Ø k<, 8k, 1, 10<D êê Round

1 0
2 1
3 2
4 9
5 44
6 265
7 1854
8 14 833
9 133 496
10 1 334 961

Generating Functions  (8.5)
The examples in Section 8.5 solving recurrence relations with generating functions were selected to keep the algebra reasonably neat.   Here we
will  step  through  the  solution  of  a  second  order  linear  recurrence  relation  with  constant  coefficients  for  which  the  numbers  are  not  so  nice.
Using Mathematica, the messy work isn't a problem.

Mathematica
 Consider the recurrence relation SHkL = -SHk - 1L + 5 SHk - 2L,  with S H0L = 4 and S H1L = 3.  In order to check our computations, lets define S
recursively and get its first few terms:

S@0D = 4; S@1D = 3;
S@k_D := S@kD = -S@k - 1D + 5 S@k - 2D
Map@S, Range@0, 10DD

84, 3, 17, -2, 87, -97, 532, -1017, 3677, -8762, 27 147<

We can find  the generating function for S  by observing that  S = -SÆ +5 SÆ2 .  Using the formulas for the generating functions of SÆ  and
SÆ2 that were derived in Section 8.5, we get the following equation which we can solve for G = GHS; zL:

Clear@GD

gfEquation =
HG - S@0D - S@1D zL

z2
+

H G - S@0DL

z
- 5 G ã 0

G - 3 z - 4

z2
+

G - 4

z
- 5 G " 0

We solve for G and since there is only one solution, we use First to extract that single solution from the output of Solve.  
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Gsol = G ê. First@Solve@gfEquation, GDD

-7 z - 4

5 z2 - z - 1
At this stage, we can extract a finite number of coefficients from the generating function.  We do so here, but it only verifies the list of terms we
computed above.   We still don't have a closed form expression for S.

seriesExpansion = Series@Gsol, 8z, 0, 10<D

4 + 3 z + 17 z2 - 2 z3 + 87 z4 - 97 z5 + 532 z6 - 1017 z7 + 3677 z8 - 8762 z9 + 27 147 z10 + OIz11M

CoefficientList@seriesExpansion, zD

84, 3, 17, -2, 87, -97, 532, -1017, 3677, -8762, 27 147<

In  order  to  get  a  close  form expression  we need to  get   partial  fractions  decomposition  of  the  generating  function.    The  function  Apart  is
meant to do this, but the next result isn't very encouraging 

Apart@GsolD

-7 z - 4

5 z2 - z - 1
The difficulty is that Apart uses the Factor function that only factors polynomials over into factors with rational coefficients. 

Factor@GsolD

-
7 z + 4

5 z2 - z - 1
In order for factor to work on this denominator,  we need to tell  Mathematica  what square root should be included.   The discriminant of the
denominator is 

DiscriminantA5 z2 - z - 1, zE

21

Therefore we need to extend the rational numbers to include  21 .  We will discuss extensions in a more formal setting in Chapter 16.

FactorAGsol, Extension Ø 9
,21=E

20 H7 z + 4L

J-10 z + 21 + 1N J10 z + 21 - 1N

With this factored expression, Apart will do its job.

PF = Apart@Factor@Gsol, Extension Ø 8Sqrt@21D<DD

47 - 7 21

21 J10 z + 21 - 1N
+

47 + 7 21

21 J-10 z + 21 + 1N

We will work with the two terms above, both of which is the generating function of a geometric sequence, individually to get an expression that
look like b1 a1k + b2 a2k.  The problem is to find the bi ' s, which are initial terms of the generating functions and the ai ' s with are the ratios of
successive coefficients of the generating functions.

GS1 = PF@@1DD

47 + 7 21

21 J-10 z + 21 + 1N

Why  isn't  the  first  term  that  appears  in  the  output  for  PF  the  same  as  the  first  part  that  we  called  GS1?   It  has  to  do  with  output  forms  in
Mathematica and let's not get into that right now.  This all works out, believe me!
A quick word on the output from Series: If the series expansion up to degree n for a function f HzL centered at 0 is  a0 + a1 z +! + an zn, then
the internal structure of the output from Series is a SeriesData expression.   The variable and center of the series expansion are the first
two arguments of this expression, and the third is the list of coefficients, which is what we will be extracting here.   
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InputFormASeriesA‰2 z, 8z, 0, 4<EE

SeriesData[z, 0, {1, 2, 2, 4/3, 2/3}, 0, 5, 1]

The  last  three  argument  of  the  output  indicate  the  powers  of  the  variable  to  attach  to  the  variable,  0  through  5  in  steps  of  1  in  the  example
above.   The first part of the third argument is the first term of the first geometric sequence.

b1 = Series@GS1, 8z, 0, 5<D@@3, 1DD

147 + 47 21

21 J1 + 21 N

To extract the quotient of the second with the first arguments we use the pure function H!@@3, 2DD ê!@@3, 1DDL &.  This is the common ration of
the first geometric sequence.

a1 = Series@GS1, 8z, 0, 5<D êê HÒ@@3, 2DD ê Ò@@3, 1DDL &

10

1 + 21
We repeat the same calculations for the second geometric sequence.

GS2 = PF@@2DD

47 - 7 21

21 J10 z + 21 - 1N

b2 = Series@GS2, 8z, 0, 5<D@@3, 1DD

47 21 - 147

21 J 21 - 1N

a2 = Series@GS2, 8z, 0, 5<D êê HÒ@@3, 2DD ê Ò@@3, 1DDL &

-
10

21 - 1
We collect the four constants we've just computed into the sum of two geometric sequences.

Ssol@k_D := b1 a1k + b2 a2k

Next we test  our expression to see if  it  matches the two other lists  of  terms if  S  that  we've computed.   The result  may be disturbing,  but  the
reason for the difference is that Mathematica hold off simplifying some expressions until requested.  This is the case here.
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Map@Ssol, Range@10DD

:
10 J147 + 47 21 N

21 J1 + 21 N
2

-
10 J47 21 - 147N

21 J 21 - 1N
2

,
100 J47 21 - 147N

21 J 21 - 1N
3

+
100 J147 + 47 21 N

21 J1 + 21 N
3

,

1000 J147 + 47 21 N

21 J1 + 21 N
4

-
1000 J47 21 - 147N

21 J 21 - 1N
4

,
10 000 J47 21 - 147N

21 J 21 - 1N
5

+
10 000 J147 + 47 21 N

21 J1 + 21 N
5

,

100 000 J147 + 47 21 N

21 J1 + 21 N
6

-
100 000 J47 21 - 147N

21 J 21 - 1N
6

,
1 000 000 J47 21 - 147N

21 J 21 - 1N
7

+
1 000 000 J147 + 47 21 N

21 J1 + 21 N
7

,

10 000 000 J147 + 47 21 N

21 J1 + 21 N
8

-
10 000 000 J47 21 - 147N

21 J 21 - 1N
8

,
100 000 000 J47 21 - 147N

21 J 21 - 1N
9

+
100 000 000 J147 + 47 21 N

21 J1 + 21 N
9

,

1 000 000 000 J147 + 47 21 N

21 J1 + 21 N
10

-
1 000 000 000 J47 21 - 147N

21 J 21 - 1N
10

,

10 000 000 000 J47 21 - 147N

21 J 21 - 1N
11

+
10 000 000 000 J147 + 47 21 N

21 J1 + 21 N
11

>

The simplified result should look familiar.

Map@Ssol, Range@0, 10DD êê Simplify

84, 3, 17, -2, 87, -97, 532, -1017, 3677, -8762, 27 147<

Finally, the closed form expression for our sequence can be examined.

Ssol@kD

1

21
K47 21 - 147O H-10Lk K 21 - 1O

-k-1
+

1

21
K147 + 47 21 O 10k K1 + 21 O

-k-1

Exercises for Section 8.6
A Exercises
1.  If BH0L = 1000, and BHnL = 1.051ên BHn - 1L + 1000 for n ¥ 1, compute BH20L and plot the values of B for 0 § n § 20. 
2.  Compute the a closed form expression for FHnL, where FH0L = 1, FH1L = 2, FH2L = 2.5, and if k ¥ 3,

FHkL = 0.9 FHk - 1L + 0.52 FHk - 2L - 0.42 FHk - 3L.

      As k gets large, what does FHkL  tend toward?

3.   Use generating functions to find a closed form expression for

WH0L = 1, WH1L = 1
WHnL = 3 WHn - 1L + WHn - 2L when n ¥ 2
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SUPPLEMENTARY EXERCISES FOR CHAPTER 8

Section 8.1
1.   Write out a recurrence relation to describe the number of n digit positive integers (in decimal form) that contain no repeating digits.

2.     The number of k  subset  partitions of an n-element set,  S Hn, kL,  satisfies the recurrence relation S Hn, kL = k SHn - 1, kL + SHn - 1, k - 1L  for  n ¥ 3 and
2 § k < n. The numbers S Hn, kL are called Stirling Numbers of the Second Kind.

(a)   What are SHn, 1L and S Hn, nL for n ¥ 1?
(b)  Compute S H5, 2L, SH5, 3L, and S H5, 4L.
(c)   How many partitions are there of a five-element set?

(d)   What is the significance of ⁄
k=1

n
SHn, kL?

3.   Consider the following algorithm, called Split:

Input: a list, Lin = Ha1, a2, … , anL of n numbers, where n is a natural number

Output: a list, Lout = Hb1, b2 … , bnL of n numbers If n < 2, then Lout := Lin

else 8n ¥ 2<

1.  Let L 1 := Ha1, a3, a5 …L and L 2 := Ha2, a4, a6, …L

2.  Execute Split with input L 1 and output L 1 out
3.  Execute Split with input L2 and output L 2 out
4.  Lout := HL 1 out, L 2 outL, that is, the list obtained by copying L 1 out and then copying L 2 out

(a)  What is the output from Split if the input is H1, 2, 3, 4L?

(b)   What is the output from Split if the input is H0, 1, 2, … , n - 1L, where n is equal to 2 r for some natural number r? Hint: the general answer is
related to the binary representations of the numbers in the list.

Section 8.2

4.  Prove by induction that SHkL = H2 + kL 10k is a solution of the recurrence relation SHkL = 20 SHk - 1L - 100 SHk - 2L; SH0L = 2, SH1L = 30.

5.  Explain why BHnL = 1 + 2 + ! + 2n is not a closed form expression.

6.   Between them, Abe and Zeke have n coins. They each flip one coin and if they match (both heads or both tails), then Abe keeps both coins. Otherwise,
Zeke keeps both coins. They continue as long as both have at least a coin. Let L (n,k) be the expected number of flips that take place in the game if Abe
starts with k coins. If 0 < k < n, then

LHn, kL = 1 + HLHn, k - 1L + LHn, k + 1LL ê2

(a)   Justify this equation.
(b)   What are LHn, 0L and LHn, nL?
(c)  Tabulate L Hn, kL for n = 2, 3, and 4.

Section 8.3

7.   On her nth birthday, Kathryn receives n dollars from her Uncle Dave and deposits it into a special account that pays interest of 10 % each year. On her
21st birthday, how much does she have in the account?
8.    Suppose you borrowed $4,000 at 8% interest and you made payments of $250 per month. Let DHnL  be your debt n  months after taking out the loan.
Then DH0L = 4000 and DHnL = 1.08 DHn - 1L - 250 for n > 0.

(a)  Derive a closed form expression for D HnL.
(b)  Estimate how long it would take you to pay off the loan. Use logs if necessary. A rough estimate is sufficient.

9. (Tower of Hanoi Problem): A classic problem that can be solved using material of this section is the Tower of Hanoi puzzle. Assume that we have a
board with three pegs mounted on it and on one of the pegs n circular disks of decreasing size (smallest on top). The problem is to determine how many
moves it takes to move the n disks from one peg to another without placing a larger disk on a smaller one at any time.
(a)   If XHnL stands for the number of moves it takes to move n disks from one peg to another, then XHnL = 2 XHn - 1L + 1. Justify this recurrence relation.

(b)   Solve the recurrence relation in part a. Verify your result, and the formula in part a, using three disks.

Section 8.4
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Section 8.4

10.   Suppose that TH0L = 0 and THaL = 1 + THda ê2tL for a > 0. If a = H1 101 001 011 011 110Ltwo , what is THaL?

11.  Find a solution for n = 2k : QHnL = n + QHdn = 4tL, n ¥ 1, Q H0L = 0.

12.   The  recurrence  relation  xHn + 1L = 1 + xHnL2  with  xH0L = 1  has  a  solution  that  is  approximately  equal  to  ctHnL  ,  where  c  is  a  constant  and  tHnL = 2n,
Estimate the value of c based on values of x H0L, xH1L , … , xH4L. Test your answer by computing xH5L and comparing it to ctH5L  . The significance of x HnL is
that it equals the number of binary trees of depth n or less (see Chapter 10).

Section 8.5

13.   Write out the first five terms of the generating function of sequence S where SH0L = 1 and for k > 0, SHkL = SH0L + ! + SHk - 1L.

14.   (a) Determine the closed form expression for the terms of sequence S,

where SHkL - 6 SHk - 1L = 0 for k ¥ 1 and SH0L = 7. 

(b) What is the generating function, GHS; zL, for sequence S? Write out the first four terms of your answer and then write out the closed form expression for
the generating function.
15.   Suppose that S is a sequence with generating function G HS; zL and that T has generating function GHS; czL. How is T related to S?
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chapter 9

GRAPH THEORY

GOALS
This  chapter  has  three  principal  goals.  First,  we  will  identify  the  basic  components  of  a  graph  and  some  of  the  optional  features  that  many
graphs have. Second, we will discuss some of the questions that are most commonly asked of graphs. Third, we want to make the reader aware
of how graphs are used to model different situations.  In Section 9.1, we will discuss these topics in general, and in later sections we will take a
closer look at selected topics in the theory of graphs.
Chapter 10 will continue our discussion with an examination of trees, a special type of graph.

9.1 Graphs—A General Introduction
Recall that we introduced directed graphs in Chapter 6.

Definition: Directed Graph.  A directed graph consists  of  a set  of  vertices,  V,  and a set  of  edges,  E,  connecting certain elements of  V.
Each element of E is an ordered pair from V (i.e., an element of V µV).  The first entry is the initial vertex of the edge and the second entry is
the terminal vertex. In certain cases there will be more than one edge between two vertices, in which cases the different edges are identified
with labels.
Despite  the  set  terminology  in  this  definition,  we  usually  think  of  a  graph  as  a  picture,  an  aid  in  visualizing  a  situation.  In  Chapter  6,  we
introduced this concept to help understand relations on sets. Although those relations were principally of a mathematical nature, it remains true
that when we see a graph, it tells us how the elements of a set are related to one another.

Definition: Simple Graph and Multigraph. A simple graph is one for which there is no more than one vertex directed from any vertex to
another vertex.  All other graphs, ones with at least two edges from one vertex to some other vertex, are called multigraphs.
To illustrate the points that we will make in this chapter, we will introduce the following examples of graphs.

Example  9.1.1.  A  Directed  Graph.  Figure  9.1.1  is  an  example  of  a  simple  directed  graph.  In  set  terms,  this  graph  is  HV , EL,  where
V = 8s, a, b<  and  E = 8Hs, aL, Hs, bL, Ha, bL, Hb, aL, Hb, bL<.  Note  how  each  edge  is  labeled  either  0  or  1.  There  are  often  reasons  for
labeling even simple graphs. Some labels are to help make a graph easier to discuss; others are more significant. We will discuss the signifi-
cance of the labels on this graph later.
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a b

Figure 9.1.1
A directed graph

Example  9.1.2.   An  Undirected  Graph.  A  network  of  computers  can  be  described  easily  using  a  graph.  Figure  9.1.2  describes  a
network  of  five  computers,  a,  b,  c,  d,  and  e.  An  edge  between  any  two  vertices  indicates  that  direct  two-way  communication  is  possible
between the two computers. Note that the edges of this graph are not directed. This is due to the fact that the relation that is being displayed is
symmetric (i.e., if X can communicate with Y, then Y can communicate with X). Although directed edges could be used here, it would simply
clutter the graph.

a

b

d

c

e

Figure 9.1.2
An undirected graph

There are several other situations for which this graph can serve as a model. One of them is to interpret the vertices as cities and the edges as
roads, an abstraction of a map such as the one in Figure 9.1.3. Another interpretation is as an abstraction of the floor plan of a house (Figure
9.1.4). Vertex a represents the outside of the house; all others represent rooms. Two vertices are connected if there is a door between them.

Figure 9.1.3
Road Map

Definition:  Undirected  Graph.  An undirected  graph  consists  of  a  set  V,  called  a  vertex  set,  and  a  set  E  of  two-element  subsets  of  V,
called the edge set. The two-element subsets are drawn as lines connecting the vertices.
The undirected graph of Figure 9.1.2 is V = 8a, b, c, d, e< and E = 88a, b,<, 8a, d<, 8b, c<, 8b, d<, 8c, e<, 8b, e<<. 
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Definition: Complete Undirected Graph. A complete undirected graph of n vertices is an undirected graph with the property that each
pair of distinct vertices are connected to one another. Such a graph is usually denoted by Kn.

Example 9.1.3. A Multigraph. A common occurrence of a multigraph is a road map. The cities and towns on the map can be thought of
as vertices, while the roads are the edges. It is not uncommon to have more than one road connecting two cities. In order to give clear travel
directions, we name or number roads so that there is no ambiguity. We use the same method to describe the edges of the multigraph in Figure
9.1.5. There is no question what e3 is; however, referring to the edge H2, 3L would be ambiguous.

e1

e2

e3
e4
e5

e6
e7e8

e9

e10e11

1 2 3

45

Figure 9.1.5
A multigraph

Example 9.1.4.  A flowchart is a common example of a simple graph that requires labels for its  vertices and some of its edges.  Figure
9.1.6 is one such example that illustrates how many problems are solved. 

Yes No

Start

R:Receive
Problem

A: Attempt a
Solution

Q: Is the
Problem Solved

End L: Learn from
your mistake

Figure 9.1.5
Flowchart for the problem-solving process

At  the  start  of  the  problem-solving  process,  we  are  at  the  vertex  labeled  "Start"  and  at  the  end  (if  we  are  lucky  enough  to  have  solved  the
problem) we will be at the vertex labeled "End." The sequence of vertices that we pass through as we move from "Start" to "End" is called a
path. The "Start" vertex is called the initial vertex of the path, while the "End" is called the final, or terminal, vertex. Suppose that the problem
is solved after two attempts; then the path that was taken is Start, R, A, Q, L, A, Q, End. An alternate path description would be to list the
edges that were used: 1, 2, 3, No, 4, 3, Yes. This second method of describing a path has the advantage of being applicable for multigraphs.
On the graph in Figure 9.1.5, the vertex list 1, 2, 3, 4, 3 does not clearly describe a path between 1 and 3, but e1, e4, e6, e7 is unambiguous.

A SUMMARY OF PATH NOTATION AND TERMINOLOGY
If x and y are two vertices of a graph, then a path between x and y describes a motion from x and y along edges of the graph. Vertex x is called
the initial vertex of the path and y is called the terminal vertex. A path between x and y can always be described by its edge list, the list of edges
that  were  used:  He1, e2, …, enL,  where  :  (1)  the  initial  vertex  of  e1  is  x;  (2)  the  terminal  vertex  of  ei  is  the  initial  vertex  of  ei+1  ,
i = 1, 2, …, n - 1; and (3) the terminal vertex of en  is y. The number of edges in the edge list is the path length. A path on a simple graph
can  also  be  described  by  a  vertex  list.  A  path  of  length  n  will  have  a  list  of  n + 1  vertices  v0 = x,  v1,  v2, …, vn = y,  where,  for
k = 0, 1, 2, …, n - 1,  Hvk, vk+1L is an edge on the graph. A circuit is a path that terminates at its initial vertex.
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If x and y are two vertices of a graph, then a path between x and y describes a motion from x and y along edges of the graph. Vertex x is called
the initial vertex of the path and y is called the terminal vertex. A path between x and y can always be described by its edge list, the list of edges
that  were  used:  He1, e2, …, enL,  where  :  (1)  the  initial  vertex  of  e1  is  x;  (2)  the  terminal  vertex  of  ei  is  the  initial  vertex  of  ei+1  ,
i = 1, 2, …, n - 1; and (3) the terminal vertex of en  is y. The number of edges in the edge list is the path length. A path on a simple graph
can  also  be  described  by  a  vertex  list.  A  path  of  length  n  will  have  a  list  of  n + 1  vertices  v0 = x,  v1,  v2, …, vn = y,  where,  for
k = 0, 1, 2, …, n - 1,  Hvk, vk+1L is an edge on the graph. A circuit is a path that terminates at its initial vertex.
Suppose that a path between two vertices has an edge list (e,, e 2 , . . . ,e„). A subpath of this graph is any portion of the path described by one
or more consecutive edges in the edge list.  For example, H3, No, 4L  is a subpath of H1, 2, !3, No, 4, 3, YesL.   Any path is its own subpath;
however, we call it an improper subpath of itself. All other subpaths are called proper subpaths.
A path or circuit is simple if it contains no proper subpath that is a circuit. This is the same as saying that a path or circuit is simple if it does not
visit  any vertex more than once except for the common initial  and terminal vertex in the circuit.  In the problem-solving method described in
Figure 9.1.6, the path that you take is simple only if you reach a solution on the first try.
Example 9.1.5. The leadership structure of a corporation is often represented with a graph as in Figure 9.1.7. 

President

Executive VP Administrative VP Financial VP

Production
Supervisor

Personnel
Director

Office
Manager Treasurer

Figure 9.1.7
Organization of a corporation

The principle behind such a structure is  that  everyone but  the president  has a single immediate supervisor.  Any action that  anyone takes can
reach  the  president  only  through  a  unique  "chain  of  command."  This  chain-of-command property  is  characteristic  of  a  special  type  of  graph
called a tree. Note that the edges of this graph are not directed, but, as in a Hasse diagram, the relation between two connecting vertices is clear:
the top vertex is the supervisor of the lower vertex.
The process of structured (or top-down) problem solving results in a graph that is similar to this tree. Starting with the top of the tree, which
would represent the whole problem, the problem is divided into a sequence of separate subproblems. Each subproblem is divided further into
smaller sub-problems in the same way until the solutions of the lowest problems are easy enough to recognize.
From these examples, we can see that although a graph can be defined, in short, as a collection of vertices and edges, an integral part of most
graphs is the labeling of the vertices and edges that allows us to interpret the graph as a model for some situation.

Example 9.1.6. A Graph as a Model for a Set of Strings. Suppose that you would like to mechanically describe the set of strings of 0's
and 1's  having no consecutive 1's. One way to visualize a string of this kind is with the graph in Figure 9.1.1. Consider any path starting at
vertex s. If the label on each graph is considered to be the output to a printer, then the output will have no consecutive 1's. For example, the
path that is described by the vertex list Hs, a, b, b, a, b, b, a, bL would result in an output of 10 010 010.  Conversely, any string with no
consecutive 1's determines a path starting at s.

Example 9.1.7. A Tournament Graph. Suppose that four teams compete in a round-robin sporting event; that is, each team meets every
other team once, and each game is played until a winner is determined. If the teams are named A, B, C, and D, we can define the relation b on
the set of teams by X b Y  if X beat Y. For one set of results, the graph of b might look like Figure 9.1.8.
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A B

C D

Figure 9.1.8
Round-robin graph with four vertices

Definition: Tournament Graph. 

(a) A tournament graph is a directed graph with the property that no edge connects a vertex to itself, and between any two vertices there is at
most one edge.
(b) ! A complete (or round-robin) tournament graph is a tournament graph with the property that between any two distinct vertices there is
exactly one edge.
(c)  !  A  single-elimination  tournament  graph  is  a  tournament  graph  with  the  properties  that:  (i)  one  vertex  (the  champion)  has  no  edge
terminating at it and at least one edge initiating from it; (ii) every other vertex is the terminal vertex of exactly one edge; and (iii) there is a
path from the champion vertex to every other vertex.

Example 9.1.8. The major league baseball championship is decided with a single-elimination tournament, where each "game" is actually
a series of games. Until 1995, the two divisional champions in the American League (East and West) compete in a series of games. The loser
is eliminated and the winner competes against the winner of the National League series (which is decided as in the American League). The
tournament graph of the 1983 championship is in Figure 9.1.9.

Baltimore
AL East

Chicago
AL West

Philadelphia
NL East

Los Angeles
NL West

Figure 9.1.9
1983 Major League Baseball Championship

The question "Once you have a graph, what do you do with it?" might come to mind. The following list of common questions and comments
about graphs is a partial list that will give you an overview of the remainder of the chapter.
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Question 1. How can a graph be represented as a data structure for use on a computer? We will discuss some common Pascal data structures
that are used to represent graphs in Section 9.2.
Question 2. Given two vertices in a graph, does there exist a path between them? The existence of a path between any or all pairs of vertices in
a graph will be discussed in Section 9.3. A related question is: How many paths of a certain type or length are there between two vertices?
Question 3. Is there a path (or circuit) that passes through every vertex (or uses every edge) exactly once? Paths of this kind are called traver-
sals. We will discuss traversals in Section 9.4.
Question 4, Suppose that a cost is associated with the use of each vertex and/or edge in a path. What is the "cheapest" path, circuit, or traversal
of a given kind? Problems of this kind will be discussed in Section 9.5.
Question 5. Given the specifications of a graph, or the graph itself, what is the best way to draw the graph? The desire for neatness makes this a
reasonable question. Another goal might be to avoid having edges of the graph cross one another. This is discussed in Section 9.6.

ISOMORPHIC GRAPHS
We will close this section by establishing the relation "is isomorphic to," a form of equality on graphs. The graphs in Figure 9.1.10 obviously
share some similarities, such as the number of vertices and the number of edges. It happens that they are even more similar than just that. If the
letters a, b, c, and d in a are replaced with the numbers 1,3,4, and 2, respectively, and they are moved around so that they appear as in b, you
obtain b.

a

d

b

c

1 2

43

Figure 9.1.10
Two Isomorphic Graphs

Here is a more precise definition that reflects the fact that the actual positioning of vertices isn't an essential part of a graph.

Definition:  Isomorphic  Graphs.  Two  graphs  HV, EL  and  HV ', E 'L  are  isomorphic  if  there  exists  a  bijection  f : V Ø V '  such  that
Ivi, v jM œ E if and only if I f HviL, f Iv jMM œ E '. For multigraphs, we add that the number of edges connecting vi  to v j, must equal the number of
edges from f HviL to f Iv jM.

Degrees and Graphic Sequences
The most significant local characteristic of a vertix within a graph is its degree.  Collectively, the degrees can partially characterize a graph.

Definition: Degree. 

(a) ! Let v be a vertex of an undirected graph. The degree of v, denoted deg(v), is the number of edges that connect v to the other vertices in
the graph.
(b) ! If v is a vertex of a directed graph, then the outdegree of v, denoted outdeg(v), is the number of edges of the graph that initiate at v.  The
indegree of v, denoted indeg(v). is the number of edges that terminate at v.

Example 9.4.9.

(a)  The degrees of vertices 1 through 5  in Figure 9.1.11 are 2, 3, 4, 1, and 2, respectively.
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1

2 3 4

5

Figure 9.1.11

(b)  !In  a  tournament  graph,  outdeg HvL  is  the  number  of  wins  for  v  and indeg HvL  is  the  number  of  losses.  In  a  complete  (round-robin)  tour-
nament graph with n vertices, outdeg HvL + indeg HvL = n - 1 for each vertex.

Graphic Sequences
A finite nonincreasing sequence of integers d1, d2, …, dn  is a graphic if there exists a simple graph with n vertices having the sequence as its
degree sequence.   For example, 4, 2, 1, 1, 1, 1 is graphic because the degrees of the following graph match these numbers.

 

12

3

4 5

6

Note: There is no connection between the vertex name/number and its degree.

EXERCISES FOR SECTION 9.1
A Exercises 
1. What is the significance of the fact that there is a path connecting vertex b  with every other vertex in Figure 9.1.2, as it  applies to various
situations that it models?
2. ! Draw a graph similar to Figure 9.1.1 that represents the set of strings of 0's and 1's containing no more than two consecutive 1's.

3. ! Draw a directed graph that models the set of strings of 0's and 1's where all of the 1's must appear consecutively. 

4.  !  In  the  NCAA  final-four  basketball  tournament,  the  East  champion  plays  the  West  champion,  and  the  champions  from  the  Mideast  and
Midwest play. The winners of the two games play for the national championship. Draw the eight different single-elimination tournament graphs
that could occur.
5. ! What is the maximum number of edges in a simple undirected graph with eight vertices?

6. ! Which of the graphs in Figure 9.1.11 are isomorphic? What is the correspondence between their vertices?
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1 2 3 4 5

HaL 1

2 3 4

5

HbL

1 23

4

5

HcL

1

2 3

4

5

HdL

1 2

3

4

5

HeL

1

2

3

4

5

HfL

1

2 3 4 5

HgL 1 2

3

4 5

HhL

1

2

3

4 5

HiL

Figure 9.2.11

7. ! (a) How many edges does a complete tournament graph with n vertices have? 

      (b) How many edges does a single-elimination tournament graph with n vertices have?

8. ! Draw complete undirected graphs with 1, 2, 3, 4, and 5 vertices. How many edges does a Kn, a complete undirected graph with n vertices,
have?
9.  Determine whether the following sequences are graphic.  Explain your logic.

(a)   6, 5, 4, 3, 2, 1, 0
(b)  2, 2, 2, 2, 2, 2, 2
(c) 3, 2, 2, 2, 2, 2
(c) 5, 3, 3, 3, 3, 3
(e)  1, 1, 1, 1, 1, 1
(f)  5, 5, 4, 3, 2, 1

10.   (a)   Based on observations  you might  have made in  exercise  9,  describe  as  many characteristics  as  you can about  graphic  sequences  of
length n.

(b)  Consider the two graphs

and

Notice that they have the same degree sequences, 2, 2, 2, 2, 2, 2.   Explain why the two graphs are not isomorphic. 
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9.2 Data Structures and Computer Generation of Graphs
In this section, we will describe data structures that are commonly used to represent graphs.  In addition we will introduce the basic syntax for
graphs in Mathematica and Sage.
Assume that we have a graph with n vertices that can be indexed  by the integers 1, 2, …, n.  

Data Structure 1: Adjacency Matrix. As we saw in Chapter 6, the Information about edges in a graph can be summarized with an adjacency
matrix, G, where Gij = 1 if and only if vertex i is connected to vertex j in the graph.   Note that this is the same as the adjacency matrix for a
relation, with the exception.
Data Structure 2: Edge List I. Note that the initializing procedure for an adjacency matrix presumes that a list of edges for the graph exists.
This second data structure maintains this list form. For each vertex in our graph, there will be a list of edges that initiate at that vertex.  If G
represents the graph's edge information, then Gi would be the list of edges initiating at vertex i.    
Data Structure 3: Edge List II.  An even simpler way to represent the edges is to maintain a list of ordered pairs.

1

23

4

Figure 9.2.1

Example 9.2.1.  Given the graph in Figure 9.2.1, the adjacency matrix that represents the graph would be 

G1 =

0 1 0 1
0 0 1 1
0 0 1 0
1 0 0 0

.

The same graph would be represented with the edge list of type 1:

G1 = 882, 4<, 83, 4<, 83<, 81<<

Finally, the list 

G1 = 881, 2<, 81, 4<, 82, 3<, 82, 4<, 83, 3<, 84, 1<<

describes the same graph with an edge list of type 2.

A natural question to ask is: Which data structure should be used in a given situation? For small graphs, it really doesn't make much difference,
but since answers the question "Is there an edge from vertex i to vertex j is easiest with an adjacency matrix, the adjacency matrix would be the
natural choice.  For larger matrices the edge count would be a consideration.  If n is large and the number of edges is relatively small, it might
use less memory to maintain a list of edges instead of building an n µ n matrix.   Most software for working with graphs will make the decision
for you.

  Mathematica Note

First, a short history of graphs in Mathematica.  Until Mathematica 6.0, all graph related functions were part of a package called Combinator-
ica.   A  few  graph  related  functions,  notably  GraphPlot,  were  introduced  in  version  6.0.   The  output  from  GraphPlot  was  (and  still  is)  a
Graphics object.  Starting in Mathematica 8.0, graphs became native Mathematica objects.  Graph expressions are backwards compatible in that
Combinatorica is still available.  In addition, GraphPlot is still a good way to fine-tune the way a graph appears.   
The graph in Example 9.2.1 was drawn by evaluating the following expression.
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In[3]:= G1 = GraphPlot@81 Ø 2, 2 Ø 3, 2 Ø 4, 4 Ø 1, 1 Ø 4, 3 Ø 3<,
VertexLabeling Ø True, DirectedEdges Ø TrueD

Out[3]=

1

23

4

The same graph, with a different embedding and style of displaying vertices can be produced using Graph.

In[4]:= G1 = Graph@81, 2, 3, 4<, 81 Ø 2, 2 Ø 3, 2 Ø 4, 4 Ø 1, 1 Ø 4, 3 Ø 3<,
VertexLabels Ø "Name", ImagePadding Ø 5D

Out[4]=

From  both  expressions  one  sees  that  an  edge  list  in  the  form  of  Mathematica  rules  is  used  to  specify  the  edges.   Using  GraphPlot,  the
vertices are implicit from the numbers that appear among the edges.   This has the drawback of not allowing for an isolated vertex without any
edges connected to it.  A second acceptable way to specify edges is  using GraphPlot is with an adjacency matrix:

In[5]:= G2 =

0 0 0 1 1
1 0 0 1 0
0 1 0 0 0
0 1 0 0 0
1 0 1 0 0

;

In[6]:= GraphPlot@G2, VertexLabeling Ø True, DirectedEdges Ø TrueD

Out[6]=

1

2 3

4

5

Notice  that  in  these  examples,  the  placement  of  the  vertices  is  determined  by  Mathematica.   Both  functions  have  options  that  do  allow  for
placement.
An example of a system graph function is GraphDistance.  For example, we can ask for the distance from vertex 1 to vertex 3 in G1  and
find that one needs to travel along two edges to go from 1 to 3.

In[7]:= GraphDistance@G1, 1, 3D

Out[7]= 2

In G1, you can't get from vertex 3 to vertex 4, so the distance is infinite:

In[8]:= GraphDistance@G1, 3, 4D

Out[8]= ¶
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We can get the adjacency matrix of G1 or the edge list of G2 with package function

In[9]:= AdjacencyMatrix@G1D

Out[9]= SparseArray@<6>, 84, 4<D

In practice, graphs are often quite large, so Mathematica automatically uses a sparse array data structure to store the adjacency matrix.    To see
the actual matrix you can use the Normal function:

In[10]:= Normal@AdjacencyMatrix@G1DD

Out[10]=

0 1 0 1
0 0 1 1
0 0 1 0
1 0 0 0

Larger  graphs  can  be  generated  by  creating  lists  of  edges  using  rules.   For  example,  here  is  graph  of  all  divisors  of  6 != 720  with  an  edge
connecting j to k if  j

k
 is a prime.  For example, there is an edge connecting  72 to 24 because 72

24
= 3 is prime.  The code for creating G3  may

look daunting, but essentially the set of ordered pairs in the set
 Divisors@6 !D = 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720<

and the relatively few ordered pairs where the first  number divided by the second number is prime are selected out.   These ordered pairs are
then converted to a rule:  8a, b< is converted to a Ø b.

In[11]:= edges = Map@Rule üü Ò &, Select@Tuples@Divisors@6!D, 2D, PrimeQ@Divide üü ÒD &DD;

In[12]:= G3 = Graph@edges, VertexLabels Ø "Name", ImagePadding Ø 5D

Out[12]=

The adjacency matrix of G3 can certainly be considered sparse since it has relatively few 1’s.
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In[13]:= AdjacencyMatrix@G3D êê Normal

Out[13]=

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

  Sage Note

Sage graphs are specified using version 1 of edge lists.   Here is how the graph in Example 9.2.1 is generated and then displayed.

sage:  G1 = DiGraph( { 1 : [4, 2], 2 : [3, 4], 3 : [3], 4 : [1]})
G1.show()

There are many special graphs and graph families that are available in Sage through the graphs module.   They are referenced with the prefix
graphs. followed by the name and zero or more paramenters inside parentheses.   Here are a couple of them, first a complete graph with five
vertices.
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There are many special graphs and graph families that are available in Sage through the graphs module.   They are referenced with the prefix
graphs. followed by the name and zero or more paramenters inside parentheses.   Here are a couple of them, first a complete graph with five
vertices.

sage: graphs.CompleteGraph(5).show()

Here  is  a  wheel  graph,  named for  an  obvious  pattern  of  vertices  and  edges.    We assign  a  name to  it  first  and  then  show the  graph  without
labeling the vertices.

sage: w=graphs.WheelGraph(20)
sage: w.show(vertex_labels=false)

There are dozens of graph methods, one of which determines the degree sequence of a graph. 

sage:  w.degree_sequence()

[19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

The degree  sequence  method is  defined  within  the  graphs  module,  but  the  prefix  graphs.  isn’t  needed because  the  value  of  w  inherits  the
graphs methods.

Example  9.2.2.  Consider  an  directed  graph  represented  by  the  Division  I  NCAA  college  basketball  teams  in  the  United  States  for  a
given year. There are approximately 350 teams in Division 1.  Suppose we constructed the graph with an edge from team A to team B if A
beat  B at  least  once in  the  season;  and we label  the  edge with  the  number  of  wins.     Since the  average team plays  around 30 games in  a
season, most of which will be against other Division I  teams, we could expect around 30 µ 350

2
= 5250 edges in the graph (this is somewhat

reduced by games with lower division teams and cases where two or more wins over the same team produces one edge). Since 5250 is much
smaller than 3502 = 122 500 entries in an adjacency matrix, we would consider this a sparse graph and would expect to find one of the edge
list structures most efficient.  Even if an adjacency matrix is created, as could be done in Mathematica, it would be represented using a sparse
matrix data structure.
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Example  9.2.2.  Consider  an  directed  graph  represented  by  the  Division  I  NCAA  college  basketball  teams  in  the  United  States  for  a
given year. There are approximately 350 teams in Division 1.  Suppose we constructed the graph with an edge from team A to team B if A
beat  B at  least  once in  the  season;  and we label  the  edge with  the  number  of  wins.     Since the  average team plays  around 30 games in  a
season, most of which will be against other Division I  teams, we could expect around 30 µ 350

2
= 5250 edges in the graph (this is somewhat

reduced by games with lower division teams and cases where two or more wins over the same team produces one edge). Since 5250 is much
smaller than 3502 = 122 500 entries in an adjacency matrix, we would consider this a sparse graph and would expect to find one of the edge
list structures most efficient.  Even if an adjacency matrix is created, as could be done in Mathematica, it would be represented using a sparse
matrix data structure.

EXERCISES FOR SECTION 9.2
A Exercises
1.  Estimate the number of vertices and edges in each of the following graphs.  Would the graph be considered sparse?

(a) ! Vertices: Cities of the world that are served by at least one airline. 

       Edges: Pairs of cities that are connected by a regular direct flight.

(b) Vertices: ASCII characters. 

      Edges: connect characters that differ in their binary code by exactly two bits.

(c) ! Vertices: All English words. 

        Edges: An edge connects word x to word y if x is a prefix of y.

2. !  Each edge of a graph is colored with one of the four colors red, blue, yellow, or green. How could you represent the edges in this graph
using a variation of the adjacency matrix structure?
3. !Directed graphs G1, …, G6 , each with vertex set 81, 2, 3, 4, 5< are represented by the matrices below. Which graphs are isomorphic?

  G1 :

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

G2 :

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
1 1 1 0 1
0 0 0 0 0

G3 :

0 0 0 0 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0

  G4 :

0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

G5 :

0 0 0 0 1
0 0 0 0 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 0

G6 :

0 0 0 1 0
0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0

4.    The following Sage command verifies that the wheel graph with four vertices is isomorphic to the complete graph with four vertices.   

graphs.WheelGraph(4).is_isomorphic(graphs.CompleteGraph(4))

Evaluate the expression dir(graphs.) in Sage to get a list of graph names,  and then find two more  pairs of isomorphic graphs.
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9.3 Connectivity
This section is devoted to a question that, when posed in relation to the graphs that we have examined, seems trivial. That question is: Given
two vertices, s and t, of a graph, is there a path from s to t?   If s = t, this question is interpreted as asking whether there is a circuit of positive
length starting at s. Of course, for the graphs we have seen up to now, this question can be answered after a brief examination.
There  are  two situations  under  which a  question of  this  kind is  nontrivial.  One is  where  the  graph is  very large and an "examination" of  the
graph  could  take  a  considerable  amount  of  time.  Anyone  who  has  tried  to  solve  a  maze  may  have  run  into  a  similar  problem.  The  second
interesting situation is when we want to pose the question to a machine. If only the information on the edges between the vertices is part of the
data structure for the graph, how can you put that information together to determine whether two vertices can be connected by a path?
Connectivity Terminology. Let v and w be vertices of a directed graph. Vertex v is connected to vertex w if there is a path from v to w. Two
vertices are strongly connected if they are connected in both directions to one another. A graph is connected if, for each pair of distinct vertices,
v  and w,  v  is  connected to w  or  w  is  connected to v.  A graph is  strongly connected  if  every pair  of  its  vertices is  strongly connected.  For an
undirected graph, in which edges can be used in either direction, the notions of strongly connected and connected are the same.

Theorem 9.3.1.  If a graph has n vertices and vertex u is connected to vertex w, then there exists a path from u to w of length no more
than n.

Proof (Indirect):  Suppose u  is  connected to w,  but the shortest path from u  to w  has length m,  where m > n.  A vertex list  for a path of
length m will have m + 1 vertices. This path can be represented as Hv0, v1, …, vmL, where v0 = u   and  vm = w. Note that since there are only
n vertices in the graph and m vertices are listed in the path after v0, we can apply the pigeonhole principle and be assured that there must be
some  duplication in the last m vertices of the vertex list, which represents a circuit in the path. This means that our path of minimum length
can be reduced, which is a contradiction. ‡

Methods for Testing Connectivity
Questions:

Question 1:  Given a graph and two vertices in the graph, is there a path from the first vertex to the second?

Question 2:  If the answer to Question 1 is "yes" then what is the path?

Some Answers

Method 1: Adjacency Matrix Method. Suppose that the information about edges in a graph is stored in an adjacency matrix, G. The relation,
r, that G defines is v r w if there is an edge connecting v to w. Recall that the composition of r with itself, r2 , is defined by v r2 w if there exists a
vertex y such that v r y and y r w; that is, v is connected to w by a path of length 2. We could prove by induction that the relation rk  , k ¥ 1, is
defined by v rk w  if  and only if there is a path of length k  from v  to w.  Since the transitive closure, r+  ,  is the union of r,  r2  , r3, …,  we can
answer our connectivity question by determining the transitive closure of r,  which can be done most easily by keeping our relation in matrix
form.  Theorem  9.3.1  is  significant  in  our  calculations  because  it  tells  us  that  we  need  only  go  as  far  as  En  to  determine  the  matrix  of  the
transitive closure. 
The main advantage of the adjacency matrix method is that the transitive closure matrix can answer all questions about the existence of paths
between vertices. If G+is the matrix of the transitive closure,  vi, is connected to v j if HE+Li j = 1 . A directed graph is connected if HE+Li j = 1 or
HE+L j i = 1 for each i ! j. A directed graph is strongly connected if its transitive closure matrix has no zeros.

A disadvantage of the adjacency matrix method is that the transitive closure matrix tells us whether a path exists, but not what the path is.

Method 2: Broadcasting. We will describe this method first with an example.

Example 9.3.1. The football team at Mediocre State University (MSU) has had a bad year, 2 wins and 9 losses. Thirty days after the end of the
football season, the university trustees is meeting to decide whether to rehire the head coach; things look bad for him. However, on the day of
the meeting, the coach releases the following list of results from the past year:

Mediocre State defeated Local A&M.

Local A&M defeated City College.

City College defeated Corn State U.

... (25 results later)

Tough Tech defeated Enormous State University (ESU).

And ESU went on to win the national championship!

The trustees were so impressed that they rehired the coach with a raise in pay! How did the coach come up with such a list?

In reality, such lists exist occasionally and appear in newspapers from time to time. Of course they really don't prove anything since each team
that defeated MSU in our example above can produce a similar chain of results. Since college football records are readily available, the coach
could have found this list by trial and error. All that he needed to start with was that his team won at least one game. Since ESU lost one game,
there was some hope of producing the chain.
The problem of finding this list is equivalent to finding a path in the tournament graph for last year's football season that initiates at MSU and
ends  at  ESU.  Such  a  graph  is  far  from  complete  and  would  be  represented  using  edge  lists.  To  make  the  coach's  problem  interesting,  let's
imagine that only the winner of a game remembers the result of the game. The coach's problem has now taken on the flavor of a maze. To reach
ESU, he must communicate with the various teams along the path. One way that the coach could have discovered his list in time is by sending
the following emails to the coaches of the two teams that MSU defeated during the season:
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The problem of finding this list is equivalent to finding a path in the tournament graph for last year's football season that initiates at MSU and
ends  at  ESU.  Such  a  graph  is  far  from  complete  and  would  be  represented  using  edge  lists.  To  make  the  coach's  problem  interesting,  let's
imagine that only the winner of a game remembers the result of the game. The coach's problem has now taken on the flavor of a maze. To reach
ESU, he must communicate with the various teams along the path. One way that the coach could have discovered his list in time is by sending
the following emails to the coaches of the two teams that MSU defeated during the season:

When this example was first written, we commented that ties should be ignored.  Most recent NCAA rules call for a tiebreaker in college football and so ties are no
longer an issue.  Email was also not common and we described the process in terms of letter, not email messages.  The coach could also have asked the MSU math
department to use Mathematica or Sage to get the path!

Dear Football Coach:
Please follow these directions exactly.

(1)   If you are the coach at ESU, call the coach at MSU now and tell him who sent 
  you this message.

(2)   If you are not the coach at ESU and this is the first message of this type that
      you have received, then:

  (a) Remember who you received this message from.
  (b) Forward a copy of this message, signed by you, to each of the coaches 
      whose teams you defeated during the past year. 

(3)   Ignore this message if you have received one like it already.

Signed,

Coach of MSU

Observations:  From the  conditions  of  this  message,  it  should  be  clear  that  if  everyone  cooperates  and  if  coaches  participate  within  a  day  of
receiving the message:
(a) ! If a path of length n exists from MSU to ESU, then the coach will know about it in n days.

(b) ! By making a series of phone calls, the coach can obtain the path that he wants by first calling the coach who defeated ESU (the person who
sent ESU's coach that message). This coach will know who sent him a letter, and so on. Therefore, the vertex list of the desired path is obtained
in reverse order.
(c) ! If a total of M football games were played, no more than M letters will be sent out.

(d) ! If a day passes without any letter being sent out, no path from MSU to ESU exists.

(e) ! This method could be extended to obtain a list of all teams that a given team can be connected to. Simply imagine a series of letters like the
one above sent by each football coach and targeted at every other coach.
The general problem of finding a path between two vertices in a graph, if one exists, can be solved exactly as we solved the problem above. The
following algorithm is commonly called a breadth-first search.
Algorithm 9.3.1. A broadcasting algorithm for finding a path between vertex i and vertex j of a graph having n vertices. The each item Vk  of a
list  V = 8V1, V2, …, Vn<,  consist  of  a  Boolean  field  Vk.found  and  an  integer  field  Vk.from.  The  sets  D1,  D2,  …,  called  depth  sets,  have  the
property that if k is in Dr  , then the shortest path from vertex i to vertex k is of length r. In Step 5, a stack is used to put the vertex list for the
path from the vertex i to vertex j in the proper order.

1.  Set the value Vk.found equal to False, k = 1, 2, … , n
2.  r = 0
3.  D0 = 8i<
4.  While (¬ Vj.found) and HDr!«)

4.1   Dr+1 = «
4.2   For each k in Dr do

For each edge (k,t) do
If Vt.found == False 
  then Vt.found = True
  Vt.from = k

Dr+1 = Dr+1 ‹ 8t<
4.3   r = r + 1

5. If Vj.found = True Then

5.1   S = Empty Stack
5.2   k=j

 5.3   While Vk.from ! i 
 5.3.1 Push k onto S

5.3.2 k = Vk.from

Notes on Algorithm 9.3.1:

(a) ! This algorithm will produce one path from vertex i to vertex j, if one exists, and that path will be as short as possible. If more than one path
of this length exists, then the one that is produced depends on the order in which the edges are examined and the order in which the elements of
Dr are examined in Step 4.
(b) ! The condition Dr ! «  is analogous to the condition that if no mail is sent in a given stage of the process, in which case MSU cannot be
connected to ESU.
(c) ! This algorithm can be easily revised to find paths to all vertices that can be reached from vertex i. Step 5 would be put off until a specific
path to a vertex is needed since the information in V  contains an efficient list of all paths. The algorithm can also be extended further to find
paths between any two vertices.
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(c) ! This algorithm can be easily revised to find paths to all vertices that can be reached from vertex i. Step 5 would be put off until a specific
path to a vertex is needed since the information in V  contains an efficient list of all paths. The algorithm can also be extended further to find
paths between any two vertices.

Example  9.3.2.  Consider  the  graph in  Figure  9.3.1.  The  existence  of  a  path  from vertex  2  to  vertex  3  is  not  difficult  to  determine  by
examination. After a few seconds, you should be able to find two paths of length four. Algorithm 9.3.1 will produce one of them.

1

5

4

2

3

6

Figure 9.3.1

Suppose that the edges from each vertex are sorted in ascending order by terminal vertex. For example, the edges from vertex 3 would be in
the  order  H3, 1L, H3, 4L, H3, 5L.  In  addition,  assume that  in  the  body of  Step 4  of  the  algorithm,  the  elements  of  Dr  are  used in  ascending
order. Then at the end of Step 4, the value of V will be

  

k 1 2 3 4 5 6
Vk.found T T T T T T
Vk.from 2 4 6 1 1 4

Depth set 1 3 4 2 2 3 Hvalue of r for which k œ DrL

Therefore, the path H2, 1, 4, 6, 3L is produced by the algorithm. Note that if we wanted a path from 2 to 5, the information in V produces the
path (2,  1,  5)  since Vk.from = 1 and V1.from = 2.   A shortest  circuit  that  initiates at  vertex 2 is  also available by noting that  V2.from = 4,
V4.from = 1 , and V1.from = 2; thus the circuit H2, 1, 4, 2L is obtained.

  Mathematica Note

Consider the following defined by a adjecency matrix.

In[49]:= SeedRandom@2014D;
adj = RandomInteger@80, 1<, 88, 8<D * Table@Boole@i ! jD, 8i, 1, 8<, 8j, 1, 8<D

Out[50]=

0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0
0 0 1 0 1 1 0 1
0 1 0 1 0 1 1 1
1 0 1 1 0 0 1 0
1 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0

g = AdjacencyGraph@adj, VertexLabels Ø "Name", ImagePadding Ø 5D
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Is 1 is connected to 8 in this graph?  The function FindShortestPath will give us a shortest:

In[54]:= FindShortestPath@g, 1, 8D

Out[54]= 81, 2, 4, 8<

If we are interested in reaching vertex 8 from all vertices, we can do that just as easily.

In[55]:= Map@8Ò, FindShortestPath@g, All, 8D@ÒD< &, Range@8DD

Out[55]=

1 81, 6, 4, 8<
2 82, 4, 8<
3 83, 2, 4, 8<
4 84, 8<
5 85, 8<
6 86, 4, 8<
7 87, 2, 4, 8<
8 88<

Finally, here is a matrix of shortest paths between any two vertices in the graph.

In[68]:= Map@Apply@FindShortestPath@g, All, AllD, ÒD &, Outer@List, Range@1, 8D, Range@1, 8DD, 82<D

Out[68]=

81< 81, 2< 81, 3< 81, 2, 4< 81, 2, 4, 5< 81, 6< 81, 6, 7< 81, 2, 4, 8<
82, 4, 3, 1< 82< 82, 4, 3< 82, 4< 82, 4, 5< 82, 4, 6< 82, 4, 3, 7< 82, 4, 8<

83, 1< 83, 2< 83< 83, 2, 4< 83, 2, 4, 5< 83, 1, 6< 83, 7< 83, 2, 4, 8<
84, 3, 1< 84, 3, 2< 84, 3< 84< 84, 5< 84, 6< 84, 3, 7< 84, 8<
85, 7, 1< 85, 2< 85, 8, 3< 85, 4< 85< 85, 6< 85, 7< 85, 8<
86, 1< 86, 1, 2< 86, 3< 86, 4< 86, 4, 5< 86< 86, 7< 86, 4, 8<
87, 1< 87, 2< 87, 3< 87, 2, 4< 87, 2, 4, 5< 87, 1, 6< 87< 87, 2, 4, 8<

88, 3, 1< 88, 3, 2< 88, 3< 88, 5, 4< 88, 5< 88, 5, 6< 88, 3, 7< 88<

If no path exists between two vertices, the result is an empty list, as illustrated by this simple example.

In[73]:= h = Graph@81 Ø 2, 2 Ø 3, 3 Ø 4<D;
FindShortestPath@h, 4, 1D

Out[74]= 8<
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  Sage Note

Here is some sage code that

1.   Generates  a  random undireced graph with  18 vertices.   For  each pair  of  vertices,  an  edge is  included between them with  probability  0.2.

Since there are K
18
2 O = 153 potential edges, we expect that there will be approximately  0.2 µ 153 º 31 edges.

2.  Counts the number of edges.  In this case the number is a bit less than expected.

3.  Finds a shortest path from vertex 0 to vertex 8.

4.  Generates a list of vertices that would be reached in a breadth-first search.   The expression Gr.depth_first_search(0) creates an
iterator that is convenient for programming.  Wrapping  list( ) around the expression shows the order in which the vertices are visited.
5.     Generates a list of vertices that would be reached in a depth-first search.  In this type of search you travel in one direction away from the
starting point until no further new vertices.  We will discuss this search later.

sage:  Gr=graphs.RandomGNP(18,0.2);
          Gr.show()

sage:   len(Gr.edges(labels=False))
    25
sage:  Gr.shortest_path(0, 8)

[0, 10, 14, 8]
sage:   list(Gr.breadth_first_search(0))

[0, 17, 10, 11, 4, 13, 14, 3, 15, 7, 8, 9, 16, 1, 12, 2, 6, 5]
sage:   list(Gr.depth_first_search(0))

[0, 11, 15, 12, 5, 6, 7, 14, 10, 9, 3, 4, 17, 13, 1, 16, 8, 2]

EXERCISES FOR SECTION 9.3
A Exercises
1. ! Apply Algorithm 9.3.1 to find a path from 5 to 1 in Figure 9.3.1. What would be the final value of V? Assume that the terminal vertices in
edge lists and elements of the depth sets are put into ascending order, as we assumed in Example 9.3.1.
2.  !  Apply  Algorithm 9.3.1  to  find  a  path  from the  bedroom to  outside  using  the  edge  list  data  structure  in  Example  9.2.1.  Assume  that  the
elements of the depth sets are put into ascending order.
3.  !  In  a  simple  undirected  graph  with  no  self-loops,  what  is  the  maximum number  of  edges  you  can  have,  keeping  the  graph  unconnected?
What is the minimum number of edges that will assure that the graph is connected?
4. ! Use a broadcasting algorithm to determine the shortest path from vertex a to vertex i in the graphs shown in Figure 9.3.2. List the depth sets
and the stack that is obtained.
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Figure 9.3.2
Exercise 4

B Exercise
5. ! Prove (by induction on k) that if the relation r on vertices of a graph is defined by v r w if there is an edge connecting v to w, then rk , k ¥ 1,
is defined by v rk w  if there is a path of length k from v to w.
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9.4 Traversal: Eulerian and Hamiltonian Graphs
The subject  of  graph  traversals  has  a  long  history.  In  fact,  the  solution  by  Leonhard  Euler  (Switzerland,  1707-83)  of  the  Königsberg  Bridge
Problem is considered by many to represent the birth of graph theory.

The Königsberg Bridge Problem and Eulerian Graphs

Figure 9.4.1  
Map of Königsberg

A map of the Prussian city of Königsberg (circa 1735) in Figure 9.4.1 shows that there were seven bridges connecting the four land masses that
made up the city. The legend of this problem states that the citizens of Königsberg searched in vain for a walking tour that passed over each
bridge exactly once. No one could design such a tour and the search was abruptly abandoned with the publication of Euler's Theorem.

Theorem  9.4.1:  Euler'  s  Theorem—Königsberg  Case.  No  walking  tour  of  Königsberg  can  be  designed  so  that  each  bridge  is  used
exactly once.

A

B

C

D

Figure 9.4.2  
Multigraph representation of Königsberg

Proof: The map of Königsberg can be represented as an undirected multigraph, as in Figure 9.4.2. The four land masses are the vertices
and each edge represents a bridge. The desired tour is then a path that uses each edge once and only once. Since the path can start and end at
two different vertices, there are two remaining vertices that must be intermediate vertices in the path. If x is an intermediate vertex, then every
time that you visit x, you must use two of its incident edges, one to enter and one to exit. Therefore, there must be an even number of edges
connecting x to the other vertices. Since every vertex in the Königsberg graph has an odd number of edges, no tour of the type that is desired
is possible.   ‡
As is  typical  of  most  mathematicians,  Euler  wasn't  satisfied with  solving only the Königsberg problem.  His  original  theorem,  which is  para-
phrased below, concerned the existence of paths and circuits like those sought in Königsberg. These paths and circuits have become associated
with Euler's name.

Definitions:  Eulerian  Paths,  Circuits,  Graphs.  A  Eulerian  path  through  a  graph  is  a  path  whose  edge  list  contains  each  edge  of  the
graph exactly once.  If the path is a circuit, then it is called a Eulerian circuit.  A Eulerian graph is a graph that possesses a Eulerian path.

Example 9.4.1.   Without tracing any paths, we can be sure that the graph below has an Eulerian circuit because all vertices have an even
degree.  This follows from the following theorem.
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Theorem 9.4.2: Euler's Theorem—General Case. An undirected graph is Eulerian if and only if it is connected and has either zero or
two vertices with an odd degree. If no vertex has an odd degree, then the graph has a Eulerian circuit.
Proof: It can be proven by induction that the number of vertices in an undirected graph that have an odd degree must be even. We will leave the
proof of this fact to the reader as an exercise. The necessity of having either zero or two vertices of odd degree is clear from the proof of the
Königsberg case of this theorem. Therefore, we will concentrate on proving that this condition is sufficient to ensure that a graph is Eulerian.
Let k be the number of vertices with odd degree.
Phase 1. If k = 0, start at any vertex, v0, and travel along any path, not using any edge twice. Since each vertex has an even degree, this path
can always be continued past each vertex that you reach except v0. The result is a circuit that includes v0. If k = 2, let v0  be either one of the
vertices of odd degree. Trace any path starting at v0  using up edges until you can go no further, as in the k = 0 case. This time, the path that
you obtain must end at the other vertex of odd degree that we will call v1.   At the end of Phase 1, we have an initial path that may or may not
be Eulerian. If it is not Eulerian, Phase 2 can be repeated until all of the edges have been used. Since the number of unused edges is decreased
in any use of Phase 2, a Eulerian path must be obtained in a finite number of steps.
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Phase 2. As we enter this phase, we have constructed a path that uses a proper subset of the edges in our graph. We will refer to this path as the
current  path.  Let  V  be  the  vertices  of  our  graph,  E  the  edges,  and  Eu  the  edges  that  have  been  used  in  the  current  path.  Consider  the  graph
G ' = HV , E — EuL.   Note that every vertex in G ' has an even degree.  Select any edge, e, from G '. Let va and vb be the vertices that e connects.
Trace a new path starting at va  whose first edge is e.  We can be sure that at least one vertex of the new path is also in the current path since
HV , EL is connected. Starting at va, there exists a path in HV , EL to any vertex in the current path. At some point along this path, which we can
consider the start of the new path, we will have intersected the current path. Since the degree of each vertex in G' is even, any path that we start
at va  can be continued until it is a circuit. Now, we simply augment the current path with this circuit. As we travel along the current path, the
first time that we intersect the new path, we travel along it (see Figure 9.4.3). Once we complete the circuit that is the new path, we resume the
traversal of the current path.

Figure 9.4.3  
Augmenting the current path in the proof of Theorem 9.4.2

If the result of this phase is a Eulerian path, then we are finished; otherwise, repeat this phase. #

Example 9.4.2. The complete undirected graphs K2  and K2 n+1, n = 1, 2, 3, …. .., are Eulerian. If n > 1, then K2 n is not Eulerian.

HAMILTONIAN GRAPHS
To  search  for  a  path  that  uses  every  vertex  of  a  graph  exactly  once  seems  to  be  a  natural  next  problem after  you  have  considered  Eulerian
graphs. The Irish mathematician Sir William Hamilton (1805-65) is given credit for first defining such paths. He is also credited with discover-
ing the quaternions, for which he was honored by the Irish government with a postage stamp in 2004.

Definition:  Hamiltonian Paths,  Circuits,  and Graphs.  A Hamiltonian path through a graph is  a  path whose vertex list  contains each
vertex of the graph exactly once, except if the path is a circuit, in which case the initial vertex appears a second time as the terminal vertex. If
the path is a circuit, then it is called a Hamiltonian circuit. A Hamiltonian graph is a graph that possesses a Hamiltonian path.

Example 9.4.3.   Figure 9.4.4 shows a graph that  is  Hamiltonian.  In fact,  it  is  the graph that  Hamilton used as an example to pose the
question of existence of Hamiltonian paths in 1859. In its original form, the puzzle that was posed to readers was called "Around the World."
The vertices were labeled with names of major cities of the world and the object was to complete a tour of these cities.   The graph is also
referred to as the dodecahedron graph, where vertices correspond with the corners of a dodecahedron and the edges are the edges of the solid
that connect the corners.  
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Example 9.4.3.   Figure 9.4.4 shows a graph that  is  Hamiltonian.  In fact,  it  is  the graph that  Hamilton used as an example to pose the
question of existence of Hamiltonian paths in 1859. In its original form, the puzzle that was posed to readers was called "Around the World."
The vertices were labeled with names of major cities of the world and the object was to complete a tour of these cities.   The graph is also
referred to as the dodecahedron graph, where vertices correspond with the corners of a dodecahedron and the edges are the edges of the solid
that connect the corners.  

Figure 9.4.4  
The dodecahedron graph, a Hamiltonian graph.

Figure 9.4.5  
The regular dodecahedron

Unfortunately,  a  simple  condition  doesn't  exist  that  characterizes  a  Hamiltonian  graph.  An  obvious  necessary  condition  is  that  the  graph  be
connected; however, there is a connected undirected graph with four vertices that is not Hamiltonian. Can you draw such a graph? 
A  Note  on  What  Is  Possible  and  What  Is  Impossible.  The  search  for  a  Hamiltonian  path  in  a  graph  is  typical  of  many  simple-sounding
problems in graph theory that have proven to be very difficult to solve. Although there are simple algorithms for conducting the search, they are
impractical for large problems because they take such a long time to complete as graph size increases. Currently, every algorithm to search for a
Hamiltonian path in a graph takes exponential time to complete. That is, if T HnL is the time it takes to search a graph of n vertices, then there is
a positive real number a, a > 1, such that T HnL > an  for all but possibly a finite number of positive values for n. No matter how close to 1 we
can make a, an  will grow at such a fast rate that the algorithm will not be feasible for large values of n. For a given algorithm, the value of a
depends  on  the  relative  times  that  are  assigned  to  the  steps,  but  in  the  search  for  Hamiltonian  paths,  the  actual  execution  time  for  known
algorithms  is  large  with  20  vertices.  For  1,000  vertices,  no  algorithm  is  likely  to  be  practical,  and  for  10,000  vertices,  no  currently  known
algorithm could be executed.
It is an unproven but widely held belief that no faster algorithm exists to search for Hamiltonian paths. A faster algorithm would have to be one
that  takes  only  polynomial  time;  that  is,  T HnL < p HnL,  for  some polynomial  sequence  p.   To  sum up,  the  problem of  determining  whether  a
graph is Hamiltonian is theoretically possible; however, for large graphs we consider it a practical impossibility. Many of the problems we will
discuss in the next section, particularly the Traveling Salesman Problem, are thought to be impossible in the same sense. 

Definition: The n-cube. Let n ¥ 1, and  let Bn be the set of strings of 0's and 1's with length n.   The n-cube is the undirected graph with
a vertex for each string in Bn and an edge connecting each pair of strings that differ in exactly one position. 
The 1-cube, 2-cube, 3-cube, and 4-cube are shown in Figure 9.4.6.
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Figure 9.4.6  
n-cubes, n=1, 2, 3, 4

The Gray Code.   A Hamiltonian circuit  of  the  n-cube can be described recursively.  The circuit  itself,  called the  Gray Code,  is  not  the  only
Hamiltonian circuit of the n-cube, but it is the easiest to describe. The standard way to write the Gray Code is as a column of strings, where the
last string is followed by the first string to complete the circuit.

Basis  (n = 1):  The Gray Code for  the  1-cube is  G1 = K
0
1 O.    Note  that  the  edge between 0  and 1  is  used twice  in  this  circuit.   That  doesn't

violate any rules for Hamiltonian circuits, but can only happen if a graph as two vertices.
Recursion: Given the Gray Code for the n-cube, n > 1, then Gn+1  is obtained by (1) listing Gn  with each string prefixed with 0, and then (2)
reversing the list of strings in Gn with each string prefixed with 1.  Symbolically, the recursion can be expressed as

Gn+1 =
0 Gn

1 Gn
r

where Gn
r is the reverse of list Gn.   The Gray Codes for the 2-cube and 3-cube are

G2 =

00
01
11
10

        and    G3 =

000
001
011
010
110
111
101
100

Applications of the Gray Code. One application of the Gray code was discussed in the Introduction to this book.   An other application is in
statistics.  In a statistical analysis, there is often a variable that depends on several factors, but exactly which factors are significant may not be
obvious. For each subset of factors, there would be certain quantities to be calculated. One such quantity is the multiple correlation coefficient
for a subset.  If  the correlation coefficient  for a given subset,  A,  is  known, then the value for any subset  that  is  obtained by either deleting or
adding an element to A can be obtained quickly. To calculate the correlation coefficient for each set, we simply travel along Gn, where n is the
number of factors being studied. The first vertex will always be the string of 0's, which represents the empty set. For each vertex that you visit,
the set that it corresponds to contains the kth factor if the kth character is a 1.
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EXERCISES FOR SECTION 9.4
A Exercises
1. ! Locate a map of New York City and draw a graph that represents its land masses, bridges and tunnels. Is there a Eulerian path through New
York City? You can do the same with any other city that has at least two land masses.
2. ! Which of the drawings in Figure 9.4.7 can be drawn without removing your pencil from the paper and without drawing any line twice?

(c)

Figure 9.4.7  
Exercise 2

3. ! Write out the Gray Code for the 4-cube.

4. ! Find a Hamiltonian circuit for the dodecahedron graph in Figure 9.4.4.

5. ! The Euler Construction Company has been contracted to construct an extra bridge in Königsberg so that a Eulerian path through the town
exists. Can this be done, and if so, where should the bridge be built?
6. !(a) Determine which of the graphs in Figure 9.4.8 has a Eulerian path?

     (b) Find a Eulerian path for the graphs that have one.
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Figure 9.4.8  
Exercise 6

B Exercises
7. ! Formulate Euler's theorem for directed graphs.

8. ! Prove that the number of vertices in an undirected graph with odd degree must be even. (Hint: Prove by induction on the number of edges.)

9. !(a) Under what conditions will a round-robin tournament graph be Eulerian?

     (b) Prove that every round-robin tournament graph is Hamiltonian.

10.  For what values of n is n-cube Eulerian.
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9.5 Graph Optimization
The common thread that connects all of the problems in this section is the desire to optimize (maximize or minimize) a quantity that is associ-
ated  with  a  graph.  We will  concentrate  most  of  our  attention  on  two of  these  problems,  the  Traveling  Salesman Problem and the  Maximum
Flow Problem. At the close of this section, we will discuss some other common optimization problems.

Definition:  Weighted  Graph.  A  weighted  graph,  HV, E, wL,  is  a  graph  HV, EL  together  with  a  weight  function  w : E Ø !.   If  e œ E,
w HeL is the weight on edge e.
As you will see in our examples, w HeL is usually a cost associated with the edge e; therefore, most weights will be positive.

Example 9.5.1. Let V be the set of six capital cities in New England: Boston, Augusta, Hartford, Providence, Concord, and Montpelier. Let E
be 88a, b< œ V µV a ! b<; that is, HV , EL is a complete unordered graph. An example of a weight function on this graph is

 wHc1, c 2L = the distance from c1 to c2 . 

Many road maps define distance functions as in Figure 9.5.1.

  

ME MA NH CT VT RI
Augusta, ME - 165 148 266 190 208
Boston, MA 165 - 75 103 192 43
Concord, NH 148 75 - 142 117 109
Hartford, CT 266 103 142 - 204 70

Montpelier, VT 190 192 117 204 - 223
Providence, RI 208 43 109 70 223 -

FIGURE 9.5.1
 Distances between capital cities of New England

The Traveling Salesman Problem
The Traveling Salesman Problem is,  given a weighted graph,  to  find a  circuit  He1, e2, …, enL  that  visits  every vertex at  least  once and mini-
mizes the sum of the weights,

⁄
i=1

n
wHeiL

Any such circuit is called an optimal path.

Notes.   (a) ! Some statements of the Traveling Salesman Problem require that the circuit be Hamiltonian. In many applications, the graph
in question will be complete and this restriction presents no problem.
(b) ! If the weight on each edge is constant, for example, w HeL = 1, then the solution to the Traveling Salesman Problem will be any Hamilto-
nian circuit, if one exists.

Example 9.5.2. The Traveling Salesman Problem gets its name from the situation of a salesman who wants to minimize the number of
miles that he travels in visiting his customers. For example, if a salesman from Boston must visit the other capital cities of New England, then
the  problem  is  to  find  a  circuit  in  the  weighted  graph  of  Example  9.5.1.  Note  that  distance  and  cost  are  clearly  related  in  this  case.   In
addition, tolls and traffic congestion might also be taken into account in this case. 
The  search  for  an  efficient  algorithm  that  solves  the  Traveling  Salesman  has  occupied  researchers  for  years.   If  the  graph  in  question  is
complete, there are Hn - 1L ! different circuits. As n gets large, it is impossible to check every possible circuit. The most efficient algorithms for
solving  the  Traveling  Salesman  Problem take  an  amount  of  time  that  is  proportional  to  n 2n.  Since  this  quantity  grows  so  quickly,  we  can't
expect to have the time to solve the Traveling Salesman Problem for large values of n. Most of the useful algorithms that have been developed
have to be heuristic; that is, they find a circuit that should be close to the optimal one. One such algorithm is the "closest neighbor" algorithm,
one of the earliest attempts at solving the Traveling Salesman Problem. The general idea behind this algorithm is, starting at any vertex, to visit
the  closest  neighbor  to  the  starting  point.  At  each  vertex,  the  next  vertex  that  is  visited  is  the  closest  one  that  has  not  been  reached.  This
shortsighted approach typifies heuristic algorithms called greedy algorithms, which attempt to solve a minimization (maximization) problem by
minimizing (maximizing) the quantity associated with only the first step.

Algorithm  9.5.1.  The  Closest  Neighbor  Algorithm.   Let  G = HV, E, wL  be  a  complete  weighted  graph  with  V = n.  The  closest
neighbor circuit through G starting at v1 is Hv1, v2, …, vnL, defined by the steps:

1. ! V1 = V - 8v1<.
2. !For k = 2 to n - 1 

2.1 ! vk = the closest vertex in Vk-1 to vk-1
(* wHvk-1 , v kL = min HwHvk-1 , vL v œ Vk-1L *)

                       In case of a tie for closest, vk may be chosen arbitrarily.
2.2! Vk = Vk-1 - 8vk <

3. ! vn = the only element of Vn.

The cost of the closest neighbor circuit is

 ⁄
k=1

n-1
wHvk, vk+1L + wHvn, v1L

Example  9.5.3.  The  closest  neighbor  circuit  starting  at  A  in  Figure  9.5.2  is  H1, 3, 2, 4, 1L,  with  a  cost  of  29.  The  optimal  path  is
H1, 2, 3, 4, 1L, with a cost of 27.
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Example 9.5.3

Although the closest neighbor circuit is often not optimal, we may be satisfied if it is close to optimal. If Copt  and Ccn  are the costs of optimal

and  closest  neighbor  circuits  in  a  graph,  then  it  is  always  the  case  that  Copt § Ccn  or  Ccn
Copt

¥ 1.  We can  assess  how good  the  closest  neighbor

algorithm is by determining how small the quantity Ccn
Copt

 gets.  If it is always near 1, then the algorithm is good. However, if there are graphs for

which it is large, then the algorithm may be discarded. Note that in Example 9.5.3, Ccn
Copt

= 29
27

º 1.074.  A 7% increase in cost may or may not

be considered significant, depending on the situation.
Example 9.5.4. A salesman must make stops at vertices A, B, and C, which are all on the same one-way street. The graph in Figure 9.5.3

is weighted by the function
 w Hi, jL = the time it takes to drive from vertex i to vertex j. 

Note that if j is down the one-way street from i, then w Hi, jL < w H j, iL. The values of Copt  , and Ccn  are 20 and 32, respectively. Verify that
Ccn  is  32 by using the closest  neighbor algorithm. The value of  Ccn

Copt
= 1.6 is  significant  in  this  case since our  salesman would spend 60%

more time on the road if he used the closest neighbor algorithm.

4
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A B C

Start

FIGURE 9.5.3
Example 9.5.4

A more general result relating to the closest neighbor algorithm presumes that the graph in question is complete and that the weight function
satisfies the conditions 

(1)  wHx, vL = w Hy, xL for all x, y in the vertex set, and 

(2) w Hx, yL + w Hy, zL ¥ w Hx, zL for all x, y, z in the vertex set.

The first condition is called the symmetry condition and the second is the triangle inequality.

The following theorem's reference needs to be updated:

Theorem 9.5.1. If HV, E, wL is a complete weighted graph that satisfies the symmetry and triangle inequality conditions, then

Ccn
Copt !

§
alog2 H2 nLq

2
    (9.5a)
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Proof: See Liu, pages 105-109.

Notes:   (a) !  If  V = 8, then this theorem says that Ccn  can be no larger than twice the size of Copt;  however,  it  doesn't  say that the closest

neighbor circuit will necessarily be that far from an optimal circuit. The quantity 
alog2 H2 nLq

2
 is called an upper bound for the ratio Ccn

Copt!
. It tells us

only that things can't be any worse than the upper bound. Certainly, there are many graphs with eight vertices such that the optimal and closest
neighbor circuits are the same. What is left unstated in this theorem is whether there are graphs for which the quantities in 9.5a are equal.  If
there are such graphs, we say that the upper bound is sharp.

(b) ! The value of Ccn
Copt!

 in Example 9.5.4 is 1.6, which is greater than 
alog2 H2 µ 4Lq

2
= 1.5; however, the weight function in this example does not

satisfy the conditions of the theorem.

The Traveling Salesman Problem—Unit Square Version
Example 9.5.5. A robot is programmed to weld joints on square metal plates. Each plate must be welded at prescribed points on the square. To
minimize the time it  takes to complete the job, the total  distance that a robot's  arm moves should be minimized. Let dHP, QL  be the distance
between P and Q.  Assume that before each plate can be welded, the arm must be positioned at a certain point P0  . Given a list of n points, we
want to put them in order so that
           dHP 0, P1L + dHP1, P 2 L +! + dHPn-1, PnL + dHPn , P 0 L

is as small as possible.

The  type  of  problem  that  is  outlined  in  Example  9.5.5  is  of  such   importance  that  it  is  probably  the  most  studied  version  of  the  Traveling
Salesman  Problem.  What  follows  is  the  usual  statement  of  the  problem.  Let  @0, 1D = 8x œ ! 0 § x § 1<,   and  let  S = @0, 1D2,  the  unit
square. Given n pairs of real numbers  Hx1, y1L, Hx2, y2L, …, Hxn, ynL in S that represent the n vertices of a Kn  , find a circuit of the graph that
minimizes the sum of the distances traveled in traversing the circuit.
Since the problem calls for a circuit, it doesn't matter which vertex we start at; assume that we will start at Hx1, y1L. Once the problem is solved,
we  can  always  change  our  starting  position.  A  function  can  most  efficiently  describe  a  circuit  in  this  problem.  Every  bijection
f : 81, . . . , n< Ø 81, . . . , n< with f H1L = 1 describes a circuit

 Hx1, y1L, Ix f H2L, y f H2LM, …, Ix f HnL, y f HnLM  

Since there are Hn - 1L ! such bijections, an examination of all possible circuits is not feasible for large values of n.

One popular heuristic algorithm is the strip algorithm: 

Algorithm 9.5.2:  The Strip Algorithm.  Given n points in the unit square:

Phase 1:

(1.1)!Divide the square into b n ê2 r vertical strips, as in Figure 9.5.4. Let d be the width of each strip. If a point lies on a boundary between
two strips, consider it part of the left-hand strip.
(1.2)!Starting  from  the  left,  find  the  first  strip  that  contains  one  of  the  points.  Locate  the  starting  point  by  selecting  the  first  point  that  is
encountered in that strip as you travel from bottom to top. We will assume that the first point is Hx1, y1L
(1.3)!Alternate traveling up and down the strips that contain vertices until all of the vertices have been reached.

(1.4)!Return to the starting point.

Phase 2:

(2.1)!Shift all strips d ê2  units to the right (creating a small strip on the left).

(2.2)!Repeat Steps 1.2 through 1.4 of Phase 1 with the new strips.

When the two phases are complete, choose the shorter of the two circuits obtained.

Step 1.3 needs a bit more explanation. How do you travel up or down a strip? In most cases, the vertices in a strip will be vertically distributed
so that the order in which they are visited is obvious. In some cases, however, the order might not be clear, as in the third strip in Phase I of
Figure 9.5.4. Within a strip, the order in which you visit the points (if you are going up the strip) is determined thusly: Hxi, yiL precedes Ix j, y jM
if yi < y j or if yi = y j and xi < x j . In traveling down a strip, replace  yi < y j with yi > y j.
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FIGURE 9.5.4
The Strip Algorithm

The selection of b n ê2 r strips was made in a 1959 paper by Beardwood, Halton, and Hammersley. It balances the problems that arise if the
number of strips is too small or too large. If the square is divided into too few strips, some strips may be packed with vertices so that visiting
them would require excessive horizontal motion. If too many strips are used, excessive vertical motion tends to be the result. An update on what
is known about this algorithm is contained in the paper by K. J. Supowit, E. M. Reingold, and D. A. Plaisted.
Since  the  construction  of  a  circuit  in  the  square  consists  of  sorting  the  given  points,  it  should  come  as  no  surprise  that  the  strip  algorithm
requires a time that is roughly a multiple of n log n time units when n points are to be visited.

The worst case that has been encountered with this algorithm is one in which the circuit obtained has a total distance of approximately 2 n
(see Sopowit et al.).

NETWORKS AND THE MAXIMUM FLOW PROBLEM
Definition: Network.  A network is a simple weighted directed graph that contains two distinguished vertices called the source and the

sink with the property that the indegree of the source and outdegree of the sink are both zero.   The weight function o home112
n a network is the capacity function. 

 An example of a real situation that can be represented by a network is a city's water system. A reservoir would be the source, while a distribu-
tion point in the city to all of the users would be the sink. The system of pumps and pipes that carries the water from source to sink makes up
the remaining network. We can assume that the water that passes through a pipe in one minute is controlled by a pump and the maximum rate is
determined by the  size  of  the  pipe  and the  strength  of  the  pump.  This  maximum rate  of  flow through a  pipe  is  called  its  capacity  and is  the
information that the weight function of a network contains.

Example 9.5.6. Consider the system that is illustrated in Figure 9.5.5. The numbers that appear next to each pipe indicate the capacity of
that pipe in thousands of gallons per minute. This map can be drawn in the form of a network, as in Figure 9.5.6.

FIGURE 9.5.5
Diagram of a city's water system

Although the material  passing through this  network is  water,  networks can also represent  the flow of  other  materials,  such as  automobiles,
electricity, telephone calls or patients in a health system.
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e1 25

e2 35

e4 30

e3 15

e5 20

Source

A

B

Sink

FIGURE 9.5.6
Flow diagram for a city's water system

The Maximum Flow Problem is derived from the objective of moving the maximum amount of water or other material from the source to the
sink. To measure this amount, we define a flow as a function f : E Ø ! such that (1) the flow of material through any edge is nonnegative and
no larger than its capacity: 0 § f HeL § w HeL, for all e œ E; and (2) for each vertex other than the source and sink, the total amount of material
that is directed into a vertex is equal to the total amount that is directed out:

 
⁄

Hx,vLœE
f Hx, vL = ⁄

Hv,yLœE
f Hv, yL

Flow into v = Flow out of v
           (9.5b)

The summation notation on the left of 9.5b represents the sum of the flows through each edge in E that has v as a terminal vertex. The right-
hand side indicates that you should add all of the flows through edges that initiate at v.

Theorem 9.5.2. If f is a flow, then

⁄
Hsource,vLœE

f Hsource, vL = ⁄
Hv,sinkLœE

f Hv, sinkL   

This common value is called the value of the flow. We will denote the value of a flow by V H f L.  The value of a flow represents the amount of
material that passes through the network with that flow.
Proof.   Subtract the right-hand side of 9.5b from the left-hand side. The result is: 

Flow into v - Flow out of v = 0

 Now sum up these differences for each vertex in V ' = V - 8source, sink<. The result is

⁄
vœV '

⁄
Hx,vLœE

f Hx, vL - ⁄
Hv,yLœE

f Hv, yL = 0   (9.5c)

Now observe that if an edge connects two vertices in V, its flow appears as both a positive and a negative term in 9.5c. This means that the only
positive terms that  are not  cancelled out  are the flows into the sink.  In addition,  the only negative terms that  remain are the flows out  of  the
source. Therefore,

⁄
Hv,sinkLœE

f Hv, sinkL - ⁄
Hsource,vLœE

f Hsource, vL = 0 ‡

MAXIMAL FLOWS
Since  the  Maximum  Flow  Problem  consists  of  maximizing  the  amount  of  material  that  passes  through  a  given  network,  it  is  equivalent  to
finding a flow with the largest possible value. Any such flow is called a maximal flow.
For  the  network in  Figure  9.5.6,  one  flow is  f1,  defined by f1He1L = 25,  f1He2L = 20,  f1He3L = 0,  f1He4L = 25,  and f1He5L = 20.  The value  of  f1,
VH f1L, is 45. Since the total flow into the sink can be no larger than 50 (w He4L + w He5L = 30 + 20), we can tell that f1 is not very far from the
solution. Can you improve on f1 at all?  The sum of the capacities into the sink can't always be obtained by a flow. The same is true for the sum
of  the  capacities  out  of  the  source.  In  this  case,  the  sum  of  the  capacities  out  of  the  source  is  60,  which  obviously  can't  be  reached  in  this
network.
A solution of the Maximum Flow Problem for this network is the maximal flow f2, where f2He1L = 25, f2He2L = 25, f2He3L = 5, f2He4L = 30, and
f2He5L = 20, with VH f2L = 50. This solution is not unique. In fact, there is an infinite number of maximal flows for this problem.
There have been several algorithms developed to solve the Maximal Flow Problem. One of these is the Ford and Fulkerson Algorithm (FFA).
The FFA consists of repeatedly finding paths in a network called flow augmenting paths until no improvement can be made in the flow that has
been obtained.
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There have been several algorithms developed to solve the Maximal Flow Problem. One of these is the Ford and Fulkerson Algorithm (FFA).
The FFA consists of repeatedly finding paths in a network called flow augmenting paths until no improvement can be made in the flow that has
been obtained.

Definition: Flow Augmenting Path. Given a flow f in a network HV, EL, a flow augmenting path with respect to f is a simple path from
the source to the sink using edges both in their forward and their reverse directions such that for each edge e in the path, w HeL - f HeL > 0
if e is used in its forward direction and f HeL > 0  if e is used in the reverse direction.
Example 9.5.7.  For f1 in Example 9.5.6, a flow augmenting path would be He2 , e3 , e4 L since

wHe2L - f1He2L = 15,  wHe3L - f1He3L = 5, and wHe4L - f1He4L = 5.

These positive differences represent unused capacities, and the smallest value represents the amount of flow that can be added to each edge in
the path. Note that by adding 5 to each edge in our path, we obtain f2, which is maximal. If an edge with a positive flow is used in its reverse
direction,  it  is  contributing a movement of  material  that  is  counterproductive to the objective of  maximizing flow. This is  why the algorithm
directs us to decrease the flow through that edge.

Algorithm 9.5.3: The Ford and Fulkerson Algorithm.  

(1) !Define the flow function f0 by f0HeL = 0  for each edge e œ E.

(2) ! i = 0.

(3) ! Repeat:

(3.1)!If possible, find a flow augmenting path with respect to fi.

(3.2)!If a flow augmenting path exists, then:

(3.2.1)!Determine

     d = min 88w HeL - fiHeL e is used in the forward direction<,
8 fiHeL e is used in the reverse direction<<

(3.2.2)!Define fi+1 by

fi+1HeL = fiHeL if e is not part of the flow augmenting path
fi+1HeL = fiHeL + d if e is used in the forward direction
fi+1 HeL = fiHeL - d if e is used in the reverse direction

(3.2.3)! i = i + 1.

         until no flow augmenting path exists.

(4) !Terminate with a maximal flow  fi

Notes:

(a) ! It should be clear that every flow augmenting path leads to a flow of increased value and that none of the capacities of the network can be
violated.
(b)  !  The  depth-first  search  should  be  used  to  find  flow  augmenting  paths  since  it  is  far  more  efficient  than  the  breadth-first  search  in  this
situation.  The depth-first  search differs  from the  broadcasting algorithm (a  variation of  the  breadth-first  search)  in  that  you sequentially  visit
vertices until you reach a "dead end" and then backtrack.
(c) ! There have been networks discovered for which the FFA does not terminate in a finite number of steps. These examples all have irrational
capacities. It has been proven that if all capacities are positive integers, the FFA terminates in a finite number of steps. See Ford and Fulkerson,
Even, or Berge for details.
(d) ! When you use the FFA to solve the Maximum Flow Problem by hand it is convenient to label each edge of the network with the fraction
fiHeL êwHeL.

A Depth-First  Search for  the Sink Initiating at  the Source.  Let  E '  be the set  of  directed edges that  can be used in producing a flow
augmenting path. Add to the network a vertex called start and the edge Hstart, sourceL.

(1) S = vertex set of the network.
(2)! p = start.
(3)! p = source   H*Move p along the edge Hstart, sourceL *L
(4) ! While p is not equal to start or sink do.

If an edge in E ' exists that takes you from p to another vertex in S
 then set p to be that next vertex and delete the edge from E '.
                         else  reassign p to be the vertex that p was reached from (i.e., backtrack).
(5) !If p = start,   

then no flow augmenting path exists.
else  p = sink, you have found a flow augmenting path.

Example  9.5.8.  Consider  the  network  in  Figure  9.5.7,  where  the  current  flow,  f,  is  indicated  by  a  labeling  of  the  edges.  The  path
HSource, v2 , v1, v3 , SinkL is a flow augmenting path that allows us to increase the flow by one unit.  Note that Hv1, v3L is used in the reverse
direction, which is allowed because f Hv1, v3L > 0. The value of the new flow that we obtain is 8. This flow must be maximal since the capacities
out of the source add up to 8. This maximal flow is defined by the labeling of Figure 9.5.8.
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FIGURE 9.5.7
Current flow in Example 9.5.8
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FIGURE 9.5.8
Augmented, optimal flow in Example 9.5.8

OTHER GRAPH-OPTIMIZATION PROBLEMS
(a)  !  The  Minimum  Spanning  Tree  Problem:  Given  a  weighted  graph,  HV , E, wL,  find  a  subset  E'  of  E  with  the  properties  that  HV , E 'L  is
connected and the sum of the weights of edges in E ' are as small as possible. We will discuss this problem in Chapter 10.
(b) ! The Minimum Matching Problem: Given an undirected weighted graph, HK E, wL, with an even number of vertices, pair up the vertices so
that each pair is connected by an edge and the sum of these edges is as small as possible. A unit square version of this problem has been studied
extensively. See References: [Sopowit001] for details on what is known about this version of the problem.
(c) ! The Graph Center Problem: Given a connected, undirected, weighted graph, find a vertex (the center) in the graph with the property that
the distance from the center to every other vertex is as small as possible. "As small as possible" could be interpreted either as minimizing the
sum of the distances to each vertex or as minimizing the maximum distance from the center to a vertex.

EXERCISES FOR SECTION 9.5
A Exercises
1. ! Find the closest neighbor circuit through the six capitals of New England starting at Boston. If you start at a different city, will you get a
different circuit?
2. !Is Theorem 9.5.1 sharp for n = 3? For n = 4?

3. ! Given the following sets of points in the unit square, find the shortest circuit that visits all the points and find the circuit that is obtained with
the strip algorithm.
(a) !8H0.1 k, 0.1 kL : k = 0, 1, 2, . . . , 10<

(b) !8H0.1, 0.3L, H0.3, 0.8L, H0.5, 0.3L, H0.7, 0.9L, H0.9, 0.1L<

(c) !8H0.0, 0.5L, H0.5, 0.0L, H0.5, 1.0L, H1.0, 0.5L<

(d) !8H0, 0L, H0.2, 0.6L, H0.4, 0.1L, H0.6, 0.8L, H0.7, 0.5L<

4.  For n = 4, 5, and 6, locate n points in the unit square for which the strip algorithm works poorly.

5.  Consider the network whose maximum capacities are shown on the following graph.
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3

2

6
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a

b

c d

g

Sink

(a) !A function  f is partially defined on the edges of this network by:

f HSource, cL = f HSource, bL = f HSource, aL = 2,  and f Ha, dL = 1. 

      Define f on the rest of the other edges so that f is a flow.  What is the value of f ?

(b) !Find a flow augmenting path with respect to f for this network. What is the value of the augmented flow?

(c) ! Is the augmented flow a maximum flow?  Explain.

6.   Given  the  following network  with  capacity  function  c  and  flow function  f,  find  a  maximal  flow function.  The  labels  on  the  edges  of  the
network are of the form f HeL êc HeL, where c HeL is the capacity of edge e and f HeL is the used capacity for flow f.

7ê8

3ê4

3ê6

4ê5 2ê2

5ê5

5ê7

Source

A

C

B

Sink

7. ! Find maximal flows for the following networks.

8

25

20
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8

20

8

15
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a

c

b

Sink

d

HaL
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B Exercises
8. ! (a) [Easy] Find two maximal flows for the network in Figure 9.5.6 other than the one found in the text.

      (b) [Harder] Describe the set of all maximal flows for the same network.

     (c) [Hardest] Prove that if a network has two maximal flows, then it has an infinite number of maximal flows.

9. Discuss reasons that the closest neighbor algorithm is not used in the unit square version of the Traveling Salesman Problem. (Hint: Count
the number of comparisons of distances that must be done.)

C Exercises
10. ! Explore the possibility of solving the Traveling Salesman Problem in the "unit box": @0, 1D3 .
11. ! Devise a "closest neighbor" algorithm for matching points in the unit square.
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9.6 Planarity and Colorings
The topics in this section are related to how graphs are drawn.

Planarity:  Can a given graph be drawn in a plane so that no edges intersect? Certainly, it is natural to avoid intersections, but up to now we
haven't gone out of our way to do so.
Colorings: Suppose that each vertex in an undirected graph is to be colored so that no two vertices that are connected by an edge have the same
color. How many colors are needed? This question is motivated by the problem of drawing a map so that no two bordering countries are colored
the same. A similar question can be asked for coloring edges.

Definition: Planar Graph/ Plane Graph/Planar Embedding.  A graph is planar if it can be drawn in a plane so that no edges cross.  If a
graph is drawn so that no edges intersect, it is a plane graph, and such a drawing is a planar embedding of the graph.
Example 9.6.1. The graph in Figure 9.6.1(a) is planar but not a plane graph.  The same graph is drawn as a plane graph in Figure 9.6.1(b)

1

2 3

4

HaL
1

2 3

4

HbL

Figure 9.6.1
A planar graph and a planar embedding 

Notes:

(a) ! In discussing planarity, we need only consider simple undirected graphs with no self-loops. All other graphs can be treated as such since all
of the edges that relate any two vertices can be considered as one "package" that clearly can be drawn in a plane.
(b) !  Can you think of a graph that is not planar? How would you prove that it isn't planar? Proving the nonexistence of something is usually
more difficult than proving its existence. This case is no exception. Intuitively, we would expect that sparse graphs would be planar and dense
graphs would be nonplanar. Theorem 9.6.2 will verify that dense graphs are indeed nonplanar.
(c) !  The topic of planarity is a result  of trying to restrict a graph to two dimensions. Is there an analogous topic for three dimensions? What
graphs can be drawn in one dimension?
Answer to Note c: If a graph has only a finite number of vertices, it can always be drawn in three dimensions. This is not true for all graphs with
an infinite number of vertices. The only "one-dimensional" graphs are the ones that consist of a finite number of chains, as in Figure 9.6.2, with
one or more vertices in each chain.

1 1 2 1 2 3

Figure 9.6.2
Chains of length one, two and three

Example 9.6.2. A discussion of planarity is not complete without mentioning the famous Three Utilities Puzzle. The object of the puzzle is to
supply three houses, A, B, and C, with the three utilities, gas, electric, and water. The constraint that makes this puzzle impossible to solve is
that no utility lines may intersect i. e., a planar embedding of the graph in Figure 9.6.3, which is commonly denoted K3,3.  This graph is one of
two fundamental nonplanar graphs.  The Kuratowski Reduction Theorem states that if a graph is nonplanar then "contains" either a K3,3 or a K5.
Containment  is  in  the  sense  that  if  you  start  with  a  nonplanar  graph  you  can  always  perform a  sequence  of  edge  deletions  and  contractions
(shrinking an edge so that the two vertices connecting it coincide) to produce one of the two graphs.
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A B C

G E W

Figure 9.6.3
The Three Utilities Puzzle.

A planar graph divides the plane into one or more regions. Two points on the plane lie in the same region if you can draw a curve connecting
the two points that does not pass through an edge. One of these regions will be of infinite area. Each point on the plane is either a vertex, a point
on an edge, or a point in a region. A remarkable fact about the geography of planar graphs is the following theorem that is attributed to Euler.

Theorem 9.6.1: Euler's Formula. If G = (V, E) is a connected planar graph with r regions, v vertices and e edges, then
v + r - e = 2 !        (9.6a)

Experiment: Jot down a graph right now and count the number of vertices, regions, and edges that you have. If v + r - e is not 2, then your
graph is either nonplanar or not connected.

Proof:  We prove Euler's Formula by Induction on e, for e ¥ 0.

Basis:  If e = 0, then G must be a graph with one vertex, v = 1; and there is one infinite region, r = 1.

Therefore, v + r - e = 1 + 1 - 0 = 2, and the basis is true.

Induction: Suppose that G has k edges, k ¥ 1, and that all connected planar graphs with less than k edges satisfy 9.6a. Select any edge that is
part of the boundary of the infinite region and call it e1. Let G '  be the graph obtained from G by deleting e1. Figure 9.6.4 illustrates the two
different possibilities we need to  consider:  either G ' is connected or it has two connected components, G1 and G2.

Figure 9.6.4
Two case in the proof of Euler's Formula

If  G '  is  connected,  the induction hypothesis  can be applied to it.   If  G '  has v '  vertices,  r '   edges and e '  edges,  then  v ' + r ' - e ' = 2 and in
terms of the corresponding numbers for G,  

     
v ' = v No vertices were removed to form G '

r ' = r - 1 One region of G merged with the infinite region when e1 is removed
e ' = k - 1 We assumed that G had k edges.

For the case where G ' is connected, 

v + r - e = v + r - k
= v ' + Hr ' + 1L - He ' + 1L
= v ' + r ' - e '
= 2

If G'  is not connected, it must consist of two connected components, G1  and G2  since we started with a connected graph, G.  We can apply
the induction hypothesis to each of the two components to complete the proof.   We leave it to the students to do this, with the reminder that
in counting regions, G1 and G2  will share the same infinite region.    ‡

Theorem 9.6.2.  If G = HV, EL is a connected planar graph with v vertices, v ¥ 3,  and e edges, then

e § 3 v - 6. !    (9.6b)
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Remark:  One  implication  of  9.6b  is  that  the  number  of  edges  in  a  connected  planar  graph  will  never  be  larger  than  three  times  its
number.of  vertices  (as  long as  it  has at  least  three vertices).  Since the maximum number of  edges in a  graph with v  vertices  is  a  quadratic
function of v, as v increases, planar graphs are more and more sparse.

Outline of a Proof of Theorem 9.6.2.

(a) ! Let r be the number of regions in G. For each region, count the number of edges that comprise its border. The sum of these counts must
be at least 3r.  Recall that we are working with simple graphs here, so a region made by two edges connecting the same two vertices is not
possible.

(b) !Based on (a), infer that the number of edges in G must be at least 3 r
2

.

(c) ! e ¥ 3 r
2

fl r § 2 e
3

(d) ! Substitute 2 e
3

 for r in Euler's Formula to obtain an inequality that is equivalent to 9.6.b.  ‡

The following theorem will be useful as we turn to graph coloring.

Theorem 9.6.3. If G is a connected planar graph, then it has a vertex with degree 5 or less.

Proof (by contradiction): We can assume that G has at least seven vertices, for otherwise the degree of any vertex is at most 5.  Suppose
that G is a connected planar graph and each vertex has a degree of 6 or more. Then, since each edge contributes to the degree of two vertices,
e ¥ 6 v

2
= 3 v.  However, Theorem 9.6.2 states that the e § 3 v - 6 < 3 v, which is a contradiction. ‡

GRAPH COLORING

Figure 9.6.5
A 3-coloring of Euler Island

The map of Euler Island in Figure 9.6.5 shows that there are seven towns on the island. Suppose that a cartographer must produce a colored
map in which no two towns that  share a boundary have the same color.  To keep costs  down, she wants to minimize the number of  different
colors that appear on the map. How many colors are sufficient? For Euler Island, the answer is three. This problem motivates a more general
problem.
The Graph Coloring Problem.  Given an undirected graph G = HV , EL,  find a "coloring function" f  from V  into a set  of  colors H  such that
Ivi, v jM œ E fl f HviL ! f Iv jM and H has the smallest possible cardinality. The cardinality of H is called the chromatic number of G, c HGL.

Notes:

(a) ! A coloring function onto an n element set is called an n-coloring.

(b)  !  In  terms of  this  general  problem, the chromatic  number of  the graph of  Euler  Island is  three.  To see that  no more than three colors  are
needed, we need only display a 3-coloring: f H1L = f H4L = f H6L = blue, f H2L = red, and f H3L = f H5L = f H7L = white. This coloring is not
unique. The next smallest set of colors would be of two colors, and you should be able to convince yourself that no 2-coloring exists for this
graph.
In the mid-nineteenth century, it became clear that the typical planar graph had a chromatic number of no more than 4. At that point, mathemati-
cians attacked the Four-Color Conjecture,  which is  that  if  G  is  any planar graph,  then its  chromatic number is  no more than 4.  Although the
conjecture is quite easy to state, it took over 100 years, until 1976, to prove the conjecture in the affirmative.

Theorem 9.6.4: The Four-Color Theorem. If G is a planar graph, then c HGL § 4.

A proof of the Four-Color Theorem is beyond the scope of this text, but we can prove a theorem that is only 25 percent inferior.

Theorem 9.6.5: The Five-Color Theorem. If G is a planar graph, then c HGL § 5.

The number 5 is not a sharp upper bound for cHGL because of the Four-Color Theorem.

Proof, by Induction on the Number of Vertices in the Graph:

Basis: Clearly, a graph with one vertex has a chromatic number of 1.

Induction: Assume that all planar graphs with n - 1 vertices have a chromatic number of 5 or less. Let G be a planar graph. By Theorem 9.6.2,
there exists a vertex v with deg v § 5. Let G - v be the planar graph obtained by deleting v and all edges that connect v to other vertices in G.
By the induction hypothesis, G - v has a 5-coloring. Assume that the colors used are red, white, blue, green, and yellow. 
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If deg v < 5, then we can produce a 5-coloring of G by selecting a color that is not used in coloring the vertices that are connected to v with an
edge in G.
If deg v = 5, then we can use the same approach if the five vertices that are adjacent to v are not all colored differently. We are now left with
the possibility that v1, v2, v3, v4, and v5  are all connected to v by an edge and they are all colored differently. Assume that they are colored red,
white blue, yellow, and green, respectively, as in Figure 9.6.6. 

v1
Red

v2
White

v3
Blue

v4
Yellow

v5 Green

v

Figure 9.6.6

Starting at v1 in G - v, suppose we try to construct a path v3 that passes through only red and blue vertices.   This can either be accomplished or
it can't be accomplished.  If it can't be done,  consider all paths that start at v1, and go through only red and blue vertices. If we exchange the
colors of the vertices in these paths, including v1  we still have a 5-coloring of G - v. Since v1  is now blue, we can color the central vertex, v,
red.
Finally, suppose that v1 is connected to v3 using only red and blue vertices. Then a path from v1 to v3 by using red and blue vertices followed by
the edges Hv3, vL and Hv, v1L completes a circuit that either encloses v2  or encloses v4  and v5  . Therefore, no path from v2  to v4  exists using only
white and yellow vertices.  We can then repeat the same process as in the previous paragraph with v2  and v4  ,  which will  allow us to color v
white.  ‡

Definition: Bipartite Graph.  A bipartite graph is a graph that has a 2-coloring.  Equivalently, a graph is bipartite if its vertices can be
partitioned into two nonempty subsets so that no edge connects a vertices from the same from each subset.

Example 9.6.3.

(a) !The graph of the Three Utilities Puzzle is bipartite. The vertices are partitioned into the utilities and the homes. Of course a 2-coloring of
the graph is to color the utilities red and the homes blue.
(b)  !For n ¥ 1,  the n-cube is  bipartite.  A coloring would be to  color  all  strings with an even number of  1's  red and the strings with an odd
number of 1's blue. By the definition of the n-cube, two strings that have the same color couldn't be connected since they would need to differ
in at least two positions.
(c) ! Let V be a set of 64 vertices, one for each square on a chess board. We can index the elements of V by

 vi j = the square on the row i, column j. 

Connect vertices in V according to whether or not you can move a knight from one square to another. Using our indexing of V,

Ivi j, vk lM œ E if and only if      
i - k + j - l = 3

and i - k ÿ j - l = 2
HV , EL is a bipartite graph. The usual coloring of a chessboard is valid 2-coloring.

How can you recognize whether a graph is bipartite? Unlike planarity, there is a nice equivalent condition for a graph to be bipartite.

Theorem 9.6.6. An undirected graph is bipartite if and only if it has no circuit of odd length.

Proof. (fl) Let G = HV , EL be a bipartite graph that is partitioned into two sets, R(ed) and B(lue) that define a 2-coloring. Consider any circuit
in V.  If we  specify a direction in the circuit and define f on the vertices of the circuit by 

f HuL = the next vertex in the circuit after v. 

Note that f is a bijection. Hence the number of red vertices in the circuit equals the number of blue vertices, and so the length of the circuit must
be even. 
(ì) Assume that G has no circuit of odd length. For each component of G, select any vertex w and color it red. Then for every other vertex v
in the component, find the path of shortest distance from w to v. If the length of the path is odd, color v blue, and if it is even, color v red. We
claim that this method defines a 2-coloring of G.  Suppose that it does not define a 2-coloring. Then let va  and vb  be two vertices with identical
colors that are connected with an edge. By the way that we colored G, neither va nor  vb  could equal w.   We can now construct a circuit with an
odd  length  in  G.  First,  we  start  at  w   and  follow the  shortest  path  to  va  .  Then  follow the  edge  Hva, vbL,  and  finally,  follow the  reverse  of  a
shortest  path from w  to vb.  Since va  and vb  have the same color,  the first  and third segments of this circuit  have lengths that  are both odd or
even,  and  the  sum of  their  lengths  must  be  even.  The  addition  of  the  single  edge  Hva, vbL  shows  us  that  this  circuit  has  an  odd  length.  This
contradicts our premise.  ‡
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(ì) Assume that G has no circuit of odd length. For each component of G, select any vertex w and color it red. Then for every other vertex v
in the component, find the path of shortest distance from w to v. If the length of the path is odd, color v blue, and if it is even, color v red. We
claim that this method defines a 2-coloring of G.  Suppose that it does not define a 2-coloring. Then let va  and vb  be two vertices with identical
colors that are connected with an edge. By the way that we colored G, neither va nor  vb  could equal w.   We can now construct a circuit with an
odd  length  in  G.  First,  we  start  at  w   and  follow the  shortest  path  to  va  .  Then  follow the  edge  Hva, vbL,  and  finally,  follow the  reverse  of  a
shortest  path from w  to vb.  Since va  and vb  have the same color,  the first  and third segments of this circuit  have lengths that  are both odd or
even,  and  the  sum of  their  lengths  must  be  even.  The  addition  of  the  single  edge  Hva, vbL  shows  us  that  this  circuit  has  an  odd  length.  This
contradicts our premise.  ‡

Note: An efficient algorithm for finding a 2-coloring of a graph can be designed using the method that is used in the second part of the
proof above.

EXERCISES FOR SECTION 9.6
A Exercises
1. ! Apply Theorem 9.6.2 to prove that once n gets to a certain size, a Kn is nonplanar. What is the largest complete planar graph?

2. ! Can you apply Theorem 9.6.2 to prove that the Three Utilities Puzzle can't be solved?

3. ! What are the chromatic numbers of the following graphs?

1 2

3 4

HaL

1

2

3

4

5

HbL

1
2

3

4
5

HcL
1

2

3

4

5

HdL

1

2

3
4

5

6

7

8

HeL

1

2

3 4

HfL

4.! Prove that if an undirected graph has a subgraph that is a K3 it then its chromatic number is at least 3.

5. !What is  cHKnL , n ¥ 1?

6. ! What is the chromatic number of the United States? 

B Exercises
7. ! Complete the proof of Theorem 9.6.1.

8. ! Use the outline of a proof of Theorem 9.6.2 to write a complete proof. Be sure to point out where the premise v ¥ 3 is essential.

9.  Let  G = HV , EL  with  V ¥ 11,  and  let  U  be  the  set  of  all  undirected  edges  between  distinct  vertices  in  V.    Prove  that  either  G  or
G ' = HV , EcL is nonplanar.
10. ! Design an algorithm to determine whether a graph is bipartite.

11. !Prove that a bipartite graph with an odd number of vertices greater than or equal to 3 has no Hamiltonian circuit.

C Exercises
12. ! Prove that any graph with a finite number of vertices can be drawn in three dimensions so that no edges intersect.

13. ! Suppose you had to color the edges of an undirected graph so that for each vertex, the edges that it is connected to have different colors.
How can this problem be transformed into a vertex coloring problem?
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14. ! (a) Suppose the edges of a K6 are colored either red or blue. Prove that there will be either a "red K3" (a subset of the vertex set with three
vertices connected by red edges) or a "blue K3." 
(b) Suppose six people are selected at random. Prove that either there exists a subset of three of them with the property that any two people in
the subset can communicate in a common language, or there exist three people, no two of whom can communicate in a common language.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 9
Section 9.1
1. Determine which two of the graphs below are isomorphic and give an explicit isomorphism between those two graphs.

a b

c d

G1
e

g

h

f

G2
i j

lk

G3

2.   Teams 1, 2, 3, and 4 compete in a round-robin tournament. Draw a round-robin tournament graph that represents one of the possible out comes of the
tournament. In terms of your graph, what was the outcome of the tournament (in wins and losses)?
3.   Let G = HV , EL be an undirected graph. An independent set, W, is a subset of V having the property that no two vertices in W are connected by an edge
in E. That is,

v, w œ W fl 8v, w< – E.

Finding a maximal independent set (an independent set that is as large as possible) is often of interest.

(a)   Find a maximal independent set in the graph of Figure 9.1.2.

(b)  Prove that if W is a maximal independent set in G, then every vertex in G is connected by an edge to at least one vertex in W.

(c)   How large can a maximal independent set in a Kn be?

4.     Let  S = 81, 2, …, n<  be  a  set  of  n  cities.  Define  a  matrix  A = AaijE  of  order  nän by aij = 0 if i = j;  otherwise  aij  is  the  number  of  distinct  ways  of
traveling directly from city i to city j by car, without visiting any other cities belonging to S en route.
In the following diagram, the points represent five cities, 1, 2, 3, 4, and 5, and a line is drawn between two cities and labeled with a positive integer giving
the number of direct routes (by car) between the respective cities.

3

2

1

1

4

2

1

2

4

5

3

(a)   Determine the 5ä5 matrix A going with the above diagram.

(b)   Calculate A2.

(c)   Interpret the meaning of the entries in A2, both for the result in part b, and for the general set S = 81, 2, …, n<.
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5. An undirected graph can be used to model a map of states or countries, where there is a vertex for each country and an edge between two vertices if the
two countries share a boundary. For example, the undirected graph of Central America (mainland only) would have eight vertices. {Honduras, Nicaragua}
would be an edge of the graph, but {Mexico, Nicaragua} would not be an edge.

MEXICO

(a)   Draw the graph of Central America.

(b)   Find a path from Mexico to Panama.

(c)  What significance would this path have if you intended to drive from Mexico to Panama?

6.   Show that the graph of the states of Washington, Oregon, Idaho, Montana, Wyoming, and Colorado is isomorphic to the graph of New England.

7.   The outdegree of a vertex in a directed graph is the number of vertices in the graph that start at that vertex, and the indegree of the vertex is the number
of vertices in the graph that terminate at that vertex. A vertex v in a tournament graph is a source if the indegree of that vertex is zero. A sink is a vertex in
a tournament graph that has outdegree of zero.

(a)   Prove that a round-robin tournament graph can have at most one source and at most one sink. Interpret these facts in terms of the results of the
tournament.

(b)   What is the outdegree of a source in a round-robin tournament graph? What is the indegree of a sink in a round-robin tournament graph?

(c)     Let  G = HV , EL  be  a  round-robin  tournament  graph  with  †V § > 2.  If  p is "G has a sink,"  and  q is "G has a source,"  prove  that  any  one  of  the
propositions Ÿ p Ï Ÿ q, Ÿ p Ï q, p Ï Ÿ q and p Ï q  could be true.

Section 9.2
8.   Let G = HV , EL be a round-robin tournament graph with †V § = n. If M is the matrix of G,

(a)   For i = 1, 2, …, n, explain why the number of 1's in column i of M plus the number of 1s in row i is always equal to n - 1.

(b)  How many 1s are there in M?

Section 9.3
9.   Use the broadcasting algorithm to determine a shortest path from vertex a to vertex i in the following graph. List the depth sets.

S9.nb  2
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a

b

e

d

c

f

g

h

i

10. In a breadth-first (broadcasting) search for a path from vertex A to vertex J, what would the depth sets HD1, D2, …L be?

A
B

C

G
F

H

D

I J

E

Section 9.4
Definition: Randomly Eulerian. Graph G is randomly Eulerian from vertex v if every path in G that initiates at v and uses edges at random is a Eulerian
circuit.
11.     Give  examples  of  undirected  graphs  that  are  randomly  Eulerian  from  none,  one,  two,  or  all  vertices.  It  can  be  proven  that  no  graph  is  randomly
Eulerian from more than two vertices unless it is randomly Eulerian from all vertices.
12.   Prove that G is randomly Eulerian from v if and only if every circuit in G contains v.

13.     Ore's  Theorem states that  if  G = HV , EL  is  an undirected graph with †V § = n r 3 such that  8v, w< – E fl deg u + deg v r n,  then G  has a Hamiltonian
circuit. Prove Ore's Theorem given the following out line.
Proof by contradiction:

(a)   Add edges to E so that G still has no Hamiltonian circuit, but so that the addition of any other edge does produce a Hamiltonian circuit. Now
select any 8v, w< – E. There must be a path in G:

v = Hv1, v2, …, vnL = w.

(b)  Prove that for 2 b i b n, 8v1, vi< œ E fl 8vi-1, vn< – E.

(c)  Conclude that deg v + deg w < n.

Section 9.5
14.   Given:

1

4

2

7

5

1

3

2

6

a

b

c

d

e

z

(a)   Determine the optimal path from the vertex a to the vertex z.

(b)   Use the broadcasting algorithm to find a path from a to z.

(c)   Find the "costs" of both paths and discuss whether the algorithm in part b gives a "good result."

15.  Consider the network
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s

a

b

c

d

g

t

We start with a flow f on this network partially defined by f Hs, cL = f Hs, bL = f Hs, aL = 1 and f Hd, aL = 0.

(a)   Define f for each of the other edges in this network so as to achieve a flow.

(b)    Assume that the maximum capacity of each edge is 2. Determine a flow augmenting path with respect to the flow given in part a.  (Use the
Ford and Fulkerson Algorithm.)

(c)   Is the flow obtained in part b a maximal flow? Explain.

16. Find a maximal flow for the following network:

10
10

10

8
2

10

8

20

20

12

15

5

10

Source

a

b

d

c

Sink

e f

17. (a) Given the mileage chart below, what is the closest neighbor circuit starting at city A?

A B C D E F
A _ 34 50 12 51 37
B 34 _ 40 27 70 60
C 50 40 _ 30 33 41
D 12 27 30 _ 39 20
E 51 70 33 39 _ 15
F 37 60 41 20 15 _

(b) Suppose it  takes Hk - 1L  seconds to determine which of k  cities is closest to any given city. Estimate how long it  would take to find a closest
neighbor circuit through n cities.

Section 9.6
18.   Draw three connected graphs, G2, G3, and G4, with four vertices, each having chromatic numbers 2, 3, and 4 Hi.e. cHGiL = i.

19. (a) Prove that although a K5 is not planar, it can be drawn on a torus (a doughnut-shaped surface).

 (b) Can the Three Utilities Puzzle be solved on a torus?

20.   Draw examples of the following graphs, if possible. Clearly indicate which of the graphs are impossible and why they are impossible. You may cite
any theorem that justifies your claim.

(a)  An undirected Hamiltonian graph that is not Eulerian. Explain why your graph is not Eulerian.

(b)   A bipartite Hamiltonian graph with five vertices.

(c)   A round-robin tournament graph with four vertices.

(d)   A connected planar graph with four vertices, three regions, and six edges.

(e)   An undirected graph with chromatic number five.
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chapter 10

TREES

GOALS
In this chapter we will study the class of graphs called trees. Trees are frequently used in both mathematics and the sciences. Our
solution of Example 2.1 is one simple instance. Since they are often used to illustrate or prove other concepts, a poor background
in trees can be a serious handicap. For this reason, our ultimate goals are to: (1) define the various common types of trees,  (2)
identify some basic properties of trees, and (3) discuss some of the common applications of trees.
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10.1 What Is a Tree? 
What distinguishes all trees from other types of graphs is the absence of certain paths called cycles.

Definition: Cycle.  A cycle is a circuit whose edge list contains no duplicates.

The  simplest  example  of  a  cycle  in  an  undirected  graph  is  a  pair  of  vertices  with  two  edges  connecting  them.  Since  trees  are
cycle-free, we can rule out all multigraphs from consideration as trees.
Trees can either be undirected or directed graphs. We will concentrate on the undirected variety in this chapter.

Definition: Tree.  An undirected graph is a tree if it is connected and contains no cycles or self-loops.

Example 10.1.1.

(a)   Graphs i, ii and iii in Figure 10.1.1 are all trees, while graphs iv, v, and vi are not trees.

HiL
HiiL

HiiiL

HivL

HvL

HviL

Figure 10.1.1 
Some trees and non-trees

(b)  A K2 is a tree. However, if n ¥ 3, a Kn is not a tree.

(c)  In a loose sense, a botanical tree is a mathematical tree. There are no cycles in the branch structure of a botanical tree.

(d)    The structures of some chemical compounds are modeled by a tree. For example, butane (Figure 10.1.2a) consists of four
carbon molecules and ten hydrogen molecules, where an edge between two molecules represents a bond between them. A bond is
a force that keeps two molecules together. The same set of molecules can be linked together in a different tree structure to give us
the  compound  isobutane  (Figure  10.1.2b).  There  are  some  compounds  whose  graphs  are  not  trees.  One  example  is  benzene
(Figure 10.1.2c).

C
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C
C

C
H
C
H

C
C

C
H

C
H

C
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C
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H

C
H

C

H

HaL

C
C

C
C

C

C

C

H C

H

C
H

C

H
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H

C
H
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H

CH C

H
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HbL

C

C

C

C

C H

CC C

H

CC C

H

C

C

C

H

C

C

C

H

CH

HcL

Figure 10.1.2
 Simple organic compounds

One type of graph that is not a tree, but is closely related, is a forest.
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Definition: Forest.  A forest is an undirected graph whose components are all trees.

Example 10.1.2. The top half of Figure 10.1.1 can be viewed as a forest of three trees.

We will now examine several conditions that are equivalent to the one that defines a tree. The following theorem will be used as
a tool in proving that the conditions are equivalent.

Theorem 10.1.1.  Let  G  =  (V,  E)  be  an  undirected  graph  with  no  self-loops,  and  let  va, vb œ V.   If  two  different  simple
paths exist between va and vb , then there exists a cycle in G.

Proof: Let p1 = He1, e2, …, em L and p2 = H f1, f2, …, fnL be two different simple paths from va   to vb.  The first step we
will take is to delete from p1  and p2  the initial edges that are identical. That is, if e1 = f1, e2 = f2, …, e j = f j, and e j+1 ! f j+1
delete the first j edges of both paths. Once this is done, both paths start at the same vertex, call it vc  , and both still end at vb  .
Now we construct a cycle by starting at vc  and following what is left of p1  until we first meet what is left of p2  .  If this first
meeting occurs at vertex vd  ,  then the remainder of the cycle is completed by following the portion of the reverse of  p2  that
starts at vd and ends at vc .   ‡

Theorem 10.1.2. Let G = HV , EL be an undirected graph with no self-loops and V = n. The following are all equivalent:

(1)  G is a tree.

(2)   For each pair of distinct vertices in V, there exists a unique simple path between them.

(3)  G is connected, and if e œ E, then HV , E - 8e<L is disconnected.

(4)  G contains no cycles, but by adding one edge, you create a cycle.

(5)  G is connected and E = n - 1.

Proof Strategy. Most of this theorem can be proven by proving the following chain of implications: H1L fl H2L, H2L fl H3L,
H3Lfl H4L,  and H4L fl H1L.  Once these implications have been demonstrated, the transitive closure of =^> on {1, 2, 3, 4} estab-
lishes  the  equivalence  of  the  first  four  conditions.  The  proof  that  Statement  5  is  equivalent  to  the  first  four  can  be  done  by
induction, which we will leave to the reader.
Proof:  H1L fl H2L (Indirect). Assume that G is a tree and that there exists a pair of vertices between which there is either no path
or there are at least two distinct paths. Both of these possibilities contradict the premise that G  is a tree. If no path exists,  G  is
disconnected, and if two paths exist, a cycle can be obtained by Theorem 10.1.1.
H2L fl H3L.  We  now  use  Statement  2  as  a  premise.  Since  each  pair  of  vertices  in  V  are  connected  by  exactly  one  path,  G  is
connected. Now if we select any edge e in E, it connects two vertices, v1 and v2 . By (2), there is no simple path connecting v1 to
v2 other than e. Therefore, no path at all can exist between v1 and v2 in HV , E - 8e<L.  Hence HV , E - 8e<L is disconnected.
H3Lfl H4L. Now we will assume that Statement 3 is true. We must show that G has no cycles and that adding an edge to G creates
a cycle. We will use an indirect proof for this part. Since (4) is a conjunction, by DeMorgan's Law its negation is a disjunction
and we must consider two cases.  First,  suppose that G  has a cycle.  Then the deletion of any edge in the cycle keeps the graph
connected, which contradicts (3). The second case is that the addition of an edge to G does not create a cycle. Then there are two
distinct  paths  between  the  vertices  that  the  new  edge  connects.  By  Theorem  10.1.1,  a  cycle  can  then  be  created,  which  is  a
contradiction.
H4L fl H1L Assume that G contains no cycles and that the addition of an edge creates a cycle. All that we need to prove to verify
that G is a tree is that G is connected. If it is not connected, then select any two vertices that are not connected. If we add an edge
to connect them, the fact that a cycle is created implies that a second path between the two vertices can be found which is in the
original graph, which is a contradiction.   ‡
The usual  definition  of  a  directed  tree  is  based  on  whether  the  associated  undirected  graph,  which  is  obtained  by  "erasing"  its
directional arrows, is a tree. In Section 10.3 we will introduce the rooted tree, which is a special type of directed tree.

EXERCISES FOR SECTION 10.1
A Exercises

1.   Given the following vertex sets, draw all possible undirected trees that connect them.

(a)   Va = 8right, left< 

(b)   Vb = 8+, -, 0<

(c)   Vc = 8north, south, east, west<.

2.   Are all trees planar? If they are, can you explain why? If they are not, you should be able to find a nonplanar tree.
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3.     Prove  that  if  G  is  a  simple  undirected  graph  with  no  self-loops,  then  G  is  a  tree  if  and  only  if  G  is  connected  and
E = | V | - 1 .

4.  (a) Prove that if G = HV , EL is a tree and e œ E, then HV , E - 8e<L is a forest of two trees.

(b)  Prove  that  ifHV1, E1)  and  HV2, E2L  are  disjoint  trees  and  e  is  an  edge  that  connects  a  vertex  in  V1  to  a  vertex  in  V2  ,  then
HV1‹ V2, E1‹ E2‹ 8e<L is a tree.
5. (a) Prove that any tree with at least two vertices has at least two vertices of degree 1. 

    (b) Prove that if a tree is not a chain, then it has at least three vertices of degree 1.

10.2. Spanning Trees
The topic of spanning trees is motivated by a graph-optimization problem.

Example  10.2.1.  A map of  Atlantis  (Figure  10.2.1)  shows that  there  are  four  campuses  in  its  university  system.  A new secure
communications system is being installed and the objective is to allow for communication between any two campuses, to achieve
this objective, the university must buy direct lines between certain pairs of campuses. Let G be the graph with a vertex for each
campus and an edge for each direct line. Total communication is equivalent to G being a connected graph. This is due to the fact
that  two  campuses  can  communicate  over  any  number  of  lines.  To  minimize  costs,  the  university  wants  to  buy  a  minimum
number of lines.

North

West

South

East

Figure 10.2.1 
The Atlantis University System

The solutions to this problem are all trees. Any graph that satisfies the requirements of the university must be connected, and if a
cycle does exist, any line in the cycle can be deleted, reducing the cost. Each of the sixteen trees that can be drawn to connect the
vertices North, South, East, and West (see Exercise lc of Section 10.1) solves the problem as it is stated. Note that in each case,
three  direct  lines  must  be  purchased.  There  are  two considerations  that  can help  reduce the  number  of  solutions  that  would be
considered.
Objective 1: Given that the cost of each line depends on certain factors, such as the distance between the campuses, select a tree
whose cost is as low as possible.
Objective 2:  Suppose that communication over multiple lines is noisier as the number of lines increases. Select a tree with the
property that the maximum number of lines that any pair of campuses must use to communicate with is as small as possible.
Typically, these objectives are not compatible; that is, you cannot always simultaneously achieve these objectives. In the case of
the Atlantis  university system, the solution with respect  to Objective 1 is  indicated with solid lines in Figure 10.2.1.  There are
four solutions to the problem with respect to Objective 2: any tree in which one campus is directly connected to the other three.
One solution with respect to Objective 2 is indicated with dotted lines in Figure 10.2.1. After satisfying the conditions of Objec-
tive 2, it would seem reasonable to select the cheapest of the four trees.

Definition: Spanning Set, Spanning Tree.  

(a)  Let G = HV, EL be a connected undirected graph. A spanning set for G is a subset E' of E such that HV, E 'L is connected.
(b)  If E' is a spanning set for G and T = HV, E 'L is a tree, then T is called a spanning tree for G.
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Notes

(a)  If HV , E 'L is a spanning tree,  † E ' § = † V § - 1.

(b)   The significance of a spanning tree is that it is a minimal spanning
set. A smaller set would not span the graph, while a larger set would have a cycle, which has an edge that is superfluous.
For the remainder of this section, we will discuss two of the many topics that relate to spanning trees. The first is the Minimal
Spanning  Tree  Problem,  which  addresses  Objective  1  above.  The  second  is  the  Minimum  Diameter  Spanning  Tree  Problem,
which addresses Objective 2.

THE MINIMAL SPANNING TREE PROBLEM
Given  a  weighted  connected  undirected  graph  G = HV , E, wL  ,  the  minimal  spanning  tree  problem  is  to  find  a  spanning  tree
HV , E 'L for which ⁄

eœE'
wHeL is as small as possible.

Unlike many of the graph-optimization problems that we've examined, a solution to this problem can be obtained efficiently. It is
a situation in which a greedy algorithm works.

Definition: Bridge.  Let G = HV, EL be an undirected graph and let 8L, R< be a partition of V.  A bridge between L and R
is an edge in E that connects a vertex in L to a vertex in R.

Theorem 10.2.1. Let G = HV, E, wL be a weighted connected undirected graph. Let V be partitioned into two sets L and
R.  If e* is a bridge of least weight between L and R, then there exists a minimal spanning tree for G that includes e*.

Proof  (Indirect  proof):  Suppose  that  no  minimum  spanning  tree  including  e*  exists.  Let  T = HV , E 'L  be  a  minimum
spanning  tree.  If  we  add  e*  to  T,  a  cycle  is  created,  and  this  cycle  must  contain  another  bridge,  e,  between  L  and  R.  Since
wHe*L § wHeL, we can delete e and the new tree, which includes e* must also be a minimum spanning tree. ‡

Example 10.2.2. The bridges between the vertex sets 8a, b, c< and 8d, e< in Figure 10.2.2 are the edges 8b, d< and 8c, e<.
According to the theorem, a minimal spanning tree that includes 8b, d< exists. By examination, you should be able to see that
this is true. Is it true that only the bridges of minimal weight can be part of a minimal spanning tree? The answer is no.

4

3

3

4

5

4a

b

c

d

e

Figure 10.2.2 

Theorem 10.2.1 essentially tells us that a minimal spanning tree can be constructed recursively by continually adding minimally
weighted bridges to a set of edges.
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Algorithm  10.2.1:  Greedy  Algorithm  for  Finding  a  Minimal  Spanning  Tree.  Let  G = HV, E, wL  be  a  connected,
weighted, undirected graph, and let v0  be an arbitrary vertex in V.  The following steps lead to a minimal spanning tree for G.
L and R will be sets of vertices and E ' is a set of edges.
(1)  (Initialize) L = V - 8v0<;   R = 8v0<;  E = «.

(2)  (Build the tree) While L ! « 

(2.1) Find e* = 8vL, vR<, a bridge of minimum weight between L and R.

(2.2)  R = R ‹ 8vL <;  L = L - 8vL<  ;  E ' := E ' ‹ 8e*<

 (3) Terminate with a minimal spanning tree HV, E 'L.

Notes:

(a)   If more than one minimal spanning tree exists, then the one that is obtained depends on v0  and the means by which e*  is
selected in Step 2.1 if two minimally weighted bridges exist.
(b)   Warning: If two minimally weighted bridges exist between L and R, do not try to speed up the algorithm by adding both of
them to E'.
(c)   That Algorithm 10.2.1 yields a minimal spanning tree can be proven by induction with the use of Theorem 10.2.1.

(d)   If it is not known whether G is connected, Algorithm 10.2.1 can be revised to handle this possibility. The key change (in
Step 2.1) would be to determine whether any bridge at all exists between L  and R.  The condition of the while loop in Step 2
must also be changed somewhat.

Example 10.2.3. Consider the graph in Figure 10.2.3. If we apply Algorithm 10.2.1 starting at a, we obtain the following
edge list  in  the  order  given:  8a, f <, 8 f , e<, 8e, c<, 8c, d<, 8 f , b<, 8b, g<.  The total  of  the  weights  of  these  edges  is  20.  The
method that we have used (in Step 2.1) to select a bridge when more than one minimally weighted bridge exists is to order all
bridges  alphabetically  by  the  vertex  in  L  and  then,  if  further  ties  exist,  by  the  vertex  in  R.  The  first  vertex  in  that  order  is
selected in Step 2.1 of the algorithm.
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b

f
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g d

e

Figure 10.2.3

The Minimum Diameter Spanning Tree Problem
Given a connected undirected graph G = (V, E), find a spanning tree T = (V, E') of G such that the longest path in T is as short as
possible.
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Example 10.2.4. The Minimum Diameter Spanning Tree Problem is easy to solve in a Kn. Select any vertex v0 and construct the
spanning tree whose edge set is the set of edges that connect v0 to the other vertices in the Kn . Figure 10.2.4 illustrates a solution
for n = 5 .

v1

v2

v3

v4

v5

Minimum diameter spanning tree for K5

For incomplete graphs, a two-stage algorithm is needed. In short, the first step is to locate a "center" of the graph. The maximum
distance from a center to any other vertex is as small as possible. Once a center is located, a breadth-first search of the graph is
used to construct the spanning tree. The breadth-first search is essentially the broadcasting algorithm that we discussed in Section
9.3 applied to undirected graphs.

EXERCISES FOR SECTION 10.2
A Exercises

1.   Suppose that after Atlantis University's phone system is in place, a fifth campus is established and that a transmission line can
be bought to connect the new campus to any old campus. Is this larger system the most economical one possible with respect to
Objective 1? Can you always satisfy Objective 2?
2.   Construct a minimal spanning tree for the capital cities in New England (see Figure 9.5.1).

3.   Show that the answer to the question posed in Example 10.2.2 is "no."

4.   Find a minimal spanning tree for the following graphs.

4 5 6 5 4

4 8 8 4

0

1 2 3 4 5

HaL

C10.nb | 7

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License.238



50

100

120

90

40
80

80

90

70

80

30

35

40

50
60

SF

LA

CHI

KC

PHI

NY

BOS

ATL

DC

HbL

6

10

2

4

2

4

2

4

6

23

6

4

6

11

1

2

4

8

3

7 6

5

HcL

5.   Find a minimum diameter spanning tree for the following graphs.
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10.3 Rooted Trees
In the next two sections, we will discuss rooted trees. Our primary focuses will be on general rooted trees and on a special case,
ordered binary trees.
Informal  Definition  and  Terminology:  What  differentiates  rooted  trees  from  undirected  trees  is  that  a  rooted  tree  contains  a
distinguished vertex, called the root. Consider the tree in Figure 10.3.1. Vertex A has been designated the root of the tree. If we
choose  any  other  vertex  in  the  tree,  such  as  M,  we  know  that  there  is  a  unique  path  from  A  to  M.  The  vertices  on  this  path,
HA, D, K, ML, are described in genealogical terms:

M is a child of K (so is L).

K is M's parent.

A, D, and K are M's ancestors.

D, K, and M are descendants of A.

A

B

F

G

E
C

D

H I

J

K
L

M

Root

FIGURE 10.3.1 
Rooted tree

These  genealogical  relationships  are  often  easier  to  visualize  if  the  tree  is  rewritten  so  that  children are  positioned below their
parents, as in Figure 10.3.2.
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With this format, it is easy to see that each vertex in the tree can be thought of as the root of a tree that contains, in addition to
itself, all of its descendants. For example, D is the root of a tree that contains D, K, L, and M. Furthermore, K is the root of a tree
that contains K, L, and M. Finally, L and M are roots of trees that contain only themselves. From this observation, we can give a
formal definition of a rooted tree.

A

B

E F G

C D

H I J K

L M

Root

FIGURE 10.3.2 
Rooted tree of Figure 10.3.1, redrawn

Definition: Rooted Tree.  

(a)   Basis: 

 (i) A tree with no vertices is a rooted tree (the empty tree), 

(ii) A single vertex with no children is a rooted tree

(b)   Recursion:
     Let T1, T2, … , Tr, r ¥ 1 , be disjoint rooted trees with roots v1, v2, …, vr,  respectively, and let v0  be a vertex
that does not belong to any of these trees.  Then a rooted tree, rooted at v0, is obtained by making v0  the parent of
the vertices v1, v2, …, and  vr.  We call T1, T2, … , Tr, subtrees of the larger tree.

The level of a vertex of a rooted tree is the number of edges that separate the vertex from the root. The level of the root is zero.
The depth of a tree is the maximum level of the vertices in the tree.  The depth of a tree in Figure 10.3.2 is three,  which is the
level of the vertices L and M. The vertices E, F, G, H, I, J, and K have level two. B, C, and D are at level one and A has level zero.
Example 10.3.1. Figure 2.1.1, which we reproduce below is a rooted tree with Start as the root. It is an example of what is called
a decision tree.
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Juice

Coffee

Milk

Juice

Coffee

Milk

Juice

Coffee

15 Choices

Figure 2.1.1

Example 10.3.2: Data Structures.  One of the keys to working with large amounts of information is to organize it in a consis-
tant, logical way.  A data structure is a scheme for organizing data.   A simple example of a data structure might be the informa-
tion a college admissions department might keep on their applicants.   Items in a  flat file might look something like this:
  ApplicantItem =

8FirstName, MiddleInitial, LastName, StreetAddress, City, State, Zip, HomePhone, CellPhone, EmailAddress, HighSchool,
Major, ApplicationPaid, MathSAT, VerbalSAT, Recommendation1, Recommendation2, Recommendation3<

A spreadsheet can be used to arrange data in this way.  Although a flat file structure is often adequate, there are often advantages
to clustering some the information.   For example the applicant information is broken into four parts: name, contact information,
high school, and application data.
  ApplicantItem = 88FirstName, MiddleInitial, LastName<,

88StreetAddress, City, State, Zip<, 8HomePhone, CellPhone<, EmailAddress<, HighSchool,
8Major, ApplicationPaid, 8MathSAT, VerbalSAT<, 8Recommendation1, Recommendation2, Recommendation3<<<

The first item in the ApplicantItem list is a list {FirstName, MiddleInitial, LastName}, with each item in that list being a single
field of the original flat file.  The third item is simply the single high school item from the flat file.  The application data is a list
and one of its items, is itself a list with the recommendation data for each recommendation the applicant has.
The organization of this data can be visualized with a rooted tree such as the one in Figure 10.3.3.
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Figure 10.3.3
Structured Data 

In general, you can represent a data item, T, as a rooted tree with T as the root and a subtree for each field. Those fields that are
more than just one item are roots of further subtrees, while individual items have no further children in the tree.

KRUSKAL'S ALGORITHM
An alternate algorithm for constructing a minimal spanning tree uses a forest of rooted trees. First we will describe the algorithm
in its simplest terms. Afterward, we will describe how rooted trees are used to implement the algorithm. Finally, we will describe
a simple data structure and operations that make the algorithm quite easy to program. In all  versions of this algorithm, assume
that G = HV , E, wL is a weighted undirected graph with †V § = m and †E§ = n.

Kruskal's Algorithm—Version 1.

(1)   Sort the edges of G in ascending order according to weight. That is, 

i § j ñ wIe jM § wIe jM.

(2)   Go down the list obtained in Step 1 and add edges to a spanning set (initially empty) of edges so that the set of edges does
not  form  a  cycle.  When  an  edge  that  would  create  a  cycle  is  encountered,  ignore  it.  Continue  examining  edges  until  either
m - 1 edges have been selected or you have come to the end of the edge list.   If  m - 1 edges are selected, these edges make
up a minimal spanning tree for G.  If fewer than m - 1 edges are selected, G is not connected.

Note: Step 1 can be accomplished using one of any number of standard sorting routines. Using the most efficient sorting routine,
the time required to perform this step is proportional to n log n. The second step of the algorithm, also of n log n time complexity,
is the one that uses a forest of rooted trees to test for whether an edge should be added to the spanning set.

Kruskal's Algorithm—Version 2.

(1)   Sort the edges as in Version 1.

(2)   (2.1) Initialize each vertex in V to be the root of its own rooted tree. 

(2.2) Go down the list of edges until either a spanning tree is completed or the edge list has been exhausted. For each
edge e = 8v1, v2<, we can determine whether e can be added to the spanning set without forming a cycle by determin-
ing whether the root of v1 ' s tree is equal to the root of v2 ' s tree. If the two roots are equal, then ignore e.  If the roots
are different, then we can add e to the spanning set. In addition, we merge the trees that v1  and v2  belong to.   This is
accomplished by either making v1 ' s root the parent of v2 ' s root or vice versa.

Notes:

(a)   Since we start the algorithm with m trees and each addition of an edge decreases the number of trees by one, we end
the algorithm with one rooted tree, provided a spanning tree exists.
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(b)   The rooted tree that we obtain is not the spanning tree itself.

Mathematica Implementation of Kruskal's Algorithm
We will implement Kruskal's Algorithm with Mathematica.   First we will describe a very simple data structure for representing
the forest of trees that is maintained within the algorithm.  All that is needed is a list of integers, one for each of the vertices in
the graph.  For simplicity we will take the vertices to be the integers 1, 2, …, n  and will illustrate with the case of n = 10 .  If
forest is the list, then

forest[[k]]= :
j if j is k ' s parent in the forest
0 if k is the root of a tree in the forest

For example, if  forest is equal to 80, 1, 0, 6, 3, 3, 4, 0, 3, 3<, the vertices 1, 3, and 8 are roots of trees.  Figure  10.3.4 shows
the forest, where directed edges are used to indicate parent hood.  An edge from k  to j  indicates that j is  k's parent.  Roots are
sinks in this representation of trees.

2

1

4

6

5

3

7 9 10
8

By representing forests in this way, it is easy to program functions that give the root of a tree and merge two trees.   Notice the
recursive nature of the root function.  The input cell below has been set to be not evaluatable.  These functions will be defined
locally within the Kruskal algorithm code.

root@k_D := If@forest@@kDD ã 0, k, root@forest@@kDDDD;
merge@v1_, v2_D := Hforest@@root@v2DDD = root@v1DL;

One way to represent a weighted graph in Mathematica is as a list of pairs 8edge, weight< where the edge is a rule.  For example,
84 -> 1, 6< would be a edge connecting vertices 4 and 1 with weight 6.   The way we will program the algorithm, the direction is
not important, and the graph is presumed undirected.  For consistency, we seed the random number generator and then generate a
random graph, wg,  having 10 vertices by "flipping a coin" to determine whether each edge is present.  We also assign a assign
random weight between 4 and 10 to each edge.   These numbers are arbitrary and can be adjusted, if desired. 

SeedRandom@2010D;
wg = Map@8Rule üü Ò, RandomInteger@84, 10<D< &,

RandomGraph@10, 0.5D êê EdgeList êê Select@Ò, HFirst@ÒD < Last@ÒDL &D &D
Here is what the graph looks like:
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graph =
GraphPlot@wg, EdgeLabeling Ø True, DirectedEdges Ø False, VertexLabeling Ø True,
VertexCoordinateRules Ø Map@HÒ -> 8Cos@Pi Ò ê 5D, Sin@Pi Ò ê 5D<L &, Range@10DDD
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The following function definition presumes that the input is a weighted undirected graph that is represented in the 8edge, weight<
format described above.  The output is a sublist that comprises a minimal spanning tree for  the input.

Kruskal@g_D :=
Module@8nV, vertexset, spanset, edgepool, forest, nextedge, root, merge, index<,
root@k_D := If@forest@@kDD ã 0, k, root@forest@@kDDDD;
merge@v1_, v2_D := Hforest@@root@v2DDD = root@v1DL;
vertexset = Union@Flatten@HList üü ÒL & êü g@@All, 1DDDD; nV = Length@vertexsetD;
Map@Hindex@vertexset@@ÒDDD = ÒL &, Range@nVDD;
forest = Table@0, 8nV<D; spanset = 8<; edgepool = SortBy@g, LastD;
While@HLength@spansetD < nV - 1L && Hedgepool ! 8<L, nextedge = First@edgepoolD;
edgepool = Rest@edgepoolD; If@root@index@nextedge@@1, 1DDDD !

root@index@nextedge@@1, 2DDDD, AppendTo@spanset, nextedgeD;
merge@index@nextedge@@1, 1DDD, index@nextedge@@1, 2DDDDDD;

If@Length@spansetD ã nV - 1, spanset,
"Graph not connected - no spanning tree exists."DD

We use the function to generate a spanning tree for our example:
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st = Kruskal@wgD

1 Ø 2 4
3 Ø 5 4
3 Ø 10 4
4 Ø 7 4
6 Ø 7 4
3 Ø 7 5
3 Ø 9 5
2 Ø 3 6
3 Ø 8 8

Lets take a look at the spanning tree, with edges drawn in orange.

tree =
GraphPlot@st, EdgeLabeling Ø True, DirectedEdges Ø False, VertexLabeling Ø True,
VertexCoordinateRules Ø Map@HÒ -> 8Cos@Pi Ò ê 5D, Sin@Pi Ò ê 5D<L &, Range@10DD,
EdgeRenderingFunction Ø H8Orange, Thickness@0.01D, Arrowheads@0D, Arrow@ÒD< &LD;

Show@8tree, graph<D
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Example 10.3.3.  Lets look at how long it take to complete the algorithm for a graph with 200 edges.  Drawing the graph
isn't of interest, it's mostly the time to generate the spanning tree we are interested in.

SeedRandom@2010D;
largegraph = Map@8Rule üü Ò, RandomInteger@84, 10<D< &,

RandomGraph@200, 0.5D êê EdgeList êê Select@Ò, HFirst@ÒD < Last@ÒDL &D &D;
The  time  will  vary  depending  on  the  computer  you  are  using.    The  expression  First@Timing@calculation;DD  will  perform a
calculation and just display the CPU time needed, in seconds, to complete the calculation. 
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8First@Timing@largetree = Kruskal@largegraphD;DD, $System<

80.579841, Mac OS X x86 H64-bitL<

Just for fun, here is what the spanning tree looks like.

GraphPlot@largetree, EdgeLabeling Ø FalseD

Example 10.3.4.  Lets conclude with an example that is based on some real data, using Wolfram's Computable database of
city data.   We will build a minimal spanning tree for the large cities of France, where "large" is taken to mean a population of
100,000 or more.  The weights of edges between cities will the distance between them.  First here is that list of cities.  By the
way, you can change "France" to any other country or region and get similar results.
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citylist = CityData@8Large, "France"<D

Paris IleDeFrance France
Marseille ProvenceAlpesCoteDAzur France

Lyon RhoneAlpes France
Toulouse MidiPyrenees France

Nice ProvenceAlpesCoteDAzur France
Nantes PaysDeLaLoire France

Strasbourg Alsace France
Montpellier LanguedocRoussillon France
Bordeaux Aquitaine France

Lille NordPasDeCalais France
Rennes Bretagne France

LeHavre HauteNormandie France
Reims ChampagneArdenne France

SaintEtienne RhoneAlpes France
Toulon ProvenceAlpesCoteDAzur France

Grenoble RhoneAlpes France
Angers PaysDeLaLoire France
Dijon Bourgogne France
Brest Bretagne France

LeMans PaysDeLaLoire France
Nimes LanguedocRoussillon France

AixEnProvence ProvenceAlpesCoteDAzur France
Limoges Limousin France

ClermontFerrand Auvergne France
Tours Centre France

Amiens Picardie France
Villeurbanne RhoneAlpes France

Metz Lorraine France
Besancon FrancheComte France
Perpignan LanguedocRoussillon France
Orleans Centre France
Rouen HauteNormandie France

Mulhouse Alsace France
Caen BasseNormandie France

BoulogneBillancourt IleDeFrance France
Nancy Lorraine France

Montreuil IleDeFrance France
Argenteuil IleDeFrance France

As part of the geographic database, there is a functional called GeoDistance that we will use to define a function that tells us
how many kilometers separate any two cities.

CityDistance@city1_, city2_D :=
GeoDistance@CityData@city1, "Coordinates"D, CityData@city2, "Coordinates"DD ê 1000

Next, we generate the weighted graph.
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g = Map@8First@Ò@@1DDD Ø First@Ò@@2DDD, CityDistance üü Ò< &, Tuples@citylist, 2DD êê

Select@Ò, Last@ÒD > 0 &D &;
In France there are large cities and drawing the K38   produces a largely uninteresting figure.   By drawing only the edges for
cities  within  300 km of  one another,  the  figure  is  a  little  more interesting.   The cluster  in  the  north  central  part  of  France is
greater-Paris,  where  several  other  adjacent  cities  are  also  large.    We  use  the  longitude  and  latitude  of  each  city  to  plot  a
location on the plane. 

GraphPlot@g êê Select@Ò, Last@ÒD < 300 &D &,
EdgeLabeling Ø False, VertexCoordinateRules Ø
Map@HFirst@ÒD Ø Reverse@CityData@Ò, "Coordinates"DDL &, citylistDD

Now we use our Kruskal function to generate a spanning tree.  Notice the first few edges in the list are of very close cites.
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span = Kruskal@gD

Villeurbanne Ø Lyon 4.04522
Montreuil Ø Paris 6.6039

BoulogneBillancourt Ø Paris 8.06249
Argenteuil Ø Paris 11.5285

Marseille Ø AixEnProvence 25.091
Montpellier Ø Nimes 46.3561

Nancy Ø Metz 47.825
Marseille Ø Toulon 48.9574

LeHavre Ø Caen 49.043
Lyon Ø SaintEtienne 50.2382

Rouen Ø LeHavre 69.9004
Besancon Ø Dijon 75.559
Tours Ø LeMans 78.1345

LeMans Ø Angers 80.1425
Angers Ø Nantes 82.6313

Villeurbanne Ø Grenoble 92.0243
Nimes Ø AixEnProvence 94.3932
Mulhouse Ø Strasbourg 96.3815

Rennes Ø Nantes 98.1899
Amiens Ø Lille 98.9384

Argenteuil Ø Rouen 101.2
Rouen Ø Amiens 101.847

Orleans Ø BoulogneBillancourt 106.438
Tours Ø Orleans 107.746

SaintEtienne Ø ClermontFerrand 109.348
Besancon Ø Mulhouse 115.034
Strasbourg Ø Nancy 117.825
Reims Ø Montreuil 124.727

Toulon Ø Nice 126.35
Montpellier Ø Perpignan 128.738

ClermontFerrand Ø Limoges 142.36
Toulouse Ø Perpignan 155.437

Metz Ø Reims 157.396
Villeurbanne Ø Dijon 173.794
SaintEtienne Ø Nimes 176.717
Bordeaux Ø Limoges 180.776

Brest Ø Rennes 211.714

Here are a couple of graphs of the spanning tree.  The first shows city names, but would need to be blown up to see them all.
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GraphPlot@span, EdgeLabeling Ø False, VertexLabeling Ø True, VertexCoordinateRules Ø
Map@HFirst@ÒD Ø Reverse@CityData@Ò, "Coordinates"DDL &, citylistDD

VilleurbanneLyon

MontreuilParisBoulogneBillancourtArgenteuil

MarseilleAixEnProvenceMontpellierNimes

Nancy
Metz

Toulon

LeHavre
Caen

SaintEtienne

Rouen

BesanconDijonTours

LeMans
Angers

Nantes

Grenoble

Mulhouse

Strasbourg
Rennes

Amiens

Lille

Orleans

ClermontFerrand

Reims

Nice

Perpignan

Limoges

Toulouse

Bordeaux

Brest

The same graph with VertexLabeling shut off shows the tree's structure.

GraphPlot@span, EdgeLabeling Ø False,
VertexLabeling Ø False, VertexCoordinateRules Ø
Map@HFirst@ÒD Ø Reverse@CityData@Ò, "Coordinates"DDL &, citylistDD

EXERCISES FOR SECTION 10.3
A Exercises

1.     Suppose  that  an  undirected  tree  has  diameter  d  and  that  you  would  like  to  select  a  vertex  of  the  tree  as  a  root  so  that  the
resulting rooted tree has the smallest depth possible. How would such a root be selected and what would be the depth of the tree
(in terms of d)?
2.    Use Kruskal's algorithm to find a minimal spanning tree for the following graphs. In addition to the spanning tree, find the
final rooted tree in the algorithm.    When you merge two trees in the algorithm,  make the root with the lower number the root of
the new tree.

20 | C10.nb

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License. 251



41

21

32

42 22

20

29

43 31

62

23 44

45

A B

E

C

F

D

G H

HaL

10

7

7

10

11

14 10

13 15

12

12

16

8

13

9 11

1

2

4

6

8

3

5 7

HbL

C Exercises

3.  Suppose that information on buildings is arranged in records with five fields: the name of the building, its location, its owner,
its height, and its floor space. The location and owner fields are records that include all of the information that you would expect,
such  as  street,  city,  and  state,  together  with  the  owner's  name  (first,  middle,  last)  in  the  owner  field.  Draw  a  rooted  tree  to
describe this type of record, 
4.   (Requires Mathematica) Given a country with n large cities evenly distributed in an area of A square kilometers, one would
expect  that  the  total  length  of  the  spanning  tree  for  the  cities  would  roughly  depend  on  n  and  A.   In  the  case  of  France,
n = 37 cities,  A = 547 030 km2 ,  and  the  length  of  the  spanning  tree  is  3501.59 km.  Look  for  such  a  relationship  by  collecting
similar data for other countries or generating random data.   To get areas of countries you can use the CountryData function.

CountryData@"France", "Area"D

547 030.

Caution:  Oddly shaped countries such as Chile, or countries that have large uninhabited areas such as Brazil will probably not fit
any proposed model.

10.4 Binary Trees
An ordered rooted tree is a rooted tree whose subtrees are put into a definite order and are, themselves, ordered rooted trees. An
empty tree and a single vertex with no descendants (no subtrees) are ordered rooted trees.
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Example 10.4.1. The trees in Figure 10.4.1 are identical rooted trees, with root 1, but as ordered trees, they are different.

1

2 3 4

5 6 7 8 9

10

HaL

1

4

8 9 7

10

2 3

6 5

HbL

Figure 10.4.1
Two different ordered rooted trees

If  a  tree  rooted  at  v  has  p  subtrees,  we  would  refer  to  them as  the  first,  second,  …,  pth  subtrees.  If  we  restrict  the  number  of
subtrees of each vertex to be less than or equal to two, we have a binary (ordered) tree.

Definition: Binary Tree. A binary tree is
(a)   a tree consisting of no vertices (the empty tree), or
(b)   a vertex with two subtrees that are both binary trees. The subtrees are called the left and right subtrees.

The difference between binary trees and ordered trees is that every vertex of a binary tree has exactly two subtrees (one or both
of  which  may  be  empty),  while  a  vertex  of  an  ordered  tree  may  have  any  number  of  subtrees.  The  two trees  in  Figure  10.4.2
would be considered identical as ordered trees; however, they are different binary trees. Tree (a)  has an empty right subtree and
Tree (b) has an empty left subtree.

A

B

HaL
A

B

HbL

Terminology and General Facts:

(a)   A vertex of a binary tree with two empty subtrees is called a leaf. All other vertices are called internal vertices.

(b)   The number of leaves in a binary tree can vary from one up to roughly half the number of vertices in the tree (see Exercise
4 of this section).

(c)   The maximum number of vertices at level k of a binary tree is 2k , k ¥ 0 (see Exercise 6 of this section).
(d)     A full binary tree  is  a  tree  in  which each vertex has  either  zero or  two empty subtrees.  In  other  words,  each vertex has
either two or zero children. See Exercise 7 of this section for a general fact about full binary trees.

TRAVERSALS OF BINARY TREES
The traversal  of  a  binary tree consists  of  visiting each vertex of  the tree in some prescribed order.  Unlike graph traversals,  the
consecutive vertices that are visited are not always connected with an edge. The most common binary tree traversals are differenti-
ated by the order in which the root and its subtrees are visited. The three traversals are best described recursively and are:
(1)   Preorder Traversal:

(a)   Visit the root of the tree.
(b)   Preorder traverse the left subtree.
(c)   Preorder traverse the right subtree.

(2)   Inorder Traversal:
(a)   Inorder traverse the left subtree.
(b)   Visit the root of the tree.
(c)   Inorder traverse the right subtree.
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(2)   Inorder Traversal:
(a)   Inorder traverse the left subtree.
(b)   Visit the root of the tree.
(c)   Inorder traverse the right subtree.

(3)   Postorder Traversal:
(a)   Postorder traverse the left subtree.
(b)   Postorder traverse the right subtree.
(c)   Visit the root of the tree.

Any traversal of an empty tree consists of doing nothing.

Example 10.4.2. For the tree in Figure 10.4.3, the orders in which the vertices are visited are:

A-B-D-E-C-F-G, for the preorder traversal

D-B-E-A-F-C-G, for the inorder traversal  and 

D-E-B-F-G-C-A, for the preorder traversal.

A

B C

D E F G

Figure 10.4.3

Example 10.4.3: Binary Tree Sort.  Given a collection of integers (or other objects than can be ordered),  one technique
for sorting is a binary tree sort.  If the integers are a1, a2, …, an,  n ¥ 1 , we first execute the following algorithm that creates a
binary tree:

(1)   Insert a1 into the root of the tree.

(2)   For k := 2 to n          //insert ak into the tree

(2.1) r = a1 ,

(2.2) inserted = false

(2.3) While Not(inserted) Do

         If ak < r then

  if r has a left child 

 then  r = left child of r 

else make ak the left child of r;  inserted = true

     else    //  ak ¥ r

if r has a right child

then r  = right child of r

else make ak the right child of r; inserted = true

If the integers to be sorted are 25, 17, 9, 20, 33, 13, and 30, then the tree that is created is the one in Figure 10.4.4. The inorder
traversal of this tree is 9, 13, 17, 20, 25, 30, 33, the integers in ascending order. In general, the inorder traversal of the tree that is
constructed in the algorithm above will produce a sorted list. The preorder and postorder traversals of the tree have no meaning
here.
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If the integers to be sorted are 25, 17, 9, 20, 33, 13, and 30, then the tree that is created is the one in Figure 10.4.4. The inorder
traversal of this tree is 9, 13, 17, 20, 25, 30, 33, the integers in ascending order. In general, the inorder traversal of the tree that is
constructed in the algorithm above will produce a sorted list. The preorder and postorder traversals of the tree have no meaning
here.

Figure 10.4.4

EXPRESSION TREES
A convenient way to represent an algebraic expression is by its expression tree. Consider the expression

 X = a*b - c êd + e. 

Since  it  is  customary  to  put  a  precedence  on  multiplication/divisions,  X  is  evaluated  as  HHa*bL - Hc êdLL + e.  Consecutive
multiplication/divisions or addition/subtractions are evaluated from left to right. We can analyze X further by noting that it is the
sum  of  two  simpler  expressions  Ha*bL - Hc êdL  and  e?.  The  first  of  these  expressions  can  be  broken  down  further  into  the
difference of the expressions a*b and c êd. When we decompose any expression into

 Hleft expressionL HoperationL Hright expressionL, 

the expression tree of that expression is the binary tree whose root contains the operation and whose left and right subtrees are
the trees of the left and right expressions, respectively. Additionally, a simple variable or a number has an expression tree that is
a single vertex containing the variable or number. The evolution of the expression tree for expression X appears in Figure 10.4.5.

Figure 10.4.5

Example 10.4.4.

(a)     If  we  intend  to  apply  the  addition  and  subtraction  operations  in  X  first,  we  would  parenthesize  the  expression  to
a* Hb - cL ê Hd + eL.   Its expression tree appears in Figure 10.4.6a.

(b)   The expression trees for a2 - b2 and for Ha + bL* Ha - bL appear in Figures 10.4.6(b) and 10.4.6(c).
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Figure 10.4.6

The three traversals of an operation tree are all significant. A binary operation applied to a pair of numbers can be written in three
ways.  One is  the familiar  infix form, such as  a + b  for  the sum of  a  and b.  Another  form is  prefix,  in  which the same sum is
written  +a b.  The  final  form  is  postfix,  in  which  the  sum  is  written  a b +.  Algebraic  expressions  involving  the  four  standard
arithmetic operations H+, -, * , and êL in prefix and postfix form are defined as follows:
Prefix:  (a)  A variable  or  number  is  a  prefix  expression,  (b)  Any operation followed by a  pair  of  prefix  expressions is  a  prefix
expression.
Postfix:  (a)  A  variable  or  number  is  a  postfix  expression,  (b)  Any  pair  of  postfix  expressions  followed  by  an  operation  is  a
postfix expression.
The connection between traversals of an expression tree and these forms is simple:

(a)   The preorder traversal of an expression tree will result in the prefix form of the expression.

(b)   The postorder traversal of an expression tree will result in the postfix form of the expression.

(c) The inorder traversal of an operation tree will not, in general, yield the proper infix form of the expression. If an expression
requires parentheses in infix form, an inorder traversal of its expression tree has the effect of removing the parentheses.
Example 10.4.5. The preorder traversal of the tree in Figure 10.4.5 is +-*a b êc d e, which is the prefix version of expression X.
The  postfix  traversal  is  a b*c d ê-e +.  Note  that  since  the  original  form  of  X  needed  no  parentheses,  the  inorder  traversal,
a *b - c êd + e, is the correct infix version.

COUNTING BINARY TREES
We  close  this  section  with  a  formula  for  the  number  of  different  binary  trees  with  n  vertices.  The  formula  is  derived  using
generating functions. Although the complete details are beyond the scope of this text, we will supply an overview of the deriva-
tion in order to illustrate how generating functions are used in advanced combinatorics.
Let B HnL be the number of different binary trees of size n (n vertices), n ¥ 0. By our definition of a binary tree, B H0L = 1. Now
consider  any positive  integer  n + 1,  n ¥ 0.  A binary tree  of  size  n + 1 has  two subtrees,  the  sizes  of  which add up to  n.  The
possibilities can be broken down into n + 1 cases:

Case 0: Left subtree has size 0; right subtree has size n. 
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Case 1: Left subtree has size 1; right subtree has size n - 1.

 ª

Case k: Left subtree has size k; right subtree has size n - k.

 ª

Case n: Left subtree has size n; right subtree has size  0.

In the general Case k,  we can count the number of possibilities by multiplying the number of ways that the left  subtree can be
filled,  B HkL,  by  the  number  of  ways  that  the  right  subtree  can  be  filled.  BHn - kL.  Since  the  sum  of  these  products  equals
B Hn + 1L, we obtain a recurrence relation for n ¥ 0:
 BHn + 1L = BH0L BHnL + BH1L BHn - 1L + ! + BHnL BH0L

= ⁄
k=0

n
BHkL BHn - kL

Now take the generating function of both sides of this recurrence relation:

 ⁄
n=0

¶
BHn + 1L zn = ⁄

n=0

¶
⁄
k=0

n
BHkL BHn - kL zn

or

G HB ; zL = G HB*B; zL = GHB; zL 2. 

Recall that  GHB ; zL = GHB;zL-BH0L
z

= GHB;zL-1
z

  If we abbreviate G HB; zL to G, we get 

G-1
z

= G2   fl   z G2 - G + 1 = 0

Using the quadratic equation we get two solutions:

G1 = 1+ 1-4 z
2 z

 and G2 = 1- 1-4 z
2 z

The gap in our deviation occurs here since we don't presume calculus at the level needed in the next step.  If we expand G1 by its
Laurent series, we find 

G1 = 1+ 1-4 z
2 z

= 1
z
- 1 - z - 2 z2 - 5 z3 - 14 z4 - 42 z5 +!

The coefficients of the powers of all z are all negative and there is singularity at 0 because of the 1
z

 term.  However if we do the
same with G2 we get

G2 =
1- 1-4 z

2 z
= 1 + z + 2 z2 + 5 z3 + 14 z4 + 42 z5 +!

Further analysis leads to a  closed form expression for B HnL, which is

BHnL = 1
n+1

2 n
n

.

This  sequence  of  numbers  is  often  called  the  Catalan  numbers.   For  more  information  on  the  Catalan  numbers,  see  the  entry
A000108 in The On-Line Encyclopedia of Integer Sequences.

  Mathematica Note

It  may  be  of  interest  to  note  how  the  Laurent  expansions  of  G1  and  G2  are  determined  using  Mathematica.   The  function
Series will generate a finite number of terms.  For example for G1 we evaluate the expression

SeriesB
1 + 1 - 4 z

2 z
, 8z, 0, 5<F

1

z
- 1 - z - 2 z2 - 5 z3 - 14 z4 - 42 z5 + OIz6M

The first argument is the closed form expression for G1.   The second argument has three parts.  The first part is the variable.  The
second part is the center of the expansion, 0, since we want a sum in powers of z  to get the coefficients of those powers.  The
third part is the maximum power of the variable.   Notice that the output also include the term OIz6M  to indicate that the remain-
ing terms are all multiples of z6.  If we wanted the first three terms of the expansion around -1, which is a sum of powers of z + 1,
we would get 
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The first argument is the closed form expression for G1.   The second argument has three parts.  The first part is the variable.  The
second part is the center of the expansion, 0, since we want a sum in powers of z  to get the coefficients of those powers.  The
third part is the maximum power of the variable.   Notice that the output also include the term OIz6M  to indicate that the remain-
ing terms are all multiples of z6.  If we wanted the first three terms of the expansion around -1, which is a sum of powers of z + 1,
we would get 

SeriesB
1 + 1 - 4 z

2 z
, 8z, -1, 3<F

-
1

2
-

5

2
+ -

1

2
-

3

2 5
Hz + 1L + -

1

2
-

13

10 5
Hz + 1L2 + -

1

2
-

61

50 5
Hz + 1L3 + OIHz + 1L4M

  Sage Note

In Sage,  one has the capability of being very specific about how algebraic expressions should be interpreted.   This also makes
working with various algebraic expressions a bit  more confusing to the beginner.    Here,  without getting into a lot  of detail,  is
how to get a Laurent expansion for G1 above.

sage: R.<z>=PowerSeriesRing(ZZ,'z')
sage: G=(1+sqrt(1-4*z))/(2*z)
sage: G
z^-1 - 1 - z - 2*z^2 - 5*z^3 - 14*z^4 - 42*z^5 - 132*z^6 - 429*z^7 - 1430*z^8 - 
4862*z^9 - 16796*z^10 - 58786*z^11 - 208012*z^12 - 742900*z^13 - 2674440*z^14 - 
9694845*z^15 - 35357670*z^16 - 129644790*z^17 - 477638700*z^18 + O(z^19)

The first output above declares a structure called a ring  that contains power series.  Here we are not using that structure, just a
specific element, G.  So the important thing about this first input is that it establishes z as being a variable associated with power
series.   When the second expression defines the value of G in terms of z, is automatically converted to a power series.   Notice
that the final output does match the Mathematica  result, but with more terms displayed.  In Chapter 16 we will introduce rings
and will be able to take advantage of Sage's capabilities in this area and this will probably make more sense.

EXERCISES FOR SECTION 10.4
A Exercises

1.   Draw the expression trees for the following expressions:

(a)   a Hb + cL

(b)   a b + c

(c)   a b + a c

(d)   b b - 4 a c

(e)   HHa3 x + a2L x + a1L x + a0
2.   Draw the expression trees for

(a)   x
2-1
x-1

(b)   x y + x z + y z

3.   Write out the preorder, inorder, and postorder traversals of the trees in Exercise 1 above.

4.   Verify the formula for BHkL, 0 § k § 3 by drawing all binary trees with three or fewer vertices.

5.   (a) Draw a binary tree with seven vertices and only one leaf.

      (b) Draw a binary tree with seven vertices and as many leaves as possible.
B Exercises

6.   Prove that the maximum number of vertices at level k of a binary tree is 2k  and that a tree with that many vertices at level k
must have at least 2k+1 - 1 vertices.
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6.   Prove that the maximum number of vertices at level k of a binary tree is 2k  and that a tree with that many vertices at level k
must have at least 2k+1 - 1 vertices.
7.  Prove that if T is a full binary tree, then the number of leaves of T is one more than the number of internal vertices (nonleaves).

8.  Use Mathematica to determine the sequence whose generating function is GHzL = 1
H1-zL3
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SUPPLEMENTARY EXERCISES FOR CHAPTER 10
Section 10.1
1.   Show that in a tree with n vertices, the sum of the degrees of all vertices is 2 n - 2.

2.   (a) Show that there exists a tree with ten vertices and the property that each vertex has degree either 1 or 5.

 (b) Prove that no such tree exists with an odd number of vertices.

3.  Given G = HV , EL with †V § = v and †E§ = e, G is graceful if the elements in V can be labeled with v distinct positive integers such that for each
positive integer k, 1 § k § e, there is an edge connecting vertices i and j such that †i - j§ = k.
(a) Which of the following graphs are graceful?

v1

v2 v3

G1

v1 v2 v3

G2

v1v2

v3 v4

G3

v1

v2

v3

v4

G4

(b) Prove that every chain (see Figure 9.6.1) is graceful. It has been conjectured that every tree is graceful.

Section 10.2 
4. Let G be the graph

1

3

7

2
4

5

6

a

b

d

c

e

Find a minimal spanning tree for G using the method of left and right sets. Start with R = 8a< and L = 8b, c, d, e<. At each step show what L
and R are and indicate what edge you added to the tree.

Section 10.3
5. Find a minimal spanning tree for the graph below. Use Kruskal's algorithm and draw the forest of rooted trees after you have added the third
edge to the spanning set.
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6.   If a rooted tree has the properties that each vertex has no more than m children and its depth is less than or equal to n, how many vertices
could it have?

Section 10.4
7.   Represent the algebraic expression HHHa - bL*cL + 7L* HHd + 4L ê xL by a tree. Determine the depth of the tree.

8.   (a) Write out the post order traversal for the graph below.

(b)   Write out the inorder traversal for the graph below.

(c)   Write out the preorder traversal for the graph below.

A

B

D

C

E F

G

9. (a) Draw the operation tree for the expression a2 + 2 ab + b, where all multiplications are done first, x2 = xx, and additions are done from left
to right (as usual).
 (b) List the postorder traversal of the tree that you obtained in part a. What is the significance of this traversal?

10. (a) Draw the binary tree that would be constructed by the binary sort algorithm for sorting the integers 5, 55, 34, 38, 11, 3, 71, 23, and 18
in descending order. Afterwards, list the preorder traversal of the tree and then build a sorting tree from that order. Repeat the process above,
but do an inorder traversal instead of preorder. 
(b) Based on the results of part a, what can you say about the process of building a binary sorting tree, storing it in preorder (or inorder), and
then building a tree from that new list?
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Solutions and Hints to Odd-Numbered Exercises
CHAPTER 1

Section 1.1
1. (a) ! 8, 15, 22, 29

(b) !apple, pear, peach, plum ! These solutions are not unique.

(c) !1 ê2, 1 ê3, 1 ê4, 1 ê5

(d) !-8, -6, -4, -2

(e)!6, 10, 15, 21

3.(a) ! 82 k + 1 : k œ !, 2 b k b 39< (b) 8x œ " : -1 < x < 1<

(c) ! 82 n : n œ !<  (d) 89 n : n œ !, |2 b n<

5.(a) True (b) False (e) True (d) True (e) False

(f)!True (g) False (h) True

Section 1.2
1. (a) 82, 3< (b) 80, 2, 3< (c) 80, 2, 3< (d) 80, 1, 2, 3, 5, 9<

(e) 80<  (f) «  (g)8 1, 4, 5, 6, 7, 8, 9<   (h) 80, 2, 3, 4, 6, 7, 8<

(i) «  (j) 80<

3. These are all true for any sets A, B, and C. 

5. (a) 81, 4< Œ A Œ 81, 2, 3, 4<

(b)  82< Œ A Œ 81, 2, 4, 5<  (c) A = 82, 4, 5<

7.

(a) (b)

(c) (d)

9. !  (a) 
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? Select

Select@list, critD picks out all elements ei of list for which crit@eiD is True.
Select@list, crit, nD picks out the first n elements for which crit@eiD is True.  à

? PrimeQ

PrimeQ@exprD yields True if expr is a prime number, and yields False otherwise.  à

       (b) 

Select@Range@2000, 2099D, PrimeQ@ÒD &D

82003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099<

Section 1.3

1. (a) 8H0, 2L, H0, 3L, H2, 2L, H2, 3L, H3, 2L, H3, 3L<

(b)!8H2, 0L, H2, 2L, H2, 3L, H3, 0L, H3, 2L, H3, 3L<

(c) !8H0, 2, 1L, H0, 2, 4L, H0, 3, 1L, H0, 3, 4L, H2, 2, 1L, H2, 2, 4L, H2, 3, 1L, H2, 3, 4L, H3, 2, 1L, H3, 2, 4L, H3, 3, 1L, H3, 3, 4L<

(d)!«

(e) !8H0, 1L, H0, 4L, H2, 1L, H2, 4L, H3, 1L, H3, 4L<

(f)!8H2, 2L, H2, 3L, H3, 2L, H3, 3L<

(g) !8H2, 2, 2L, H2, 2, 3L, H2, 3, 2L, H2, 3, 3L, H3, 2, 2L, H3, 2, 3L, H3, 3, 2L, H3, 3, 3L<

(h) 9I2, «M, H2, 82<L, H2, 83<L, H2, 82, 3<L, I3, «M, H3, 82<L, H3, 83<L, H3, 82, 3<L=

3.8a, b<, 8a, c<, 8a, d<, 8b, c<, 8b, d<, 8c, d<

5. There are n singleton subsets, one for each element.

7. (a) 8+00, +01, +10, +11, -00, -01, -10, -11<  (b) 16 and 512

9. When  A = B

Section 1.4
1.(a) 11 111 (b) 100 000 (c) 1010 (d) 1 100 100

3. (a) 18 (b) 19 (c) 42 (d) 1264

5.There is a bit for each power of 2, starting with the zeroth power. The number

1990 is between 210 = 1024 and 211 = 2048, so there are 10 + 1 (the 0 power

of 2) bits.

(a) 11 (b) 12 (c) 13 (d) 8

7.It must be a multiple of four.

Section 1.5
1.(a)  24 (b)  6 (c)  3, 7, 15, 31(d)  1, 4, 9, 16

3. (a) 1
1 H1+1L

+
1

2 H2+1L
+

1
3 H3+1L

+ ! +
1

nHn+1L
=

n
n+1

(b) 1
1 H2L

+
1
2 H3L

+
1
3 H4L

=
1
2
+

1
6
+

1
12

=
3
4
=

3
3+1

(c) 1 + 23 + 33 + ! + n3 = J
1
4
N n2Hn + 1L2

  1 + 4 + 27 = 36 ! J
1
4
N H3L2 H3 + 1L2 = 36

5.Hx + yLn = I 0
nM xn + I 1

nM xn-1 y + H2
nL xn-2 y2 + ! + I n-1

n M x yn-1 + I n
nM yn
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5.Hx + yLn = I 0
nM xn + I 1

nM xn-1 y + H2
nL xn-2 y2 + ! + I n-1

n M x yn-1 + I n
nM yn

7.(a) 8x œ " 0 < x b 5<  (b) «

(c) 8x œ " -5 < x < 5< = B5  (d) 8x œ " -1 < x < 1< = B1

 9.(a) 36   (b) 105

Supplementary Exercises~Chapter 1
1. (a) 82, 1<  (b) «  (c) 8#, -#<

3. (a) 80, 3, 4, 5, 6, 7, 8, 9< (b) 83, 6, 9<    (c) 80, 1, 2<

5. (a) A ‹ B = 81, 2, 3, 4, 5, 6, 7, 9, 12< fl †HA ‹ BL§ = 9

 †A§ = 6, †B§ = 5  A › B = 82, 5< fl †HA › BL§ = 2

 †A§ + †B§ - †HA › BL§ = 6 + 5 - 2 = 9

(b) !10, 8, 2

(c) HA ‹ B ‹ CL = †HHA ‹ BL ‹ CL§

by part (a) = †HA ‹ BL§ + †C§ - †HHA ‹ BL › CL§ ! 

Distributive = †HA ‹ BL§ + †C§ - †HHA › CL ‹ HB › CLL§

by part (a) = †A§ + †B§ - †HA › BL§ + †C§ - @†HA › CL§
+ †HB › CL§ - †HHA › CL › HB › CLL§D

 

 Simplify ! = †A§ + †B§ + †C§ - †HA › BL§ - †HA › CL§
-†HB › CL§ + †HA › B › CL§

7. (a) 8H4, 4L<

(b) !8H2, 4L, H4, 4L, H6, 4L<

(c) ! 8H4, 4, 4L<

(cl) ! 8H4, 2L, H4, 4L, H4, 6L<

(e) ! {(2, 4, 1), (2, 4, 5), (4, 4, 1), (4, 4, 5), (6, 4, 1), (6, 4, 5)}

15. (a) ! A0 = 80<, A1 = 80, 1, 2, 3<, A2 = 80, 1, 2, …, 6<, A 3 = 80, 1, 2, …, 9<

(b)  H0, 1, 2, 3<

(c) !80<

(d) !80, 1, 2, …, 9<

(e) !80, 1, 2, …, 9<

17. Parts a, b, and d are true with multiplication replacing addition.

CHAPTER 2

Section 2.1
1. If there are m horses in race 1 and n horses in race 2 then there are m ÿn possible daily doubles.

3. 72 = 4 ÿ6 ÿ3

5. 720 = 6 ÿ5 ÿ4 ÿ3 ÿ2 ÿ1

7. If we always include the blazer in the outfit we would have 6 outfits. If we

consider the blazer optional then there would be 12 outfits. When we add a

sweater we have the same type of choice. Considering the sweater optional

produces 24 outfits.

9. (a) 28 = 256 (b) 24 = 16. Here we are concerned only with the first four

bits, since the last four must be the same.

Sol_1-2.nb  3
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bits, since the last four must be the same.

(c) 27 = 128, you have no choice in the last bit. 

11. (a) 16 (b) 30

13. (a) 3 (b) 6

15. 18 
17. (a)

Start

Yes No

a b c d

(b) 56

19. 2n-1 - 1 and 2n - 2

Section 2.2
1. PH1000; 3L

3. With repetition: 268 º 2.0883µ1011

Without repetition: PH26; 8L º 6.2991 µ 1010 

5. 15 !

7. (a) PH15; 5L = 360 360 (b) 2 ÿ14 ÿ13 ÿ12 ÿ11 = 48 048

9. 2 ÿPH3; 3L = 12

11. (a) PH4; 2L = 12  (b) PHn; 2L = nHn - 1L

(c) Case 1: m > n. Since the coordinates must be different, this case is impossible. 

Case 2: m b n. PHn; mL.

Section 2.3
1. 88a<, 8b<, 8c<<, 88a, b<, 8c<<, 88a, c<, 8b<<, 88a<, 8b, c<<, 88a, b, c<<

3. No. By this definition it is possible that an element of A; might not belong to A.

5. The first subset is all the even integers and the second is all the odd integers.

These two sets do not intersect and they cover the integers completely.

7. Let J, A, N stand for the set of people who jog, do aerobics, and do Nautilus.

Then, using law of addition #2,

90 = 30 + 30 + 30 - 25 - 20 - 10 + †HJ › A › NL§. 

9. Assume †HA1 ‹ A2L§ = †A1§ + †A2§ - †HA1 › A2L§. 

†HA1 ‹ A2 ‹ A3L§ = †HHA1 ‹ A2L ‹ A3L§ 

by 1st law = †HA1 ‹ A2L§ + †A3§ - †HHA1 ‹ A2L › A3L§ 

Distributive = †HA1 ‹ A2L§ + †A3§ - †HHA1 › A3L ‹ HA2 › A3LL§ 

Sol_1-2.nb  4

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 
License. 265



Distributive = †HA1 ‹ A2L§ + †A3§ - †HHA1 › A3L ‹ HA2 › A3LL§ 

1st law (twice) = †A1§ + †A2§ - †HA1 › A2L§ + †A3§
-@†HA1 › A3L§ + †HA2 › A3L§ - †HHA1 › A3L › HA2 › A3LL§D

 

Simplify = †A1§ + †A2§ + †A3§ - †HA1 › A2L§ - †HA1 › A3L§
-†HA2 › A3L§ + †HA1 › A2 › A3L§.

 

(b)  †HA1 ‹ A2 ‹ A3 ‹ A4L§ = †A1§ + †A2§ + †A3§ + †A4§ - †HA1 › A2L§
-†HA1 › A3L§ - †HA1 › A4L§ - †HA2 › A3L§ - †HA2 › A4L§
-†HA3 › A4L§ + †HA1 › A2 › A3L§ + †HA1 › A2 › A4L§
+†HA1 › A3 › A4L§ + †HA2 › A3 › A4L§ - †HA1 › A2 › A3 › A4L§

 

Derivation:

†HA1 ‹ A2 ‹ A3 ‹ A4L§ = †HHA1 ‹ A2 ‹ A3L ‹ A4L§ 

1st law = †HA1 ‹ A2 ‹ A3L§ + †A4§ - †HHA1 ‹ A2 ‹ A3L › A4L§ 

Distributive = †HA1 ‹ A2 ‹ A3L§ + †A4§ - †HHA1 › A4L ‹ HA2 › A4L
‹ HA3 › A4LL§

 

2nd law (twice) = †A1§ + †A2§ + †A3§ - †HA1 › A2L§ - †HA1 › A3L§
-†HA2 › A3L§ + †HA1 › A2 › A3L§ + †A4§ - @†HA1 › A4L§

+ †HA2 › A4L§ + †HA3 › A4L§ - †HHA1 › A4L › HA2 › A4LL§
- †HHA1 › A4L › HA3 › A4LL§ - †HHA2 › A4L › HA3 › A4LL§
+ †HHA1 › A4L › HA2 › A4L › HA3 › A4LL§D

 

Simplify = †A1§ + †A2§ + †A3§ + †A4§ - †HA1 › A2L§ - †HA1 › A3L§
-†HA2 › A3L§ - †HA1 › A4L§ - †HA2 › A4L§ - †HA3 › A4L§
+†HA1 › A2 › A3L§ + †HA1 › A2 › A4L§ + †HA1 › A3 › A4L§
+†HA2 › A3 › A4L§ - †HA1 › A2 A3 › A4L§

11. Hint: Partition the set of fractions into blocks, where each block contains fractions that are numerically equivalent. Describe how you would determine 
whether two fractions belong to the same block. Redefine the rational numbers to be this partition. Each rational number is a set of fractions.

Section 2.4
1. CH10; 3L ÿCH25; 4L = 1, 518, 000

3. CH10; 7L + CH10; 8L + CH10; 9L + CH10; 10L 

5. 16 x4 - 96 x 3 y + 216 x2 y2 - 216 x y3 + 81 y4

7. (a) CH52; 5L = 2, 598, 960

    (b)  CH52; 5L ÿCH47; 5L ÿCH42; 5L ÿCH37; 5L

9. CH4; 2L CH48; 3L

11. CH12; 3L ÿCH9; 4L ÿCH5; 5L

13. (a) CH10; 2L = 45 (b) CH10; 3L = 120

15. Assume †A§ = n. If we let x = y = 1 in the Binomial Theorem, we obtain

2n = CHn; 0L + CHn; 1L + ! + CHn; nL, and as a consequence of Example

2.4.7 we realize that the right side of this equation says the sum of all subsets 

of A. Hence †PHAL§ = 2†A§ 

17. 999, 400, 119, 992.

Supplementary Exercises~Chapter 2

1. (a) 10 ÿ9 ÿ8 = 720

(b) 10 ÿ10 ÿ10 = 1000

3. (a)
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Start

a

b

c

d

e

1 Ha, 1L

2 Ha, 2L

3 Ha, 3L

1 Hb, 1L

2 Hb, 2L

3 Hb, 3L

1 Hc, 1L

2 Hc, 2L

3 Hc, 3L

1 Hd, 1L

2 Hd, 2L

3 Hd, 3L

1 He, 1L

2 He, 2L

3 He, 3L

15 pairs

(b) If you imagine drawing a tree diagram for this general case, from the starting point, there will be m branches, one for each element of A. From the end 
of each of the "A branches" there will be n branches, one for each element of B. Therefore, there are m ÿn pairs in AµB. 
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(b) If you imagine drawing a tree diagram for this general case, from the starting point, there will be m branches, one for each element of A. From the end 
of each of the "A branches" there will be n branches, one for each element of B. Therefore, there are m ÿn pairs in AµB. 
5. (a) If couple A is seated, couple B can be either to their left or right and couple C sits in the other position; therefore, there are two possible arrangements.

(b) ! 2 ÿ23 = 48

7. (a) 5 != 120  (b) 5 ! - 2 ÿ4 != 72. (Here, we subtract the ways that the 

two could be seated together from the total number of arrangements.) 

9. (a) PH10; 4L  (b) CH10; 4L ÿCH6; 3L

11. CH10; 2L ÿ8 = 360

13. (a) CH11; 5L = 462 (b) CH10; 4L = 210

(c) !CH2; 1L ÿCH9; 4L + CH9; 3L

15. (a) 3 PH3; 2L = 18  (b) 2 PH3; 2L = 12

Sol_1-2.nb  7
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CHAPTER 3

Section 3.1

1. (a) ! d Ï c (b) s fi Ÿ c

(c) ! Ÿ Hd Ï sL  (d) Ÿ s fl Ÿ c

3. (a) ! 2 > 5 and 8 is an even integer. False.

(b) !If 2 b 5 then 8 is an even integer. True.

(c) !If 2 b 5 and 8 is an even integer then 11 is a prime number. True.

(d) ! If 2 b 5  then either 8 is an even integer or 11 is not a prime number. True.

(e) ! If 2 b 5 then either 8 is an odd integer or 11 is not a prime number. False.

(f)!If 8 is not an even integer then 2 > 5. True.

5. Only the converse of d is true.

Section 3.2

1.   (a)  
p p Í p
0
1

0
1

 (b)   
p Ÿ p p Ï p
0
1

1
0

0
0

 (c)  
p Ÿ p p Ï HŸ pL
0
1

1
0

1
1

(d)   
p p Ï p
0
1

0
1

3. (a) Ÿ Hp Ï qL Í s (b) Hp Í qL Ï Hr Í qL

5. 24 = 16

Section 3.3

1. a ñ e, d ñ f , g ñ h

3. No. In symbolic form the question is: Is Hp Ø qL ñ Hq Ø pL?

p q p Ø q q Ø p Hp Ø qL ¨ Hq Ø pL
0
0
1
1

0
1
0
1

1
1
0
1

1
0
1
1

1
0
0
1

This table indicates that an implication is not always equivalent to its converse. 

5. Let x be any proposition generated by p and q. The truth table for x has 4 rows

and there are 2 choices for a truth value for x for each row, so there are

2 ÿ 2 ÿ 2 ÿ 2 = 24 possible propositions.

(See Table 13.6.1 for an illustration.) 

7. 0 Ø p and p Ø 1 are tautologies.

Section 3.4

1. Let s = "I will study", t = "I will learn." The argument is: HHs Ø tL fl HŸ tLL Ø HŸ sL , call the argument a.

s t s Ø t Hs Ø tL fl HŸ tL a
0
0
1
1

0
1
0
1

1
1
0
1

1
0
0
0

1
1
1
1

Since a is a tautology, the argument is valid.

3. In any true statement S, replace; fl with fi, fiwith fl, 0 with 1, 1 with 0, › with fl, and fl with ›. Leave all other connectives unchanged.
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3. In any true statement S, replace; fl with fi, fiwith fl, 0 with 1, 1 with 0, › with fl, and fl with ›. Leave all other connectives unchanged.

5.  (a) If not EOF then repeat

Read (ch);

Count := Count + 1

Until EOF

Law used: involution law, Not Not EOFñ EOF}

(b) S := 0; K := 1; N := 100;  

If K <= N then do

Repeat

S := S + K;
K := K + 1
Until K > N

No Law of logic is really used here, only  a law of integers:

Not HK § NL ñ K > N.

Section 3.5

1. (a)    

p q Hp Í qL Ï Ÿ q HHp Í qL Ï Ÿ qL Ø p
0
0
1
1

0
1
0
1

0
0
1
0

1
1
1
1

 

(b)   

p q Hp Ø qL Ï Ÿ q Ÿ p Hp Ø qL Ï HŸ qL
0
0
1
1

0
1
0
1

1
0
0
0

1
1
0
0

1
1
1
1

3. (a) Direct proof:

(1) ! d Ø Ha fi cL

(2) ! d

(3) ! a fi c

(4) ! a Ø b

(5) ! Ÿ a Í b

(6) ! c Ø b

(7) !Ÿ c Í b

(8) !HŸ a Í bL Ï HŸ c Í bL

(9) ! HŸ a fl Ÿ cL Í b

(10) !Ÿ Ha fi cL Í b

(11) !b ‡

Indirect proof:

(1) ! Ÿ b! Negated conclusion

(2) ! a Ø b ! Premise

(3) ! Ÿ a Indirect Reasoning (1), (2)

(4)  c Ø b Premise

(5) !Ÿ c ! Indirect Reasoning (1), (4)
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(5) !Ÿ c ! Indirect Reasoning (1), (4)

(6) !HŸ a fl Ÿ cL  Conjunctive (3), (5)

(7) !Ÿ Ha fi cL DeMorgan's law (6)

(8) !d Ø Ha fi cL ! Premise

(9) !Ÿ d Indirect Reasoning (7), (8)

(10) ! d       Premise

(11)! 0  !  (9), (10) ‡

 (b) Direct proof:

(1)! Hp Ø qL Ï Hr Ø sL

(2) ! p Ø q

(3)! Hp Ø tL Ï Hs Ø uL

(4) ! q Ø t

(5) ! p Ø t

(6)  r Ø s

(7)  s Ø u

(8) ! r Ø u

(9)! p Ø r

(10)!p Ø u

(11)!p Ø Ht fl uL !Use Hx Ø yL Ï Hx Ø zL ñ x Ø Hy Ï zL

(12) ! Ÿ Ht fl uL Ø Ÿ p

(13)! Ÿ Ht fl uL

(14)!Ÿ p ‡

Indirect proof:

(1) ! p

(2) p Ø q

(3) ! q

(4)!q Ø t

(5)! t

(6) !Ÿ Ht fl uL

(7)!Ÿ t fi Ÿ u

(8) ! Ÿ u

(9) !s Ø u

(10) !Ÿ s

(11)!r Ø s

(12)  Ÿ r

(13) !p Ø r
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(13) !p Ø r

(14)!r

(15) !0 ‡

(c) ! Direct proof:

(1) ! Ÿ s Í p Premise

(2)   s    Added premise (conditional conclusion)

(3) !Ÿ HŸ sL Involution (2)

(4) ! p Disjunctive simplification (1), (3)

(5) !p Ø Hq Ø rL Premise

(6) ! q Ø r! Detachment (4), (5)

(7) ! q ! Premise

(8) !r ! Detachment (6), (7) ‡ 

Indirect proof:

(1) !Ÿ Hs Ø rL Negated conclusion

(2) ! Ÿ HŸ s fi rL Conditional equivalence (I)

(3) !s fl Ÿ r DeMorgan (2)

(4) ! s  ! Conjunctive simplification (3)

(5) ! Ÿ s Í p Premise

(6) ! s Ø p Conditional equivalence (5)

(7) ! p  ! Detachment (4), (6)

(8) !p Ø Hq Ø rL Premise

(9) ! q Ø r Detachment (7), (8)

(10) !q Premise

(11) ! r       Detachment (9), (10)

(12) ! Ÿ r    Conjunctive simplification (3)

(13) !0 ! Conjunction (11), (12) ‡

(d) ! Direct proof:

(1) ! p Ø q

(2) ! q Ø r

(3) ! p Ø r

(4) ! p Í r

(5) !Ÿ p Í r

(6) ! Hp Í rL Ï HŸ p Í rL

(7) !Hp Ï Ÿ pL Í r

(8) !0 Í r

(9) !r ‡
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(9) !r ‡

Indirect proof:

(1) ! Ÿ r Negated conclusion

(2) !p Í r Premise

(3) ! p (1), (2)

(4) ! p Ø q Premise

(5) ! q  ! Detachment (3), (4)

(6) ! q Ø r Premise

(7) ! r    Detachment (5), (6)

(8) !0 ! (1), (7) ‡

5. (a) Let W stand for "wages will increase," I stand for "there will be inflation," and C stand for "cost of living will increase." Therefore the argument is:
W Ø I, Ÿ I Ø Ÿ C, W fl C.. The argument is invalid. The easiest way to see this is through a truth table. Let x be the conjunction of all premises.

W I C Ÿ I Ÿ C W Ø I Ÿ I Ø Ÿ C x x Ø C
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

1
1
1
1
0
0
1
1

0
1
1
1
0
1
1
1

0
0
0
0
0
0
1
1

1
1
1
1
1
1
1
0

(b) Let r  stand for "the races are fixed," c  stand for "casinos are crooked," t  stand for "the tourist trade will decline," and p stand for "the police will be
happy." Therefore, the argument is:
Hr fi cL Ø t, t Ø p, Ÿ p Ø Ÿ r. The argument is valid. Proof:

(1) !t Ø p Premise

(2) !Ÿ p Premise

(3) ! Ÿ t Indirect Reasoning (1), (2)

(4) !Hr fi cL Ø t  ! Premise

(5) !Ÿ Hr fi cL Indirect Reasoning (3), (4)

(6) !HŸ rL fl HŸ cL DeMorgan (5)

(7) !Ÿ r  ! Conjunction simplification H6L ‡

7. p1 Ø pk  and pk Ø pk+1  implies p1 Ø pk+1. It takes two steps to get to p1 Ø pk+1  from p1 Ø pk  This means it takes 2 H100 - 1L steps to get to p1 Ø p100
(subtract 1 because p1 Ø p2 is stated as a premise). A final step is needed to apply detachment to imply p100
Section 3.6

1. (a) 981<, 83<, 81, 3<, «=

    (b) ! 883<, 83, 4<, 83, 2<, 82, 3, 4<<

    (c) !881<, 81, 2<, 81, 3<, 81, 4<, 81, 2, 3<, 81, 2, 4<, 81, 3, 4<, 81, 2, 3, 4<<

    (d) ! 882<, 83<, 84<, 82, 3<, 82, 4<, 83, 4<<

    (e)! 8A Œ U : †A§ = 2<

3. There are 23 = 8  subsets of U, allowing for the possibility of 28nonequivalent 

propositions over U.

5. s is odd and Hs - 1L Hs - 3L Hs - 5L Hs - 7L = 0
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5. s is odd and Hs - 1L Hs - 3L Hs - 5L Hs - 7L = 0

 7. b and c

Section 3.7
1. We wish to prove that PHnL : 1 + 3 + 5 + ! + H2 - nL = n2  is true for n r 1. Note: The nth odd positive integer is 2n - 1.

Basis: for n = 1 : 1 = 12

Induction:  Assume that for somen r 1, pHnL is true. Then:

1 + 3 + ! + H2 Hn + 1L - 1L + 1 = @1 + 3 + ! + H2 n - 1LD
+H2 Hn + 1L - 1L
= n2 + H2 n + 1L by pHnL and basic algebra
= Hn + 1L2 ‡

3. Proof: (a) Basis: 1 = 1 H2L H3L ê6 = 1

(b) Induction: ⁄
1

n+1
k2 = ⁄

1

n
k2 + Hn + 1L2

=
nHn+1L H2 n+1L

6
+ Hn + 1L2

=
Hn+1L I2 n2+7 n+6M

6

=
Hn+1L Hn+2L H2 n+3L

6
‡

5. Basis:   For n = 1 , we observe that 1
H1ÿ2L

=
1

H1+1L

Induction: Assume that for some n r 1, the formula is true.

Then: 1
H1ÿ2L

+ ! +
1

HHn+1L Hn+2LL
=

n
Hn+1L

+
1

HHn+1L Hn+2LL

= Hn + 2L HnL +
1

HHn+1L Hn+2LL

=
Hn+1L2

HHn+1L Hn+2LL

=
Hn+1L
Hn+2L

‡

7.  Let  An  be  the  set  of  strings  of  zeros  and ones  of  length  n  (we assume that  †An§ = 2n  is  known),  En =  the  even strings,  and En
c =  the  odd strings.  The

problem is to prove that for n r 1, †En§ = 2n-1. Clearly, °E1• = 1, and, if for some n r 1, †En§ = 2n-1, it follows that †En+1§ = 2n by the following reasoning:

En+1 = 91 s : s in En
c= ‹ 80 s : s in En<

Since 91 s : s in En
c= and 80 s : s in En< are disjoint, we can apply the addition law. Therefore, †En+1§ = °En

c• + †En§

= 2n-1 + I2n - 2n-1M = 2n. ‡

9.  Assume  that  for  n  persons  Hn r 1L, Hn-1L n
2

 handshakes  take  place.  If  one  more  person  enters  the  room,  he  or  she  will  shake  hands  with  n

people, Hn-1L n
2

+ n =
In2-n+2 nM

2
=

nHn+1L
2

=
HHn+1L-1L Hn+1L

2

Also, for n = 1, there are no handshakes: H1-1L H1L
2

= 0.  ‡ 

11. Let pHnL be "a1 + a2 + ! + an has the same value no matter how it is evaluated."

Basis: a1 + a2 + a3  may be evaluated only two ways. Since + is associative, Ha1 + a2L + a3 = a1 + Ha2 + a3L. Hence p H3L is true.

Induction: Assume that for some n r 3 pH3L, pH4L, . . . , pHnL are all true. Now consider the sum a1 + a2 + ! + an+1. Any of the n additions in
this expression can be applied last. If the jth addition is applied last, we have c j = Ia1 + a2 + ! + a jM + Ia j+1 + ! + an+1M. No matter how the expression

to the left and right of the jth  addition are evaluated, the result will always be the same by the induction hypothesis, specifically pH jL and pHn + 1 - jL.  We
now can prove that c1 = c2 = ! = cn.  If i < j, 

      ci = Ha1 + a2 + ! + aiL + IIai+1 + ! + a jM + Ia j+1 + ! + an+1M
= Ha1 + a2 + ! + aiL + IIai+1 + ! + a jM + Ia j+1 + ! + an+1M

= IHa1 + ! + aiL + Iai+1 + ! + a jMM + Ia j+1 + ! + an+1M by pH3L
= c j
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      ci = Ha1 + a2 + ! + aiL + IIai+1 + ! + a jM + Ia j+1 + ! + an+1M
= Ha1 + a2 + ! + aiL + IIai+1 + ! + a jM + Ia j+1 + ! + an+1M

= IHa1 + ! + aiL + Iai+1 + ! + a jMM + Ia j+1 + ! + an+1M by pH3L
= c j

 

ci = Ha1 + a2 + ! + aiL + Iai+1 + ! + a j + a j+1 + ! + an+1M definition of ci
= Ha1 + a2 + ! + aiL + IIai+1 + ! + a jM + Ia j+1 + ! + an+1M by pHn + 1 - iL

= IHa1 + ! + aiL + Iai+1 + ! + a jMM + Ia j+1 + ! + an+1M by pH3L

= Ia1 + ! + ai + ai+1 + ! + a jM + Ia j+1 + ! + an+1M by pHiL

= c j definition of c j ‡

  

13. For m r 1, let pHmL be xn+m = xn xm for all n r 1. The basis for this proof follows directly from the basis for the definition of exponentiation.

Induction: Assume that for some m r 1, pHmL is true. Then

xn+Hm+1L = xHn+mL+1 by associativity of integer addition

= xn+m x1! by recursive definition

= xn xm x1 inductive hypothesis

= xn xm+1 recursive definition ‡

Section 3.8

1. (a) H" xL HFHxL Ø GHxLL

(b) There are objects in the sea which are not fish.

 Every fish lives in the sea. 

3. (a) There is a book with a cover that is not blue.

(b)!Every mathematics book that is published in the United States has a blue cover.

(c) !There exists a mathematics book with a cover that is not blue.

(d)!There exists a book that appears in the bibliography of every mathematics book.

(e)  H" xL HBHxL Ø MHxLL

(f)! H$ xL HMHxL Ï Ÿ UHxLL

(g)! H$ xL HH" yL HŸ RHx, yLL

5. The equation 4 u2 - 9 = 0 has a solution in the integers. (False)

7. (a) Every subset of U has a cardinality different from its complement. (True)

(b) !There is a pair of disjoint subsets of U both having cardinality 5. (False)

(c)!A - B = Bc - Ac is a tautology. (True) 

9.H" aL! H" bL!(a + b is a rational number.)

11. Let  I = 81, 2, 3, …, n<

(a) ! H$ iLI Hx œ AiL

(b)!H" iLI Hx œ AiL

Section 3.9

1. The given statement can be written in if … , then … format as: If x and y are two odd positive integers, then x + y is an even integer.

Proof: Assume x and y are two positive odd integers. It can be shown that x + y = 2 ·(some positive integer).

x odd fl x = 2 m + 1 for some m œ !, 

y odd fl y = 2 n + 1 for somen œ !.
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y odd fl y = 2 n + 1 for somen œ !.

Therefore, x + y = H2 m + 1L + H2 n + 1L = 2 HHm + nL + 1L = 2·(some positive integer) so x + y is even. ‡

3.  Proof: (Indirect)  Assume to  the  contrary,  that  2  is  a  rational  number.  Then there  exists  p, q œ ", Hq ! 0L  where  
p

q
= 2  and where  

p

q
 is  in

lowest terms, that is, p and q have no common factor other than 1.
p

q
= 2 fl

p2

q2
= 2 fl p2 = 2 q2 fl p2is an even integer fl p is an even integer (see Exercise 2)  4 is a factor of p2 fl q2 fl is even fl q is even. Hence both

p and q have a common factor, namely 2. Contradiction.  ‡

5.  Proof: (Indirect)  Assume  x, y œ #  and  x + y b 1.  Assume  to  the  contrary  that  Jx b
1
2

or y b
1
2
N  is  false,  which  is  equivalent  to  x >

1
2

and y >
1
2

.

Hence x + y >
1
2

+
1
2

= 1. This contradicts the assumption that x + y b 1.  ‡

Supplementary Exercises~Chapter 3

1.(a)  
p p Í p
0
1

0
1

(b)  
p Ÿ p p Ï Ÿ p
0
1

1
0

0
0

(c) 
p Ÿ p p Í Ÿ p
0
1

1
0

1
1

(d) 
p p Ï p
0
1

0
1

3.  

p q Ÿ p q Ï Ÿ p p Í Hq Ï Ÿ pL
0
0
1
1

0
1
0
1

1
1
0
0

0
1
0
0

0
1
1
1

 

5.  Let a = p Ø Ÿ q, b = q Í r, and c = Hp Ø Ÿ qL Ï Hq Í rL Ï Ÿ r 

p q r Ÿ q a b a Ï b Ÿ r c Ÿ p c Ø Ÿ p
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1
1
0
0
1
1
0
0

1
1
1
1
1
1
0
0

0
1
1
1
0
1
1
1

0
1
1
1
0
1
0
0

1
0
1
0
1
0
1
0

0
0
1
0
0
0
0
0

1
1
1
1
0
0
0
0

1
1
1
1
1
1
1
1

7. An implication is always equivalent to its contrapositive, as can be seen in the table below.

p q p fl q Ÿ q fl Ÿ p Hp fl qL ¨ HŸ q fl Ÿ pL
0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

1
1
1
1

9. The truth tables of p Ø Hp Ï qL and x must be equal.

p q p Ø Hp Ï qL x
0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

11. (a) "3 is not a prime number or it is odd," or "3 is a composite number or it is odd."

(b) ! "4 is not a prime number and it is even," or "4 is a composite number and it is even."
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(b) ! "4 is not a prime number and it is even," or "4 is a composite number and it is even."

(c) !I can exhibit an example of a statement and I cannot prove it.

(d) ! x2 - 7 x + 12 = 0 and x ! 3 and x ! 8

13.  (a) 

p q p Ø q Ÿ q Ø Ÿ p Hp Ø qL ¨ HŸ q Ø Ÿ pL
0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

1
1
1
1

(b)

p q p ¨ q p Ø q q Ø p Hp Ø qL Ï Hq Ø pL
0
0
1
1

0
1
0
1

1
0
0
1

1
1
0
1

1
0
1
1

1
0
0
1

Columns 3 and 6 are the same so Hp ¨ qL ñ @Hp Ø qL Ï Hq Ø pLD is a tautology. 

15. Let q = "I quit my job," s = "will starve," and w = "I did my work." In

symbolic form, the argument is Hq Ø sL Ï HŸ w Ø qL Ï w fl Ÿ s. The truth

table for x = Hq Ø sLÏHŸ w Ø qLÏw Ø Ÿ s  does not consist of all ones.

For example, when q is false, s is true and when w is true, x is false. Therefore,

x is not a tautology and the argument is not valid. 

17. @H m Ø pL Ï He Í Ÿ pL Ï Ÿ eD fl Ÿ m.  Valid

    Proof: (Direct)

(1) !e Í Ÿ p Premise

(2) ! Ÿ e Premise

(3) !Ÿ p (1), (2), disjunctive simplification

(4) ! m Ø p Premise

(5) ! Ÿ m (3), (4), indirect reasoning ‡ 

19. @HŸ p Ø Ÿ q Ï Ÿ r Ï Hp Ø sL Ï Hq Í rL fl s. Valid

Proof: (Direct)

(1) !Ÿ p Ø Ÿ q Premise

(2) !q Ø p (1), Contrapositive

(3) !p Ø s Premise

(4) !q Ø s (2), (3), Chain rule

(5) !q Í r Premise

(6) !Ÿ r Premise

(7) !q (5), (6), Disjunctive simplification

(8)  s (4), (7), Detachment ‡

    (Indirect)

(1) !Ÿ s Negated conclusion

(2) !p Ø s Premise

(3) !Ÿ p (1), (2), Indirect Reasoning
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(3) !Ÿ p (1), (2), Indirect Reasoning

(4)  Ÿ p Ø Ÿ q Premise

(5) !Ÿ q (3), (4), Detachment

(6)! q Í r Premise

(7) !r    (5), (6), Disjunctive simplification

(8) !Ÿ r Premise

(9) ! 0 (7), (8) ‡ 

21.  e Ø i, i Ø d, d Ø w fl e Ø w

Proof:

(1) !e Ø i Premise

(2) !i Ø d Premise

(3) !e Ø d (1), (2), Chain rule

(4) !d Ø w Premise

(5) !e Ø w (3), (4), Chain rule  ‡

23. Valid. Statement:  t Í d, Ÿ e Í j, Ÿ j Í r fl Ÿ t Ø r 

Proof: (direct)

(1) !t Í d Premise

(2) !Ÿ t Ø d (1), Conditional equivalence

(3) !Ÿ d Í j Premise

(4) !d Ø j (3), Conditional equivalence

(5) !Ÿ j Í r Premise

(6)  j Ø r (5), Conditional equivalence

(7)  Ÿ t Ø r (2), (4), (6), Chain rule  ‡

 25. (1) First show TpÏq Œ Tp › Tq

             a œ TpÏq fl a makes p Ï q true 

fl a makes p true and a makes q true  

fl a œ Tp and a œ Tq 

fl a œ Tp › Tq

(2) To prove Tp › Tq Œ TpÏq reverse the above steps.  ‡

27. 60 = 6 ÿ 10 = 2 ÿ 3 ÿ 2 ÿ 5 = 22 ÿ 3 ÿ 5
120 = 2 ÿ 60 = 23 ÿ 3 ÿ 5

 

29  (a)  
n

k - 1
+

n
k

=
n!

Hn- Hk - 1LL! Hk - 1L!
+

n!
Hn- kL! k!

=
n!

Hn- k + 1L! Hk - 1L
+

n!
Hn- kL! k!

=
n! k + n! Hn- k + 1L

Hn- k + 1L! k!

=
n! Hn+ 1L

Hn- k + 1L! k!
=

Hn+ 1L!
Hn+ 1- k L! k!

= H k
n+ 1L ‡
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(b)   Basis: Hn = 1L : Hx + yL1 = x + y .  

⁄
k=0

1 1
k

x1-k yk =
1
0

x +
1
1

y = x + y  

Induction: Assume n r 1 and Hx + yLn = ⁄
k=0

n n
k

xn-k yk. 

We will now prove Hx + yLn+1 = ⁄k=0
n+1 n + 1

k
xn+1-k yk.

Hx + yLn+1 = Hx + yL Hx + yLn

= Hx + yL ⁄k=0
n n

k
xn-k yk By induction hypothesis

= x ⁄k=0
n n

k
xn-k yk + y ⁄k=0

n n
k

xn-k yk distribution

= ⁄
k=0

n n
k

xn+1-k yk + ⁄
k=0

n n
k

xn-k yk + 1

 

Let k = k - 1 in the second summation; remember to increase top.

= ⁄k=0
n n

k
xn+1-k yk + ⁄k=1

n+1 n
k - 1

xn-k+1 yk

=
n
0

xn+1 + ⁄k=1
n n

k
xn+1-k yk + ⁄

k=1

n n
k - 1

xn+1-k yk +
n
n yn+1

=
n
0

xn+1 + ⁄
k=1

n
B

n
k

+
n

k - 1
F xn+1-k yk +

n
n yn+1

=
n
0

xn+1 + ⁄
k=1

n n + 1
k

xn+1-k yk +
n
n yn+1,

But
n
0

=
n + 1

0
= 1 and

n
n =

n + 1
n + 1

= 1

= ⁄
k=0

n+1 n + 1
0

xn+1-k yk.

+

31. Ÿ H$ xL HH" yL HDHxL Ï THyLLL fl H" xL HŸ H" yL HDHxL Ï THyLLL
fl H" xL HH$ yL HŸ HDHxL Ï THyLLLL
fl H" xL HH$ yL HŸ DHxL Í Ÿ THyLLL
fl All sailing is not dangerous or some fishing is

not tedious.

33. (a) Let U be the universe of all fish, kHxL ="x is kind to children," and sHxL ="x is a shark." H" xLU HŸ sHxL Ø kHxLL

(b) ! Let wHxL = "x is a wine drinker," 

  c HxL ="x is very communicative,"

   pHxL = "x is a pawnbroker,"

  and  hHxL = "x is honest"; 

  then H" xL HH$ yL HHwHxL Ø cHxLL Í HpHyL Ø HhHxL Ï Ÿ wHyLLLLL

(c) ! Let pHxL = "x is a clever philosopher," 

              cHxL = "x is a cynic," 

       and wHxL = "x is a woman"; then

  H" xL HH$ yL HHHpHxL Ø cHxLL Ï HwHxL Ø pHxLLL Ø HpHyL Ø HwHyL Ø cHyLLLLL

35. H" aL" + H" bL" + H$ nL# Hna > bL
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CHAPTER 4
Section 4.1
1. (a) Assume that x œ A  (condition of the conditional conclusion A Œ C). Since A Œ B, x œ B by the definition of Œ.  B Œ C and
x œ B implies that x œ C Therefore, if x œ A, then x œ C. ‡ 
   (b)  (Proof  that  A - B Œ A › Bc)  Let  x  be  in  A - B.  Therefore,  x  is  in  A,  but  it  is  not  in  B;  that  is, x œ A  and
x œ Bc fl x œ A › Bc. ‡
     (c)! Hfl L Assume that A Œ B and A Œ C. Let x œ A. By the two premises, x œ B and x œ C. Therefore, by the        defini-
tion of intersection, x œ B › C. ‡
     (d) Hfl L (Indirect) Assume that A Œ C and Bc is not a subset of Ac . Therefore, there exists x œ Bc that does not belong to Ac.
x – Ac fl x œ A. Therefore, x œ A and x – B, a contradiction to the assumption that A Œ B. ‡
3. (a) If A = ! and B = «, A - B = !, while B - A = «.

    (b) !If A = 80< and B = 81<, H0, 1L œ A µ B, but H0, 1L is not in BµA.

    (c)!Let A = «, B = 80<, and C = 81<. 

5. Proof: Let p HnL be

A › HB1‹ B2‹!‹ BnL
= HA › B1L ‹ HA › B2L ‹!‹ HA › BnL.

Basis: We must show that p H2L : A › HB1 ‹ B2 L = HA › B1L ‹ HA › B2L is true. This was done by several methods in section
4.1.
Induction: Assume for some n ¥ 2 that pHnL is true. Then
 A › HB1‹ B2‹!‹ Bn+1L = A › @HB1‹ B2‹!‹ BnL ‹ Bn+1]

= HA › HB1‹ B2‹!‹ BnLL ‹ HA › Bn+1L 
by pH2L

= HHA › B1L ‹!‹ HA › BnLL ‹ HA › Bn+1L
by the induction hypothesis

= HA › B1L ‹!‹ HA › BnL ‹ HA › Bn+1L  ‡ 

Section 4.2
1. (a)

(b) !A B Ac Bc A ‹ B HA ‹ BLc Ac › Bc  

       

0 0
0 1
1 0
1 1

    

1 1 0 1 1
1 0 1 0 0
0 1 1 0 0
0 0 1 0 0

The last two columns are the same so the two sets must be equal.
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(b) !A B Ac Bc A ‹ B HA ‹ BLc Ac › Bc  

       

0 0
0 1
1 0
1 1

    

1 1 0 1 1
1 0 1 0 0
0 1 1 0 0
0 0 1 0 0

The last two columns are the same so the two sets must be equal.
(c) !(i)x œ A ‹ A fl x œ A or x œ A  by the definition of ›

     fl x œ A ! by the idempotent law of logic
       Therefore, A ‹ A Œ A. 
       (ii) x œ A fl x œ A and x œ A by conjunctive addition
                     fl x œ A ‹ A 
       Therefore, A Œ A ‹ A and so we have A ‹ A = A. ‡ 
3. For all parts of this exercise, a reason should be supplied for each step. We have supplied reasons for part a only and 
    left them out of the other parts to give you further practice.
(a) !A ‹ HB - AL = A ‹ HB › AcL !           by Exercise 2b of Section 4.1
                            = HA ‹ BL › HA ‹ AcL by the distributive law
                            = HA ‹ BL › U            by the null law
                            = HA ‹ BL!               by the identity law    ‡
(b) !A - B = A › B c

                    = Bc › A
                    = Bc › HAcLc

                    = Bc - Ac

(c)!Select any element, x, in A › C. One such element exists since A › C is not empty. 
x œ A › C fl x œ A and x œ C
                  fl x œ B and x œ C
                  fl x œ B › C
                  fl B › C !«   ‡

(d) A › HB - CL = A › HB › CcL
              = HA › B › AcL ‹ HA › B › CcL
                           = HA › BL › HAc ‹ CcL
                           = HA › BL › HA ‹ CLc
                           = HA - BL › HA - CL    ‡
(e) A - HB ‹ CL = A › HB ‹ CLc

                           = A › HBc › CcL

                           = HA › BcL › HA › CcL

                           = HA - BL › HA - CL   ‡

              3       1   2                                              1         3        2                                            2       3      1

5. (a) A ‹ Bc › C (b) A › B ‹ C › B (c) A ‹ B ‹ Cc

Section 4.3
1. (a) 81<, 82, 3, 4, 5<, 86<, 87, 8<, 89, 10<      

    (b) 25 , as compared with 210.    81, 2< is one of the 992 sets that can't be generated. 
3.  B1 = 800, 01, 10, 11<  and B2 = 80, 00, 01<  generate minsets  800, 01<, 80<, 810, 11<,  and 8l, 1<.  Note:  l  is  the null  string,
which has length zero.
5. (a) B1› B2 = «
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         B1› Bc
2 = 80, 2, 4<

         Bc
1› B2 = 81, 5<

         Bc
1› Bc

2 = 83<

   (b) 23 , since there are 3 nonempty minsets. 
7. Let a œ A.  For each i,  a œ Bi,  or a œ Bi

c,  since Bi ‹ Bi
c = A  by the complement law. Let Di = Bi  if  a œ Bi,  and D = Bi

c  other-
wise.  Since  a  is  in  each  Di,  it  must  be  in  the  minset  D1› D2!› Dn.  Now  consider  two  different  minsets
M1 = D1› D2!› Dn, and M2 = G1› G2!› Gn, where each Di  and Gi  is either Bi  or Bi

c. Since these minsets are not equal,
Di ! Gi,  for  some i.  Therefore,  M1› M2 = D1› D2!› Dn › G1› G2!› Gn = «,  since  two of  the  sets  in  the  intersection
are disjoint. Since every element of A is in a minset and the minsets are disjoint, the nonempty minsets must form a partition of
A. ‡

Section 4.4
1. (a) A › HB ‹ AL = A

    (b) A › HHBc › AL ‹ BLc = «

    (c) !HA › BcLc ‹ B = Ac ‹ B

3. (a)  Hp Ï Ÿ HŸ q Ï pL Í gLL ñ 0

    (b)  HŸ Hp Í HŸ qLL Ï qLñ HHŸ pL Ï qL

5. The maxsets are:

    B1‹ B2 = 81, 2, 3, 5<

    B1‹ B2c = 81, 3, 4, 5, 6<

    B1c ‹ B2 = 81, 2, 3, 4, 6<

    B1c ‹ B2c = 82, 4, 5, 6<

They do not  form a  partition  of  A since  it  is  not  true  that  the  intersection  of  any two of  them is  empty.  A set  is  said  to  be  in
maxset normal form when it is expressed as the intersection of distinct nonempty maxsets or it is the universal set U.

Supplementary Exercises—Chapter 4
1. (a) Proof: (fl) (Indirect) Assume A Œ B and A ‹ HU - BL !«. To prove that this cannot occur, let x œ A › HU - BL.

x œ A › HU - BL
Definition of complement fl x œ A › Bc

Definition of ›! fl x œ A and x œ Bc

Definition of complement fl x œ A and x – B
Definition of subset ! fl A is not a subset of B

    This contradicts the premise that A Œ B. Hence this part of the statement is proven.

    (›) (Indirect) Assume A › HU - BL = «, and A is not a subset of B. To prove that this cannot occur, let x œ A such

    that x – B.

x œ A and x – B
Definition of complement fl x œ A and x œ Bc  
Definition of ›! fl x œ A › Bc

Definition of complement fl x œ A › HU - BL
Definition of disjoint ! fl A › HU - BL !«

But  this  cannot  happen because  it  contradicts  the  assumption  that  A › HU - BL = «.  Hence  this  part  of  the  statement  is  proven
and the proof is complete.
    (b) !Proof: (Indirect) Assume U = A ‹ B, A › B = «, and A ! U - B. One way in which A and U - B can be not
    equal is that A is not a subset of U - B. Let x œ A and x – U - B.

x œ A and x – U - B
Definition of complement fl x œ A and x œ B
Definition of › ! fl x œ A › B
Definition of disjoint fl A › B !«

Sol_4-5.nb | 3

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No 
Derivative Works 3.0 United States License.282



x œ A and x – U - B
Definition of complement fl x œ A and x œ B
Definition of › ! fl x œ A › B
Definition of disjoint fl A › B !«

    But this cannot happen because it contradicts the assumption that A › B = «. The other way A and U - B can diffe is if U - B
is not a subset of A, Let x – A and x œ U - B. We could infer from this assumption thatx x – A ‹ B.   Therefore, any way that we
assume that A ! U - B leads to a contradiction.
(c)!Proof: (fl) (Direct) Let x œ A.

A and B are disjoint 
Definition of disjoint ! fl x – B
Definition of complement fl x œ Bc 

    Therefore, A Œ Bc

    (›) (Indirect) Assume that A Œ Bc and x œ A › B.
x œ A › B
Definition of intersection fl x œ A and x œ B 
Definition of complement fl x œ A and x – Bc 
Definition of subset !  fl A is not a subset of B c  ‡

3. (a) Proof: (Direct) Let A, B, and C be sets. 
Let Hx, yL œ HA ‹ BL µC.
Definition of Cartesian product fl x œ HA ‹ BL and y œ C 
Definition of ‹ ! fl Hx œ A or x œ BL and y œ C
Distributive law of logic ! fl Hx œ A and y œ CL or Hx œ B and y œ CL 
Definition of Cartesian product fl HHx, yL œ AµCL or

HHx, yL œ BµCL
Definition of ‹ ! fl Hx, yL œ HAµCL ‹ HBµCL  ‡

(b)  We  proved  HA ‹ BLµC Œ HAµCL ‹ HBµCL  in  part  a;  we  now  must  show  HAµCL ‹ HBµCL Œ HA ‹ BLµC  and  we  will  be
finished. 
5. Proof: (Indirect) Assume A,  B,  and C  are subsets of U,  A Œ B,  B Œ C  and Cc  is not a subset of Ac.  To prove that this cannot
occur, let x œ Cc and x – Ac by definition of subset.

x œ Cc and x – Ac

Definition of complement ! fl x – C and x œ A
Premise ! fl A Œ B
Definition of subset ! fl x œ B
Premise fl B Œ C
Definition of subset ! fl x œ C  (Contradiction)    ‡

7. (a) Proof: (Indirect) Let A, B, and C be sets. Assume A ‹ C ! B ‹ C and A = B.

A = B fl A Œ B
x œ A ‹ C
Definition of union ! fl x œ A or x œ C
Definition of subset ! fl x œ B or x œ C
Definition of union ! fl x œ B ‹ C

    Therefore, A ‹ C Œ B ‹ C. By a similar line of reasoning we can infer B ‹ C Œ A ‹ C, which proves that
    A ‹ C = B ‹ C, a contradiction. 
   (b) Proof: (Direct) Assume A ! B and show Ac ! Bc. Since A ! B we can assume that A is not a subset of B. The
        alternative is that B is not a subset of A and the remaining logic would be identical. 

A not a subset of B
Definition of subset ! fl x œ A and x – B
Definition of complement ! fl x – Ac and x œ Bc

Definition of subset ! fl Bc is not a subset of Ac

Definition of inequality ! fl Ac ! Bc    ‡
9. (a) The minsets are B1› B2 = 83<, B1c › B2 = 82, 5<, B1› B2c = 81<, and B1c › B2c = 84, 6< 

    (b) The minsets are disjoint and
         HB1› B2L ‹ HB1c › B2L ‹ HB1› B2cL ‹ HB1c › B2cL = U,
          so the minsets form a partition of U.
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    (b) The minsets are disjoint and
         HB1› B2L ‹ HB1c › B2L ‹ HB1› B2cL ‹ HB1c › B2cL = U,
          so the minsets form a partition of U.
CHAPTER 5
Sections 5.1-5.3
1. For parts c, d and i of this exercise, only a verification is needed. Here, we supply the result that will appear on both sides of
the equality.

(a)   AB =
-3 6
9 -13 BA =

2 3
-7 -18  (b)   

1 0
5 -2

(c)   
3 0
15 -6 (d)   

18 -15 15
-39 35 -35 (e)   

-12 5 -5
5 -25 25

(f)   B + 0 = B (g)   
0 0
0 0 (h)   

0 0
0 0 (i)   

5 -5
10 15

3.   
1 ê2 0

0 1 ê3

5.    A3 =
1 0 0
0 8 0
0 0 27

   A15 =
1 0 0
0 32 768 0
0 0 14 348 907

7. (a) Ax =
2 x1 + 1 x2
1 x1 - 1 x2

! equals 
3
1  if and only if both of the equalities

          2 x1 + x2 = 3 and x1 - x2 = 1 are true.

    (b) !(i) A =
2 -1
1 1      x = K

x1
x2

O      B =
4
0

 (ii)      A =

1 1 2
1 2 -1
1 3 1

 x =
x1
x2
x3

      B =

1
-1
5

             (iii)     A =

1 1 0
0 1 0
1 0 3

    x =
x1
x2
x3

       B =

3
5
6

Section 5.4

1. (a) !
-1 ê5 3 ê5
2 ê5 -1 ê5 ! (b) 

1 3
0 1   ! (c)    No inverse exists.

    (d) A-1 = A        (e) 
1 ê3 0 0

0 2 0
0 0 -1 ê5

3. Let A and B be n by n invertible matrices. Prove HABL-1 = B-1 A-1.

    Proof: IB-1 A-1M HABL = IB-1M IA-1HABLM

      = IB-1M IIA-1 AM BMM

      = IB-1M HIBL

      = HB-1M HBL
      = I
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    Similarly, HABL IB-1 A-1M = I.

    By Theorem 5.4.1, B-1 A-1 is the only inverse of AB, If we tried to invert AB  with A-1 B-1, we would be
    unsuccessful since we cannot rearrange the order of the matrices. 

5. (b) 1 = det I = detIAA-1M = det A det A-1. Now solve for det A-1. 

7. Basis: Hn = 1L : det A1 = det A = Hdet A L1.
    Induction: Assume det An = Hdet ALn for some n ¥ 1.

det An+1 = detHAn AL by the definition of exponents
    = detHAnL detHAL by exercise 5 

   = Hdet ALn Hdet AL   by the induction hypothesis 
  = Hdet ALn+1

9. (a) Assume A = BDB-1

Basis:Hm = 1): A^1 = BD1 B-1 is given.

Induction: Assume that for some positive integer m, Am = BDm B-1

Am+1 = Am A
= HBDm B-1M IBDB-1M by the induction hypothesis 
= BDm DB-1 by associativity, definition of inverse 
= BDm+1 B-1

    (b) A10 = BD10 B-1 =
-9206 15 345
-6138 10 231

Section 5.5
l. (1) Let A and B be m by n matrices. Then A + B = B + A,
   (2) Let A, B, and C be m by n matrices. Then A + HB + CL = HA + BL + C.
   (3) !Let A and B be m by n matrices, and let c œ". Then cHA + BL = cA + cB,
   (4) !Let A be an m by n matrix, and let c1, c2 œ". Then Hc1 + c2L A = c1 A + c2 A.
   (5) !Let A be an m by n matrix, and let c1, c2 œ". Then c1Hc2 AL = Hc1 c2L A
   (6) !Let 0 be the zero matrix, of size m by n, and let A be a matrix of size n by r. Then 0 A = 0 = the m by r zero matrix.
   (7) !Let A be an m by n matrix, and 0 = the number zero. Then 0 A = 0 = the m by n zero matrix.
   (8) Let A be an m by n matrix, and let 0 be the m by n zero matrix. Then A + 0 = A. 
   (9) Let A be an m by n matrix. Then A + H- 1L A = 0, where 0 is the m by n zero matrix.
 (10) Let A, B, and C be m by n, n by r, and n by r matrices respectively. Then AHB + CL = AB + AC.
 (11) Let A, B, and C be m by n, r by m, and r by m matrices respectively. Then HB + CL A = BA + CA.
 (12) Let A, B, and C be m by n, n by r, and r by p matrices respectively. Then AHBCL = HABL C.
 (13)!Let A be an m by n matrix, Im the m by m identity matrix, and In the n by n identity matrix. Then Im A = AIn = A

 (14) Let A be an n by n matrix. Then if A-1 exists, IA-1M
-1

= A .

 (15) Let A and B be n by n matrices. Then if A-1 and B-1 exist, HABL-1 = B-1 A-1.

3. (a) AB + AC =
21 5 22
-9 0 -6

    (b) AHB + CL = AB + AC

    (c) A-1 =
1 2
0 -1 = A

    (d) IA2M-1 = HAAL-1 = IAA-1M
-1

= I-1 = I by part c

Section 5.6
1. In elementary algebra (the algebra of real numbers), each of the given oddities does not exist.

(i) AB may be different from BA .  Not so in elementary algebra, since ab = ba by the commutative law of multiplication.
(ii) There exist matrices A and B such that AB = 0, yet A ! 0 and B ! 0. In elementary algebra, the only way  ab = 0   is if either
a or b is zero. There are no exceptions.
(iii) There exist matrices A, A ! 0, yet A2 = 0. In elementary algebra, a2 = 0 ñ a = 0.
(iv) There exist matrices A2 = A. where A ! 0 and A ! I. In elementary algebra, a2 = a ñ a = 0 or 1.
(v) There exist matrices A where A2 = I but A ! I and A ! -I. In elementary algebra, a2 = 1 ñ a = 1 or - 1.
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(i) AB may be different from BA .  Not so in elementary algebra, since ab = ba by the commutative law of multiplication.
(ii) There exist matrices A and B such that AB = 0, yet A ! 0 and B ! 0. In elementary algebra, the only way  ab = 0   is if either
a or b is zero. There are no exceptions.
(iii) There exist matrices A, A ! 0, yet A2 = 0. In elementary algebra, a2 = 0 ñ a = 0.
(iv) There exist matrices A2 = A. where A ! 0 and A ! I. In elementary algebra, a2 = a ñ a = 0 or 1.
(v) There exist matrices A where A2 = I but A ! I and A ! -I. In elementary algebra, a2 = 1 ñ a = 1 or - 1.

3. (a) det A ! 0 fl A-1 exists, and if you multiply the equation A2 = A on both sides by A-1 , you obtain A = I.

    (b) Counterexample: A =
1 0
0 -1

5. (a) A-1 =
1 ê3 1 ê3
1 ê3 -2 ê3     x1 = 4 ê3, and x2 = 1 ê3

    (b) A-1 =
1 -1
1 -2     x1 = 4, and x2 = 4

    (c) A-1 =
1 ê3 1 ê3
1 ê3 -2 ê3     x1 = 2 ê3, and x2 = -1 ê3

    (d) A-1 =
1 ê3 1 ê3
1 ê3 -2 ê3     x1 = 0, and x2 = 1

    (e) The matrix of coefficients for this system has a zero determinant; therefore, it has no inverse. The system cannot
          be solved by this method. In fact, the system has no solution.

Supplementary Exercises—Chapter 5

1. 
x + y 5
-2 x - y

=
3 5
-2 4 fl

x + y = 3
x - y = 4 fl

y = -1 ê2
x = 7 ê2

3. For n ¥ 1 let pHnL be ABn = Bn A 

Basis:Hn = 1L: AB1 = B1 A is true as given in the statement of the problem. Therefore, pH1L is true.
Induction: Assume n ¥ 1 and p HnL is true.

ABn+1 = HABn
L B

= HBn AL B By the induction hypothesis
= HBn BL A ! By p HlL
= Bn+1 A ‡

5. A-1 A3 = A2 =
7 18
6 19

7. D has no inverse if det D = 0.

    det D = 0 ñ 3 c - f H15L = 3 c - 60 = 0 ñ c = 20

9. (a) HA + BL2 = A2 + AB + BA + B2

    (b) HA + BL2 = A2 + 2 AB + B2 only if AB = BA.

11. The implication is false. Both !
1 0
0 -1 and

0 1
1 0  are self-inverting, but their product is not.

13. Yes, matrices of the form A =
a b

H1 - aL2 ëb -a
 also solve A2 = I
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CHAPTER 6
Section 6.1

1. (a) ! H2, 4L, H2, 8L       (b) H2, 3L, H2, 4L, H5, 8L       (c) H1, 1L, H2, 4L

3. (a) ! r = 8H1, 2L, H2, 3L, H3, 4L, H4, 5L<

    (b) !r2 = 8H1, 3L, H2, 4L, H3, 5L< = 8Hx, yL : y = x + 2, x, y œ A<

    (c) !r3 = 8H1, 4L, H2, 5L< = 8Hx, yL : y = x + 3, x, y œ A< 

5. (a) ! When n = 3, there are 27 pairs in the relation.

    (b)  Imagine building a pair of disjoint subsets of S. For each element of S there are three places that it can go: into the first set of the ordered pair, into
the second set, or into neither set. Therefore the number of pairs in the relation is 3n, by the product rule.

Section 6.2

1.

3. See Figure 13.1.1 of Section 13.1.

5. A Hasse diagram cannot be used because not every set is related to itself. Also, 8a< and 8b< are related in both directions.

Section 6.3

(c) The graphs are the same if we disregard the names of the vertices.

3. (a) (i) reflexive (ii) reflexive (iii) not reflexive
not symmetric ! not symmetric ! symmetric
not antisymmetric antisymmetric ! not antisymmetric
transitive ! transitive ! transitive

(iv) not reflexive (v) reflexive ! (vi) reflexive
symmetric ! symmetric ! not symmetric
antisymmetric ! not antisymmetric ! antisymmetric
transitive ! transitive ! transitive
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(iv) not reflexive (v) reflexive ! (vi) reflexive
symmetric ! symmetric ! not symmetric
antisymmetric ! not antisymmetric ! antisymmetric
transitive ! transitive ! transitive

(vii) not reflexive 
not symmetric 
not antisymmetric 
not transitive 

    (b) Graphs ii and vi show partial ordering relations. Graph v is of an equivalence relation. 

5. (a) No, since for example 1 - 1 = 0!2

    (b) !Yes, since i - j = j - i

    (c) !No, since 2 - 4 = 2 and 4 - 6 = 2, but 2 - 6 = 4!2.

    (d)

7. (b)  cH0L = 80<, cH1L = 81, 2, 3< = cH2L = cH3L

    (c) !cH0L ‹ cH1L = A and cH0L › cH1L = «

    (d) Let A be any set and let r be an equivalence relation on A. Let a be any element of A. a œ cHaL since r is reflexive, so each element of A is in some
equivalence class. Therefore, the union of all equivalence classes equals A. Next we show that any two equivalence classes are either identical or disjoint
and  we  are  done.  Let  cHaL  and  c HbL  be  two  equivalence  classes,  and  assume  that  cHaL › cHbL ! «.  We  want  to  show  that  cHaL = cHbL.  To  show  that
cHaL Œ cHbL, letx œ cHaL. x œ cHaL fl arx. Also, there exists an element, y, of A that is in the intersection of c HaL and c HbL by our assumption. Therefore,

      ary and bry fl ary and yrb Hr is symmetricL
fl arb Htransitivity of rL

Next,
                  arx and arb fl xra and arb

fl xrb
fl brx
fl x œ cHbL

Similarly, cHbL Œ cHaL.  ‡ 
9. (a) Equivalence Relation

cH0L = 80<, cH1L = 81<, cH2L = 82, 3< = cH3L, cH4L = 84, 5< = cH5L,
cH6L = 86, 7< = cH7L

    (b) ! Not an Equivalence Relation

    (c) ! Equivalence Relation
cH0L = 80, 2, 4, 6< = cH2L = cH4L = cH6L 
cH1L = 81, 3, 5, 7< = cH3L = cH5L = cH7L

11. (b) The proof follows from the biconditional equivalence in Table 3.4.2.

      (c) Apply the chain rule.

      (d)
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Section 6.4

1. (a) ! 

Ñ 4 5 6
1
2
3
4

0 0 0
1 0 0
0 1 0
0 0 1

 and

Ñ 6 7 8
4
5
6

0 0 0
1 0 0
0 1 0

 

    (b)

Ñ 6 7 8
1
2
3
4

0 0 0
0 0 0
1 0 0
0 1 0

3.  R : xry if and only if x - y = 1.
     S : xsy if and only if x is less than y. 
5. The diagonal entries of the matrix for such a relation must be 1. When the three entries above the diagonal are determined, the entries below are also
determined. Therefore, the answer is 23.

7. (a)

Ñ 1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

and

Ñ 1 2 3 4
1
2
3
4

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

    (b) !PQ =

Ñ 1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

P2 =

Ñ 1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= Q2

9. (a) Reflexive: Rij = Rij for all i, j, therefore Rij § Rij

Antisymmetric: Assume Rij § Sij and Sij § Rij for all 1 § i, j § n fl Rij § Sij
Transitive: Assume R, S, and T are matrices where Rij § Sijand Sij § Tij, for all 1 § i, j § n. Then Rij § Tij for all 1 § i, j § n, and so R § T.

    (b)  IR2Mij = Ri1 R1 j + Ri2 R2 j + ! + Rin Rnj

           § Si1 S1 j + Si2 S2 j + ! + Sin Snj = IS2Mij fl R2 § S2
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    (b)  IR2Mij = Ri1 R1 j + Ri2 R2 j + ! + Rin Rnj

           § Si1 S1 j + Si2 S2 j + ! + Sin Snj = IS2Mij fl R2 § S2

To verify that the converse is not true we need only one example. For n = 2, let R12 = 1 and all other entries equal 0, and let S be the zero matrix.
Since R2 and S2 are both the zero matrix, R2 § S2, but since R12 > S12, R § S is false.
    (c) !The matrices are defined on the same set A = 8a1, a2, … , an<. Let cHaiL, i = 1, 2, … , n be the equivalence classes defined by R and let dHaiL be those
defined by S. Claim: cHaiL Œ dHaiL. Let a j œ cHaiL fl ai ra j fl Rij = 1 fl Sij = 1 fl ai sa j fl a j œ dHaiL.

Section 6.5

3. (a)

    (b) Example, 1 s 4 and using S one can go from 1 to 4 using a path of length 3.

5. (a) Definition: Reflexive Closure. Let r be a relation on A. A reflexive closure of r is the smallest reflexive relation that contains r.

Theorem: The reflexive closure of r is the union of r with 8Hx, xL : x œ A< 

7. (a) By the definition of transitive closure, r+  is the smallest relation which contains r; therefore, it is transitive. The transitive closure of r+, Hr+L+  , is
the smallest transitive relation that contains r+. Since r+ is transitive, Hr+L+ = r+. 
    (b)    The transitive closure of  a  symmetric  relation is  symmetric,  but  it  may not  be reflexive.  If  one element  is  not  related to any elements,  then the
transitive closure will not relate that element to others.

Supplementary Exercises~Chapter 6

1. If Andy is the parent of Barbara and Barbara is the parent of Charles, then Andy is the grandparent of Charles. 

3. (a) r = 8H-1, 0L, H0, 1L, H1, 2L<

(b) ! s = 8H-1, -1L, H-1, 1L, H0, 0L, H1, -1L, H1, 1L, H2, 2L<

(c) ! t = 8H-1, 0L, H-1, 1L, H-1, 2L, H0, -1L, H0, 1L, H0, 2L,
H1, -1L, H1, 0L, H1, 2L, H2, -1L, H2, 0L, H2, 1L<

5. His main office should be at node 2. The least desirable location is at node 1. The arrows in both directions between nodes 1 and 2 represent a two-way
street. 
7. (a) No.

    (b) Person a is friendly toward the most people so he/she would be chair person.

    (c) If "great personality" has any effect then person b becomes chairperson.

    (d) A seating arrangement  does  not  exist,  since  persons  c  and d  are  only  friendly toward one person each and they have to  be  seated between two
people they are friendly toward.
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    (d) A seating arrangement  does  not  exist,  since  persons  c  and d  are  only  friendly toward one person each and they have to  be  seated between two
people they are friendly toward.
9. In order for the relation "living in the same house" to be an equivalence relation we must assume that a person lives in only one house. 

11.(a) r is an equivalence relation.

     (b) s is neither since s is not reflexive.

     (c) In order for s to be a partial ordering we rephrase it slightly; xsy iff x taller than y or x equals y. Why would xsy iff x is the same height as or taller
than y be wrong?
13. There are 16 places in the adjacency matrix for a relation on four elements, but for a symmetric relation those entries below the diagonal will be the
same as above. Hence we are only concerned with 16 - 6 = 10 places. Each of the remaining entries may take on a value of either 0 or 1, so by the rule of
products we have 210 possible symmetric relations on a four element set.
15.

(b) (i)  8Ha, aL, Ha, bL, Hb, aL, Hb, bL, Hc, cL<

(ii)  8Ha, aL, Ha, cL, Hc, aL, Hc, bL, Hc, cL< 

(c) (i) !R2 = R =
1 1 0
1 1 0
0 0 1

(ii) R2 =
1 1 1
0 0 0
1 1 1

17.

Sol_6-7.nb  5
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(b) r is not reflexive, not symmetric, not antisymmetric, and not transitive.

(c) ! R+ =

1 0 1 1
0 1 0 0
0 0 1 0
1 0 1 1

19. (a) A5 is friendly to no one.

(b) !The U.S. Ambassador HA1L should be the chairman of this committee, since he is friendly toward the most people.

(c) !The U.S. Ambassador can communicate to everyone on the committee.

CHAPTER 7
Section 7.1

1. (a) Yes (b) Yes (c) No (d) No (e) Yes

3. (a) Range of f = f HAL = 8a, b, c, d< = B

(b) Range of g = gHAL = 8a, b, d<

(c) !Range of L = LHAL = 81<

5. For each of the A  elements of A, there are B  possible images, so there are B ÿ B ÿ… ÿ B = B A  functions from A into B.

Section 7.2

1. The only one-to-one function and the only onto function is f . 

3. (a) onto but not one-to-one H f1H0L = f1H1LL
    (b) one-to-one and onto
    (c) !one-to-one but not onto
    (d) !onto but not one-to-one
    (e) !one-to-one but not onto
    (f) !one-to-one but not onto
5.  Let  X = 8socks selected<  and Y = 8pairs of socks<  and define f : X Ø Y  where f HxL =the pair  of  socks that  x  belongs to .  By the Pigeonhole principle,
there exist two socks that were selected from the same pair.
7. (a) f HnL = n, for example

    (b) f HnL = 1, for example

Sol_6-7.nb  6
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    (b) f HnL = 1, for example

    (c) !None exist.

    (d) !None exist.

9. (a) Use s : ! Ø " defined by sHxL = x + 1.

    (b) Use the function f : ! Ø # defined by f Hx0 = x ê2 if x is even and f HxL = -Hx + 1L ê2 if x is odd.

    (c)The proof is due to Georg Cantor (1845-1918), and involves listing the rationals through a definite procedure so that none are omitted and duplica-
tions are avoided. In the first row list all nonnegative rationals with denominator 1, in the second all nonnegative rationals with denominator 2, etc. In this
listing,  of course,  there are duplications,  for example,  0 ê1 = 0 ê2 = 0, 1 ê1 = 3 ê3 = 1, 6 ê4 = 9 ê6 = 3 ê2, etc.  To obtain a list  without duplications follow
the arrows in the given array listing only the circled numbers.

We obtain: 0, 1, 1 ê2, 2, 3, 1 ê3, 1 ê4, 2 ê3, 3 ê2, 4 ê1, … Each nonnegative rational appears in this list exactly once. We now must insert in this list
the negative rationals, and follow the same scheme to obtain: 0, 1, -1, 1 ê2, -1 ê2, 2, -2, 3, -3, 1 ê3, -1 ê3, … , which can be paired off with the elements
of !.
11. Let f  be any function from A into B. By the Pigeonhole principle with n = 1, there exists an element of B that is the image of at least two elements of A.
Therefore, f  is not an injection.
13. The proof is indirect and follows a technique called the Cantor diagonal process. Assume to the contrary that the set is countable, then the elements can
be listed:

n1, n2, n3, … where each ni is an infinite sequence of 0s and 1s. Consider the array:

n1 = n11 n12 n13!
n2 = n21 n22 n23!
n3 = n31 n32 n33!

ª

      We assume that this array contains all infinite sequences of 0s and 1s. Consider the sequence s defined by

si =
0 if nii = 1
1 if nii = 0

      s differs from each ni in the ith position and so cannot be in the list. This is a contradiction, which  completes our proof.

Section 7.3

1. (a) g Î f : A Ø C is defined by Hg Î f L HkL =
+ if k = 1 or k = 5
- if k = 2, 3, 4

    (b) !No, since the domain of f  is not equal to the codomain of g.

    (c) !No, since f  is not surjective.

    (d) !No, since g is not injective.

3. (a) The permutations of A are i, r1, r2, f1, f2, and f3, defined in section 15.3

    (b, c) Inverse of ! Square of
Permutation ! the permutation ! permutation

i
r1
r2
f1
f2
f3

i
r2
r1
f1
f2
f3

i
r2
r1
i
i
i

Sol_6-7.nb  7
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i
r1
r2
f1
f2
f3

i
r2
r1
f1
f2
f3

i
r2
r1
i
i
i

    (d) Apply both Theorems 7.3.3 and 7.3.4: If f  and g are permutations of A, then they are both 
injections and their composition, f Îg, is a injection, by Theorem 7.3.3. By 7.3.4, f Îg is also a 
surjection; therefore, f Îg is a bijection on A, a permutation.

    (e) ! Proof by induction:

Basis: Hn = 1L The number of permutations of A is one, the identity function, and 1! = 1.

Induction:  Assume  that  the  number  of  permutations  on  a  set  with  n  elements,  n ¥ 1,  is  n!.  Furthermore,  assume  that  A = n + 1  and  that  A
contains  an  element  called  x.  Let  A ' = A - 8x<.  We  can  reduce  the  definition  of  a  permutation,  f ,  on  A  to  two  steps.  First,  we  select  any  one  of  the  n!
permutations on A '. (Note the use of the induction hypothesis.) Call it g. This permutation almost completely defines a permutation on A by f HaL = gHaL for
all a in A ', Next, we select the image of x, which can be done n + 1 different ways. To keep our function bijective, we must adjust f  as follows: If we select
f HxL = y, then we must find the element, z, of A such that gHzL = y, and redefine the image of z to f HzL = x. If we had selected f HxL = x, then there is really
no adjustment needed. By the rule of products, the number of ways that we can define f  is n ! Hn + 1L = Hn + 1L !   ‡

7. (a) f ÎgHnL = n + 3 (b) f 3HnL = n + 15 (c) f ÎhHnL = n2 + 5 

9. Theorem: If f : A Ø B and f  has an inverse, then that inverse is unique.

    Proof: Suppose that g and h are both inverses of f .

g= g Î iA g
= g Î H f ÎhL
= Hg Î f L Îh
= iA Îh
= h fl g = h #

 

11. Proof of Theorem 7.3.2: Let x, x ' be elements of A such that g Î f HxL = g Î f Hx 'L; that is, g H f HxLL = gH f Hx 'LL. Since g is injective, f HxL = f Hx 'L and since f
is injective, x = x '. ‡
Proof of Theorem 7.3.3: Let x be an element of C. We must show that there exists an element of A whose image under g Î f  is x. Since g is surjective, there
exists an element of B, y, such that gHyL = x. Also, since f  is a surjection, there exists an element of A, z, such that f HzL = y, g Î f HzL = gH f HzLL = gHyL = x. ‡

13. Basis: Hn = 2L: H f1 Î f2L-1 = f2-1 Î f1-2 by exercise 10. 
Induction: Assume n ¥ 2 and H f1 Î f2 Î! Î fnL-1 =

fn-1 Î! Î f2-1 Î f1-1

Consider H f1 Î f2 Î! Î fn+1L-1.

H f1 Î f2 Î! Î fn+1L-1 = HH f1 Î f2 Î! Î fnL Î fn+1L-1

by the Basis ! = fn+1-1 Î H f1 Î f2 Î! Î fnL-1

by Induction hypothesis = fn+1-1 Î I fn-1 Î! Î f2-1 Î f1-1M

= fn+1-1 Î! Î f2-1 Î f1-1. ‡

15. Assume all functions are functions on A.

H f ÎgL Îh = f Î Hg ÎhL
f Î iA = iA Î f = f
If f -1 and g-1 exist, Hg Î f L-1 = f -1 Îg-1 and

If f -1 exists, I f -1M-1 = f .

Supplementary Exercises~Chapter 7
1. (a)    # (b)    # (c) f H-5L = 2 5 +1 = 11

    (d) !81, 3, 5, 7, 9, …< = the set of odd positive integers

    (e) !No, a = 5 or a = -5.
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    (e) !No, a = 5 or a = -5.

3.  No.  Relations  (iii)  and  (iv)  are  not  functions  because  the  domain  is  not  all  of  the  set  A.  The  others  are  not  functions  since  in  each  case  at  least  one
element of A is mapped to 2 different elements. Example for relation (i), a is mapped to both a and b.
5. (a) The matrix of f  can only have one 1 in each row. So if the domain of f  has n elements the matrix of f  will have n 1s.

    (b) If f  is a bijection, besides having only one 1 in each row, there can only be one 1 in each column. 

7. (a) Let f HnL = n 2 , "nœ!. Since f  is a bijection from ! into A = 9n 2 n œ !=, ! and A have the same cardinality; so A is countable.

    (b) !Let B = 81 ên n œ "<. g : ! Ø B defined by gHnL = 1 ê Hn + 1L is the required bijection.

    (c)  That  C = C1 ‹ C2 = 83, 9, 27, 81, …< ‹ 82, 4, 8, 16, …<  is  countable  follows from the  proof  of  Exercise  8.  Without  using this  proof,  we can still
prove that C is countable by using the list 21, 31, 22, 32, 23, 33 to define h : ! Ø C where hHaL =the number in position a + 1 in the list,
9. f : AµB Ø BµA defined by f Ha, bL = Hb, aL is a bijection, which is all that we need to prove that  
   AµB = BµA
11. This "code" can be viewed as a function, a, on the set of all finite sequences of letters. For example, aHhatL = qmh. This encoding function will not work
very well because it is not a bijection. For example, no sequence with a  or t  in it is in the range. Although a  is not one-to-one, it is difficult to find two
English words with the same image.
13. (a) 10 Ha + 10L (b) a + 20 (c) 10a div 10 = a

      (d) Ha + 10L div 10 = a div 10 + 1

15. (a) f HbL = b and f HcL = c

      (b) f HbL = a and f HcL = d

17. Since det
a b
c d

= ad - bc there are four permutations of 8a, b, c, d< that leave the determinant invariant. These permutations are the identity function,

a1 = 8Ha, dL, Hb, bL, Hc, cL, Hd, aL<, a2 = 8Ha, dL, Hb, cL, Hc, bL, Hd, aL<, and a3 = 8Ha, aL, Hb, cL, Hc, bL, Hd, dL<. 

19. (a) Domain = positive real numbers, Codomain = Real numbers. 
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CHAPTER 8
Section 8.1

1. CH5, 2L = CH4, 2L + CH4, 1L
= CH3, 2L + CH3, 1L + CH3, 1L + CH3, 0L
= CH3, 2L + 2CH3, 1L + 1
= CH2, 2L + CH2, 1L + 2 HCH2, 1L + CH2, 0LL + 1
= 3CH2, 1L + 4
= 6 + 4 = 10

3. (a) p HxL in telescoping form: HHHHx + 3L x - 15L x + 0L x + 1L x - 10

    (b) pH3L = HHHH3 + 3L 3 - 15L 3 - 0L 3 + 1L 3 - 10 = 74

5. The basis is not reached in a finite number of steps if you try to compute f HxL for a nonzero value of x.

Section 8.2

1. Basis: BH0L = 3 ÿ0 + 2 = 2, as defined

    Induction: Assume: BHkL = 3 k + 2 for some k ¥ 0.

         BHk + 1L = BHkL + 3

= H3 k + 2L + 3by the induction hypothesis 

= H3 k + 3L + 2

= 3 Hk + 1L + 2, as desired. ‡ 

3. Imagine drawing line k in one of the infinite regions that it passes through. That infinite region is divided into two infinite regions by line k. As line k is
drawn through every one of the k - 1 previous lines, you enter another region that line k divides. Therefore, the number of regions is increased by k. 
5. For n greater than zero, MHnL = MHn - 1L + 1, and MH0L = 0.

Section 8.3

1. ! SHkL = 2 + 9k

3. ! SHkL = 6 H1 ê4Lk

5. ! SHkL = k2 - 10 k + 25

7. ! SHkL = H3 + kL 5k

9. ! SHkL = H12 + 3 kL + Ik2 + 7 k - 22M 2k-1

11. PHkL = 4 H-3Lk + 2k - 5k+1

13. (a) The characteristic equation is a a2 - a - 1 = 0, which has solutions a = J1 + 5 Ní2 and b = J1 - 5 Ní2, It is useful to point out that a + b = 1

and a - b = 5 . The general solution is

FHkL = b1 ak + b2 bk .

Using the initial conditions, we obtain the system: b1 + b2 = 1 and b1 a + b2 b = 1. The solution to this system is

b1 = a ê Ha - bL = J5 + 5 Ní2 5

and b2 = b ê Ha - bL = J5 - 5 Ní2 5  

Therefore the final solution is

FHnL = J1í 5 NBJJ1 + 5 Ní2N
n+1

- JJ1 - 5 Ní2N
n+1

F

      (b) Cr = FHr + 1L

15. (a) DHnL = 2DHn - 1L + 1 for n ¥ 2 andDH1L = 0.

      (b) DHnL = 2n-1 - 1

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 
License.296



      (b) DHnL = 2n-1 - 1

17.  Solutions to  the recurrence relation and its  approximation are  BHkL = H1 + cLk + H1 - cLk  and BaHkL = 1.  Note how as  k  increases,  B HkL  grows in  size,
while BaHkL stays constant.

Section 8.4

1. (a) SHnL = 1 ên! (c)UHkL = 1 êk, an improvement. 

    (b) THkL = H-3Lk k!, no improvement.

3. (a) THnL = 3 Hdlog2 nt + 1L (c) VHnL = elog8 nu + 1
    (b) THnL = 2
5. The indicated substitution yields SHnL = SHn + 1L. Since SH0L = TH1L êTH0L = 6, SHnL = 6 for all n. Therefore THn + 1L = 6 THnL fl THnL = 6n.

7. (a) A good approximation to the solution of this recurrence relation is based on the following observation: n is a power of a power of two; that is, n is 2m,
where m = 2k  , then QHnL = 1 + QI2mê2M. By applying this recurrence relation k times we obtain QHnL = k. Going back to the original form of n, log2 n = 2k

or log2Hlog2 nL = k. We would expect that in general, QHnL is dlog2Hlog2 nLt. We do not see any elementary method for arriving at an exact solution. 

    (b) Suppose that n is a positive integer with 2k-1 § n < 2k. Then n can be written in binary form, Hak-1 ak-2! a2 a1 a0Ltwo with ak-1 = 1 and RHnL is equal
to the sum

S
i=0

k-1

Hak-1 ak-2! aiLtwo

If 2k-1 § n < 2k, then we can estimate this sum to be between 2 n - 1 and 2 n + 1. Therefore, RHnL º 2 n.

Section 8.5

1. (a) ! 1, 0, 0, 0, 0, … (b) 5 H1 ê2Lk (c) 1, 1, 0, 0, 0, …
    (d) ! 3 H-2Lk + 3 ÿ3k

3. (a) !1 ê H1 - 9 zL (b) H2 - 10 zL ë I1 - 6 z + 5 z2M

    (c) !1ë I1 - z - z2M

5. (a) ! 3 ê H1 - 2 zL + 2 ê H1 + 2 zL, 3 ÿ2k + 2 H-2Lk

    (b) !10 ê H1 - zL + 12 ê H2 - zL, 10 + 6 H1 ê2Lk

    (c)! -1 ê H1 - 5 zL + 7 ê H1 - 6 zL, 7 ÿ6k - 5k

7. (a)  11 k
    (b) H5 ê3L kHk + 1L H2 k + 1L + 5 kHk + 1L

    (c) S
j=0

k

H jL H10 Hk - jLL = 10 kS
j=0

k

j - 10S
j=0

k

j2

    = 5 k2 Hk + 1L - H5 kHk + 1L H2 k + 1L ê6L
= H5 ê3L kHk + 1L H2 k + 1L

    (d) !kHk + 1L H2 k + 7L ê12

9. Coefficients of z0 through z5 in H1 + 5 zL H2 + 4 zL H3 + 3 zL H4 + 2 zL H5 + zL

k Number of ways of getting a score of k
0 120
1 1044
2 2724
3 2724
4 1044
5 120

Supplementary Exercises~Chapter 8

1. Let v HnL be the quantity in question. Since any positive digit can appear in a one-digit positive integer, vH1L = 9. Given an n digit number, n ¥ 2, it can be
thought  of  as  an n - 1 digit  number  times  ten plus  a  digit.  This  digit  cannot  be  the  same as  the  units  digit  of  the  n - 1 digit  number.  Therefore,  by the
product rule vHnL = 9 vHn - 1L for n ¥ 2.
3. (a) To execute Split  with L in = H1, 2, 3, 4L,  we must split  the list into L 1 = H1, 3L  and L 2 = H2, 4L.  If you carefully examine the algorithm for a list of
length 2, you will see that the output equals the input; therefore L 1 out = H1, 3L and L 2 out = H2, 4L and L out = H1, 3, 2, 4L.     
    (b) Examine the results for r = 1, 2, 3 with numbers in binary form. Notice the symmetry with respect to the vertical line.
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3. (a) To execute Split  with L in = H1, 2, 3, 4L,  we must split  the list into L 1 = H1, 3L  and L 2 = H2, 4L.  If you carefully examine the algorithm for a list of
length 2, you will see that the output equals the input; therefore L 1 out = H1, 3L and L 2 out = H2, 4L and L out = H1, 3, 2, 4L.     
    (b) Examine the results for r = 1, 2, 3 with numbers in binary form. Notice the symmetry with respect to the vertical line.

     

r = 1
L in

0
1

L out
0
1

r = 2

L in
00
01
10
11

L out
00
10
01
11

r = 3

L in
000
001
010
011
100
101
110
111

L out
000
100
010
110
001
101
011
111

    The integers in L out are sorted so that Hbr-1 br-2! b0Ltwo appears in position Hb0 b1! br-1Ltwo.

5.  This  is  not  a  closed  form  expression  because  the  number  of  operations  that  are  needed  to  compute  the  expression  grows  with  n,  B HnL  in  this  form
requires n additions and n - 1 multiplications. 
7. Kathryn's balance on her first birthday is $1 = BH1L. If B HnL is her balance on her nth birthday, n ¥ 2, then BHnL = 1.1 BHn - 1L + n.

BHnL = BHnLHnL + BIpMHnL = b1H1.1Ln - H10 n + 110L
BH1L = 1 fl H1.1L b1 = 121 fl b1 = 1.1

Therefore BHnL = 121 H1.1Ln-1 - H10 n + 110L. On her 21st birthday, Kathryn will have BH21L = 121 H1.1L20 - H210 + 110L = $494 .03. 

9. (a) If it takes X HnL moves to move n disks to peg 2, then we can transfer the n + 1 disk to peg 3 in one move and then transfer the n disks from peg 2 to
peg 3 in XHnL moves, so XHn + 1L = XHnL + 1 + XHnL = 2 XHnL + 1, or equivalently XHnL = 2 XHn - 1L + 1.
    (b) XHnL = b1 ÿ2n - 1. Since it takes 1 move to transfer 1 disk from one peg to another, XH1L = 1 ; so b1 = 1 and XHnL = 2n - 1. We verify that X H3L = 7:

11.  The  solution  for  n = 4k  is  QI4kM = 1
3
I4k+1 - 1M,  This  can  be  obtained  in  one  of  two  ways.  Either  use  the  substitution  SHkL = QI4kM,  which  yields

SHkL = 4k + SHk - 1L,  or  note  that  QI4kM = 4k + QI4k-1M= 4k + 4k-1 + QI4k-2M= 4k + 4k-1 + ! + 4 + 1.  This  finite  geometric  series  has  the  closed  form

expression above. By similar means, QI2 ÿ4kM = 2QI4kM = 2
3
I4k+1 - 1M

13. GHS; zL = 1 + z + 2 z2 + 4 z3 + 8 z4!

15. GHT; zL = GHS; czL = S
k=0

¶

SHkL HczLk =

= S
k=0

¶

ISHkL ckM zk

Therefore, THkL = SHkL ck.
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CHAPTER 9
Section 9.1

1. In Figure 9.1.2, computer b can communicate with all other computers. In Figure 9.1.3, there are roads to and from city b to all other cities. In Figure
9.1.4, there is a door connecting room b to every other room in the house (including the outside).
3.

Out[2]=

0

1

0

1

1

00

Start

a

bc

5. No, the maximum number of edges would be H7L H8L
2

= 28. 

7. (a) CHn, 2L = Hn-1L n
2

(b) n - 1, one edge for each vertex except the champion vertex.

Section 9.2

A Exercises

1.  Estimate the number of vertices and edges in each of the following graphs.  Would the graph be considered sparse?

(a) ! A rough estimate of the number of vertices in the "world airline graph" would be the number of cities with population greater than or equal to 100,000.
Using the Wolfram CityData function we can get this number:

In[114]:= CityData@AllD êê Select@Ò, CityData@Ò, "Population"D >= 10^5 &D & êê Length

Out[114]= 4257

There  are  many  smaller  cities  that  have  airports,  but  some  of  the  metropolitan  areas  with  clusters  of  large  cities  are  served  by  only  a  few  airports.
4000-5000 is probably a good guess.   As for edges, that's a bit more difficult to estimate.  It's certainly not  a complete graph.  Looking at some medium
sized airports such as Manchester, NH, the average number of cities that you can go to directly is in the 50-100 range.   So a very rough estimate would be
75 µ 4500

2
= 168 750.  

(b) The number of ASCII characters is 128.  Each character would be connected to 8 others and so there are 128 µ 8
2

= 512  edges.

(c) !The Oxford English Dictionary as approximately a half-million words, although many are obsolete.   Mathematica  has a words database that is a bit
less comprehensive, yet it isn't trivial.   The nice thing about using the Wolfram data is that the number of  vertices and edges can be counted.  Here is the
number of words and hence the number of vertices in the graph:

In[1]:= WordData@AllD êê Length

Out[1]= 149191

And here are the number of edges, determined in a not necessarily efficient manner.

In[1]:= HLength@WordData@Ò ~~ ___, "Lookup"DD & êü WordData@AllDL êê Apply@Plus, ÒD &

Out[1]= 876547

The last  output  took about three hours using a MacBook Pro with a 2.5 GHz Intel  Core 2 Duo Processor.   It  should also be pointed out  that  Wolfram's
choice of "words" doesn't match the OED or a Scrabble player's dictionary.   For example,  "1900s" and  "18-karat gold" are included among the list of
words.   Nevertheless, the number we have here are good ballpark estimates for most most interpretations of the "English words." 
3. Each graph is isomorphic to itself. In addition, G2 and G4 are isomorphic; and G3, G5, and G6 are isomorphic.

Section 9.3

1.  

k 1 2 3 4 5 6
V@kD.found T T T F F T
V@kD.from 2 5 6 * * 5
Depth Set 2 1 2 * * 1

 H* = undefinedL
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1.  

k 1 2 3 4 5 6
V@kD.found T T T F F T
V@kD.from 2 5 6 * * 5
Depth Set 2 1 2 * * 1

 H* = undefinedL

3.  If  the number of  vertices  is  n,  there can be Hn-1L Hn-2L
2

 vertices  with one vertex not  connected to any of  the others.  One more edge and connectivity  is
assured.

5. Basis: Hk = 1L Is the relation r1defined by vr1 w if there is a path of length l from v to w? Yes, since vrw if and only if an edge, which is a path of length l,
connects v to w.

Induction: Assume that vrk w if and only if there is a path of length k from v to w. We must show that vrk+1 w if and only if there is a path of length k + 1
from v to w.

vrk+1 w fl vrk y and yrw, for some vertex y. By the induction hypothesis, there is a path of length k from v to y. And by the basis, there is a path of
length one from y to w. If we combine these two paths, we obtain a path of length k + 1 from v to w. Of course, if we start with a path of length k + 1 from
v to w, we have a path of length k from v to some vertex y and a path of length l from y to w. Therefore, vrk y and yrw fl vrk+1 w É

Section 9.4

1.  Using  a  recent  road  map,  it  appears  that  a  Eulerian  circuit  exists  in  New York  City,  not  including  the  small  islands  that  belong  to  the  city.  Lowell,
Massachusetts,  is  located at  the  confluence of  the  Merrimack and Concord rivers  and has  several  canals  flowing through it.  No Eulerian path  exists  for
Lowell.
3. Gray Code for the 4-cube:

G4 =

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

5. Any bridge between two land masses will be sufficient. To get a Eulerian circuit, you must add a second bridge that connects the two land masses that
were not connected by the first bridge.
7. Theorem: Let G = HV, EL be a directed graph, G has a Eulerian circuit if (a) G is connected and (b) indegHvL = outdegHvL for all v in V. There exists a
Eulerian path from v1 to v2  if (a) g is connected and (b) indegHv1L = outdegHv1L - 1,  indegHv2L = outdegHv2L + 1 and for all other vertices in V the indegree
and outdegree are equal.
9. A round-robin tournament graph is rarely Eulerian. It will be Eulerian if it has an odd number of vertices and each vertex (team) wins exactly as many
times as it loses. Every round-robin tournament graph has a Hamiltonian path. This can be proven by induction on the number of vertices.

Section 9.5

1. The circuit would be Boston, Providence, Hartford, Concord, Montpelier, Augusta, Boston. It does matter where you start. If you start in Concord, for
example, your mileage will be higher. 

3. (a) Optimal cost = 2 2 .

Phase 1 cost = 2.4 2 .

Phase 2 cost = 2.6 2 .
(b) !Optimal cost = 2.60. 

Phase 1 cost = 3.00. 

Phase 2 cost 2 2 .
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Phase 2 cost 2 2 .
(c) ! A = H0.0, 0.5L, B = H0.5, 0.0L, C = H0.5, 1.0L, D = H1.0, 0.5L

There are 4 points; so we will divide the unit square into two strips. 

Optimal Path: HB, A, C, DL Distance = 2 2  

Phase I Path: HB, A, C, DL Distance = 2 2  

Phase II Path: HA, C, B, DL Distance = 2 + 2

(d) !A = H0, 0L, B = H0.2, 0.6L, C = H0.4, 0.1L, D = H0.6, 0.8L, E = H0.7, 0.5L

There are 5 points; so we will divide the unit square into three strips.

Optimal Path: HA, B, D, E, CL Distance = 2.31

Phase I Path: HA, C, B, C, EL Distance = 2.57

Phase II Path: HA, B, D, E, CL Distance = 2.31

5. (a) f Hc, dL = 2, f Hb, dL = 2, f Hd, kL = 5, f Ha, gL = 1, and f Hg, kL = 1.

(b) ! There are three possible flow-augmenting paths.

s, b, d, k with flow increase of 1.

s, a, d, k with flow increase of 1, and

s, a, g, k with flow increase of 2.

(c) ! The new flow is never maximal, since another flow-augmenting path will always exist. For example, if s, b, d, k  is used above, the new flow can be
augmented by 2 units with s, a, g, k.
7. (a) Value of maximal flow = 31.

(b) !Value of maximal flow = 14.

(c) !Value of maximal flow = 14.

 One way of obtaining this flow is:

Step Flow - Augmenting Path Flow Added
1
2
3
4
5
6

Source, A, Sink
Source, C, B, Sink
Source, E, D, Sink
Source, A, B, Sink
Source, C, D, Sink
Source, A, B, C, D, Sink

2
3
4
1
2
2

9. To locate the closest neighbor among the list of k other points on the unit square requires a time proportional to k. Therefore the time required for the
closest-neighbor  algorithm with  n  points  is  proportional  to  Hn - 1L + Hn - 2L + ! + 2 + 1,  which  is  proportional  to  n2.  Since  the  strip  algorithm takes  a
time proportional to n Hlog nL, it is much faster for large values of n.
11. LetP = P1, P2, …, P2 n be a set of points in the unit square. If S is a subset of P, define min HSL to be the point in S with smallest x coordinate. If there is
a tie, select the point with smallest y coordinate.
Matching Algorithm:

1. ! S := P

2. !While S ! « Do

2.1 !v := minHSL

2.2! w := closest point to v in S - 8v<

2.3! pair up v and w

2.4! S := S - 8v, w<

Although this could be classified as a closest-neighbor algorithm, there is a better one, but it is more time-consuming.

Section 9.6
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Section 9.6

1.!Theorem 9.6.2 can be applied to infer that if n r 5, then Kn is nonplanar. A K4 is the largest complete planar graph.

3. (a)  3(b)  3 (c)  3 (d)  3 (e)  2 (f)  4

5. n

7. Suppose that G '  is not connected. Then G '  is made up of 2 components that are planar graphs with less than k  edges, G1  and G2.  For i = 1 and 2, let
vi, ri, and ei be the number of vertices, regions and edges in Gi.

By the induction hypothesis:

v1 + r1 - e1 = 2

     and v2 + r2 - e2 = 2

One  of  the  regions,  the  infinite  one,  is  common  to  both  graphs.  Therefore,  when  we  add  edge  e  back  to  the  graph,  we  have
r = r1 + r2 - 1, v = v1 + v2, and e = e1 + e2 + 1.
v + r - e + Hv1 + v2L + Hr1 + r2 - 1L - He1 + e2 + 1L

= Hv1 + r1 - e1L + Hv2 + r2 - e2L - 2
= 2 + 2 - 2
= 2 É

9.  Since †E§ + Ec =
nHn-1L
2

,  either  E or Ec  has at  least  nHn-1L
4

 elements.  Assume that  it  is  E  that  is  larger.  Since nHn-1L
4

 is  greater  than 3 n - 6 for n r 11,  G
would be nonplanar. Of course, if Ec is larger, then G' would be nonplanar by the same reasoning.
11.!Suppose that HV , EL is bipartite (with colors red and blue), †E§ is odd, and Hv1, v2, …, v2 n+1, v1L is a Hamiltonian circuit. If v1  is red, then v2 n+1  would
also be red. But then 8v2 n+1, v1< would not be in E, a contradiction.

13. Draw a graph with one vertex for each edge, If two edges in the original graph meet at the same vertex, then draw an edge connecting the correspond-
ing vertices in the new graph.
Supplementary Exercises~Chapter 9

1. Graphs G1  and G2  are isomorphic.  One isomorphism between them is 8Ha, eL, Hb, hL, Hc, f L, Hd, gL<.  To see that  G3  is  not isomorphic to the other two
notice that k and j are not connected by an edge while in G1 and G2 every pair of vertices is connected.
3. (a) 8a, e< is a maximal independent set in Figure 9.1.2.

(b) !(By contradiction) Assume that W is a maximal independent set in G. If V is not connected to any vertex, W ‹ 8v< is independent, and since this is a
larger set, W is not maximal.
(c) !A single vertex is maximal; no larger set can be independent. 

5. (a)

Out[75]=

Belize

Guatemala

Mexico

CostaRica

Nicaragua

Panama

ElSalvador

Honduras

(b) !HMexico, Guatemala, Belize, Nicaragua, Costa Rica, PanamaL

(c) !This path could be a list of the countries that you would go through in your trip.

7.  (a) If  one source s  exists,  then Hs, vL  is  on the edge of the round-robin tournament graph for each vertex v  different from s.  Therefore no other vertex
could be a source. By similar reasoning, only one sink can exist. In a round-robin tournament, only one team can be unbeaten and only one can be winless.

Sol_9.nb  4

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 
License.302



7. (a) If  one source s  exists,  then Hs, vL  is  on the edge of the round-robin tournament graph for each vertex v  different from s.  Therefore no other vertex
could be a source. By similar reasoning, only one sink can exist. In a round-robin tournament, only one team can be unbeaten and only one can be winless.
(b) !If †V § = n, outdeg HsourceL= indeg HsinkL = n - 1

(c) !Let V = 8v1, v2, …, vn<. The following graph demonstrates that p Ï Ÿ q is possible. Similar graphs can be drawn for the other situations.

v1

v2 v3 v4

vn

9. 

k 1 2 3 4 5 6 7 8 9
V@kD.name a b c d e f g h i
V@kD.found T T T T T T T T T
V@kD.from 4 1 5 5 1 3 5 5 6
depth set 3 1 2 2 1 3 2 2 4

11. G1 is randomly Eulerian from no vertex, yet it is Eulerian. 

G2 is randomly Eulerian from only vertex 1. 

G3 is randomly Eulerian from only vertices 1 and 2. 

G4 is randomly Eulerian from every vertex.

Out[89]=

1

2 3

45

6 7

G1

1

2 3

45

G2

1

3

4

5

6

2

G3
1 2

4 3

G4

13.  Addition  of  edges  to  E  will  certainly  not  decrease  the  degrees  of  each  vertex.  After  adding  some  edges  to  E  until  no  more  can  be  added  without
allowing a Hamiltonian circuit, select e = 8v1, vn< not in the new, larger E. Since a Hamiltonian circuit exists in HG, E ‹ 8e<L, there is a path in G that visits
every vertex in the order v1, v2, …vn. Now for 2 § i § n, if 8v1, vi< œ E, then
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13.  Addition  of  edges  to  E  will  certainly  not  decrease  the  degrees  of  each  vertex.  After  adding  some  edges  to  E  until  no  more  can  be  added  without
allowing a Hamiltonian circuit, select e = 8v1, vn< not in the new, larger E. Since a Hamiltonian circuit exists in HG, E ‹ 8e<L, there is a path in G that visits
every vertex in the order v1, v2, …vn. Now for 2 § i § n, if 8v1, vi< œ E, then

v1

v2

vi-1 vi

vn

Not both of the thicker red edges can be in E.

8vi-1, vn< – E, for otherwise, Hv1, v2, …, vi-1, vn, vn, vn-1, …, vi, v1L is a Hamiltonian circuit.

Since 8v1, vi< œ E fl 8vi-1, vn< – E ñŸ H8v1, vi< œ E  and 8vi-1, vn< œ EL,  no more than n - 1 of the possible edges that connect v1  and vn  to other vertices
could be in E, even after adding edges to E. Therefore, for the original graph, with 8v1, vn< – E, deg v1 + deg vn < n, a contradiction.

15. (a) ! f Hb, dL = f Hc, dL = f Ha, gL = f Hy, tL = 1, f Hd, tL = 2, VH f L = 3.

(b) !One flow-augmenting path is Hs, a, g, tL, which increased the flow value by 1, to 4. (A second one is Hs, b, d, a, g, tL.)

(c) ! The new flow is maximal since its value is equal to the sum of capacities into the sink.

17.(a) !HA, D, F, E, C, B, AL

(b) !Starting at any city, it would take n - 2 seconds to decide where to go first. Then it would take n - 3 seconds from the next step, and so on. The total
time would be

Hn - 2L + Hn - 3L + ! + 2 + 1 + 0 =
1

2 Hn-2L Hn-1L
seconds

º
1
2 n2

seconds, when n is large.

19.
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CHAPTER 10
Section 10.1
1. The number of trees are: (a) 1, (b) 3, and (c) 16.  The trees that connect Vc are:

W

N

S

E W

N

S

E W

N

S

E W

N

E

S

W

N

E

S

W

N

S

E W

N

S

E W

N

E

S

S

W E

N

S

W E

N

S

W

N

E

S

W

N

E

S

W

N

E EW

N

S

EW

N

S

EW

N

S

3.  Hint: Use induction on †E§.

5. (a) Assume that HV , EL is a tree with †V § ¥ 2, and all but possibly one vertex in V has degree two or more.

2 †E§ = ⁄deg HvL ¥ 2 †V §-1
v œ V

or †E§ ¥ †V § - 1
2
fl †E§ ¥ †V § fl HV , EL is not a tree.

(b) The proof of this part is similar to part a in that we get 2 †E§ ¥ 2 †V § - 1, since a tree that is not a chain has a vertex with degree three or more.

Section 10.2

1. It might not be most economical with respect to Objective 1. You should be able to find an example to illustrate this claim. The new system can always
be made most economical with respect to Objective 2 if the old system were designed with that objective in mind.
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3. In the figure below, 81, 2< is not a minimal bridge between L = 81, 4< and R = 82, 3<, but it is part of the minimal spanning tree for this graph.

5, (a) Edges in one solution are: 88, 7<, 88, 9<, 88, 13<, 87, 6<, 89, 4<, 813, 12<, 813, 14<, 86, 11<, 86, 1<, 81, 2<, 84, 3<, 84, 5< 814, 15<, and 85, 10<

(b)  Vertices  8  and  9  are  at  the  center  of  the  graph.  Starting  from  vertex  8,  a  minimum  diameter  spanning  tree  is
888, 3<, 88, 7<, 88, 13<, 88, 14<, 88, 9<, 83, 2<, 83, 4<, 87, 6<, 813, 12<, 813, 19<, 814, 15<,

89, 16<, 89, 10<, 86, 1<, 812, 18<, 816, 20<, 816, 17<, 810, 11<, 820, 21<, 811, 5<<. The diameter of the tree is 7.

Section 10.3

1. Locate any simple path of length d and locate the vertex in position `d ê2pon the path. The tree rooted at that vertex will have a depth of `d ê2p, which is
minimal.
3.

Building

Name Location Owner Height
Floor
Space

Street City State Name Street City State

First MI Last
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Section 10.4

1.

*

a +

b c

HaL

+

* c

a b

HbL

+

* *

a b a c

HcL
-

* *

b b *

4 a

c

HdL

+

* a0

+ x

* a1

+ x

* a2

a3 x

HeL

3.  

Preorder Inorder Postorder
HaL ÿa + bc a ÿb + c abc + ÿ
HbL +ÿabc a ÿb + c ab ÿc +
HcL +ÿab ÿac a ÿb + a ÿc ab ÿac ÿ+

5.
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5.

HaL
HbL

7. Solution #1:

Basis: A binary tree consisting of a single vertex, which is a leaf, satisfies the equation leaves = internal vertices + 1,

Induction: Assume that for some k ¥ 1, all full binary trees with k or fewer vertices have one more leaf than internal vertices. Now consider any full
binary tree with k + 1 vertices. Let TA and TB  be the left and right subtrees of the tree which, by the definition of a full binary tree, must both be full.  If
iA and iB are the numbers of internal vertices in TA and TB, and jA and jB are the numbers of leaves, then jA = iA + 1 and jB = iB + 1. Therefore, in the whole
tree, the number of leaves = jA + jB

= HiA + 1L + HiB + 1L
= HiA + iB + 1L + 1
= Hnumber of internal verticesL + 1

Solution #2:  Imagine building a full binary tree starting with a single vertex. By continuing to add leaves in pairs so that the tree stays full, we can build
any full binary tree. Our starting tree satisfies the condition that the number of leaves H1L is one more than the number of internal vertices H0L. By adding a
pair of leaves to a full binary tree, an old leaf becomes an internal vertex, increasing the number of internal vertices by one. Although we lose a leaf, the
two added leaves create a net increase of one leaf. Therefore, the desired equality is maintained.
Supplementary Exercises~Chapter 10

1.  Each  of  the  n - 1  edges  of  a  tree  contributes  to  the  degrees  of  two  vertices.  Therefore  the  sum  of  all  degrees  of  vertices  in  an  n  vertex  tree  is
2 Hn - 1L = 2 n - 2.
3. (a) G2 is graceful : v1 = 1, v2 + 2, v3 = 4

G4 is graceful : v1 = 2, v2 = 1, v3 = 3, v4 = 4

(b) Starting at either end of the chain label the first vertex SH1L = 1 and the Hk + 1L st vertex, k ¥ 1, SHk + 1L = SHkL + k.  The edge connecting the kth and
Hk + 1L st vertex is the kth edge and since HSHk + 1L - sHkLL = k, the chain is graceful. The closed form expression for SHkL is 1 + JkJk -

1
2
NN.

5. First, 83, 6< is added to the edge set, then 81, 2< and 83, 4<. Then 84, 6< is rejected since it would complete a  cycle. This can be seen from the forest.

1

2

3

4 6

5

Vertices 4 and 6 have the same root in this tree; hence 84, 6< is rejected. 81, 5< and 82, 3< are the final edges that complete the minimal spanning tree. Notice
that 84, 6< could have been the second edge selected. In that case, 83, 4< would be rejected.
7. The depth of the tree is four.
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*

+ ê

* 7 + x

- c d 4

a b

9.  (a)

+

+ b

- -

a a - b

2 a

(b)   aa ÿ2 a ÿb ÿ+b + is the postorder traversal of the tree. This is also the postfix version of the original expression.
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