Primitive Roots of Unity

A field element ω is a primitive [Graphics:../Images/FFT_gr_6.gif]root of unity if   [Graphics:../Images/FFT_gr_7.gif]  for [Graphics:../Images/FFT_gr_8.gif] and  [Graphics:../Images/FFT_gr_9.gif]

Examples
1.   -1  is a primitive [Graphics:../Images/FFT_gr_10.gif] (square) root of unity in the real numbers
2.   In the complex numbers i  is a primitive [Graphics:../Images/FFT_gr_11.gif] root of unity
        [Graphics:../Images/FFT_gr_12.gif]
3.   3 is a primitive [Graphics:../Images/FFT_gr_13.gif] root of unity in the field [Graphics:../Images/FFT_gr_14.gif]

[Graphics:../Images/FFT_gr_15.gif]

4.  11 is a primitive [Graphics:../Images/FFT_gr_16.gif] ([Graphics:../Images/FFT_gr_17.gif]) root of unit in the field of integers modulo  [Graphics:../Images/FFT_gr_18.gif].    

[Graphics:../Images/FFT_gr_19.gif]
[Graphics:../Images/FFT_gr_20.gif]

Since p is prime, [Graphics:../Images/FFT_gr_21.gif]

[Graphics:../Images/FFT_gr_22.gif]
[Graphics:../Images/FFT_gr_23.gif]

This says that  [Graphics:../Images/FFT_gr_24.gif]

This factorization tells us that there is an element of order [Graphics:../Images/FFT_gr_25.gif] in the group [Graphics:../Images/FFT_gr_26.gif].  It happens that  11 is one of the primitive [Graphics:../Images/FFT_gr_27.gif] ([Graphics:../Images/FFT_gr_28.gif]) roots of unit in [Graphics:../Images/FFT_gr_29.gif].   

Theorem:  In an field F,  the only solutions to the equation [Graphics:../Images/FFT_gr_30.gif]  are [Graphics:../Images/FFT_gr_31.gif]

Proof:  A solution to [Graphics:../Images/FFT_gr_32.gif] is a root of the polynomial  [Graphics:../Images/FFT_gr_33.gif]which has the factorization [Graphics:../Images/FFT_gr_34.gif].  This shows that [Graphics:../Images/FFT_gr_35.gif]  are root and if [Graphics:../Images/FFT_gr_36.gif] is any other element of F,  [Graphics:../Images/FFT_gr_37.gif]  and [Graphics:../Images/FFT_gr_38.gif] are both nonzero, so
        [Graphics:../Images/FFT_gr_39.gif]
so [Graphics:../Images/FFT_gr_40.gif]  is not a root.  

Theorem:   If [Graphics:../Images/FFT_gr_41.gif] is a primitive  [Graphics:../Images/FFT_gr_42.gif] root of unity and N is even, then
    (1)    [Graphics:../Images/FFT_gr_43.gif]
    (2)   [Graphics:../Images/FFT_gr_44.gif]
    (3)   [Graphics:../Images/FFT_gr_45.gif] is a primitive [Graphics:../Images/FFT_gr_46.gif] root of unity
    (4)   [Graphics:../Images/FFT_gr_47.gif]


Converted by Mathematica      May 10, 2000