Group Actions

Kenneth Levasseur
Mathematical Sciences
UMass Lowell
Kenneth_Levasseur@uml.edu
Definition: Let G be a group and X a set. G acts on X if there is a function $\alpha: G \times X \rightarrow X$ such that
(a) $\alpha(e, x)=x$ and
(b) $\alpha\left(g_{1} \alpha\left(g_{2}, x\right)\right)=\alpha\left(g_{1} g_{2}, x\right)$
α is called an action on X. w
$\alpha(g, x)$ is sometimes abbreviated $g x$.
Examples. (a) G action on itself by left translation:

$$
\tau_{g}(x)=g x
$$

Cayley's Theorem says any group G is isomorphic to a subgroup of S_{G} :
$G \cong\left\{\tau_{g} \mid g \in G\right\}$ with an isomorpism being $g \mapsto \tau_{g}$.
(b) G acts on itself by conjugation. $\gamma(g, x)=g x g^{-1}$.

$$
\begin{aligned}
& \gamma(e, x)=e x e^{-1}=e x e=x \\
& \gamma\left(g_{1} \gamma\left(g_{2}, x\right)\right)=\gamma\left(g_{1}, g_{2} x g_{2}^{-1}\right) \\
& =g_{1}\left(g_{2} x g_{2}^{-1}\right) g_{1}^{-1} \\
& =\left(g_{1} g_{2}\right) x\left(g_{2}^{-1} g_{1}^{-1}\right) \\
& =\left(g_{1} g_{2}\right) x\left(g_{1} g_{2}\right)^{-1} \\
& =\gamma\left(g_{1} g_{2}, x\right)
\end{aligned}
$$

(c) Consider the fabrication of circular bracelets with four jewels (Rubies, Emeralds, and Saphires) evenly spaced on the bracelet. For example one bracelet could look like this:

One of 81 placements of jewels
Note: Not all of the different jewels must be used. For example we could have a bracelet with four rubies.
For the time being imagine that the positions of the jewels cannot be changed. Let X be the set of possible arrangement of jewels in a bracelet. $|X|=3^{4}=81$. The group of symmetries of a square, D_{4} acts on X in a natural way.

The stablizer of $\boldsymbol{x}: \quad G_{x}=\{g \in G \mid \alpha(g, x)=x\} \subseteq G$
For the case of conjugation:

$$
\begin{aligned}
G_{x}=\{g & \left.\in G \mid g x g^{-1}=x\right\}=\{g \in G \mid g x=x g\} \\
& =\text { the centralizer of } x
\end{aligned}
$$

For the bracelet above, the stablizer is the cyclic subgroup of D_{4} generated by the vertical reflection.
Theorem. $G_{x} \leq G$.
Proof: First note that $e \in G_{x}$ since $\alpha(e, x)=x$. So G_{x} is never empty. If $g \in G_{x}$, then $x=e x=\left(g^{-1} g\right) x=g^{-1}(g, x)=g^{-1} x \Rightarrow \in G_{x}$. Finally, if $g, h \in G_{x}$,

$$
(g h) x=g(h x)=g x=x \Rightarrow g h \in G_{x}
$$

The orbit of $x: \quad O(x)=\{g x \mid g \in G\} \subseteq X$
For the case of conjugation:

$$
\begin{aligned}
O(x)= & \left\{g x g^{-1} \mid g \in G\right\} \\
& =\text { the conjugate class of } x
\end{aligned}
$$

The orbit of the bracelet above is

The Center of G :

$$
\begin{aligned}
\begin{aligned}
Z(G) & =\{x \in G \mid g x=x g \text { for all } g \in G\} \\
& =\{x \in G \mid \text { the conjugate class of } x \text { is }\{x\}\}
\end{aligned} \\
\text { If } n \geq 3, Z\left(S_{n}\right)=\{i\}
\end{aligned}
$$

The Class Equation: If G is a finite group and $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ are selected as representatives of the conjugate classes containing more than one element, then

$$
|G|=|Z(G)|+\sum_{k=1}^{m}\left|O\left(g_{k}\right)\right|
$$

Theorem. The number of elements in the conjugate class of $x,|O(x)|$ is $\left[G: G_{x}\right]$, the number of distinct cosets of G_{x} in G.
Proof: Let G / G_{x} be the set of all cosets of G_{x} in G. Define $\phi: O(x) \rightarrow G / G_{x}$ as follows: If $y \in O(x)$, then $y=g x$ for some g. Then define $\phi(y)=g G_{x}$.

```
\phi is well-defined.
\phi is one-to-one
\phi is onto
```

The Class Equation, revised: $|G|=|Z(G)|+\sum_{k=1}^{m}\left[G: G_{g_{k}}\right]$
Theorem If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.
Lemma
(i) Let G act on X. If $x \in X$ and $\sigma \in G$, then $G_{\sigma x}=\sigma G_{x} \sigma^{-1}$.
(ii) If finite group G acts on finite set X and if x and y lie in the same orbit, then $\left|G_{y}\right|=\left|G_{x}\right|$

Burnside's Lemma. Let G acto on a finite set X. If N is the number of orbits, then

$$
N=\frac{1}{|G|} \sum_{\tau \in G} F(\tau)
$$

where $F(\tau)$ is the number of $x \in X$ fixed by τ.

