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Definition:  Let G be a group and X a set.  G acts on X if there is a function a : GµX Ø X  such that 
(a)   aHe, xL = x   and
(b)  aHg1 aHg2, xLL = aHg1 g2, xL

a is called an action on X.    w

aHg, xL is sometimes abbreviated g x.
Examples. (a) G action on itself by left translation:  

tgHxL = g x

Cayley's Theorem says any group G is isomorphic to a subgroup of SG:
G @ 9tg g œ G=  with an isomorpism being g Ì tg. 

(b)  G acts on itself by conjugation.  g Hg, xL = g x g-1.
gHe, xL = e x e-1 = e x e = x
gHg1 gHg2, xLL = gIg1, g2 x g2-1M

= g1Ig2 x g2-1M g1-1

= Hg1 g2M x Ig2-1 g1-1M
= Hg1 g2L x Hg1 g2L-1
= gHg1 g2, xL

(c)  Consider the fabrication of circular bracelets with four jewels (Rubies, Emeralds, and Saphires) evenly spaced on
the bracelet.  For example one bracelet could look like this:

One of 81 placements of jewels

Note: Not all of the different jewels must be used.  For example we could have a bracelet with four rubies.

For the time being imagine that the positions of the jewels cannot be changed.  Let X be the set of possible arrange-
ment of jewels in a bracelet.   X = 34 = 81.    The group of symmetries of a square, D4 acts on X in a natural way.

The stablizer of x:   Gx = 8g œ G aHg, xL = x< Œ G

For the case of conjugation:  
Gx = 9g œ G g x g-1 = x= = 8g œ G g x = x g<

= the centralizer of x.



For the case of conjugation:  
Gx = 9g œ G g x g-1 = x= = 8g œ G g x = x g<

= the centralizer of x.

For the bracelet above, the stablizer is the cyclic subgroup of  D4  generated by the vertical reflection.

Theorem.  Gx § G. 
Proof:   First  note  that  e œ Gx  since   aHe, xL = x.   So  Gx  is  never  empty.   If  g œ Gx,  then
x = e x = Ig-1 gM x = g-1Hg, xL = g-1 x fl œ Gx.   Finally, if g, h œ Gx,

Hg hL x = gHh xL = g x = x fl g h œ Gx
 

The orbit of x:   OHxL = 8g x g œ G< Œ X

For the case of conjugation:  
OHxL = 9 g x g-1 g œ G=

= the conjugate class of x

The orbit of the bracelet above is 

The Center of G:   
ZHGL = 8x œ G g x = x g for all g œ G<

= 8x œ G the conjugate class of x is 8x<<
If n ¥ 3,  ZHSnL = 8i<

The Class Equation: If G is a finite group and 8g1, g2, …, gm< are selected as representatives of the  conjugate classes
containing more than one element, then

†G§ = †ZHGL§ + ⁄
k=1

m
†OHgkL§

Theorem.   The number of elements in the conjugate class of x, OHxL  is @G : GxD, the number of distinct cosets of Gx
in G.
Proof:  Let G êGx be  the set of all cosets of Gx in G.  Define f : OHxLØ G êGx as follows:  If y œ OHxL, then   y = g x
for some g.   Then define   fHyL = g Gx.

f  is well-defined.
f  is one-to-one
f is onto 
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  The Class Equation, revised:  †G§ = †ZHGL§ + ⁄
k=1

m
AG : GgkF

Theorem  If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Lemma 
  (i)   Let G act on X.  If x œ X and s œ G, then Gs x = s Gx s-1.
  (ii)  If finite group G acts on finite set X and if x and y lie in the same orbit, then  °Gy• = †Gx§

Burnside's Lemma.  Let G acto on a finite set X.  If N is the number of orbits, then
N = 1

†G§ ⁄
tœG

FHtL 

where FHtL is the number of x œ X fixed by t.
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