Group Actions

Kenneth Levasseur Mathematical Sciences UMass Lowell Kenneth_Levasseur@uml.edu

Definition: Let G be a group and X a set. G acts on X if there is a function $\alpha: G \times X \to X$ such that

(a) $\alpha(e, x) = x$ and

(b) $\alpha(g_1 \alpha(g_2, x)) = \alpha(g_1 g_2, x)$ α is called an action on *X*. w

 $\alpha(g, x)$ is sometimes abbreviated g x.

Examples. (a) G action on itself by left translation:

$$\tau_g(x) = g x$$

Cayley's Theorem says any group G is isomorphic to a subgroup of S_G :

 $G \cong \{\tau_g \mid g \in G\}$ with an isomorphism being $g \mapsto \tau_g$.

(b) G acts on itself by conjugation. $\gamma(g, x) = g x g^{-1}$.

$$\begin{aligned} \gamma(e, x) &= e x e^{-1} = e x e = x \\ \gamma(g_1 \gamma(g_2, x)) &= \gamma(g_1, g_2 x g_2^{-1}) \\ &= g_1(g_2 x g_2^{-1}) g_1^{-1} \\ &= (g_1 g_2) x (g_2^{-1} g_1^{-1}) \\ &= (g_1 g_2) x (g_1 g_2)^{-1} \\ &= \gamma(g_1 g_2, x) \end{aligned}$$

(c) Consider the fabrication of circular bracelets with four jewels (Rubies, Emeralds, and Saphires) evenly spaced on the bracelet. For example one bracelet could look like this:

One of 81 placements of jewels

Note: Not all of the different jewels must be used. For example we could have a bracelet with four rubies.

For the time being imagine that the positions of the jewels cannot be changed. Let X be the set of possible arrangement of jewels in a bracelet. $|X| = 3^4 = 81$. The group of symmetries of a square, D_4 acts on X in a natural way.

The stablizer of *x***:** $G_x = \{g \in G \mid \alpha(g, x) = x\} \subseteq G$

For the case of conjugation:

$$G_x = \{g \in G \mid g x g^{-1} = x\} = \{g \in G \mid g x = x g\}$$

= the centralizer of x.

$$G_x = \{g \in G \mid g \mid x \mid g^{-1} = x\} = \{g \in G \mid g \mid x = x \mid g\}$$

= the centralizer of x.

For the bracelet above, the stablizer is the cyclic subgroup of D_4 generated by the vertical reflection.

Theorem. $G_x \leq G$.

Proof: First note that $e \in G_x$ since $\alpha(e, x) = x$. So G_x is never empty. If $g \in G_x$, then $x = e x = (g^{-1}g)x = g^{-1}(g, x) = g^{-1}x \Rightarrow \in G_x$. Finally, if $g, h \in G_x$, $(g h) x = g(h x) = g x = x \Rightarrow g h \in G_x$

The orbit of *x*: $O(x) = \{g x \mid g \in G\} \subseteq X$

For the case of conjugation:

 $O(x) = \{g x g^{-1} \mid g \in G\}$

= the conjugate class of x

The orbit of the bracelet above is

The Center of G:

 $Z(G) = \{x \in G \mid g x = x g \text{ for all } g \in G\}$ = {x \in G | the conjugate class of x is {x}} If n \ge 3, Z(S_n) = {i}

The Class Equation: If G is a finite group and $\{g_1, g_2, ..., g_m\}$ are selected as representatives of the conjugate classes containing more than one element, then

$$|G| = |Z(G)| + \sum_{k=1}^{m} |O(g_k)|$$

Theorem. The number of elements in the conjugate class of x, |O(x)| is $[G:G_x]$, the number of distinct cosets of G_x in G.

Proof: Let G/G_x be the set of all cosets of G_x in G. Define $\phi: O(x) \to G/G_x$ as follows: If $y \in O(x)$, then y = gx for some g. Then define $\phi(y) = g G_x$.

$$G/G_x$$

 G_x

$$y \in O(x)$$
 $y = g x$

 ϕ is well-defined. ϕ is one-to-one ϕ is onto

The Class Equation, revised: $|G| = |Z(G)| + \sum_{k=1}^{m} [G:G_{g_k}]$

Theorem If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Lemma

- (i) Let G act on X. If $x \in X$ and $\sigma \in G$, then $G_{\sigma x} = \sigma G_x \sigma^{-1}$.
- (ii) If finite group G acts on finite set X and if x and y lie in the same orbit, then $|G_y| = |G_x|$

Burnside's Lemma. Let G acto on a finite set X. If N is the number of orbits, then

$$N = \frac{1}{|G|} \sum_{\tau \in G} F(\tau)$$

where $F(\tau)$ is the number of $x \in X$ fixed by τ .