Abstract Algebra

Assignment #1

Kenneth Levasseur Mathematical Sciences UMass Lowell Kenneth_Levasseur@uml.edu

Due Sept. 26.

Instructions: Use only the definition of a group and the definition of exponentiation in groups in doing these proofs.

Definition of exponentiation in a group: If $g \in G$ and *n* is a positive integer,

$$g^{0} = e$$

$$g^{n} = g^{n-1} * g$$

$$g^{-n} = (g^{n})^{-1}$$

You may also assume that for all positive $n, g^n = g * g^{n-1}$. This isn't true from the definition, but can be proven by induction.

1. Prove that if *n* is a positive integer, then $g^{-n} = (g^{-1})^n$. In other words, in computing g^{-n} you can invert *g* and then raise the result to the *n*th power instead of raising *g* to the *n*th power and then inverting the result. You get the same result either way.

2. Let a and b be elements in a group G. Prove that $a b^n a^{-1} = (a b a^{-1})^n$ for all $n \ge 1$.

3. Let G be a finite group with identity e. Prove that if $a \in G$, there exists a positive integer m such that $a^m = e$.

Exploring Abstract Algebra with Mathematica

Home Page: http://www.central.edu/eaam/index.asp

You can download the AbstractAlgebra package from the site above, but you can also load it directly with this input:

```
Import["http://homepage.mac.com/klevasseur/Master.m"]
```

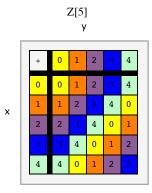
```
A few simple inputs.

z[5]

Groupoid({0, 1, 2, 3, 4}, (#1 + #2) mod 5 &)

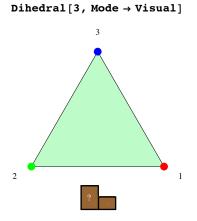
CayleyTable[z[5]]
```

Group properties Element properties Group Calculator



Dihedral[3]

Groupoid({1, Rot, Rot², Ref, Rot ** Ref, Rot² ** Ref}, -Operation-)



SubgroupGenerated[Dihedral[3], Ref]

Groupoid({Ref, 1}, -Operation-)