92.421/521 Abstract Algebra

Fall 2011

Problem Set \#5

Due November 21

Instructions:

Do the first two problems and any two of the last three problems.
Do each problem on a separate sheet of paper. On each sheet, write your name And problem statement (it can be abbreviated). Include all logical steps/observations.

1. Find all the subgroups of D_{4}. Which subgroups are normal? What are all the factor groups of D_{4} up to isomorphism?
2. Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $\varphi(n)=7 n$. Prove that φ is a group homomorphism. Find the kernel and the image of φ.
3. Let G be the additive group of real numbers. Let the action of $\theta \in G$ on the real plane \mathbb{R}^{2} be given by rotating the plane counterclockwise about the origin through θ radians. Let P be a point on the plane other than the origin.
(a) Show that \mathbb{R}^{2} is a G-set.
(b) Describe geometrically the orbit containing P.
(c) Find the group G_{P}.
4. Let $G=A_{4}$ and suppose that G acts on itself by conjugation; that is, $(g, h) \rightarrow g h g^{-1}$.
(a) Determine the conjugacy classes (orbits) of each element of G.
(b) Determine all of the stabilizer (isotropy) subgroups for each element of G_{x}.
5. Find the number of ways a six-sided die can be constructed if each side is marked differently with $1,2, \ldots, 6$ dots.
