Discrete
Structures II
92.322 |
HOME | SYLLABUS | STUDENTS | SCHEDULE | MATERIALS | FORUM | LINKS |
Euclidean Algorithm:
Prove by induction that the last non-zero remainder divides the ininital two numbers: Euclidean.tif
Required Reading:
Definition: http://en.wikipedia.org/wiki/Turing_machine#Formal_definition
Article: http://en.wikipedia.org/wiki/Turing_machine
Additional (recommended, but optional) Reading:
http://www.kurzweilai.net/brain/frame.html?startThought=Turing%20Machine
http://plato.stanford.edu/entries/turing-machine/#Definition
Big-O, big-Omega, big-Theta notation.
big-Theta equivalence relation.
Required reading, in addition, to Section 2.2 (of Rosen):
http://en.wikipedia.org/wiki/Preorder
http://en.wikipedia.org/wiki/Partial_order
© 2000 University of Massachusetts Lowell, Class Connections |
Graphics
& Design by: Thomas Pimental & Michelle Christman |