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1 Introduction

Suppose we have a number of noisy measurements of an unknown real-valued function f near a

point of interest x0 ∈ R
d. Suppose also that nothing can be assumed about the noise distribution,

except for zero mean and bounded covariance matrix. We want to estimate f at x0 using a general

linear parametric family f(x; a) = a0h0(x) + . . . + aqhq(x), where a ∈ R
q and hi’s are bounded

functions on a neighborhood B of x0, which contains all points of measurement. Typically, B is a

Euclidean ball or cube in R
d (more generally, a ball in an lp-norm). In the case when the hi’s are

polynomial functions in (x1, . . . , xd) = x the model is called locally-polynomial. In particular,

if the hi’s form a basis of the linear space of polynomials of degree at most two, the model is

called locally-quadratic (if the degree is at most three, the model is locally-cubic, etc.). More

generally, hi are picked from some linear space of functions H, which must include at least all

affine functions on R
d. Often, information about the behavior of function f on B is available,

which is referred to as context, such as, e.g., that f takes values in a known interval, or that it

satisfies a Lipschitz condition, etc. Given a loss function and a linear space of functions H, the

idea of local minimax learning is in choosing for each point of interest x0 a parameter vector a

that minimizes the maximal possible loss over all a ∈ R
q. The bounds and algorithms are not

based on asymptotics or Bayesian assumptions and are truly local for each query, not depending

on cross validating estimates at other queries to optimize modeling. The theory of local minimax

estimation with context for locally-polynomial models and approximately locally polynomial

models has been recently initiated by Jones (2006) and the focus of our paper is on a subclass

of problems studied by Jones, which reduce to real algebraic geometry and finite-dimensional

optimization of linear functions over compact domains. See Jones (2006) for detailed treatment.

Denote by Pr,d the space of real polynomial of degree at most r in d indeterminates. In the

case of H = P1,d and a given bound on the change of f on B = {x ∈ R
d |x| ≤ 1}, the solution

for the squared error loss function is in the form of ridge regression, where the ridge parameter

is identified; hence, a minimax justification for ridge regression is given, together with explicit

best error bounds. The analysis of polynomial models of degree above 1 leads to interesting and

difficult questions in real algebraic geometry and non-linear optimization. We show that in the

1



case when f is a probability function, the optimal in the minimax sense estimator is effectively

computable with any given precision, thanks to Tarski’s quantifier elimination principle.

2 General Inverse Problem

The methods described in this paper can be applied to a much larger class of problems than

those mentioned in the introduction. That is why we give here a more general formulation of the

problem under investigation. Denote by [n] the set {1, . . . , n}. Suppose we are given real values

Yj for j ∈ [k],

Yj =

∫

Rd

f dµj + Nj

• where µj’s are known measures,

• f is an unknown R-valued function on R
d, the value of which is to be estimated at x0,

• Nj ’s are random variables with zero mean and covariance matrix N, bounded from above in

the semi-definite order (M � M′ iff M−M′ is positive semi-definite) by a known positive

definite matrix S.

The problem of estimation of the value of f at x0 is called the General Inverse Problem. In

practice, one normally has to assume that f belongs to some rather narrow subspace of the space

of all R-valued functions on R
d and that for each j ∈ [k]

∫

Rd

f(t)dµj =

∫

Rd

θj(t)f(t)dt +

∫

Rd

∑

p∈Ij

cpδ(t− p)f(t) dt

where θj is a known piecewise-analytic ”kernel” function and |Ij| < ∞. Furthermore, many

problems in applications reduce to an even simpler form of the inverse problem where for each

j ∈ [k]

Yj =

∫

δ(t − xj)f(t)dt = f(xj) + Nj .

We call this form of the inverse problem the Standard Inverse Problem.

3 Affine Estimators for Standard Inverse Problem

Let H be a q-dimensional linear space of functions which are bounded on a neighborhood B of

x0. Typically, B is a ball in (Rd, lp), where p ∈ [1,∞], centered at x0. Assume that the unknown

function f belongs to H, i.e.

f(x; a) = a1h1(x) + . . . + aqhq(x)
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where {hi}q
i=1 form a basis of H and (a1, . . . , aq) = a ∈ R

q. We seek to estimate f(x0) in the

form of F (w) = w0 + w · Y = w0 +
∑k

1 wjYj. That is, we are looking for an estimator in the

space Aff(Rk) of affine functions of the measurements Yj, j ∈ [k]. Since we do not know anything

about the distribution of the noise, we need to use some contextual restrictions on f , that is the

information that is known from the application at hand. Fix B. The following types of context

are often encountered in engineering and sciences.

1. f takes values in a known interval (e.g. probability function). Denote the class of functions

f such that f(B) ⊂ [a, b] ⊂ R by C-Range([a, b]).

2. f does not change between any two points in B by more than a fixed amount. Denote the

class of functions f such that |f(x) − f(x′)| ≤ c for any x,x′ ∈ B by C-Change(c).

3. f satisfies a Lipschitz condition. Denote the class of functions satisgying the Lipschitz

condition with constant C on B by C-Lip(C).

4. f ∈ Ds(Rd) and f (s) satisfies one of the conditions in 1-3). For example, if f ′′′ ∈ C-Lip(C),

we will write f ′′ ∈ C-Lip2(C).

Furthermore, f may satisfy a number of conditions of the above types, e.g. f ∈ C-Range([a, b])∩
C-Lip3(C) stands for all functions in D3(B) whose values lie in [a, b] and whose third derivative

is Lioshitz with constant C. We will use the same abbreviation to refer to a function class and

to the condition that defines this class.

To compare estimators and their errors we need to agree on the way the error is measured.

Such a measure is known as a loss function in game theory. By a loss function L(x; F, h) we

mean any non-negative function L : B × R × H → R≥0. Most often one is concerned with the

value of L for x = x0; we write L(F, h) for L(x0; F, h). The most popular measure in statistics

is L(x; F, h) = (h(x)−F )2, which is known as the square error. Many other choices are often of

type L(x; F, h) = |h(x) − F |p, where p ≥ 1.

Definition 1 (Principle of Minimax Learning) Let x0 ∈ int B ⊂ R
d, where B is some body.

Let P be a continuous probability distribution on B. Suppose H is a q-dimensional subspace of

R
R

d

that contains Aff(Rd), L is a loss function, C is the context, x1, . . . ,xk ∈ B are observation

points, and Y ∈ R
k is the vector of observations. The principle of local minimax learning states

that an optimal affine estimator F (w;Y) = w0 + w · Y = w0 +
∑k

1 wjYj for f ∈ H at x0 must

be chosen according to

F = arg min
F

max
h∈H∩C

EP{L(x0; F, h) | x1, . . . ,xk}

We will use w for the optimal value of the parameter v in F (v,Y) = v0+
∑k

1 vjYj Often we cannot

assume that the unknown function f belongs to H, but can assume that f is within some known

or conjectured ε(x) of a member of H. In this case we will say that f is approximately of class
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H. For example, when H = P1,d we call f approximately affine, etc. Let ε : B → R+. Denote

the class of functions there are within ε(x) of some element of H by H(ε). Then the Principle

of Minimal Learning states that an optimal affine estimator F = w0 +w ·Y = w0 +
∑k

1 wjYj for

f ∈ H(ε) at x0 must be chosen according to

F = arg min
F

max
h∈H(ε)∩C

EP{L(F, h) | x1, . . . ,xk}

4 Optimal Affine Estimators for Approximately Affine Functions

In this section we will use the following setup. First, without loss of generality assume that

x0 = 0. The neighborhood B of x0 = 0 that contains the observation points xj is the Euclidean

ball of radius ρ centered at 0. Denote by J the vector of all ones of length k, and let X0

be the matrix whose rows are the coordinates of xj ’s. Set X = [J|X0]. Let C denote the

class of functions that satisfy the condition that |g(x) − g(x′)| ≤ 2M for any x,x′ ∈ B. Let

L(x; G, g) = (G−g(x))2, the squared error loss-function. The following theorem gives an estimate

on the error of the optimal affine estimator in the case when it happens to have zero constant

term, i.e. when it is linear. Such estimators are called smoothers in statistics. Alternatively, this

result can be considered as a bound on the error of a linear estimator.

Theorem 2 Suppose f is within ε|x|2 from some function in H = P1,d. Let F = w0 + w ·Y be

an optimal affine estimator of f . If w0 = 0, then L(F, f) is bounded from above:

L(F, f) ≤ min
v∈Rk

{vtSv + R(v)},

with

(4.1) R(v) = R(v1, . . . vk) =







(

(M
ρ

+ ερ)|
∑k

1 vjxj | + ε
∑k

1 |vj | |xj|2
)2

if ε ≤ Mρ−2,
(

1
2
(εM)1/2|

∑k
1 vjxj | + ε

∑k
1 |vj | |xj |2

)2

if ε > Mρ−2.

where v must satisfy
∑

i<k vi = vk.

Proof. The proof is given in Jones (2006), see Theorem II in there.

This theorem gives a robust extension of penalized local linear regression when nonlinearity

is present. Note that the above bound does not hold when the optimal estimator has a non-zero

affine term. The following theorem deals with the case where f is affine. It is convenient to set

λ = ( ρ
M

)2

Theorem 3 Suppose f ∈ H = P1,d. Let F = w0 + w · Y be an optimal affine estimator of f .

Then w0 = 0 and

w = arg min
v∈Rk

{

vtSv +
1

λ
|

k
∑

1

vjxj |2
}
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Furthermore, if we denote by Q the matrix (λ−1XXt + S)
−1

and by ΣQ the sum of its ele-

ments, then

w =
1

JtQJ
QJ,

and the error of the optimal estimator is bounded from above by

1

|ΣQ|
− 1

λ

Proof. The proof is given in Jones (2006), see Theorem II in there.

In particular, this theorem presents the correct choice of penalty parameter and new error

bounds for what is known in statistics as Ridge Regression by a Gradient Regularization. In

the language of the latter method, F (w) is the constant term in gradient regularization and λ is

the ridge parameter, also known as penalty. Thus, the above theorem gives a rigorous minimax

justification of Ridge Regression by a Gradient Regularization.

5 Optimal Affine Estimators for

Approximately Polynomial Functions

In this section we will use the following setup. As befire assume that x0 = 0. We seek to

estimate the value of an unknwon function f at 0 using noisy observations of f at points xj ,

where j ∈ [k], which all lie in B, a neighborhood of x0. The neighborhood B ⊂ R
d of x0 = 0 is a

bounded body. Let H be a q-dimensional subspace of the space of all polynomials in d variables.

It is known that there is a function fH ∈ H, ε ≥ 0 amd r ≥ 1 such that for all x ∈ B we

have |f(x) − fH(x)| ≤ ε|x|r. Let us see what has to be done in order to find an optimal affine

estimator, that is to find an element of the following subset of Aff(Rd)

arg min
F

max
h∈H(ε|x|r)∩C

EP{L(x0; F, h) | x1, . . . ,xk}

First, we have to characterize the set of functions H(ε|x|r) ∩ C.

Theorem 4 Let {Ci}i∈I, with I an arbitrary index set, be a collection of classes of functions,

where each Ci is of one of the four types described in Section 3. Then ∩
i∈I

Ci is convex.

Proof. Suppose f1 and f2 are both in C-Range([a, b]]). Since the addition of functions and the

multiplication of a function by a constant are defined pointwise, and [a, b] is convex, C-Range([a, b])

is convex. Similarly, it is easy to see that C-Change(c) and C-Lip(C) are convex. Bt linearlity

of differentiation the same is true for derived classes C-Ranges([a, b]), C-Changes(c), C-Lips(C).

The intersection of any family of convex sets is convex.

Lemma 5 For any ε(x) ≥ 0 and any H the set H(ε(x)) is convex.
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Proof. The proof is by direct check.

Thus, H(ε|x|r)∩C is convex. In applications most always B is a body with piecewise-algebraic

boundary and ε(x) is a function of the kind occuring in Taylor-type formulae, i.e. ε|x|r for some

ε ∈ R and r ∈ N. Also, in most application {Ci}i∈I is a finite set. Under these very general

circumstances we can conclide that H(ε|x|r)∩C is a convex set in H ∼= R
q. Furthermore, if none

of the conditions Ci are trivial (e.g. I = [a, a] in C-Range(I), or c = 0 in C-Change(c)), then

H∩C is a bounded convex body whose boundary is a semialgebraic set. (Such bodies are known

as regular in computer-aided design.)

Theorem 6 Let H be a linear subspace of Pd = R[x1, . . . ,xd] with dim H = q < ∞, and let

{Ci}i∈[n] be a finite set of function classes of types described in Section 3. Then A = ∩
i∈[n]

Ci ∩ H

is a convex semialgebraic set in H. If none of the conditions defining classes Ci are trivial, then

A is a convex body with piecewise-algebraic boundary.

Proof. The statement that h ∈ A can be expressed by a formula in the first-order predicate

language of the reals (see Basu, Pollack, and Roy 2003). By Tarski’s (1951) quantifier elimination

theorem such a formula is equivalent to a formula free of quantifiers. A quantifier-free formula

in the language of the reals defines a semialgebraic set. By Theorem 4 A is convex. If none of

the conditions are trivial, this set has a non-empty interior. Since A is closed, convex, and has

a non-empty interior, A = int A. Thus A is a combex gody with piecewise-algebraic boundary.

L A is called the set of admissible functions.

5.1 Complexity of Determination of the Set of Admissible Functions

Tarski’s theorem on quantifier elimination is constructive, that is, he proved that there is an

algorithm that takes a a formula in the language of the reals and produces a quantifier-free

equivalent formula. There is an extensive discussion of such algorithms in (Basu, Pollack, Roy

2003). The best known algorithm is by Renegar (1988). See Basu et al. (2003) for the complexity

analysis in the most general case. We will only state here Renegar’s bound for a special case

that covers our situation.

Theorem 7 Let Φ be a formula in the first-order predicate language of the reals. Suppose it has

s sign conditions, each of degree at most r, and all quantifiers are over disjoint blocks of variables

of (fixed) length b. There are ω blocks. The total number of variables is ωb+ l.Then the algebraic

complexity of rewriting Φ into an equivalent quantifier-free form is bounded by

s((b+1)ω)rlO(b)ω

.

If all the parameters in this bound are considered as variables, the bound is heavily super-

exponential. However, as we will see from the following example, in any particular learning

application with at most two conditions Ci the number of sign conditions s is a small constant
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(say, less than 12 and usually 3-5), the number of blocks is also small (say, less than 10). Also, in

most cases the highest degree r is only 2. Furthermore, we see the complexity does not depend

on the number of measurements k. If C is a C-Range([a, b]) condition and B is a Euclidean ball,

then there is only one block, i.e. ω = 1 and the complexity bound takes the form of

3d+12qO(d).

in the notation of our paper (i.e. d as in R
d and q = dim H). That is the bound is single

exponential in the dimension of the space and the dimension of the space of functions H. Since

all polynomials in the sign conditions are invariant under the permutations of variables, one can

try to use these symmetries to speed up the quantifier elimination. We conjecture that when B

is a ball in Euclidean metric and C = C-Range([a, b]) is the only condition, the elimination can

be done in time bounded by const · 2q for some const (note that d ≤ q).

5.2 Probability Class 2 Estimation

For learning applications, where one wants to estimate class 2 posterior probability, bounds for

locally quadratic models in R
d would be desirable. Suppose h1, . . . , hq are the q = 1 + d +

d(d + 1)/2 monomials of degree at most 2 that form a basis of P2,d. Can we characterize the

set of h’s for which h(B) ⊂ [a, b], where B is a Euclidean ball at the origin? Furthermore can

we characterize the hyperplanes tangent to its boundary (where the boundary is smooth) and

perform the appropriate maximization? This has applications in Markov chain Monte Carlo

computation of P-values for exact tests of model validity in multifactor experiments (see Jones

and ONeil, 2002).

It is of interest here to see how complicated the one dimensional quadratic case is. Inverse

problems in one dimension contain some of the difficulties of higher dimensional learning problems

because of the sparseness of the measurement information furnished ( as in the finite Fourier

moment problem of reconstructing a function from limited spectral data). We thus carry out

the analysis in the inverse problem setting when the target f is approximately quadratic on an

interval and known not to change by more than M between any 2 points therein, i.e. the setup

is x0 = 0, x0 ∈ B = [m, m+1] ⊂ R
1, and f ∈ H(ε(x))∩C-Change(M) We reconstruct the value

of f at 0 from data consisting of noisy integrals of f over [m, m + 1] which contains 0. Denote
∑ |vj|ε(xj) by R(v). Reconstruction at an arbitrary point in an arbitrary interval can be done

by a simple linear reparameterization. All integrals are over [m, m + 1] We have

f(x) = ao + a1(x − m)2 + a2(x − m) + E(x), with |E(x)| < ε(x) in [m, m + 1].

Then

E
{

(F (v) − f(0))2 θ1, . . . , θk

}

=

vtNv + {a1Q1 + a2Q2 + Ca0 + v0 +

∫

∑

vjθj(t)E(t)dt}2,
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where C =
∑

vj

∫

θj(t)dt − 1 , Q1 =
∑

vj

∫

(t − m)2θj(t)dt − m2 and Q2 =
∑

vj

∫

(t −
m)θj(t)dt + m. Since a0 is arbitrary C must be 0 for the minimax weights.

To get the minimax value in the exact quadratic case we determine the convex set in (a1, a2)

subspace of H for which u(x) = a1x
2 + a2x has change bounded by M on the unit interval. This

involves solving the simultaneous inequalities:

|a1c
2
i + a2ci − a1c

2
k − a2ck| < M

for all pairs (i, k), where ci, ck are 2 of the (2 or 3) critical and end points for u(x) in [0, 1]. In

the case of approximately quadratic h we get the bound by using the same set with M replaced

by M + 2µ where µ is the maximum of ε(x) on B.

We continue the analysis for the exact quadratic case . In Fig. 1 the set A of admissible

(a1, a2) is displayed with 6 boundary curves with end points labelled by their coordinates. The

expressions for the curves as functions of a1 are also included. This set is symmetric about the

origin in the (a1, a2) space. So, in maximizing |a1Q1 + a2Q2 + v0| we can choose a1Q1 + a2Q2 to

have the same sign as v0. Hence v0 = 0 will minimize the bound for any v. So, we need only

to maximize |a1Q1 + a2Q2|. For this we determine a tangent hyperplane to the boundary of the

form a1Q1 + a2Q2 = ±t and use vtv + |t|2 for the best bound for fixed v. ( In the approximate

case we add E(v) to |t| before squaring.) If we traverse the boundary clockwise we calculate

slopes between corners as functions of a1 :

(−4M, 4M) to(−M, 2M) slope =−(M/ − a1)1/2

(−M, 2M) to (M, 0) slope = −1

(M, 0) to (4M,−4M) slope = (M/a1)
1/2 − 2

(4M,−4M) to (M,−2M) slope = −(M/a1)
1/2

(M,−2M) to (−M, 0) slope = −1

(−M, 0) to (−4M, 4M) slope = (M/ − a1)
1/2 − 2

Given Q1, Q2 we know the slope and hence we can identify either a point of tangency to one

of the curves or at one of the corners. From this we can identify ±t and therefore |t|.
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Figure 1: Boundary of the Section a0 = 0 of the Set of Admissible Functions
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So, by a straightforward but extremely tedious calculation we find that the maximum of

|a1Q1 + a2Q2| is given by U(M, Q1, Q2) =

|MQ2| if Q1 = Q2

|M Q2

2

Q1

| if 1/2 < Q1

Q2

< 1

|2MQ2−MQ1|
(2−(Q1/Q2))2

if 1 < Q1

Q2

< 3
2

4M |Q1 − Q2| otherwise.

For the upper bound on the minimax value we use U(M + 2µ, Q1, Q2) + R(v). We restate

this as

Theorem 8 Let H = P2,1 be the space of quadratic functions of one variable. parametric family

be given by f(x; a) = a0 + a1(x−m)2 + a2(x−m). Assume that in B = [m, m + 1] the unknown

function f(x) is within ε(x) of some member of H. Let the loss function be the squared error

one. Suppose f ∈ C-Change([m, m + 1]). Let

L(v) = vtSv + {U(M + 2µ, Q1, Q2) +

∫

t∈Rd

∑

|vjθj(t)|ε(t)dt}2

and let

I(v) = vtSv + {U(M, Q1, Q2)}2

Then the mean squared error of an estimator F (v) is bounded from above by L(v) and the

mean squared error of the optimal estimator F in the exact quadratic case is bounded from above

by min
v∈R3

I(v).

6 Complexity of Minimax Algorithm

The complexity of determination of the set of admissible functions A = ∩
i∈I

Ci ∩H is estimated in

Section 5. What is the complexity of finding

min
F

max
h∈H(ε|x|r)∩C

EP{L(F, h) | x1, . . . ,xk}

and

arg min
F

max
h∈H(ε|x|r)∩C

EP{L(F, h) | x1, . . . ,xk}

for the lp loss function, i.e. for the loss function of the form | |p?
For the lp loss function the minimax choice of F corresponds to the value of v for which the

null-subspace of R
q is equidistant from the maximum and minimum hyperplanes in the direction

specified by x0; for example, if H = Pr,d the direction is (1, x1, . . . , xd, x1, x2, . . . ...), the vector

of all monomials .of degrees 0 through r in the coordinates of x0 = (x1, . . . , xd). The most

diffcult part here is finding the maximal and minimal values of the expected loss in the direction

determined by x0. This ia classical optimization problem with convex feasibility set and linear

objective function. Furthermore, we have the following conjecture.
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Conjecture 9 Let H be a linear subspace of Pd = R[x1, . . . ,xd] with dim H = q < ∞. Suppose

B ⊂ R
d is a ball in lp metric, and let {Ci}i∈[n] be a finite list of function classes, defined by

nontrivial conditions of types described in Section 3. Then the membership predicate for A =

∩
i∈I

Ci∩H can be writtenas a conjunction of at most (2n+1)d+12qO(d) sign conditions are of affine

or quadratic type. Thus, A is a convex body defined by convex quadratic inequalities.

The analysis of this conjecture will be included in a subsequent journal paper. The signifi-

cance of this theorem is in that for quadratically constrained linear programming there are fast

interior-point algorithms, which are efficient from both practical and theoretical point of view.

Three major families of such algorithms are the Potential Reduction and Karmarkar Methods.

Two most well-studied Potential Reduction methods and the Path Following and Primal-Dual

methods. For any given precision ε they all compute an ε-approximation of the argument of the

objective function in time (in the algebraic model of computation), which is linear in log2 ε−1 and

polynomial in the number of constraints m and variables q. The bit complexity of these methods

is linear in log2 ε−1 and polynomial in the number of constraints m, variables q, and the maximum

L of the binary sizes of the numbers in the input data. The number of interior point steps for some

of these methods is bounded by O(m) and for some O(
√

m) The best theoretical bound, given

by the path following and primal-dual methods has the complexity of O ( m12(m + n)n2L log L )

per each accurate digit of the approximation. For details see Nemirovskii (2004).
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