
An Efficient Local Approach to Convexity

Testing of Piecewise-Linear Hypersurfaces

Konstantin Rybnikov

One University Ave., Olney Hall 428, University of Massachusetts at Lowell,
Lowell, MA 01854 USA

Email address: Konstantin Rybnikov@uml.edu

Abstract

We prove the following criterion: a compact connected piecewise-linear hypersurface
(without boundary) in Rn (n ≥ 3) is the boundary of a convex body if and only if
every point in the relative interior of each (n−3)-face has a neighborhood that lies on
the boundary of some convex body. This criterion is derived from our theorem that
any connected complete locally-convex hypersurface in Sn (n ≥ 3) is the boundary
of a convex body in Sn. We give an easy-to-implement convexity testing algorithm
based on our criterion. This algorithm does not require any assumptions about
the global topology of the input hypersurface. For R3 the number of arithmetic
operations used by our algorithm is at most linear in the number of vertices, while
in general it is at most linear in the number of incidences between (n− 2)-faces and
(n−3)-faces. The algorithm still remains polynomial even when the dimension n is a
variable and the bit complexity model for (exact) arithmetic operations is used. The
suggested method works in more general situations than the convexity verification
algorithms developed by Mehlhorn et al. (1996) and Devillers et al. (1998) – for
example, our method does not require the input surface to be homeomorphic to the
sphere, nor does it require the input data to include normal vectors to the facets that
are oriented “in a coherent way”. For R3 the complexity of our algorithm is the same
as that of previously known algorithms; for higher dimensions there seems to be no
clear winner, but our approach is the only one that easily treats surfaces of arbitrary
topology without a preliminary topological computation aimed at verifying that the
input is a topological sphere. Furthermore, our method can be easily extended to
piecewise-polynomial surfaces of degree 2 and 3.

Key words: Program checking, Output verification, Geometric property testing,
Convexity, Piecewise-linear surface, Polyhedral surface

Saturday, January 5, 2008 07:31

5 January 2008

1 Introduction

Blum and Kannan (1989) suggested a paradigm of output verification. Since a complete check
of a program is often difficult or impossible – for example, when the source code has not been
made public – it is important to have algorithms that verify key properties of mathematical
objects generated by programs. Instead of the source code verification one can try to verify
the properties of the output that are deemed essential by users of the program. In computa-
tional geometry this paradigm was developed, among others, by Mehlhorn et al. (1996, 1999)
and Devillers et al. (1998). For example, the LEDA C++ library contains programs verifying
the convexity of a polygon, Delaunay property of a tiling, etc (Mehlhorn and Näher, 2000).
Devillers et al. argue that it is easier to evaluate the quality of the output of a geometric
algorithm, than the correctness of the algorithm or program producing it. This paper con-
tributes to the problem of verification of convexity of a large class of piecewise-linear (PL)
hypersurfaces in Rn for n ≥ 3. The novelty of our approach is in reducing the verification
of global convexity of a PL-hypersurface to the verification of local convexity at the faces of
small codimension.

We show that a compact connected PL-hypersurface (without boundary) realized in Rn

(n ≥ 3) without local self-intersections is the boundary of a convex body if and only if the
relative interior of each (n − 3)-face has a point such that a small Euclidean ball centered
at this point is cut by the hypersurface into two pieces, one of which is convex. This local
convexity condition can also be expressed as that the point has a neighborhood (on the
hypersurface), which lies on the boundary of a convex body; such a point is called a point
of local convexity.

Dropping the compactness requirement invalidates the above criterion. For example, in R3

the direct (affine) product of a non-convex simple 4-gone in the xy-plane and a line not
collinear to the xy-plane, does not bound any convex body (Figure 1 shows a part of such
an unbounded surface). Fortunately, the criterion can be “repaired” to include unbounded

a
b

c

d

l

Fig. 1. The product of a non-convex 4-gone and a line is locally convex, but not globally convex

hypersurfaces. If we require that the hypersurface, in addition to the conditions mentioned in
the above paragraph, has at least one point of strict convexity, then the local convexity at the

2

(n−3)-faces implies global convexity. A point s on the hypersurface is called a point of strict
convexity if it is a point of local convexity and, additionally, there is a small ball centered
at s such that its intersection with the hypersurface, for the exception of point s, lies in an
open halfspace with respect to some hyperplane through s. For a PL-hypersurface a point
of strict convexity is always a vertex. While the technical terms are defined in Section 2, we
would like to point out that the class of surfaces covered by our convexity theorem includes
all simplicial hypersurfaces (without boundary) whose intersection with any bounded subset
of Rn involves only a finite number of simplices. One who is primarily interested in simplicial
surfaces in R3 (also know as “triangular meshes” in applications) can skip Section 2 at the
first reading. To get an intuitive grasp of the situation one can simply think of PL-surfaces
(without boundary) in R3 that are closed as subsets of R3.

Our treatment of the subject is based on the idea of separation of topological, combinato-
rial, and geometric properties of a surface under testing. For us, in general, a surface is a
triple (Topology, Combinatorics, Realization), where the first attribute describes an abstract
topological space (usually a manifold), the second a partition of this space into cells (e.g.
simplices), and the third a map from the topological space into Rn (or Sn). Of course, Topol-
ogy leaves its imprint on Combinatorics, and Realization is usually required to be well-behaved
with respect to both Topology (at least continuous) and Combinatorics (we will insist that
each k-dimensional cell is mapped homeomorphically onto a polyhedral subset of affine di-
mension k). Similar separation of properties is followed in the treatment of local convexity:
a hypersurface r : M → Rn, where M is a manifold, is said to be locally convex at p ∈ M
if (1) r, restricted to some neighborhood N of p, is a homeomorphism and (2) r(N) lies
on the boundary of a convex body in Rn. For example, the PL-realization of the octahedral
decomposition of the sphere shown in Figure 2 (right) does not satisfy the first (homeomor-
phism) condition, while obviously satisfying the second. This PL-realization does not bound
any convex body. However, if in the same example r(e) happened to coincide with r(f), the
image r(S2) would be the boundary of a convex pyramid, although in this case r would not
be a homeomorphism onto the boundary of this pyramid. These example shows the impor-
tance of being rather pedantic in regard to distinguishing between the objects living on the
abstract manifold and their images in Rn. In fact, the right way to think of local convexity
is in terms of an abstract manifold equipped with a convexity structure locally, so that the
local convexity structures over any two neighborhoods agree on their intersection, just as
we think of differential manifolds or algebraic varieties – a reader familiar with the modern
view on these theories (which is not at all required for understanding this paper) may now
recognize the sheaf-theoretic nature of local convexity. On the other hand, it is quite safe to
visualize r : M → R3 locally as a fragment of a convex Euclidean surface.

Surfaces under consideration are allowed to intersect itself, but only in such a way that
no local singularities appear. The mathematical notion capturing the concept of such a
realization is called immersion. For example, in Figure 3 the curve on the left has self-
intersections; however, this curve can be thought of as an immersion of a regular hexagon
(the polygonal curve in the center with the standard topology, i.e. induced by the topology
of R2) into the plane. On the other hand, the curve on the right has a local singularity at
the point r : a → r(a): no matter how small a neighborhood around a we consider, the map

3

Fig. 2. Center: (S2, O), where O stands for the octahedral partition of S2. Left: convex PL-embedding
of (S2, O) into R3. Right: realization with self-intersections; here each point of S2 is mapped onto
the surface of a convex body, however, the local homeomorphism condition is not respected on the
equator (a, b, c, d).

r will not be bijective on it.

It is important to understand that it would not be correct to think of immersion as of a
realization such that for each point of the surface there is a ball centered at this point within
which the surface does not intersect itself. For example, if we modify 3 (left) by moving
r(f) and r(c) towards each other so that eventually r(f) = r(c) and the curve looks like a
bow-tie, the resulting 1-surface is still an immersion.

An immersion which is a global homeomorphism onto the image (which guarantees the
absence of any self-intersections) is called an embedding. Indeed, a surface that intersects

r (a)

r (b)

r (c)

r (d)

r (e)

r (f)

r (a) r (b)

r (c) r (d)

r (e)

r (f)

a b

c

de

f

Fig. 3. The left figure shows an immersion of an abstract hexagon into R2, while the right figure
shows an embedding.

itself cannot serve as the boundary of a convex body; however, it is one of the key points
of this paper that we can ignore testing for global self-intersections – they are ruled out
automatically when the local convexity at the (n − 3)-faces is verified (including the local
homeomorphism property).

We will need some notions of combinatorial topology, such as regular (or semiregular – see
Section 2) cell-complexes (a.k.a. CW-complexes). This need arises from the natural desire

4

to consider surfaces which are not necessarily simplicial. This desire stems not only from
mathematical curiosity, but also from the demands of potential applications: for example, the
CGAL C++ library has a class template Polyhedron 3, which represents the combinatorics
of a not necessarily simplicial cell-partition of an orientable 2-dimensional PL-manifold with
or without boundary (called “polyhedral surface” in CGAL). While for R3 the notion of
a general PL-surface can be stated in rather simple terms, essentially by replacing (solid)
triangles with (solid) simple polygons (see Kettner (1999) for details), for n > 3 certain
extra care is needed in order to avoid some nasty topological pitfalls. Although the surfaces
we consider may seem rather general, in the case of finitely many cells and absence of self-
intersections, they form a very special subclass of NEF-polyhedra (see Hachenberger et al
(2007) for NEF-polyhedra). Furthermore, using NEF-polyhedra seems to be a natural way
for implementing our approach in higher dimensions. Currently CGAL supports 2D and
3D NEF polyhedra, which makes it possible to implement the class of PL-hypersurfaces
considered in this paper for n = 3 and n = 4 (by implementing the geometric realization
r(C) of each 3-cell C as a NEF-polyhedron in the affine span of r(C)).

In this paper we construct an algorithm for convexity testing that can be applied to any
compact PL-hypersurface without boundary. Our approach does not require any knowledge
of the global topology of the surface. Even in the spherical case (M ∼= Sn−1) the direct
comparison of the complexity of our algorithm and those of Mehlhorn et al. (1996b; 1999)
and Devillers et al. (1998) is not quite meaningful, since these authors made the following
simplifying assumptions.

(CO) The surface under testing is an oriented compact hypersurface. The normals to the
(n− 1)-faces are given as part of the input, and they are all oriented either outwards or
inwards (“Coherent Orientation”); in other words, the orientation of the input surface
is given geometrically.

(S) The cell-partition is Simplicial.

It can be shown that (S) is not necessary for correctness of these algorithms, if it is known
that the (n−1)-faces are convex. However, the assumption (S) seriously affects the complexity
analysis, which the authors performed only for the simplicial case. It is not clear to us why
the assumption (CO) is natural; it seems that for n > 3 a convex hull “builder” is at a
potential risk of producing not only a geometrically non-convex output, but also a non-
spherical (combinatorially) complex. For n ≥ 4 it is not easy to design efficient checking
procedures that guarantee that the simplicial (or cell) complex under construction remains
spherical. Our approach does not require (CO) and (S). For R3, when (CO) and (S) hold,
both our and previous approaches have the same complexity, which is O(f0), where f0 stands
for the number of vertices in the triangulation.

1.1 Outline of the paper

The remainder of Section 1 highlights the paradigm of local approach in the context of geo-
metric property testing and compares our local approach to previous algorithmic approaches
to verification of convexity. Section 2 gives definitions and notation; it also gives the complete

5

formal description of the main results of our work. The language of the paper presupposes
only basic familiarity with partially ordered sets (posets), linear algebra and geometry, point
set topology, Euclidean convexity theory (e.g. Rockafellar, 1997, Part IV), and combinatorial
topology (e.g. Seifert and Threlfall, 1980). The exposition is practically self-contained, for
the exception of some basic notions of topology such as the fundamental group and cover-
ing mappings. We expect that anybody with basic knowledge of linear algebra and classical
Euclidean geometry (e.g. Ch. 1,2, and 4 of Kostrikin and Manin (1989) or equivalent) will
be able to understand the paper except, maybe, for some topological arguments in proofs
given in Section 4. We have made every effort to ensure that the pseudocode is accurate
and complete and we hope that it can be used as is by any reader familiar with standard
linear algebra and geometry. Section 3 explains the local approach to convexity verification
for general (not necessarily PL) hypersurfaces. At the end of that section we explain why
the study of convexity properties of PL-surfaces in Rn necessitates the study of convexity
properties of surfaces in the spherical space Sn. There we also sketch the proof of our main
theorem. Section 4 is devoted to convexity testing in Sn. In Section 5 we prove our main
Theorem 13. Section 6 gives the algorithm and proves its correctness; Section 7 is devoted
to the complexity analysis. Finally, Section 8 summarizes the paper.

1.2 Previous results on convexity verification and advantages of the new approach

We emphasize a purely local approach to the verification of convexity. Here are the reasons
for advocating the local approach.

Local convexity implies global convexity: As shown by Van Heijenoort (1952) and
Jonker & Norman (1973), under rather mild general assumptions, the global convexity ver-
ification for a closed immersed hypersurface reduces to local convexity verification. Thus,
at least philosophically, it makes sense to have a local algorithmic approach to convexity
testing. Simply put, this is the right way to think. The earlier convexity verification al-
gorithms made use of the concepts of core (Mehlhorn et al.) and seam (Devillers et al.)
of a polyhedral hypersurface, which are both defined globally and only for a hypersurface
with a given “coherent” field of outer (or inner) facet normals. It should be noted that
the previous authors also used the words local convexity and applied it to (n − 2)-
dimensional faces. However, their usage of local was somewhat misleading, since their
definition made use of an already existing global orientation of the hypersurface, which
was presumed a priori given. From the truly local point of view any PL-hypersurface is
locally-convex at its (n − 2)-faces. The concept of local convexity used in this paper was
introduced by Van Heijenoort and is free of any global assumptions. When our algorithm
finds a violation of local convexity it reports the type of violation, i.e. whether it is a
violation of the immersion property (in the PL-case this always boils down to violation of
the local injectivity) or a violation of convexity, and the (n− 3)-face whose star failed to
be locally convex. This information is the certificate of violation.

Convexity checking of surfaces changing in time: An important practical considera-
tion is repeated convexity verification of a surface that is being gradually modified over
time. For simplicity, consider the case of a simplicial convex surface in R3. If it is known

6

that each modification affects only a small number of vertices, then, according to our main
Theorem 13, we only have to recheck for convexity at the affected vertices. In the language
of kinetic data structures (Guibas, 2004, p. 1121) our convexity certification is local. On
the other hand, it might not be so easy to ramify the algorithms of Mehlhorn et al. and
Devillers et al. so that the time required for rechecking for convexity after a modifica-
tion would be commensurate with the (combinatorial) size of the modification. Note that
the geometric magnitude of modifications does not affect the complexity of rechecking in
the real RAM model of computation. Even under the exact computing paradigm, if the
geometric magnitude of modifications is within reasonable limits (e.g. the perturbed coor-
dinates are within a constant factor of the original ones), the complexity of rechecking is
bounded by a constant times the combinatorial size of the modification. In other words,
our algorithm shows that the complexity of convexity verification depends “continuously”
on the combinatorial size of the modification.

Topological generality: Our algorithm works in the same way for both spherical and non-
spherical surfaces. To the contrary, the previous papers on the subject assume that the
input surface is spherical and this assumption is used in the correctness proofs presented
in Devillers et al. (1998) and Mehlhorn et al. (1999) (we do not know if these algorithms
actually remain correct for non-spherical inputs). Note that for even n one cannot dis-
tinguish between the sphere Sn−1 and other compact (n − 1)-manifolds on the basis of
Euler characteristic alone, as all such manifolds have Euler characteristic of zero. Note
that for n ≥ 4 the problem whether a given (n − 1)-manifold, defined combinatorially,
is Sn−1 is highly non-trivial (recall Poincare’s conjecture, the problem of classification of
3-manifolds, etc). Note that classical homology groups and Euler characteristic are not
able to discern between a sphere and a homology sphere (see Seifert, Threlfall, 1980). We
also notice that our theorem and algorithm hold for homology manifolds.

Convex surfaces with non-convex faces. Our approach is the only one that treats sur-
faces with non-convex facets without the messy (and difficult for n ≥ 4) task of triangu-
lating them. Note that a PL-hypersurface may have non-convex facets and still be convex
(see Figure 4).

Fig. 4. PL-surface with non-convex faces. Geometrically it is the boundary of a tetrahedron.

No need for large-scale linear algebraic and linear programming computations:
The amount of linear-algebraic computations for non-simplicial inputs is significantly
smaller in our algorithm than in the previous algorithms. In particular, our approach
completely avoids linear programming, in all dimensions. For example, the algorithm of

7

Mehlhorn et al. (1999; Sec. 2.1), if adopted for surfaces with convex, but not necessarily
simplicial facets, requires checking, for each facet of the hypersurface, whether a certain
ray belongs to the cone built over this facet (facet cone). That would require either linear
programming or obtaining a complete description of all facet cones in terms of inequalities.

Extensibility: Our approach extends to spline (piecewise-polynomial) surfaces of small
degree (2 or 3) in R3 and R4 (this work is in progress). For example, when a surface in R3

is made of polynomial patches, where each patch is defined as an explicit quadratic map
from a triangle to R3, testing for convexity at each vertex is not difficult.

Efficiency: A detailed complexity analysis is given at the end of the paper. For R3 all al-
gorithms have the same complexity and should have comparable performance when used
on simplicial surfaces of spherical topology. Previous papers on the subject do not really
discuss non-simplicial surfaces, although we have verified that all of their convexity cri-
teria hold for PL-hypersurfaces of spherical topology with convex facets. Our algorithm is
more efficient than that of Devillers et al. Let us denote by fi j the number of incidences
between the i-faces and the j-faces; we abbreviate fi i as fi. While Devillers et al. (1998)
stated O(f0) as the running time for any dimension, this was clearly a typo: this bound
is impossible, even for PL-spheres, by fundamental counting theorems of polyhedral com-
binatorics; furthermore, the pseudocode in Devillers et al. (1998: Section 3) has running

time for surface Γ, in the notation of that paper, of
d−2∑
j=0

fj +
∑

{F∈Γ | dim F=d−2}

d∑
j=3

fj−1 j(F). For

fixed dimension and simplicial inputs our algorithm has the same complexity of O(fn−1)
as that of Mehlhorn et al. For variable dimension (as in the complexity theory of linear
programming) and simplicial inputs our algorithm has the same worst case complexity of
O(n3fn−1) as that of Mehlhorn et al. Note that in our approach the stars of all corners
and ridges can be processed in parallel. With the number of processors that scales linearly
with fn−2 n−3, our approach has O(1) complexity.

Numerical Robustness: Suppose the dimension n is a variable, or just large. Let the input
surface be (combinatorially) simplicial and given by the poset of corners, ridges, and facets
together with the vertex coordinates. If the input is geometrically generic enough so that
for each corner no three ridges from the star of this corner lie on the same hyperplane,
then our algorithm requires no divisions, but only evaluation of polynomial predicates of
degree at most 3.

To summarize, our algorithm is the algorithm of choice for non-simplicial hypersurfaces
and in the cases where the topology of the underlying manifold cannot be easily verified.
Mehlhorn et al.’s algorithm seems to be the easiest to implement on the basis of standard
linear-algebraic routines for simplicial spherical surfaces in R3, provided the outer (or inner)
facet normals are provided. Of all the algorithms that we have discussed Mehlhorn et al.’s
one is the most global in nature, while Devillers et al.’s algorithm occupies an intermediate
position. Devillers et al.’s algorithm does a number of local checks on global surfaces (i.e.
determined by the entire input hypersurface) of smaller dimensions iteratively derived from
the input hypersurface; these derived surfaces are global in the sense that they are determined
by the entire input surface. In contrast, our algorithm checks a single cone in R3 derived from
the star of each (n − 3)-face. It would be interesting to combine the algorithm of Devillers

8

et al. with our algorithm. Such a hybrid is not likely to have a better worst case complexity,
but may have a superior practical performance for surfaces in R3.

2 Definitions, notation, and results

From now on Xn (or just X) denotes Rn or Sn. As an input surface may have self-intersections,
it convenient to distinguish between an abstract (n− 1)-manifold and its realization in Xn.

Definition 1 A hypersurface in Xn is a continuous realization map r : M → Xn, where
M is a manifold of dimension n− 1, with or without boundary.

Hereafter r |S denotes the restriction of r to a subset S of M , which we also write as
r : S → Xn. We will often use notation (M , r) to refer to a hypersurface. Whenever we want
to include manifolds with boundary into our considerations we explicitly say so. To avoid a
common confusion caused by (at least three) different usages of closed in geometry-in-the-
large, we use this word for closed subsets of topological spaces only. We will not use the term
“closed surface” at all; a closed submanifold stands for a submanifold which happens to be
a closed subset in the ambient manifold.

i : M → X is called an immersion if i is a local homeomorphism; we also refer to (M , i) as
a hypersurface immersed into X. This is a common definition of immersion in the context of
non-smooth geometry-in-the-large; a more restrictive definition is used in differential geom-
etry, furthermore, some authors define immersion as a continuous local bijection. Although
the latter definition is not, in general, equivalent to the common one, it is equivalent to it in
the context of the theorems stated in this paper.

e : M → X is called an embedding if e is a homeomorphism onto e(M). Obviously, an
embedding is an immersion, but not vice versa.

A set K ⊂ Xn is called convex if for any x, y ∈ K there is a geodesic segment of minimal
length with end-points x and y that lies in K. A convex body in Xn is a closed convex set of
full dimension; a convex body may be unbounded. The hypersurface (M , r) is called locally
convex at p ∈ M if we can find a neighborhood Np ⊂ M and a convex body Kp ⊂ Xn for p
such that r |Np : Np → r(Np) is a homeomorphism and r(Np) ⊂ ∂Kp. In such a case we refer
to Kp as a convex witness for p. Thus, the local convexity at p = r(p) may fail because r is
not a local homeomorphism at p or because no neighborhood Np is mapped by r onto the
boundary of a convex body. In the first case we say that the immersion assumption is violated,
while in the second case we say that the convexity is violated. (Here, as everywhere else, the
subscript indicates that Kp depends on p in some way but is not necessarily determined by
p uniquely.) Often, when it is clear from the context that we are discussing the properties of
r near p = r(p), we say that r is convex at p. If Kp can be chosen so that Kp \ r(p) lies in an
open half-space defined by some hyperplane passing through r(p), the realization r is called
strictly convex at p. From now on we will often apply local techniques of Euclidean convex
geometry to Sn without restating them explicitly for the spherical case.

9

Let us recall (see e.g. Rockafellar, 1997) that a point p on the boundary of a convex set
C is called exposed if C has a support hyperplane that intersects C, the closure of C,
only at p. Thus, an exposed point on a convex body K is a point of strict convexity on the
hypersurface ∂K. Conversely, for a point of strict convexity p ∈ M for (M , r) the image
i(p) is an exposed point of any convex witness for p. Local convexity can be defined in many
other, non-equivalent, ways (e.g., see van Heijenoort).

A hypersurface (M , r) is (globally) convex if there exists a convex body K ⊂ Xn such that
r is a homeomorphism onto ∂K. Hence, we exclude the cases where r(M) is the boundary
of a convex body, but r fails to be injective. Our algorithm for PL-hypersurfaces will always
detect a violation of the immersion property; when r(M) is the boundary of a convex body,
but r is not a homeomorphism, the algorithm will produce the negative answer without
trying to determine if r(M) is the boundary of a convex body. Of course, the algorithmic
and topological aspects of this case may be interesting to certain areas of geometry, such as
origami. Note that for n ≥ 3 an (n− 1)-manifold M without boundary cannot be immersed
into Rn by a non-injective map r so that r(M) is the boundary of a convex set, since any
convex hypersurface in Rn is simply-connected and any immersion onto a simply-connected
manifold must be a homeomorphism (this is a consequence of the covering mapping theorem
in topology – see e.g. Seifert and Threlfall, 1980). However, such immersions cannot be ruled
out in the hyperbolic space Hn, as there are infinitely many topological types of connected
convex hypersurfaces in Hn for n > 2 (Kuzminykh, 2005) and some of them are not simply-
connected.

By a subspace of Xn we mean an affine subspace (i.e. a subspace defined by a system Ax = b)
in the case of Rn, and the intersection of Sn ⊂ Rn+1 with a linear subspace of Rn+1 in the
case of Sn. We often use k-subspace (or k-plane) instead of k-dimensional subspace; same
convention applies to k-faces, k-cells, k-polytopes etc. A hyperplane is a subspace of Xn of
codimension one; a line is a subspace of dimension one. If S ⊂ M is a submanifold with
or without boundary, then dim S stands for its dimension. For any S ⊂ Xn we denote by
dim S the dimension of the minimal subspace containing S; when this subspace is unique it
is denoted by aff S. Thus, in general, dim S 6= dim r(S).

We mostly focus on convexity of PL-hypersurfaces, in particular, boundaries of polytopes.
Since a PL-surface under testing may have self-intersections, we cannot just identify the faces
of this surface with subsets of Rn as it is done in the study of convex polyhedra. Arguably,
immersions with self-intersections form a majority of cases where convexity fails in “real
applications”. We resolve a potential ambiguity by separating the abstract combinatorial in-
formation about the cell-partition of M and the geometric information, such as the positions
of the vertices, that describes the realization of M in Rn. Since we study PL-realizations,
we insist that the realization map r respects the cell-structure on M , i.e., r maps each k-cell
C ⊂ M to a relatively open k-polytope r(C) in Rn; the set r(C) need not be convex, but
must be topologically equivalent to an open k-ball.

Denote by Bd the closed unit ball in Rd. A denumerable (disjoint) partition P of a topological
space M is called a semiregular cell-partition if

10

(1) each C ∈ P, called a cell of (M , P), is assigned a number dim C ∈ N (dim C ≤ dim M),
called the dimension of C, so that C is homeomorphic to int Bdim C , the interior of
Bdim C ;

(2) the closure C (in M) of each C ∈ P is the union of C and cells of smaller dimensions;
(3) for each C ∈ P there is a mapping rC : C → Bd, where d = dim C, which is a

homeomorphism onto rC(C) and whose restriction to C is a homeomorphism onto the
interior of Bd.

With any semiregular cell-partition there is a natural structure of poset. Namely, for cells
F and C we have F ¹ C if and only if F ⊂ C, where C stands for the closure of C in the
topology of M . If F ¹ C, we say that F is a face of C. We will use the same symbol P for
the partition and its poset and we do not distinguish in print between C as an element of P

and C as a subset of M . Any semiregular cell-partition is an abstract polytope in the sense of
McMullen and Schulte. When (M ,P) can be thought of as the surface of a convex polytope
P , the poset P, augmented with an infimum (∅) and a supremum (symbolizing all of P), is
known as the face-lattice of P . In our, more general, case the augmented P may fail to be
a lattice, since in a regular cell-partition two k-cells may share more than one maximal face
and serve as maximal faces to more than one cell of higher dimension. We use Skd(M ,P) to
denote the d-skeleton of (M ,P) - i.e. the subcomplex of (M ,P) that consists of all cells of
dimension d or less. Star F denotes the union of all cells whose closures contain F (we use
Star F to denote both the subset of M and the corresponding sub-poset of P. If each cell of P

is contained in only finitely many closures of cells of P, the partition P is called star-finite. If
the closure of each cell is the union of finitely many cells, the partition is called closure-finite.
When a partition is both closure- and star-finite, it is called locally-finite. From now on we
will consider only star-finite cell-partitions.

Cell-partitions are also known as topological cell-complexes in literature. Often in the def-
inition of a cell-partition one insists that the closure of each cell is the image of a closed
ball, which forces the compactness for the closure of each cell – we do not make such a
requirement. Hence, by our definition the closures of cells can be “semiclosed-semiopen”.
Our notion of semiregular cell-partition is a natural generalization of the standard notion of
regular cell-partition, also known as regular CW-complex, introduced by J.H.C. Whitehead
(see e.g. Ziegler, 2002). Namely, a regular cell-partition is a finite semiregular cell-partition,
where the closure of each cell is homeomorphic to a closed ball.

According to our definition, for example, the vertical projection on the plane of the graph (in
R3) of a continuous piecewise-linear (more properly, piecewise-affine) function f on R2, which
is defined by finitely many affine equations and inequalities, naturally induces a semiregular
cell-partition Pf of R2: each (closed) 2-cell is a maximal linearity set of the function. However,
Pf fails to be a regular cell-partition due to its unbounded cells. Semiregular partitions are
especially well-suited for the study of the topology of real semialgebraic sets – any such set
has a canonical finite semiregular cell-partition, known in this case as Whitney stratification.

It is easy to see that any finite semiregular cell-partition can be subdivided into a trian-
gulation. It can be easily proven that a semi-regular cell-partition can also be subdivided

11

into a triangulation. However, since the algorithmic part of this paper deals only with finite
partitions, we omit the proof.

A subset of Rn is called polyhedral if it is defined by a propositional formula in the first-order
(quantifiers can only be over numbers, not sets) language of the reals (R) that uses only affine
equations and inequalities. A subset S of Sn ⊂ Rn+1 is called polyhedral if S = Sn∩E, where
E ⊂ Rn+1 is defined by a propositional formula in the language of the reals (R) that uses
only linear (homogeneous) equations and inequalities.

Let (M ,P) be a cell-partition of a manifold M , and let r : M → Xn be continuous.
The triple (M ,P; r) is called a PL-realization in Xn if for each C ∈ P the set r(C) is (1)
polyhedral, and (2) homeomorphic to a closed k-ball (k ≤ dim C). We call such realization
dimension-preserving if for each C ∈ P the image r(C) is of affine dimension equal to dim C
and r, restricted to C, is a homeomorphism. Note that in this case although r need not
even be an immersion, the restriction of r to the closure of each cell must be an embedding.
(M , P; r) is referred to as a PL-hypersurface if P is a semiregular cell-partition and r is a
dimension-preserving PL-realization. In particular, any dimension-preserving PL-realization
in Rn of the closure of a topological k-cell of (M , P) can always be implemented as a closed
k-dimensional NEF-polyhedron homeomorphic to a k-ball. Thus, NEF-polyhedra provide a
convenient basis for a computer implementation of PL-hypersurfaces in any dimension.

Since the terms face and cell are used both for abstract cells and their geometric realizations,
when there is a need to stress the distinction we say topological cell or geometric cell respec-
tively. Throughout the paper all geometric faces, just as all cells in topological partitions, are
assumed to be relatively open (e.g. a 1-cell is an open segment, rather than a closed one) At
times we refer to (n− 1)-faces as facets, (n− 2)-faces as ridges, and (n− 3)-faces as corners
(we also use these intuitive names for the topological cells of (M ,P) – the intended meaning
will be clear from the context).

From now on all maps are continuous. Here is our main theorem stated formally. Let M
(dim M = n − 1 ≥ 2) be connected and let (M , P; r) be a PL-hypersurface. Suppose r :
M → Rn has at least one point of strict convexity; also, suppose that r is locally convex
at all points of all corners of (M ,P). Notice that if the last condition holds for some point
of a corner, it holds for all points of the corner. Suppose also that each ball in Rn contains
finitely many faces of the surface. Our main Theorem 13 states that under these conditions r
is a homeomorphism onto the boundary of a convex body. The idea of the proof of Theorem
13 is outlined at the end of Section 3. Theorem 13 implies a test for global convexity of a
bounded closed PL-hypersurface that proceeds by checking the local convexity on each of
the corners. The algorithm is given in Section 6. The complexity of our test depends not only
on the model of computation, but also on the way the surface is given as input data. Let
the input be the poset of facets, ridges, and corners. Suppose for each corner-ridge incidence
(C, R) we are given a Euclidean inner normal to r(R) at r(C), and for each corner-facet
incidence (C, F) we are given a Euclidean inner normal to r(F) at r(C). If we adopt the
algebraic complexity model where each of scalar operations {sign determination, addition,
subtraction, multiplication, and division} has unit cost, the complexity of the algorithm is

12

O(nfn−3 n−2) = O(nfn−3 n−1). Complexity under other models is discussed in Section 7, where
we also indicate the cost of extracting the required input information from more common
input representations.

3 Geometry of locally-convex immersions

Recall that a path joining points x and y in a topological space T is a map α : [0, 1] → T,
where α(0) = x and α(1) = y. Such a path is called an arc if α is injective. Denote by
ArcsM (x, y) the set of all arcs joining x, y ∈ M .

Any realization r : M → Xn induces a distance dr on M by

dr(x, y) = inf
α∈ArcsM (x,y)

|r(α)|,

where |r(α)| ∈ R+ ∪∞ stands for the length of the r-image of the arc α joining x and y on
M (we call it the r-distance, because it can take on the value ∞).

Of course, for a general realization r it is not clear a priori that there is a path of finite length
on r(M) joining r(x) and r(y) (where x and y are in the same connected component). Here
we need to introduce a technical notion of completeness, which is essential to the correctness
of van Heijenoort’s theorem. r : M → Xn is called complete if any Cauchy sequence on M
(with respect to the r-distance) converges to a point of M . Recall that a sequence {xn} is
Cauchy under the distance d if for any real ε > 0 there is N ∈ N such that for any n,m ≥ N
we have d(xn, xm) ≤ ε. Completeness is a rather subtle notion: a space may be complete
under a metric d and not complete under another metric d1, which is topologically equivalent

to d (i.e. xn
d→ a iff xn

d1→ a).

Lemma 2 (Van Heijenoort, 1952; pp. 227-228) Let f : M → Xn be a complete locally-
convex immersion of an (n − 1)-manifold M . Then any two points in the same connected
component of M can be connected by an arc of finite length. The topology on M defined by
the f -distance is equivalent to the intrinsic (original) topology on M .

The input to the convexity checker need not be an immersed surface, since in the algorithm
r is only expected to be a homeomorphism on the closures of cells, rather than on stars.
Hence, the above lemma cannot be applied as stated. A realization is called proper if the
preimage of every compact set is compact. A proper realization is always closed. For a given
class of realizations it is usually much easier to check for properness than for completeness.
Furthermore, the notion of properness is topological, while that of completeness is metrical.
The following seems to be a folklore result (see e.g. Burago and Shefel, p. 50), so we do not
give a proof here.

Lemma 3 A proper realization of any manifold in Xn is complete.

13

Since we only consider maps r that send a finite number of cells into each bounded subset of
Rn, we do not have to worry about completeness. For locally-convex immersions the concepts
of properness and completeness coincide:

Lemma 4 (Van Heijenoort) A complete locally-convex immersion of a connected (n − 1)-
manifold into Xn is proper.

Van Heijenoort’s proofs of Lemmas 2 and 4 given in the original for Rn are valid, word by
word, for Sn and Hn, since these lemmas are entirely of local nature. If f is a locally-convex
immersion, then for a “sufficiently small” subset S of M the map f |S is a homeomorphism
and, therefore, the topology on S that is induced by the metric topology of Xn is equivalent
to the intrinsic topology of S and, thanks to Lemma 2, to the f -distance topology. Thus,
for sufficiently small subsets of M (but not i(M) !) the three topologies considered in this
section are equivalent – a fact that will be used throughout the text without an explicit
reference to the above lemmas.

Theorem 5 (Van Heijenoort, 1952) If a complete locally-convex immersion f of a connected
(n− 1)-manifold M into Rn (n ≥ 3) has a point of strict convexity, then f is a homeomor-
phism onto the boundary of a convex body.

Algorithmically, this means that when M is known to be connected and r is known to be
complete, to check convexity we have to check all points of M for local convexity and, in
addition, verify that at least one of them is a point of strict convexity. Let us now turn our
attention to the world of PL-hypersurfaces, where confirming local convexity at a point is
equivalent to confirming local convexity at all points of the (always unique on the level of
(M , P)) face containing this point. Denote by BR(p) a ball of radius R > 0 centered at a
point p ∈ Xn. It follows from the definition of dimension-preserving PL-realization that for
any cell C of (M ,P) the surface “looks the same” at all points of C: namely, for any x, y ∈ C
the intersections of BR(r(x)) and BR(r(y)) with r(Star C) are congruent for sufficiently small
R. Faces of dimensions n− 1 and n− 2 are the easiest to understand: if dim C = n− 1, then
Star C = C and for any x ∈ C we see that BR(r(x))∩ r(Star C) is an (n− 1)-ball in aff r(C);
if dim C = n − 2, then BR(r(x)) ∩ r(Star C) consists of two (n − 1)-dimensional half-balls
sharing a common (n − 2)-ball (see Figure 9 for n = 3). Thus, any dimension-preserving
PL-realization r : M → Rn is locally-convex at all points of (n − 1)- and (n − 2)-cells; if
n = 3 the only remaining cells are the 0-cells, i.e. the vertices. Thus, in the case of R3 we
only have to check local convexity at the vertices. There is no need to check the existence of
a point of strictly convexity in the compact case.

Lemma 6 If r : M → Rn is a locally-convex immersion of a compact connected (n − 1)-
manifold M , then r has a point of strict convexity.

Proof. As M is compact and r is an immersion, conv r(M) is a compact subset of Rn. Since
conv r(M) is compact, it is also bounded and, in particular, does not contain lines. Any
non-empty convex set, which is free of lines, has a non-empty set of extreme points (a point
on the boundary of a convex set is extreme if it is not interior to any line segment contained

14

in set’s boundary). Thus ∂ conv r(M) contains an extreme point. Straszewicz’s theorem (e.g.
Rockafellar, 1997, p. 167) states that the exposed points of a closed convex set form a dense
subset of extreme points of this set. Thus, conv r(M) has an exposed point. Since an exposed
point y cannot be written as a strict convex combination of other points of the set, y must
lie in r(M). Let x be a point from r−1(y). Since r is locally-convex at x and there exists a
hyperplane H through y that has empty intersection with r(M) \ y, we conclude that the
map r is strictly locally-convex at x.

In the case of PL-hypersurfaces in Rn (where n ≥ 3) it looks like we have to check the
local convexity at all (n − 3)-faces, (n − 4)-faces, etc, all the way to the vertices. A trivial
observation is that it is enough to check the local convexity at the vertices, since the local
convexity at a vertex is sufficient for the local convexity at each of the faces at this vertex.
However, we set to prove that for a bounded PL-hypersurface it is enough to check the local
convexity only at the faces of dimension n− 3 – the rest will follow. We proceed as follows.
First we notice (Section 4) that a locally-convex hypersurface in Sn (where n ≥ 3) satisfying
the conditions of (Euclidean) Theorem 13 is a convex immersion. Using this result we reduce
the general problem of local convexity testing to the local convexity testing at corners in
Section 5 (recall that we have the local convexity at facets and ridges for free).

4 Locally-convex hypersurfaces in Sn

Theorem 7 (below) of Jonker and Norman (1973) generalizes the one by Van Heijenoort by
characterizing the case of non-convex locally-convex (complete and connected) immersions.
Any such immersion is an immersion onto the product of a locally-convex, but not convex,
plane curve and a complimentary affine subspace. We show that for locally-convex immersions
into a sphere of dimension n ≥ 3 the absence of points of strict convexity cannot result in
the loss of global convexity, as it happens in the Euclidean case. The proof of our main
theorem relies on the result of Jonker & Norman, although their theorem does not directly
imply ours. One of the difficulties is that a compact convex set on the sphere may be free of
extreme points!

Theorem 7 (Jonker-Norman) Let i : M → Rn (n ≥ 3) be a complete locally-convex im-
mersion of a connected (n−1)-manifold. Then for any x ∈ M there is a unique submanifold
D through x such that

(1) i(D) = aff i(D),
(2) i |D is a homeomorphism,
(3) D is maximal with respect to 1) and 2).

Furthermore, for any hyperplane H through x, which is complementary to aff D the set
G := i−1(M ∩H) is a submanifold of M with dim M = n− 1− dim D such that

(1) M = D×Top G,
(2) i |G is a locally-convex immersion into aff(M ∩ H) with at least one point of strict

convexity,

15

(3) if D′ and G′ are to x′ ∈ M what D and G are to x, then D′ ∼=Top D, G′ ∼=Top G, and
i(G) is equivalent to i(G′) under the action of affine automorphisms of i(M) that map
D to itself.

Finally, if i is not a convex embedding, then dim G = 1.

Let us look at Figure 1 (this is an embedding, so we do not have to distinguish between M
and i(M)): if x = b, then D = l and the 4-gone (abcd) can be chosen as G .

Whenever we have a map i that satisfies Jonker-Norman’s theorem we will talk about the
locally-convex direct decomposition of i; we may also say that the immersion i splits into
the locally-convex direct product of i : D → D and i : G → G. When i(G) is chosen to be
perpendicular to i(D), we call the decomposition orthogonal.

Assume that Sn is embedded as the standard sphere into Rn+1.

Theorem 8 Let i : M → Sn (n ≥ 3) be a complete locally-convex immersion of a connected
(n− 1)-manifold M . Then i(M) = Sn ∩ ∂K, where K is a convex cone in Rn+1 having the
origin as its apex.

Note that the statement of Theorem 8 is invalid for n = 2. For example, although the 1-
surface in S2 depicted in Figure 5 is locally-convex at all points, it does not bound any convex
set on S2. The rest of Section 4 is somewhat technical and some readers may want to skip it.

Fig. 5. The four bold arcs form a non-convex, but locally-convex polygon in S2

4.1 Proof of the local-to-global convexity theorem for Sn

While discussing immersions, it is important to remember that they need not be injective;
for example, we do not really consider, say, a line L on the surface defined by i as a subset of
i(M), but rather the map i : L → L, where L is a 1-submanifold of M and L = i(L). The
same philosophy applies to any geometric subobject of i : M → Xn. In the case of points
we use the shorthand i(x) to mean i : x → i(x). On occasions, when for some p ∈ i(M) it
is absolutely clear from the context as to which point x of i−1p is considered, we refer to
i : x → p simply as “point p”.

By analogy with the traditional terminology for ruled surfaces and cylinders in 3D we refer

to i : D → D, where D = i(D), as a directrix and to
−→
D = D − D as the linear directrix

16

of i : M → Xn. Similarly, we refer to i : G → G, where G = i(G) , as a generatrix of
i : M → Xn.

By the Jonker-Norman theorem D can be chosen so that it passes through a point of strict
convexity of i |G, in which case we call it an exposed directrix. Note that such a directrix
is never interior to any flat of higher dimension contained in i : M → M = i(M). When
needed we refer to D as the geometric directrix and to D as an abstract directrix, etc. In
Figure 1 the line l is a directrix and the 4-gone (abcd) is a generatrix. We will need the
following corollary of Theorem 7.

We call a connected submanifold S of a topological space T flat with respect to a realization
map r : T → Xn if r : S → r(S) is a homeomorphism onto a subspace of Xn of the same
dimension as S; in this case we call r(S) a flat contained in (T, r).

Corollary 9 In the context of Jonker-Norman theorem any flat containing an exposed point
of i |G is contained in the exposed directrix through this point.

The spherical convexity criterion, Theorem 8, is a direct consequence of Theorem 10 and
Theorem 12; the former deals with the case where a point of strict convexity is absent and the
latter deal with the case where it exists. The idea of proof of Theorem 10 is to apply Jonker-
Norman’s theorem locally, i.e. for a finite number of open hemispheres covering Sn. The
hypersurface, considered over each such hemisphere has a number (possibly 0) of connected
components, each of which having a unique orthogonal Jonker-Norman decomposition (since
the affine geometry of a hemisphere is essentially equivalent to the geometry of Rn). Among
all such connected pieces of (M , i) lying in different hemispheres we pick one that has the
exposed directrix of minimal dimension. The Jonker-Norman decomposition is so “rigid”
that whenever an exposed directrix continues from a hemisphere H to a hemisphere H ′

(H ∩ H ′ 6= ∅), the Jonker-Norman decompositions on H ∩ H ′ that are inherited from
H and H ′ must agree. As a result we get an analog of Jonker-Norman’s theorem for the
sphere. Theorem 12 is proven by a combination of topological considerations and a metric
(perturbation type) argument reducing the problem to the Euclidean one.

Theorem 10 Let i : M → Sn (n ≥ 3) be a complete locally-convex immersion of a connected
(n − 1)-manifold M without points of strict convexity. Then i(M) = Sn ∩ ∂K, where K is
a convex cone in Rn+1 having the origin as its apex.

For a hemisphere H ⊂ Sn ⊂ Rn+1 we denote by cH the central spherical projection map (see
Figure 6) from H onto the tangent n-plane TH to Sn at the center of H (when we find it
convenient to index the space and the projection map by the center p of H we write Tp and
cp instead of TH and cH).

TH is an affine real n-space; when we need to treat it as a linear space (i.e.
−→
TH = TH−TH),

we identify the origin of
−→
TH with the center of H. First, let us make the following trivial

observation.

17

S

0

H

T

n

H

Fig. 6. Central spherical projection map from hemisphere H to TH .

Lemma 11 Let p be an extreme point of a convex set B ⊂ Sn. Then every neighborhood
of p has an exposed point of B. In particular, if p is not exposed itself, there are infinitely
many exposed points on ∂B arbitrarily close to p.

Proof. This lemma is essentially a restatement for spherical spaces of a well-known theorem
of Straszewicz on convex sets in Rn (Rockafellar, p.167). Since our lemma is entirely of local
nature, the proof in Rockafellar (1997) applies without changes. Alternatively, consider the
tangent space Tp to Sn ⊂ Rn+1 at p. The central projection maps the hemisphere H centered
at p onto Tp and H ∩ B onto a convex set Bp in Tp. The Euclidean theorem can now be
applied to p as an extreme point of the convex set Bp in Tp ∼= Rn. The property of a point
to be extreme or exposed is preserved under the central projection and its inverse.

Proof of Theorem 10. If there is x ∈ M such that i(x) is extreme for some convex witness
at x, then, by Lemma 11, there is an exposed point at every neighborhood of x. Since an
exposed point of a convex body is the same as a point of strict convexity of its surface, (M , i)
is strictly convex in at least one point, which is impossible. Thus, for each x ∈ M the image
i(x) is an interior point of a segment on M := i(M).

For an open hemisphere H let SH denote the set of all maximal connected submanifolds of
i−1(H) whose i-images lie in H. When SH 6= ∅ each S ∈ SH is an (n − 1)-submanifold of
M and cH ◦ i : S → TH is a complete locally-convex immersion (e.g. by Lemmas 4 and 3).

So, for any such S ∈ SH by Jonker-Norman’s theorem the map cH ◦ i : S → TH has a
locally-convex direct decomposition S = G×L , where cH ◦ i |G is a locally-convex immersion
of a compact connected g-submanifold G and cH ◦ i : L → L is a homeomorphism from a

d-submanifold L ⊂ S onto a d-subspace of TH (n− 1 = d + g). Denote by
−→
L (S) the linear

space L− L.

Let us pick G so that G ⊥ L where G := cH ◦ i(G). Then cH ◦ i |S is the orthogonal direct
product of the generatrix cH ◦ i |G and the directrix cH ◦ i |D. On the hemisphere H this
decomposition corresponds to the orthogonal locally-convex split of i |S into a hemispherical
generatrix i : G → c−1

H G and a hemispherical directrix i : D → c−1
H L.

Let H be a finite covering of Sn by open hemispheres. Since i does not have points of strict
convexity, i(M) is not completely covered by any single hemisphere. We will use SH for an
element of SH – subindex H only indicates that SH was chosen from SH. Likewise, once SH

18

is fixed, we may use LSH
and GSH

, etc. to indicate that LSH
and GSH

are obtained from the
direct decomposition of cH ◦ i |SH

.

Suppose U = i(U) is a convex hypersurface for some connected submanifold U ⊂ SH .
Let H, H ′ ∈ H, and H ∩ H ′ ∩ U 6= ∅. Then there is a unique SH′ ∈ SH ′ such that SH′

contains i−1H ′ ∩U . We will refer to this fact by saying that whenever a convex subsurface
of i : SH → H protrudes into H ′, the surface i : SH → H extends uniquely into H ′∪H along
U (or, in other words, the map i |SH

extends uniquely over i−1H ′ along U ∩ i−1H ′) . In this
context SH′ ∪ SH is called the extension of SH and SH′ is called an adjoint of SH .

Among the elements of H that overlap with i(M), let H0 be one where we can pick SH0 ∈ SH0

so that d := dim
−→
L (SH0) ≤ dim

−→
L (SH) for all H that overlap with i(M) and each possible

choice of SH ∈ SH; let i : D0 → D0 = i(D0) be an exposed hemispherical directrix for SH0 .

If d = 0, then S = G, where cH ◦ i : G → TH has a point of strict convexity, which contradicts
our assumption about i.

If d = n − 1, then aff D0 is an (n − 1)-hemisphere of H0 and SH0 = D0. (A k-hemisphere
in Sn is a hemisphere of a k-dimensional subspace of Sn.) We know that whenever a convex
subsurface of i : SH0 → H0 protrudes into H, the surface i : SH0 → H0 extends uniquely
into H along this subsurface, which implies that i |D0 can be extended to all hemispheres
overlapping with aff D0. Since M is a connected (n − 1)-manifold, i : M → Sn is an
immersion onto aff D0, which is, by the covering mapping (see Seifert & Threlfall) theorem,
a homeomorphism if n > 2.

Let 1 ≤ d ≤ n−2. Let H ∩D0 6= ∅ for some H ∈ H. We know i |SH0
extends in a unique way

along D0 ∩H into H0 ∪H: denote the adjoint element of SH by SH . Obviously, aff D0 ∩H
is an extreme (geometric) hemispherical directrix for i |SH

. As D0 is completely covered by
elements of H, the submanifold D0 extends to a connected component of i−1(aff D0) inside
of M . Set D := aff D0 and let D be a maximal connected d-submanifold of M such that
D = i(D). Since i is a complete immersion, it is proper (preimages of compact sets are
compact) and D is compact. Thus, the preimage of any p ∈ D under i |D is a finite set of
size that does not depend on p.

Without loss of generality we assume that D is completely covered by hemispheres
H0, . . . , HN ∈ H, all centered at points of D; denote this subset of H by HD. Let S be a
connected component of i−1(∪N

j=0Hj) that contains D, i.e. S is the unique maximal extension
of SH0 into ∪N

j=0Hj along D. For Hk, Hl ∈ HD, where Hk ∩ Hl 6= ∅, on each connected
component of i−1(Hk ∩ Hl) ∩ S the locally-convex orthogonal decompositions of i |S, which
are induced by the restrictions of i to S∩ i−1Hk and S∩ i−1Hl respectively, agree; this follows
directly from Jonker-Norman’s theorem. Furthermore, since both Hk and Hl are centered at
D, the generatrices in these two locally-convex orthogonal decompositions are all isometric
to each other – the rotational subgroup Iso+(D) of Iso(D) is transitive on them.

Thus, we have a locally-convex orthogonal fibration of the immersion i |S: namely, we have

19

a continuous map π : S → D, which sends each (topological) generatrix into its base point
on D and for each x ∈ D there is a neighborhood Ux ⊂ D such that π−1(Ux) is the
direct orthogonal product of Ux and a fiber Gx over x, such that i |Gx is a locally-convex
immersion into D⊥

x , where the latter is the orthogonal complement of D through x. Inside
of each H ∈ HD the fibers (i.e. generatrices) are isometric; moreover, as we just noticed
above, the fibers from different H’s are also isometric. Thus, the constructed locally-convex
fibration of the immersion i |S is, in fact, a direct product decomposition, i.e. S = D × G,
where dim G = n − 1 − d and i |G is a locally convex immersion into a (n − d)-hemisphere
perpendicular to D.

Set D∗ := Sn ∩ (cone D)⊥, where cone D is the cone with apex at 0 over D. D∗ consist of all
points of Sn that are not covered by the elements of HD. We claim that all generatrices from
the orthogonal decomposition of i |S “reach to D∗”, i.e. for each generatrix G ⊂ S and any
neighborhood of D∗ there is p ∈ G such that i(p) lies in this neighborhood. By contradiction:
let p ∈ G ⊂ S be such that the distance ρ > 0 between i(p) and D∗ is equal to the distance
between i(G) and D∗. Since all generatrices are isometric with respect to Iso+(D), S contains
a submanifold mapped onto the orbit of p under the induced action of Iso+(D) on S, but
does not contain any points mapped by i to spherical points at the distance smaller than ρ
from D∗. Then i is not locally-convex at all points of this submanifold. Thus, all generatrices
of the orthogonal decomposition of i |S “reach to D∗”.

Since M is compact, for any p ∈ S \ S we have i(p) ∈ D∗ ∼= Sn−d−1. Then i(p) belongs
to the closure of each generatrix from the orthogonal fibration of i |S with base i |D. Let
H(p) be the hemisphere centered at p = i(p). Under cH(p) : Hp → TH(p) the points of D
correspond to rays emanating from the origin of TH(p), or, in other words, in “the world
of” Tp the spherical subspace D corresponds to a “d-sphere at infinity”, which we denote by
D(TH(p)). Thus, the isometry group of the surface (S, cH(p) ◦ i) includes all linear isometries
(in particular, rotations about p) that preserve the sphere D(TH(p)) at infinity. We know
that p = i(p) = cH(p) ◦ i(p) must belong to the interior of a segment I = cH(p) ◦ i(I) on

this surface. Any isometry of (S, cH(p) ◦ i) will map I to another line segment. Because of
local convexity at p, the isometries preserving the sphere D(TH(p)) at infinity belong to
the isometry group of a supporting hyperplane at p = cH(p) ◦ i(p). Since I must be in this

hyperplane, i(p) is interior to a (d + 1)-flat of S. We will have to deal separately with the
cases d = n− 2 and d ≤ n− 3.

Case: d = n− 2. S \ S ∼= S0. Then i(p) is interior to an (n− 1)-flat i : F → F of (S, i). We
will show that i |H(p) is a homeomorphism onto an open (n− 1)-hemisphere of Sn. Consider

a directed geodesic in aff F with source at i(p) that does not extend to D inside of (S, i). Let
b = i(b) be a point where this geodesic first diverges with the surface (S, i). Point b belongs
to a unique fiber from the orthogonal fibration of (S, i) with base (D, i). The isometry group
of D is transitive on the fibers. Thus, all directed geodesics through i(p) that lie in (S, i)
diverge with the (n − 1)-flat F at the same distance from i(p); hence, F is an (n − 1)-ball
(in the i-distance) centered at p. But then all points of ∂F are extreme points for (S, i),
which contradicts our assumptions. Thus F is an (n − 1)-hemisphere centered at i(p) and

20

bounded by D. The same argument is applied to the other point of S \ S ∼= S0. Thus, i is a
homeomorphism onto the surface made of two (n − 1)-hemispheres glued together at their
common (n− 2)-dimensional boundary D.

Case: 1 ≤ d < n − 2. The central projection of a generatrix i |G (where G = i(G) and
G ⊥ D) with a base point i(x) = x ∈ D onto its tangent subspace TG ⊂ Tx at x ∈ D
is a locally-convex unbounded complete surface cx ◦ i |G. Since the topological dimension of
the generatrix is larger than one, by Jonker-Norman’s theorem it is an embedded convex
surface in TG and x is a (geometric) point of strict convexity for this surface. Thus, i |G
is a convex surface on Hx. We need to understand the geometry of i |G at infinity, i.e. at
∂Hx ∩D∗. Because of strict convexity at x = i(x), ∂Hx ∩ i(G) is the boundary of a strictly
convex compact set in ∂Hx. Suppose z ∈ G is a point of strict convexity of i |G and z 6= x.
Then there is an exposed hemispherical directrix i : Dz → Hp through z, distinct from
D ∩ i−1Hx. Since i(D) and i(Dz) are parallel in Hx, they “intersect at infinity” (i.e. on
∂Hx) over a common (d− 1)-sphere. Thus, we have two distinct exposed directrices through
the same point of M . This is impossible by Corollary 9. Thus, i |G has a unique point of
strict convexity.

cx ◦ i : G → TG is an embedded unbounded complete convex hypersurface with a unique
point of strict convexity. Let us apply a projective transformation that sends TG to another
subspace P of the same dimension in Rn+1 in such a way that the point x of G ⊂ TG is
mapped to a point at infinity of P. This will give us an embedded unbounded complete convex
hypersurface in P without points of strict convexity. By Jonker-Norman this hypersurface
in P is the product of a line L in P and a compact convex hypersurface in a subspace of P,
which is complimentary to L. Thus, cx ◦ i(G) is the boundary of a cone with apex at x over
a convex compact set “on the sphere at infinity of TG”. Hence, cx ◦ i |G is an immersion onto
a cone over a convex compact surface of topological dimension (n− 1)− d− 1 = n− d− 2
on D∗. Since all generatrices are isometric to i |G with respect to the action of Iso+(D), we

conclude that M contains a closed (n − 1)-submanifold S (without boundary). Since M is
connected, S = M .

Remark on injectivity. The proof does not imply that i is an embedding. When there
are no points of strict convexity, non-injectivity is possible if and only if d = dim D = 1.
When d > 1 the classical covering mapping theorem (see e.g. Seifert-Threlfall) implies that
the map is one-to-one.

Theorem 12 Let M be connected and let i : M → Xn be complete, locally-convex and,
also, strictly locally-convex at o ∈ M . Then i : M → Xn is a convex embedding.

Proof. If Ho ⊂ Sn is a supporting hyperplane at i(o), then let us denote the open hemisphere
defined by Ho that contains the image of a small neighborhood of o by H+

o ; the other open
hemisphere is then denoted by H−

o . If N is a neighborhood of x we denote by ˙N its
punctured version, i.e. N \ x.

Let S be a maximal connected (n − 1)-submanifold of M such that o ∈ S and i(Ṡ) ⊂ H+
o .

21

Suppose that there is no x ∈ S \ o with i(x) ∈ Ho. Then the distance between S \No (where
No is a small neighborhood of o) and Ho is strictly positive. This means we can perturb Ho

so that i(Co) is in H̃+, where H̃ is a perturbed version of Ho. Let c be the central projection
on T

H̃+ from H̃+. Clearly, c◦ i |S satisfies the conditions of Van Heijenoort’s theorem; hence,
c ◦ i |S is a convex embedding. Since M is connected, S = M .

When a minimal geodesic between p and q is unique, we denote it by [p, q]; we will also use
[p, q], where i(p) = p, i(q) = q, to refer to a curve in M that is mapped homeomorphically
onto [p, q]. Let now p ∈ S \ o be such that i(p) ∈ Ho. If i(p) 6= i(o)op, the opposite of i(o),
then the minimal geodesic joining i(o) and i(p) is unique and lies in Ho. Let {i : [o, xm] →
[i(o), i(xm)]}m∈N, with [o, xm] ⊂ M , be a sequence of minimal geodesics that converges to
i : [o, p] → [i(o), i(p)]. The geodesics in this sequence lie arbitrarily close to Ho. Since (M , i)
is strictly convex at o, we find that p = o, which contradicts the choice of p. Thus, the points
of S \ o that are mapped to Ho are mapped to i(o)op. Since i is a proper immersion, the
preimage of i(o)op in M is finite. Hence, the preimage of i(o)op in ∂S = S\S is finite. Clearly,
c ◦ i |Ṡ satisfies the conditions of Jonker-Norman’s theorem. Since i is strictly convex at o,
c ◦ i |S must be a convex unbounded embedding onto a cylinder in TH+

o
. The directrix must

be 1-dimensional, for the cylinder has only two points at infinity, i(o) and i(o)op (see Fig. 7).
Thus, S contains a punctured neighborhood of p homeomorphic to an (n− 1)-ball. If we add
p to S we get a compact connected (n− 1)-submanifold of M (without boundary). Since M
is connected, S = M . Thus, i : M → Xn is a convex embedding.

Fig. 7. The surface i |S has only two points on Ho: i(o) and i(o)op

5 Locally-convex PL-surfaces in Rn

Let P be a fixed star-finite semi-regular cell-partition of M . Recall that in our terminology a
cell is always homeomorphic to an open ball. We say that r is locally-convex at a cell C ∈ P

if it is locally-convex at each point of C.

22

Theorem 13 (main) Let r : M → Rn (n ≥ 3) be a dimension-preserving PL-realization
of a connected manifold M (dim M = n− 1) such that

(1) r is locally-convex on each (n− 3)-cell,
(2) r(M) is bounded or r is strictly locally-convex in at least one point of M ,
(3) r is proper.

Then r : M → Rn is an embedding onto the boundary of a convex body defined by (possibly
infinitely many) affine inequalities.

Proof. Since r is proper, it is complete. We know that r : M → Rn is locally-convex at all
(n− 3)-cells. Since r is dimension-preserving, it is locally-convex at all (n− 1)- and (n− 2)-
cells; note that any dimension-preserving PL-realization of a manifold is convex at all points
of all (n− 1)- and (n− 2)-cells.

Note that if r is bounded, then, by Lemma 6, the map r has a point of strict convexity.
Thus, if we prove that r is locally-convex at all cells, by Theorem 5 the map r : M → Rn is
a convex embedding. We proceed by reverse induction in cell’s dimension. Let 0 ≤ k ≤ n− 3
and suppose that we have shown r : M → Rn is locally-convex at all cells of dimension k
and up. If n − 3 = 0, the proof is finished. So, let n ≥ 4 and let us consider a (k − 1)-cell
F ∈ P. Since P is star-finite, Star F contains finitely many cells. Consider r(Star F) ∩ SF ,
where SF is a sufficiently small (n−k)-sphere lying in a subspace complementary to aff r(F)
and centered at some point of r(F). Note that dim SF = n−k ≥ 2. The surface r : M → Rn

is locally-convex at F if and only if the hypersurface r : S → SF , where r(S) = SF ∩r(Star F)
and S is the connected component of r−1(SF ∩ r(Star F)) that is contained in Star F , is a
convex embedding.

Since r : M → Rn is locally-convex at each k-cell, the surface r : S → SF is locally-convex
at the vertices, which correspond to the intersections of k-cells of (M , r) with SF . Thus
r : S → SF is locally-convex. The completeness condition is clearly respected. By Theorem 8
r : S → SF is a convex immersion. Notice that the condition dim SF = n−k > 2 is essential
to the applicability of Theorem 8 (see Figure 5 for a locally-convex surface in S2 which is not
a convex surface in S2). If we can show that this immersion is an embedding, we have the local
convexity at F . Recall that n ≥ 3 and, therefore, M and M \ Skn−3(M) have isomorphic
fundamental groups. Thus, r |M\Skn−3(M) is a covering mapping. By the covering mapping
theorem (see e.g. Seifert & Threlfall, 1980) it must by a homeomorphism. Thus, r : S → SF

is a bijection and the local convexity of r at F is proven. We proved that local convexity at
k-cells implies local convexity at (k − 1)-cells. Hence, r is locally-convex everywhere. Upon
applying Van Heijenoort’s Theorem 5 we conclude that r is a convex embedding.

Corollary 14 Let r : M → Rn (n > 2) be a complete dimension-preserving PL-realization
of a connected (n − 1)-manifold M , which is locally-convex at all (n − 3)-cells. Suppose r
is bounded or is strictly locally-convex in at least one point. If (M ,P) is (n − 3)-primitive,
i.e. exactly 3 (n− 1)-cells make contact at each (n− 3)-cell, then r(M) is the boundary of
a convex polyhedron.

23

In particular, if we can realize (Sn−1, P), where P is a regular (n−3)-primitive cell-partition,
in Rn so that each k-cell is embedded as a set of affine dimension k for all k, then either this
realization is a convex polytope or it is projectively equivalent to another realization which
is a convex polytope (for the latter see Rybnikov, Zaslavsky, 2005). It would be interesting
to apply this observation to open problems about convex 4-polytopes. Convex 4-polytopes
are not well-understood, unlike their 3-dimensional counterparts, which are completely char-
acterized by Steinitz’s theorem. For example, all known 1-primitive (2-simple in Ziegler’s
terminology) 2-simplicial (all 2-faces are triangles) regular partitions of S3 are realizable as
convex 4-polytopes, which prompted Ziegler (2002) to conjecture that this is always the case.

Remark 15 Theorem 13 holds if manifold is replaced with homology manifold (see e.g.
Seifert, Threlfall for definition and examples).

Proof. Let (M ,P) be a homology manifold and let the cells of P be homology balls. Because
of the local convexity at the (n−3)-faces, M \Skn−4(M) is actually a manifold. The inductive
argument goes without changes, only every time we establish local convexity at a face F of
dimension k ≤ n − 4 we also prove that M is a manifold at all points of F . Thus, M is a
manifold and r is convex.

6 Convexity Checker for PL-hypersurfaces

In this section we present a polynomial-time algorithm for checking the convexity of any
PL-realization r : M → Rn (n ≥ 3) of a regular cell-partition P of a connected compact
(n − 1)-manifold M . The map r under testing is assumed to be dimension-preserving (see
Section 2), which implies that each cell C ∈ P is homeomorphically mapped by r to an
open subset of a subspace of dimension dim C. We do not assume that the realization is an
immersion: if it is not an immersion, the algorithm will detect this. We do not make any
generic position assumptions.

In describing the algorithm we assume that certain combinatorial and geometric information
is readily available. This input information is exactly what should be kept by a convex
hull “builder” if it is to use our verification procedure. Later we discuss the complexity
of extracting the necessary input information from PL-surface descriptions given in some
typical formats.

If any of the subprocedures return false (which corresponds to a detected violation of local
convexity), the main procedure returns false as the final answer. The idea of the algorithm
is to check that the immersion and the local convexity properties hold at each corner. Recall
that the star of a cell C consists of all cells C ′ with the property that the closure of C ′

contains C. For each corner C this check is reduced, roughly speaking, to the verification
of convexity of a certain cone K = K(r, Star C) in r(C)⊥ ∼= R3, which is constructed from
the poset of Star C and the restriction of r : M → Rn to Star C. The cone K completely
describes the geometry of the r-realization of Star C near r(C). Such a cone is not unique –
any non-degenerate linear transformation of K(r, Star C) is just as good as K(r, Star C). This

24

reduction from the star of a corner to a cone in R3 is done by the subroutine Reduce-to-3D
called from the procedure Corner-Checker.

Let X ⊂ Rn; then aff X is its affine span and
−−−→
aff X the linear subspace {x−x′ x, x′ ∈ aff X}.

If V is a set of vectors in Rn, then we use R〈V 〉 or lin V to denote the linear span of V and
R≥0〈V 〉 the convex cone spanned by V . For a (not necessarily convex) polytope P ⊂ Rn

with a face F an affine inner normal (or, inner skew-normal) to P at F is any vector n in−−→
aff P such that 1) dim(lin n ∩ −−→aff F) = 0 and 2) for any x in the relative interior of P there
exists an ε > 0 such that x + εn is in the relative interior of P . We call n an inner normal
if, in addition, n ⊥ aff F (i.e. the usual Euclidean normal).

6.1 Input conventions

Mathematically, the input is given as follows:

(1) the subposet P[n− 3, n− 2, n− 1] ⊂ P of corners, ridges, and facets where it is known
in advance which are which;

(2) an inner normal to R at C for each ridge-corner incidence (R,C);
(3) an inner normal to F at C for each facet-corner incidence (F,C).

The data in (1) will be referred to as combinatorial, and that in (2) and (3), as linear-algebraic.
We assume that each vector in the linear-algebraic data ”knows” the corresponding abstract
cells in P , and that each abstract cell in P[n− 3, n− 2, n− 1] “knows” all normal vectors
related to it. The input data-structure can be implemented as a double-linked adjacency
list, with appropriate attribute fields for dimensional and linear-algebraic data. Namely, we
can create an adjacency list for the (multi-) graph whose vertex set consists of elements of
P[n− 3, n− 2, n− 1] and whose edge set consists of all pairs (C,C′), such that C ≺ C′ or
C′ ≺ C in P[n− 3, n− 2, n− 1]. When the input is available in this form we say that the
input is given in the normal form.

In applications a PL-hypersurface is usually specified by a subposet of the face poset, which
includes the vertices or the facets or both; it is usually equipped either with the coordinates
of vertices or with the equations (or inequalities) for the facets. If the input is given as the
poset P[0, n− 3, n− 2, n− 1], equipped with the coordinates of the vertices, we say that
the input is given in the vertex form. If the partition P is a triangulation, then the linear-
algebraic data required for the normal form input can be produced from the vertex form
input in time, which is linear in fn−3 n−2 and polynomial in the total bit size of the input.
Assuming n is fixed, if the face numbers of facets of (M , P) are bounded by a constant (in
fn−3 n−2), then the linear-algebraic data for the normal input form can be computed from
the vertex form input in O(fn−2 n−3) arithmetic operations (+,−,×).

6.2 Preprocessing

By preprocessing in the context of problems of verification of geometric properties we mean
any computation that does not depend on the geometric realization (in our case r), but only

25

on the topology or combinatorics of the object (in our case – the pair (M ,P)).

Since M is a manifold, the facets of (M ,P) making contact at a corner are “glued” to each
other in a circular fashion; same can be said about the ridges. Furthermore, both facets
and ridges are glued around the corner in the alternating fashion: F0-R01-F1 − . . . , etc.
More properly, a topologist would say that the “links” (defined via the 1-skeleton of the
dual partition, a well-known construction going back to H. Poincare: see Seifert & Threlfall,
1980) of the corners are circles. These circles can be thought of as polygons whose vertices
correspond to the facets of P and edges to the ridges of P. For our convexity checker we need
to determine a circular order of ridges around each corner (which is unique up to the choice
of direction). The circular structure of the stars of (n− 3)-cells implies that for each (n− 3)-
cell C we have fn−3 n−2(Star C) = fn−2(Star C) = fn−1(Star C) = fn−3 n−1(Star C). The last
formula implies that for the whole P we have fn−3 n−2 = fn−3 n−1. To apply our algorithm for
different realizations of the same cell-partition of M it is reasonable to maintain a circular
order of ridges and facets around each corner – this is preprocessing. This circular order is
encoded by the corresponding wheel graph Wm = Wm(C) (see Figure 10). The inner normals
to facets at r(C) are assigned to the rim edges of Wm and the inner normals to ridges are
assigned to the spokes (or rim vertices) of Wm.

The manifold M may be disconnected, so we have to check for connectivity first. Clearly, M
is disconnected as a topological space if and only if the adjacency graph of the facets, where
(V, E) = (Facets, Ridges), is disconnected. It is well-known that a graph (V,E) can be tested
for connectivity, e.g. by the depth-first search, in O(|E|) time. Thus, M can be tested for
connectivity in O(fn−2) time. From now on we assume that M has passed the connectivity
check.

6.3 Consistency of the input data and guarantees on the output

The algorithm described in the following subsection is guaranteed to work correctly under
the following assumptions:

(1) M is a connected compact manifold without boundary of dimension n− 1 ≥ 2;
(2) P is a finite regular cell-partition of M (i.e. (M , P) is a regular CW-complex);
(3) the linear-algebraic data actually comes from some PL-realization r of (M ,P) in Rn.

6.4 Main Function

Before giving the pseudocode, let us informally describe the working of our algorithm. Recall
that to check the convexity of a bounded PL-hypersurface it is sufficient to check the local
convexity at each corner C, i.e. to check that r |Star C is a homeomorphism into the boundary
of a convex body. Based on this idea, our algorithm examines each corner for convexity; these
examinations are independent of each other and can be done in parallel. Roughly speaking,
locally the star of each corner is supposed to look like the direct affine product of a cone in
R3 and an (n−3)-subspace. In other words, if we cut the star r(Star C) by a complementary
subspace A of dimension 3, then, in general, we get something that looks like the corner of a

26

2D PL-surface in A ∼= R3. Alternatively, instead of cutting the star of a corner by an affine
3-subspace, we can get the “3D picture” by projecting the star of the corner along r(C) onto
a complementary linear 3-subspace. This “mental visualization” should be taken with some
caution, for geometrically the corner star may look like a convex surface, but only because
the surface has been folded along the ridges so that some facets overlapped – the origami
effect.

The main function Convexity-Checker, given as Algorithm 1, examines corners for local con-
vexity by calling procedure Corner-Checker for each corner. If each corner passes the check by
Corner-Checker, then Convexity-Checker declares the surface r : M → Rn convex by returning
true. On the other hand, if Corner-Checker finds out that a corner C is “bad”, it returns the
negative verdict false together with a certificate of failure. Recall that C can be bad because
r is not a local homeomorphism on the star of C, or because there is no convex body such
that r(Star C) lies on its boundary; indeed, a corner can be unlucky enough to fail on both
counts. Each of these failure are violations of convexity. Thus, when C fails the test, Corner-
Checker returns (false, not 1-to-1 on Star C) or (false, no convex body for Star C). Note that
r may fail to be injective on Star C because it already failed to be injective on the star of R,
where R is one of the ridges of C, – then the certificate has the form “not 1-to-1 on Star R”.
The whole program terminates once the very first (in time) violation is detected.

Corner-Checker first checks that r is an immersion on the star of each ridge at C, which is
done inside of the “dimension-reducer” Reduce-to-3D. If r is an immersion on Star C, then
Reduce-to-3D reduces the convexity check of the corner to that of its section (see the above
paragraph).

In our pseudocode the failure-of-convexity certification is not comprehensive, neither locally
nor globally: it tells you just one thing that went wrong. However, even a limited certification
is helpful for tasks such as maintaining the convex hull of moving points, or tracing the shape
of a simplicial surface whose geometry changes over time (see Guibas, 2004, pp. 1129-1130).
However, if complete information about the local convexity and immersion failures is needed,
the pseudocode can be easily modified to produce such, at no extra cost (up to a constant
factor).

Convexity-Checker works on a stack Corners, in which we put all corners of (M ,P) prior
to starting. The stack is used to simplify the appearance of the pseudocode – any other
basic data structure could be used instead. Figure 8 shows the dependency diagram for the
modules of our pseudocode: A → B means that A may need to call B.

6.5 Corner-Checker

Corner-Checker (Algorithm 6.5) tries to reduce the convexity testing at a corner C to that of
its projection on a complementary linear subspace, which is spanned by three independent
(possibly skew) normals at C to some three facets from Star C (of course, only if such a
triple exists). While in general the projection of r(Star C) onto a complementary subspace

27

Fig. 8. The dependency graph of the modules

Algorithm 1. Convexity-Checker

Input: poset P[n− 3, n− 2, n− 1] of corners, ridges, and facets; inner normals to all
ridges at all of their corners; inner normals to all facets at all of their corners.

Output: (answer, certificate) where certificate specifies the location and reason for failure;
if answer = true, then certificate = none.

define global cell[] . array of cells; indices start from −1
while stack Corners is non-empty do

C ← Pop(Corners); cell[−1] ← C
Encode r : Star C → Rn as (Wm,N) . see Subsection 6.6 for details
for all i : 0 ≤ i ≤ m− 1 do

cell[i] ← ridge encoded by vertex i of Wm

end for
(answer, certificate) ← Corner-Checker(Wm,N)
if answer = false then return (false,certificate) . not convex
end if

end while
return (true,none) . yes, convex

looks like a pointed conic surface in R3 (e.g. as in Fig. 9, left), it may also look like the star
of an edge in a polyhedral surface in R3 (Fig. 9, center), or even like a flat 2D-piece in R3,
when the surface is flat at the vicinity of r(C) (Fig. 9, right). Corner-Checker carefully tests
for such degeneracies. Furthermore, the analysis is complicated by the possibility of various
local self-intersections; the presence of such self-intersections, when not tested for explicitly,
may lead to wrong conclusions.

Corner-Checker uses two major subroutines, Reduce-to-3D (Algorithm 3) and Check-3D-Cone
(Algorithm 6). Recall that the star of any corner C has an intrinsic circular structure, which,
for n = 3, has the geometric meaning of the order in which flat 2D pieces are glued to each
other to form the surface of a polyhedral cone in R3. Reduce-to-3D is trying to find three

independent vectors among ridge-corner normals at r(C) such that
−−−−−→
aff r(C), together with

28

Fig. 9. The star of corner on the left is simple (m = 3) and therefore convex. Note that any immersed
PL-hypersurface is always locally-convex at all points of its ridges (center) and facets (right).

these vectors, span Rn. Once three such vectors are found the problem is reduced to dimension
3 via projection onto the span of these three vectors. Reduce-to-3D proceeds by going around
C, testing for self-intersections and degeneracies, and returning output of reducer, which is
true when Reduce-to-3D manages to prove the locally-convexity at C and false when Reduce-
to-3D finds a violation of the immersion property at the star of one of the ridges of Star C,
and therefore at Star C. If no self-intersections at the ridge stars are detected, and yet the
convexity is not proven, Reduce-to-3D returns a 3D reduction of the input data, which serves
as the input to Check-3D-Cone; the reduced data is a rectilinear realization in R3 of the
wheel graph (see below) that encodes the combinatorics of Star C. The (limited) convexity-
verification ability of Reduce-to-3D is just a byproduct of checking for self-intersections at
the level of ridge stars. Namely, Reduce-to-3D confirms the local convexity at C only if,
in addition to the immersion property, (i) the star of C has at most three ridges, or the
geometry of r(Star) is degenerate, i.e. when (ii) r(Star C) is an (n − 1)-flat or (iii) when it
looks like two (n− 1)-flats joined together at an (n− 2)-flat – in the degenerate cases Star C
may have more than three (n − 1)-cell. The geometry of each of the three case is shown in
Figure 9 (the flat pieces around the corner may consist of the images of many cells of P).

Before we come to the details, we need to define a couple of auxiliary notions. For m ≥ 2 the
graph with vertex set V = {−1, 0, . . . ,m− 1} and edge set E = {(−10), . . . , (−1 m− 1)} ∪
{(01), . . . , (m− 1 0)} is called the m-wheel graph and denoted by Wm (see Fig. 10). Vertex
−1 is called the center of Wm; vertices Vrim(Wm) = {0, . . . , m − 1} are called rim vertices
and edges Erim(Wm) = {(01), . . . , (m− 1 0)} rim ridges; edges {(−10), . . . , (−1 m− 1)} are
called spokes. It is convenient to identify the rim vertices with elements of Zm = Z/mZ;
then going from vertex i to vertex j is encoded by adding j − i to i mod m.

1

2

34

5

6

7

- 1

0

Fig. 10. Graph W8.

29

Once a corner C is popped from the stack, a pair (Wm,N) is created. Here, m is the number
of ridges meeting at C (m = fn−3 n−2(Star C)). This pair consists of (1) the wheel graph
Wm = Wm(C), which describes the combinatorics of Star C and (2) an array of vectors
N(C), whose elements are the inner normals to the r-images of ridges and facets of Star C
at r(C). The center of Wm encodes C itself, the rim vertices encode the ridges of Star C,
the rim edges encode the facets of Star C, the spokes encode the corner-ridge incidences;
[0, . . . , m− 1] is the circular order of the ridges at C determined by the topology of (M ,P).

If Corner-Checker returns “false”, it also provides a certificate of violation. The certificate is
of the form “not 1-to-1 on Star C”, or “not 1-to-1 on Star R” (where R is a ridge of Star C),
or “no convex witness for Star C”. None of these reasons excludes the others.

6.6 Reduce-to-3D

The input to Reduce-to-3D is the star Star C of a corner C together with its realization r|Star C .
Formally, the input is a pair (Wm; N) , where Wm is the wheel graph encoding the circular
structure of Star C, and N is the array of inner normals to the realizations (r-images) of
ridges (n0, ..., nm−1) and facets (n01, ..., nm−1 0) at r(C). N can also be thought of as a map
N : Erim(Wm) ∪ Vrim(Wm) → Rn. Note that we cannot drop facet normals from the input,
e.g., in Figure 11 the left and right realizations have the same wheel graph and identical
inner ridge normals at C.

Figure 11 (left) shows the star of a vertex that does not violate convexity and immersion
assumptions, although the red cell is not convex; on the other hand, the realization on the
right has self-intersections, although it does lie on the boundary of a convex body and all
cells are convex (two triangles and a pentagon, in each case).

Algorithm 2. Corner-Checker

Input: Wm: wheel graph (m ≥ 2); N : non-zero vectors in Rn indexed by the rim vertices
and edges of Wm.

Output: (bool, cert), where bool is “true” or “false”, and where cert is the certificate of
violation when bool = “false” and “none” otherwise.

output of reducer ← Reduce-to-3D(Wm,N)
if output of reducer = true then return (true, none)
else

if output of reducer = (false, i) then return (false, not 1-to-1 on Star cell[i])
else

if Check-3D-Cone(output of reducer)=(true, none) then return (true, none)
end if

end if
end if

30

C’
C

Fig. 11. Two flat realizations of a simple star (n = 3).

Reduce-to-3D is trying to find three vectors e1, e2, e3 from the circular list {n0, ..., nm−1} of

corner-ridge normals, which span a 3-subspace complimentary to
−−−−−→
aff r(C). If successful, it

projects all other corner-ridge normals along r(C) onto this subspace. During the search for
three “good” corner-ridge normals Reduce-to-3D is also testing for self-intersections. Since we
assume the closures of all cells are realized homeomorphically as polytopes of corresponding
dimensions, self-intersections on the level of r |StarR, where R is a ridge at C, can only
occur when the images of two facets meeting at R overlap. We call an overlap between two
adjacent (the circular order around C) facets folding (Fig. 11 shows an example of folding).
Some of testing for such overlaps is done inside of Reduce-to-3D and its subroutine Is-Folded,
but only until a good triple {e1, e2, e3} of corner-ridge normals is found or an overlap is
detected, while the rest of testing for self-intersections is delegated to Check-3D-Cone. To
detect folding we need to use the corner-facet normals, as explained in the beginning of
Section 6.6. Once three good vectors are found, all other corner-ridge normals are projected
on their span. Self-intersection not detected by Reduce-to-3D are detected by Check-3D-Cone.
Note that it is possible, in general, that the angle between two adjacent corner-ridge normals
nj and nj+1 is greater than π (this angle is determined by nj j+1) and yet the surface is
convex at Star C (as in Fig. 11 left). However, this can only happen when the surface is
flat at Star C. Reduce-to-3D guarantees that the output fetched to Check-3D-Cone has the
following property: the angle between every two adjacent (in the circular order) vectors p(j)
and p(j + 1) is less than π (here p(j) is a vector in R〈e1, e2, e3〉 representing j ∈ Vrim(Wm).

Let p : V (Wm) → R3 be a mapping of the vertex set of Wm into R3; then p is called a
realization of Wm in R3. If m ≥ 3, then we can extend Wm to a simplicial complex [Wm] by
“filling in” all 3-cycles (−1 i i + 1) (where i ∈ Zm). Let us identify [Wm] with the geometric
complex in R2 where the center of [Wm] is at the origin and the rim of [Wm] is the regular
convex polygon, as in Figure 10. We assign to each 2-simplex (−1 i i + 1) a triangle in R3

with the vertices p(−1), p(i), and p(i+1). Therefore, the map p : V (Wm) → R3 extends to a
map from [Wm] to R3 and produces a simplicial surface (with boundary). With a slight abuse
of terminology we will say that p : V (Wm) → R3 (where m ≥ 3) is convex if the extension of
p to the 2-complex [Wm] ⊂ R2 is a convex surface with boundary (we use p for the extended
map as well). While we may encounter W2, we will not have a need to associate surfaces in
R3 with them, for this case is dealt with completely by Reduce-to-3D.

Reduce-to-3D returns (false, i), if r is not an immersion on the star of ridge cell[i], and “true”,
if it is able to verify that r is a convex immersion on Star C. The last scenario is possible

31

when geometrically r(Star C) near r(C) looks like a corner of a n-simplex, or as a ridge point
of a n-simplex, or as a facet of an n-simplex (in which case it is flat). See Figure 9 for 3D
illustrations, which can be interpreted as sections as well. In all other cases Reduce-to-3D
passes the reduced information to the 3D convexity checker Check-3D-Cone, which assumes
that its input is a 3-dimensional cone, possibly with self-intersections. Reduce-to-3D ensures
that the cone has at least four rays of which three are linearly independent.

6.6.1 Is-Folded

Let v, u, w be three coplanar non-zero vectors. The ordered triple (v, u, w) defines a plane
angle at the origin in the following way: v and w span the two extreme rays of the angle,
while u is an interior vector of the angle – i.e., the function of u is to specify which of the two
open subsets defined by v and w is interior to the angle. We denote such angle by 〈v|u|w〉.
Note that 〈v|u|w〉 = 〈w|u|v〉.

Is-Folded takes as input a 5-tuple of coplanar non-zero vectors (a, b, c,d, e), where a, b, c are
pairwise distinct and c,d, e are pairwise distinct (these assumptions are made to simplify
the pseudocode – the input to Is-Folded is guaranteed to satisfy them). Is-Folded returns true
if the interiors of angles 〈a|b|c〉 and 〈c|d|e〉 overlap and false otherwise. For example, Figure
12 shows the case where “folding” takes place: angle 〈c|d|e〉 “folds over” the angle 〈a|b|c〉.

e

c

b

d

a

Fig. 12. Angles 〈a|b|c〉 and 〈c|d|e〉 overlap.

In the pseudocode of this procedure we will use a boolean predicate P (v|u1, u2|w), which
is defined for any 4-tuple of coplanar vectors v,u1, u2,w, where v and w are distinct and
ui 6= v, ui 6= w for i = 1, 2. P (v|u1,u2|w) is false if 〈v|u1|w〉 6= 〈v|u2|w〉 (Figure 13, left)
and true otherwise (Figure 13, right). Intuitively, P returns true if u1 and u2 both define
the same angle with respect to the rays spanned by v and w.

The following algorithm shows how to compute P (v|u1,u2|w) via standard linear algebra.
Recall that an orientation of the real plane R2 is an equivalence class of ordered bases, where
two bases are equivalent if and only if the change of basis matrix has positive determinant. For
any ordered pair of vectors [a, b], such that {a, b} ⊂ span{v,u1,u2, w}, we use sgn[a, b] to
denote the orientation of [a, b] with respect to some fixed orientation of span{v, u1,u2,w}).

32

Fig. 13. Left: P (v|u1, u2|w) = false. Right: P (v|u1,u2|w) = true.

Algorithm 3. Is-Folded

Input: a, b, c, d, e ∈ Rn \ 0, where rank{a, b, c, d, e} = 2, |{a, b, c}| = 3, |{c, d, e}| = 3

Output: boolean

if a and e define the same ray then
if P (c|b,d|a) = true then return true
else return false
end if

end if
if P (a|b, e|c) = false and P (c|d, e|a) = true and P (b|c, d|e) = true then return false
else return true
end if

Algorithm 4. P (v|u1, u2|w)

Input: v,u1,u2, w non-zero coplanar vectors with rank{v,w} = 2

Output: boolean

s ← sgn[v, w]
if sgn[u1, w] = sgn[v, u1] = s then

if sgn[u2,w] = sgn[v,u2] = s then return true
else return false
end if

else
if sgn[u2,w] = sgn[v,u2] = s then return false
else return true
end if

end if

33

Algorithm 5. Reduce-to-3D

Input: Wm: m-wheel graph; N : Erim(Wm) ∪ Vrim(Wm) → Rn \ 0

Output: one of {true; (false,cert); (Wm, p)}
Here cert ∈ Vrim(Wm), p : V (Wm) → R〈e1, e2, e3〉 is a “3D picture”, the result of reduction

1: e1 ← n0, B ← {e1}, e2 ← n1 . B is a maximal ind. set of vectors in r(C)⊥

2: if m = 2 then . there are only two ridges at C
3: if (rank{n0,n1,n10} = 2) and (sgn[n0,n01] = sgn[n0, n10]) then return (false, 1)
4: else return true
5: end if
6: end if
7: i ← 1 . rim vertex counter mod m
8: while i 6= 0 mod m and |B| < 3 do . testing of overlaps and growing B
9: i ← i + 1

10: if rank{e1, e2,ni} ≤ 2 then . ni, e1, e2 are all in one plane
11: if ni = λe1 or ni = λe2 for some λ > 0 then return (false, i)
12: end if
13: if |B| = 1 then . e1 = n0 and e2 = n1 are collinear and contra-oriented
14: if sgn[n0,n01] = sgn[n0,n0 m−1] then return (false, 0)
15: else
16: if m = 3 then return true
17: else e2 ← n2, B ← B ∪ e2 . use n2 for e2

18: end if
19: end if
20: else . in this case we know |B| = 2
21: if Is-Folded(e1,n01, e2,ni−2 i−1,ni−1) = true then return (false, i)
22: end if
23: end if
24: else e3 ← ni, B ← B ∪ {e3} . finally we have 3 ind. normals to ridges at C
25: end if
26: end while
27: if |B| < 3 or m = 3 then return true . r(Star C) looks like one of Fig. 9 cases
28: else . unless r(Star C) is flat, angles ≥ π between nj and nj+1 imply non-convexity
29: for j = 0 to m− 1 do
30: if nj j+1 /∈ R>0〈nj,nj+1〉 then
31: return (false, i)
32: end if
33: end for
34: end if
35: p(−1) ← (0, 0, 0) . center of the wheel is put into the origin
36: for j = 0 to m− 1 do
37: p(j) ← (e1 · nj, e2 · nj, e3 · nj)
38: end for
39: return (Wm, p : V (Wm) → R〈e1, e2, e3〉)

34

Implementation remark: If Reduce-to-3D is to be implemented for simplicial hypersur-
faces for inputs given in the vertex form, then one should not compute Euclidean corner-
ridge normals from vertex coordinates when n ≥ 4. In this case procedures Convexity-
Checker and Reduce-to-3D should be modified so that instead of looking for 3 Euclidean

corner-ridge normals that span a 3-subspace complimentary to
−−−−−→
aff r(C), we find 3 affine

inner normals of the form vR − v0, vR′ − v0, vR′′ − v0, where v0 ∈ Rn is a (geometric)
vertex of r(C) and vR,vR′ ,vR′′ are geometric vertices of three ridges at C, with the same
property. Then the sign (orientation) tests in Reduce-to-3D that involve 1,2, or 3 vectors
will involve n−4, n−3, and n−2 vectors respectively, i.e. these tests will become relative
to some (n− 3)-frame spanned by vertices of r(C).

6.7 Procedure Check-3D-Cone

Informally speaking, we test the surface ([Wm], p) for convexity by going around the wheel
and checking whether three sign conditions are satisfied or not (certain non-degeneracy
conditions should hold as well).

Recall that the sign (orientation) of a list [v1,v2,v3] of three vectors in R3 is the sign of the
determinant of the 3× 3 matrix whose i-th row is vi. The sign is denoted by sgn[v1,v2,v3].
If v1,v2,v3 ∈ Rn with n > 3, then to define the sign of the triple [v1,v2,v3] we need to
fix an orientation in the linear span lin{v1,v2,v3}, express the vi’s in terms of a basis of
lin{v1,v2, v3}, and compute the determinant of the resulting matrix.

Running Frames Conditions:
Set s := sgn[p(0), p(1), p(2)] and assume s 6= 0.

(1) sgn[p(0), p(1), p(i)] must be s or 0 for every i : 2 ≤ i ≤ m− 1;
(2) sgn[p(0), p(j), p(j + 1)] must be s or 0 for every j : 1 ≤ j ≤ m− 2;
(3) sgn[p(k), p(k + 1), p(k + 2)] must be s or 0 for every k : 1 ≤ k ≤ m− 1.

The first condition ensures that all vectors lie on the same side of the plane spanned by p(0)
and p(1). Together with the other conditions it guarantees not only that the image p([Wm])
is lying on the boundary of a convex body, but also that the surface p : [Wm] → R3 is
embedded.

The correctness of Check-3D-Cone hinges on the following lemma.

Lemma 16 Let p : V (Wm) → R3 be a realization of the m-wheel graph (m ≥ 3) which maps
−1 (the center) into 0 ∈ R3. Suppose the induced map p : [Wm] → R3 on the simplicial
2-complex [Wm] is a homeomorphism on the star of each edge of [Wm]. Then p : [Wm] → R3

is an embedding onto the boundary of a convex cone if and only if Conditions (1)–(3) hold.

Proof. Since p : [Wm] → R3 is a homeomorphism on the star of each edge of [Wm], there
exist three vertices of Wm that are mapped to three independent vectors. For the sake of
notational convenience we will assume, without loss of generality, that when these vertices
are listed in the increasing (circular) order of indices, the sign of the resulting determinant

35

is positive. We will use the shorthand notation for determinants, i.e. we write [i, j, k] for
sgn[p(i), p(j), p(k)].

If f is a realization of a wheel graph in R3, then denote the predicate “condition (1) holds
for p ” by I(f) and let II(f) and III(f) stand for the same predicate, but where condition
(1) is replaced with condition (2) and (3) respectively.

If the realization is convex, then Conditions (1)–(3) obviously hold. The proof in the other
direction is by induction. For m = 3 the result is clearly correct. Suppose the lemma holds for
m = N . Consider the wheel graph W ′

N obtained from WN by removing the vertex N −1 and
connecting the vertices N − 2 and 0 by a new rim edge. Denote the resulting map by p′. I(p)
implies I(p′). II(p) implies II(p′). III(p′) is true if [N − 1, 0, 1] ≥ 0 and [N − 2, N − 1, 0] ≥ 0.
Observe that [N−1, 0, 1] = [0, 1, N−1] ≥ 0 by I(p) and [N−2, N−1, 0] = [0, N−2, N−1] ≥ 0
by I(p). Thus III(p′) is true and p′ : [W ′

N] → R3 is a convex embedding. Therefore, p :
[Wx] → R3 is a convex embedding if and only if (A) p(N − 1) lies on the same side of
lin{p(0), p(1)} as all other vectors, (B) p(N−1) lies on the same side of lin{p(N−2), p(N−3)}
as all other vectors, and (C) p(N − 1) lies on the opposite side of lin{p(0), p(N − 2)} relative
to the other vectors.

By I(p), (A) holds.

By III(p) we have [N−1, N−3, N−2] = [N−3, N−2, N−1] ≥ 0. Also, [0, N−2, N−3] ≥ 0
by II(p). Since p′ is convex, we have [i, N − 2, N − 3] ≥ 0 for all 0 ≤ i ≤ N − 4. Thus (B)
holds.

By II(p) we have [0, N − 2, N − 1] ≥ 0. Also, [0, 1, N − 2] ≥ 0 by I(p), so [0, N − 2, 1] ≤ 0.
Since p′ is convex, [0, N − 2, i] ≤ 0 for 1 ≤ i ≤ N − 3. Thus (C) holds.

The input to Check-3D-Cone is a wheel graph Wm (m ≥ 3), each of whose vertices v is
equipped with a corresponding point p(v) in R3. V (Wm) = {−1, 0, . . . ,m− 1}, where −1 is
the center of Wm (p(−1) = 0), and [0, . . . ,m − 1] is a circular order on the corresponding
ridges.

Theorem 17 Under the assumptions stated in Section 6 (Input conventions) Convexity-
Checker (Algorithm 1) is a correct convexity checker.

Proof. By Theorem 13 Convexity-Checker is correct when the local convexity checks at the
corners are correct. The map r is convex at a corner C if and only if

(1) r|Star C is an immersion (and, due to our restriction to dimension-preserving PL-realizations,
an embedding), and

(2) its projection on a complementary 3D subspace L is a convex cone.

More rigorously, (2) means that the map π ◦ r : S → L, where S is a 2-submanifold of Star C
mapped to an affine 3D section of r(Star C) (as in the proof of Theorem 13) and π is a
projection map from Rn onto L, is an embedding into the boundary of a convex body. Thus,

36

Algorithm 6. Check-3D-Cone

Input: Wm: wheel graph, p : Vrim(Wm) → R3 \ 0, p(−1) = 0

Output: (bool,certificate).
Below the certificate is given in a simplified form. By examining which of the Running Frames sign
conditions failed one can identify, in constant extra time, whether it happened due to the absence
of a convex witness, loss of bijectivity, or both.

for j from 0 to m− 1 do . j ∈ Zm; all indices are mod m
. checking if the stars of “spokes” are embedded:

if [p(j − 1), p(j), p(j + 1)] = 0 then
return (false, not 1-to-1 on Star cell[j])
if p(j) /∈ R>0〈p(j − 1), p(j + 1)〉 then
end if

end if
end for
e0 ← p(0), e1 ← p(1)
j ← 2
while j 6= 0 mod m do . Running Frames Test

if [e0, e1, p(j)] ≥ 0 & [e0, p(j), p(j + 1)] ≥ 0 & [p(j), p(j + 1), p(j + 2)] ≥ 0 then
j ← j + 1

else return (fail, not convex at C)
end if

end while

our claim is valid if Corner-Checker verifies these two conditions correctly.

Correctness of Check-3D-Cone: We know that p (extended to the 2D simplicial complex
[Wm]), does not map any two consecutive spokes into the same ray, since r : M → Rn is
a homeomorphism on the closure of each cell C. Check-3D-Cone first checks that the stars
of all edges of [Wm] are embedded (on the level of (M ,P) this means that the stars of
ridges at C are embedded). Thus, after this check is passed, Lemma 16 is applicable. By this
lemma Check-3D-Cone correctly checks that p : [Wm] → R3 is an embedding, which means
it correctly checks that r |Star C is an embedding too. By the same lemma Check-3D-Cone
correctly verifies that p([Wm]) lies on the boundary of a convex body in R3 and, therefore,
that r(C) lies on the boundary of a convex body in Rn. Thus, Convexity-Check is a valid
checker.

7 Convex hull computation and verification: complexity and robustness

Suppose all computations are done with floating point arithmetic (with floats). Although
convex hull builders and checkers implemented with floats do not guarantee correct outputs,
in many situations we can count on certain robustness, which for builders means the output

37

is close to a convex surface; for checkers robustness means a false positive is only possible
when the input surface (M , P; r) is in some sense close to a convex surface (M , P′; r′). We
intentionally leave these notions somewhat vague, but it is natural to require that P′ is
combinatorially isomorphic to P almost everywhere and that r(M) is close to r′(M) in Rn

with respect to Hausdorff distance. Furthermore, some uniformity should be required, e.g. we
can require that on the subcomplex P1 of P where P coincides with P′ for each cell C ∈ P1

the maps r |C and r′ |C are uniformly close. A similar notion of robustness makes sense for
convex hull builders. In other words, when exact geometry and combinatorics is not that
important (as in the case of visualization), convex hull computation and verification with
floating point arithmetic is quite meaningful.

More formally, consider the random access machine (RAM) with the unit cost model of
computation, where all four arithmetic operations are included into the instruction set. As
usual, fi j denotes the number of incidences between i- and j-faces and fi = fi i stands for the
number of i-faces. For n = 3 if (CO) from Section 1 holds, the algorithms by Mehlhorn et al.
(1996) and Devillers et al. (1998), have the same time-complexity of O(f0). Our algorithm
also has the complexity of O(f0), without requiring (CO) as a precondition; furthermore,
its work does not depend on the topology of the input surface. In a more general situation,
where conditions (CO) and (S), or one of them, cannot be assumed, the complexity of our
algorithm, as well as the earlier algorithms heavily depends on the following factors: i) the
combinatorics of the cell-partition (e.g. simplicial or not), ii) the geometry of the realization
(e.g. generic positions of the vertices vs. completely general case), iii) the form of the input.
Regarding iii), for example, the combinatorial information about the input can be given in
the form of the complete poset of faces, or some subposet of faces, such as the vertex-facet
graph. Furthermore, certain additional topological information (e.g. the knowledge that the
hypersurface is orientable, or a circular order of the facets at each (n− 3)-face) might speed
up the convexity verification. The geometry of the realization can be given by the equations
of the facets, or by ”coherent” inequalities for the facets (CO), or by positions of the vertices,
or in the form of inner normals at (n− 3)-cells to the (n− 2)- and (n− 3)-cells.

Now let us consider the general problem of convexity verification. At one end is the simplified
setup, where the input hypersurface is simplicial and the realization is sufficiently generic so
that the floating point arithmetic can safely be used. Under these assumptions everything is
fast, regardless of the method used. At the other end is the completely general setup, where
nothing can be assumed. One can also consider “intermediate” models, such as where the
input hypersurface is simplicial, but the positions of the vertices are not necessarily generic.
Another reasonable assumption would be that the hypersurface is not necessarily simplicial,
but the realizations of the facets are known to be convex. We give our algorithm for the
most general case, where nothing is assumed. One of the motivations for this generality are
the illuminating works of Joswig and Ziegler (2004), Joswig (2004), and Avis, Bremner, and
Seidel (1997) who clearly demonstrated that when we cannot assume that the vertices (or
hyperplanes) are in general position – or that the dimension of the space is a small fixed
number, the convex hull problem is still wide open and interesting from both practical and
theoretical viewpoints. As stated by Joswig (2004), ”Essentially for each known algorithm
there is a family of polytopes for which the given algorithm is superior to any other, and

38

there is a second family for which the same algorithm is inferior to any other....Moreover,
there are families of algorithms for which none of the existing algorithms performs well.” If
sufficient linear-algebraic and face incidence information are given about the stars of (n−3)-
faces (see Section 6 for details), the complexity of our algorithmic approach is polynomial in
the Turing machine model .

7.1 Complexity analysis

Note that all linear algebra in the algorithm is essentially reduced to comparisons of signs of
lists of at most three n-vectors; we will refer to any such calculation as a sign computation.
Unless mentioned otherwise, as e.g. in the next Subsection, we assume that the input is in
the standard form.

(1) Building the wheel graph for Star C takes time linear in the number of ridges of Star C.
(2) Since Corners is accessed at most fn−3 times, Corner-Checker is called at most fn−3 times.
(3) Corner-Checker(Wm,N) requires at most O(m) sign computations.
(4) Check-3D-Cone requires at most O(m) sign computations.
(5) Is-Folded requires a constant number of sign computations.

1 Suppose the algorithm uses the field algebra (+,−,×,÷) and each operation has unit cost.
This model is realistic when real computations are conducted with floats. If n is fixed,
the complexity is O(fn−3 n−2) = O(fn−3 n−1). To estimate the complexity in the case where
n is one of the parameters describing the input size, we need to estimate the contributions
of sign computations in (3)–(5). Notice that any sign computation in (3)-(5) deals with,
at most, six n-vectors. Since standard linear-algebraic procedures over a field can be used,
the complexity of the algorithm is O(nfn−3 n−2). For simplicial surfaces this translates
into O(n3fn−1), which is the same as the complexity of Mehlhorn et al.’s algorithm. Their
algorithm is faster than ours for some families of non-simplicial PL-hypersurfaces with a
very large proportion of simple vertices (where exactly n + 1 facets are coming together)
under the floating point computing model. Unfortunately, it is next to impossible to enforce
vertex-facet incidences while maintaining flatness of non-simplicial facets in computations
that use only floats. If the geometry of the input surface is sufficiently generic in the
sense that at each corner no three ridges lie in the same hyperplane, Reduce-to-3D is not
needed: any three affine normals can be used for the 3-dimensional reduction. In this case
the algorithm requires no divisions, but only evaluation of polynomials of degree at most
3 in the vertex coordinates.

3 What follows is a discussion of the complexity in the cases where no floating point error
can be tolerated. Let R be the base ring of the computational model: i.e., all numerical
input data (such as the coordinates of vertices, the coefficients of normals to (n− 1)-faces
etc.) come from R. Furthermore, we assume that Z ⊂ R ⊂ R. When we discuss the degrees
of the polynomial predicates evaluated by the algorithm, we consider them as polynomials
with integer coefficients in the input parameters. In this context the phrase arithmetic
operation stands for any ring-theoretic operation (+,−,×).

Case 1: the dimension n is fixed. In this case all linear-algebraic computations can be

39

done via determinants. Using determinants has an advantage of keeping the degrees of
evaluated polynomial predicates as low as possible. Moreover, since in our algorithm the
largest determinants are 3 × 3, the highest degree of evaluated predicates is 3. Thus, the
arithmetic complexity of the algorithm is O(fn−3 n−2) and the algorithm evaluates at most
O(fn−3 n−2) polynomial predicates of degree 3.

Case 2: the dimension n is not fixed. If n is not too large, the linear-algebraic compu-
tations can still be done via direct determinant evaluations. In each computation we are
dealing with at most three n-vectors, which means that we may have to evaluate

(
n
3

)
3×3

determinants to find a minor of maximal rank. Thus, the total arithmetic complexity of
the algorithm is O(n3 fn−3 n−2). The case where n is large and the linear-algebraic part of
the input is given in the traditional format, i.e. via the vertex coordinates, rather than
in the standard form, i.e. via the inner normals to ridges and facets at the corners, is
considered in the next subsection.

7.2 Exact Computations over Z

In here we consider the case of exact computation. The dimension n is not fixed and R = Z.
We are interested in the bit complexity of our algorithm, e.g., in the multitape Turing machine
model. Since each sign computation involves no more than 6 vectors, the bit complexity of
each is O(nMb(L)), if Yap’s (2002) ramification of the Bachem-Kannan algorithm is used.
Here Mb(x) is the bit-complexity of multiplication of two integers of binary sizes not exceeding
x and L is a bound on the binary size of the components of the vectors (see (Yap, 2002) for
details). Then the total complexity of the algorithm is O(nfn−3 n−2Mb(L)). Devillers et al.
(1998) have shown that any convexity checker, whose work does not depend on the nature
of R, has to evaluate at least one polynomial of degree n – however, this lower bound is
mandatory only for those checkers that work the same way for any R. We have:

Theorem 18 Let r : M → Rn be a dimension-preserving PL-realization of a manifold
(M , P) of dimension n − 1. Suppose the input is in the standard form and all normals
have integer coordinates of binary size not exceeding L. There exists a polynomial time algo-
rithm for checking convexity of r : M → Rn with (multitape Turing machine) complexity of
O(nfn−3 n−2Mb(L)).

Now, let us consider the situation where the input is given in the traditional form, i.e. as the
poset P[0, n− 3, n− 2, n− 1], equipped with the coordinates of the vertices. If we have no
restrictions on the combinatorics and geometry of the realizations of cells of (P,M), then
it is very difficult, or even impossible, to construct inner normals to facets and ridges at
corners from given data. Let us assume that the partition P is simplicial. In order to do
sign computations, we need first write down inner normals for all corner-facet and corner-
ridge incidences. For each such incidence we have to deal with roughly n vectors of length
n. Computing a Euclidean normal is then reduced to a finding a non-zero solution for a
homogeneous system Mx = 0 where M is at most n by n matrix. We can use Yap’s version
of the Bachem-Kannan algorithm to compute the (upper triangular) Hermit Normal Form
for the system Mx = 0. A non-zero solution vector of at most polynomial size can be found
in polynomial time by using standard techniques of linear algebra: we just work our way from

40

the bottom of the normalized matrix up until all xi’s are found. Alternatively, one can use a
polynomial algorithm in Yap (2002: Sec. 10.8-10.9), based on the repeated application of the
Bachem-Kannan algorithm, to further reduce the system to Smith Normal Form and then
find a solution. Furthermore, to reduce the complexity, we can deal with each corner C in
the following way. If v0, ..., vn−3 are the vertices of r(C), then we first find Hermit’s normal
form for the matrix [v1−v0, ..., vn−3−v0] and then for each P , where P is a ridge or a facet
incident to C, compute an integral normal vector to r(P) at r(C). Then the complexity of all
linear-algebraic computations for Star C is dominated by the complexity of finding Hermit’s
normal form for the matrix [v1− v0, ..., vn−3− v0], which is O(n3Mb(L)) (Yap, 2002). Thus,
the total complexity is O(n3fn−3 n−2Mb(L)) and we have:

Theorem 19 Let r : M → Rn be a dimension-preserving PL-realization of a simplicial
manifold (M ,P) of dimension n− 1. The input consists of the poset P[0, n− 3, n− 2, n− 1]
equipped with the coordinates of the vertices; for each vertex v = r(v) of r(M) we have v ∈ Zn

and ‖ v ‖∞≤ 2L. Then there exists a polynomial time algorithm for checking convexity of
r : M → Rn with (multitape Turing machine) complexity of O(n3fn−3 n−2Mb(L)).

The input requirements in the above theorem can be relaxed. If we know only P[0, n−3, n−2]
(or P[0, n− 3, n− 1]) together with the circular orders of facets (or ridges) at all ridges, then
P[0, n− 3, n− 2, n− 1] can be computed at no extra cost.

If n = 3, then corners are vertices and the required normals are easy to produce. Now,
suppose n > 3. How large can the coefficients of the integral normals, discussed above,
be? It is obviously possible to produce each such normal as a vector whose coordinates
are polynomials of degree at most n − 3 in the coordinates of the vertices. Furthermore,
Siegel (see e.g. Yap, 2002) proved that a homogeneous system of k linear equations with
n variables over Z has a non-zero solution where each component is bounded in absolute

value by 1 + (nA)
k

n−k (for us k = n− 3) where A is the largest of the absolute values of the
coefficients. Siegel also showed this bound could not be improved. When n is small enough
(say, n ≤ 8), a vector satisfying Siegel’s bound can be found by classical methods of lattice
reduction (no efficient methods for finding such a vector are known for large n). If normals
satisfying Siegel’s bound are used in the algorithmic procedures discussed above, then the
largest integers that may appear in sign computations via determinants are of the order
(1 + (nA)

n−3
3)3 ≤ (1 + ε)(nA0)

n−3 – where A0 is twice the largest of the absolute values of
the vertex coordinates and ε is a small positive number.

In practice, a convexity checker based on exact arithmetic can be implemented using one of
CGAL’s kernels that implements homogeneous coordinates over integers.

7.3 Surfaces in R3

The algorithm runs in linear time in the number of vertices when M is spherical. If f1 does
not exceed 3f0−6 (the maximal number of edges that a planar graph on f0 vertices can have),
then we can check for connectivity of the input surface in O(f0) time. However, a sequence
of non-spherical PL-manifolds can have the edge number growing quadratically in f0. Thus,

41

it is desirable to check the topological type of the input by just counting 1-cells (edges) in
P[0, 1]: once their number exceeds 3f0 − 6, we stop and declare the input non-convex. This
check, based on that a planar graph on f0 vertices cannot have more than 3f0−6 edges, helps
preserve the O(f0) running time bound for PL-surfaces in R3. One may wonder if such a check
is necessary, as it seems very likely our algorithm will quickly encounter a non-convex vertex,
if the input surface is homeomorphic to a sphere-with-handles or sphere-with-Möbuis-strips.
Surprisingly, Betke & Gritzmann (1984), proved that any orientable non-spherical connected
2-manifold can be PL-embedded into R3 so that it has exactly 5 non-convex vertices but no
fewer! The problem of determining the minimal possible number of non-convex vertices in a
PL-immersion of a non-orientable compact 2-manifold is open.

For n = 3 the requirements on the combinatorial part of the input can be somewhat relaxed:
in what follows we show it is sufficient to know only P[0, 1], which is the 1-skeleton graph of
(M , P). First, the planarity of this graph can be checked in O(f0) time. For a planar graph
we can also determine the faces (in the combinatorial sense) in linear time – i.e., in O(f0)
time we can create the face-nodes, where each face-node is double-linked to its edge-nodes
(e.g. Mehlhorn and Näher, 2000, p. 507). Once we know the faces in terms of their edges,
we can double link each face-node to the vertex-nodes of all of its edges. Because of the
sphericity of (M ,P) the latter task takes O(f0) time. Thus, the adjacency list representing
P[0, 1, 2] can be constructed from the adjacency list representing P[0, 1] in O(f0) time.

The case of R3 is a rather special one. First, n = 3 is the smallest dimension for which
the techniques of this paper apply. Second, even in the case of Rn testing convexity for
each corner is reduced to testing convexity of a section of the star of this corner, which is
essentially equivalent to testing convexity of a cone in R3. In applications a PL-surface in R3

is normally specified by its combinatorics and the coordinates of the vertices or equations
for the facets: it is therefore important to specify how our algorithm can be applied when
the input is given in the traditional form. Namely, suppose we are given P[0, 1, 2] equipped
with the coordinates of the vertices v1 = r(v1), . . . , vf0 = r(vf0). The corner-ridge normals
are then just vectors vi − vj. The question remains how to find corner-facet normals, i.e.
vectors pointing from the vertices of the facets into the interiors of the facets. This is easy if
it is known that the facets are convex. Otherwise we have the following algorithmic problem.
Let Ck be the k-cycle graph. Consider a rectilinear embedding r of Cn into a plane A ⊂ R3

– the pair (Ck, r) defines a 2-polytope P (Ck, r) ⊂ A whose boundary is r(Ck) (here Ck is
regarded as PL-manifold). Let v be a vertex of Ck. The problem is to find a non-zero vector

n ∈ −→A such that r(v) + εn lies in the interior of P (Ck, r). This problem can be solved in
time O(k); solving this problem for all facets will require O(f0) ring-arithmetic operations.
Thus, there is no difference in time-complexity between the standard and traditional forms
of the input for n = 3. We will now restate the observations made in this section in the
following theorem.

Theorem 20 Let r : M → R3 be a dimension-preserving PL-realization of a 2-manifold
(M , P). Suppose we are given the 1-skeleton of (M ,P) equipped with the coordinates of the
vertices. Let L be the upper bound on the bit sizes of the coordinates of the vertices. There
exists an algorithm for checking convexity of r : M → Rn with (multitape Turing machine)

42

complexity of O(f0Mb(L)).

8 Conclusions

This paper describes a local approach to convexity verification of PL-hypersurfaces. The main
theoretical result is a characterization of global convexity of an immersed PL-hypersurface
in Rn in terms of the local convexity properties of the surface at its (n−3)-faces. Building on
this approach we give a polynomial-time convexity checking algorithm that can be applied
for essentially any hypersurface. A better understanding of convexity made it possible to
introduce meaningful local certificates of violation; the terms in which previous verification
methods described the failure of convexity are of very global character and are not intrin-
sically linked to the poset structure of the underlying partition. In our method, without
increase in asymptotic complexity, we can tell exactly at what ridges and corners convex
witnesses do not exist, or the local homeomorphism condition fails (see Section 6). The ap-
proach presented in this paper can be generalized to piecewise-polynomial surfaces of small
degree (i.e. 2 or 3), where local convexity testing on each simplex can be done via the use of
derivatives.

9 Acknowledgements

This research was partially supported by NSF and DARPA under the grant DMS-0310589.
The paper has greatly benefited from two detailed reports of an anonymous reviewer.

References

D. Avis, D. Bremner, and R. Seidel, How good are convex hull algorithms, Computational
Geometry, (1997) 7, 265–301, (1997).

A. D. Alexandrov: The intrinsic geometry of convex surfaces, OGIZ, (Moscow and Leningrad,
1948) [Russian]. Translated as A.D. Alexandrov Selected Works. Part II. Instrinsic Geom-
etry of Convex Surfaces, Chapman & Hall / CRC, (2006).

U. Betke and P. Gritzmann, Polyedrische 2-Mannigfaltigkeiten mit wenigen nicht-konvexen
Ecken [Polyhedral 2-manifolds with few nonconvex vertices], Monatsh. Math. (1984) 97,
No. 1, 1–21.

M. Blum and S. Kannan, Programs that check their work, In: Proceedings of the Twenty
First Annual ACM Symposium on Theory of Computing, (1989), 86–97.

Yu. D. Burago, S. Z. Shefel, The geometry of surfaces in Euclidean spaces. Geometry, III,
1–85, 251–256, Encyclopaedia Math. Sci., 48, Springer, Berlin, 1992

O. Devillers, G. Liotta, F. Preparata, and R. Tamassia, Checking the convexity of polytopes
and the planarity of subdivisions, Computational Geometry, (1998) 11, 187–208.

L .Guibas, Modeling Motion, in Handbook of Discrete and Computational Geometry, Chap-
mann & Hall/CRC, pp. 1117-1134, (2004).

43

P. Hachenberger, L. Kettner, K. Mehlhorn, Boolean Operations on 3D Selective Nef Com-
plexes: Data Structure, Algorithms, Optimized Implementation and Experiments, Com-
putational Geometry (2007), doi: 10.1016/j.comgeo.2006.11.009

L. Jonker, R. Norman, On locally-convex Manifolds, Canad. J. Math. (1973) 25, 531–538.
M .Joswig, Software, in Handbook of Discrete and Computational Geometry, Chapmann &

Hall/CRC, pp. 1425–1433, (2004).
M. Joswig, G. Ziegler, Convex Hulls, Oracles, and Homology, J. Symbolic Computation (spe-

cial issue for ICMS 2002) (2004), 38, 1247–1259.
J. Van Heijenoort, On locally-convex Manifolds, Communications on Pure and Applied Math-

ematics, (1952) vol. V, 223–242.
L. Kettner, Using generic programming for designing a data structure for polyhedral surfaces.

Comput. Geom. Theory Appl., (1999) 13:65-90.
A.M. Kostrikin, Yu.I. Manin: Linear Algebra and Geometry, Gordon and Breach, (1989)
A. Kuzminykh, Convex bodies with paradoxical topological properties in Hyperbolic space.

2005 Summer Conference on Topology and its Applications July 10-14, (2005), Denison
University, Granville, Ohio.

K. Mehlhorn and S. Näher: LEDA: A Platform for Geometric and Combinatorial Computing,
Cambridge Univ. Press. (2000)

K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, U. Stefan, and C. Uhrig,
Checking Geometric Properties or Verification of Geometric Structures, In: Proc. of 12th
Annual ACM Sympos. Comput. Geom., Computational Geom. (1996), 159–165.

K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, U. Stefan, and C. Uhrig,
Checking Geometric Properties or Verification of Geometric Structures, Computational
Geometry, (1999) 12, No. 1-2, 85–103.

R. T. Rockafellar: Convex Analysis, Princeton Univ. Press, (Princeton, New Jersey, 1997).
K. A. Rybnikov and T. Zaslavsky, Cycle Criteria for Balance in Abelian Gain Graphs with

Application to Piecewise-Linear Geometry, Discrete Comp. Geometry (2005), 34, No. 2,
251–268.

H. Seifert and W. Threlfall: A Textbook of Topology, Academic Press (New York, N.Y., 1980)
(translated from Lehrbuch der Topologie, Leipzig, 1934, by M. A. Goldman).

G. Ziegler, Face numbers of 4-polytopes and 3-spheres. In: Proceedings of the International
Congress of Mathematicians, Vol. III, Beijing, 2002, 625–634, Higher Ed. Press, (Beijing,
2002).

C. Yap: Fundamental Problems in Algorithmic Algebra, Oxford Univ. Press, (2000).

44

