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Abstract

A lattice Delaunay polytope P is called perfect if its De-
launay sphere is the only ellipsoid circumscribed about P.
We present a new algorithm for finding perfect Delaunay
polytopes. Our method overcomes the major shortcomings
of the previously used method [Du05]. We have imple-
mented and used our algorithm for finding perfect Delau-
nay polytopes in dimensions 6, 7, 8. Our findings lead to
a new conjecture that sheds light on the structure of lattice
Delaunay tilings.

1 Introduction

Let A be an n-dimensional lattice (n > 0) and let P C
A ®R = R™ be a polytope whose vertex set vert P belongs
to A. We say that P is a Delaunay polytope for A if P can be
circumscribed by a closed ball Bp C A ®R such that Bp N
A = vert P. The ball Bp (or its boundary) is commonly
referred to as the Delaunay sphere (or empty sphere) for
P. (Delaunay [Del] himself attributed the concept of empty
sphere to Voronoi.) Delaunay polytopes for A form a face-
to-face tiling of A ® R called the Delaunay tiling for A.

One can study the geometry of lattices by comparing
their Delaunay tilings. Such study was initiated by Voronoi
[Vorll08-09]. As A € A ® R = R” is deformed into
Z™ C R™ by an affine transformation « — A(x), the empty
spheres circumscribed about the Delaunay polytopes of A
are deformed into empty ellipsoids circumscribed about the
A-images of these polytopes. All these ellipsoids have iden-
tical quadratic parts — indeed they are balls in the metric
d(z,x') = ||A"'(z) — A~ 1(2')||. Thus, the study of
Delaunay tilings for n-lattices is equivalent to the study
of Delaunay tilings for Z™ with respect to different pos-
itive definite quadratic forms. Let us denote the Delau-
nay tiling for Z" with respect to a positive quadratic form
Q by Del(Z™,Q). The Delaunay property of an ellipsoid
€(Q,¢,R) = {x € R* | Q[z — ¢] < R?}, circum-
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scribed about a polytope P, means that the quadratic func-
tion Q[z — ¢] — R? is zero on vert P and strictly positive on
Z"™\ vert P. From now on we will be working with A = Z",
unless stated otherwise.

It is natural to extend the notions of Delaunay polytope
and tiling to positive semidefinite forms. We refer to an R-
valued function f on a set S as positive if f(x) > 0 for
any x € S. Let Q be a quadratic form that is positive on
R™ and such that the rank of the sublattice kerg Q N Z™
is equal to the dimension of kerg Q. Then R" is tiled by
unbounded n-dimensional polyhedra, which are Delaunay
with respect to Q: each polyhedron P from this family is
circumscribed by an elliptic cylinder € p, whose interior is
free of lattice points, so that P N Z" = Ep N Z". Further-
more, P is the direct affine product of a Delaunay polytope
P for a sublattice A C Z™ of rank » = dimkerg Q and
an affine (n — r)-subspace of R™. The degenerate Delau-
nay “ellipsoid” €p for an unbounded polyhedron P is the
direct affine product of the Delaunay ellipsoid for P and
L; we will be using ‘ellipsoid’ for both bounded and un-
bounded ellipsoids. For example, R™ is tiled by the unit
slabs U; = {x | i < 21 < i + 1} where ¢ € Z. Each
unit slab is a Delaunay polyhedron with respect to quadratic
form aﬁ; furthermore, each U; coincides with its Delaunay
ellipsoid Ey,. Following a common convention we will be
using the word ‘polytope’ only for bounded polyhedra.

Let A be alattice of rank n and let P C A®R be a lattice
polyhedron, i.c., the convex hull of a subset of A. Then P is
called perfect if there is an n-ellipsoid (possibly degenerate)
circumscribed about P and this ellipsoid is unique. Perfect
Delaunay polyhedra are also called extreme (e.g. [Du05]).
Perfect Delaunay polytopes are rare in small dimensions,
e.g., for n < 6 there are only three such polytopes — O for
n =0, [0, 1] for n = 1, and Gosset’s semiregular polytope
291 for n = 6. The previous method [Du05] for finding per-
fect Delaunay polytopes was based on an unproven conjec-
ture that every perfect Delaunay polytope is basic. A lattice
polytope P is called basic if there exist v, . .., v, € vert P
such that every v € vert P can be writtenas v = -, A;v;



where Ai,...,Apy1 € Zand 1 = > | A;. We know that
there exist non-basic Delaunay polytopes in higher dimen-
sions (see [DG07]) and we cannot rule out the existence of
non-basic perfect Delaunay polytopes.

The perfection property of a Delaunay polytope P with
ellipsoid £(Q, ¢, p) = {x € R" | Q[z — ¢] < p?} amounts
to that any quadratic function that vanishes on vert P is of
the form a(Q[xz — ¢] — p?) where a € R. A real-valued
quadratic function F' on R" is called perfect if armin F' =
min{F(z) | z € Z"} > 0and conv{z € Z" | F(z) =
armin F'} is a perfect Delaunay polyhedron. The ellipsoid
{zx € R"| F(z) < armin F'} is also called perfect.

Erdahl proved that the vertex set of any perfect Delaunay
polyhedron splits uniquely (up to arithmetic equivalence)
into the direct affine sum of the vertex set of a perfect Delau-
nay polytope and a sublattice which is parallel to the kernel
of Q [Er92].

Theorem 1 [Er92] A polyhedron P € Del(Z",Q) is per-
fect if and only if

PNZ"={v+z|vevertD, z €T},

where D is a perfect polytope from Del(Z™ N aff D, Q)
and I is a submodule of Z™ such that Z" is the direct sum
of modules (Z" Naff D) —(Z" Naff D) andT. If (D', T") is
another pair with these properties, then ' = T and D' =
A(D), where A is an affine automorphism of Z.".

The fundamental importance of perfect Delaunay poly-
hedra is explained by the following theorem of Erdahl
[EOO].

Theorem 2 Let D be a Delaunay polytope for 7. Then

where each P; is a perfect Delaunay polyhedron for 7" with
respect to some positive form Q; such that dimkerg Q; =
rank(kerg Q; N Z™).

For S C Z™ we define qrank S, the quadratic rank of S,
as the dimension of the space of quadratic functions on R™
that vanish on S. Let P and P; be two perfect Delaunay
polytopes for Z" such that grank(vert P Nvert P;) = 2. In
this case we call P and P, adjacent. If two perfect Delau-
nay n-polytopes P and P’ can be connected by a sequence
of perfect Delaunay n-polytopes in which every two con-
secutive members are adjacent, then we will say that P and
P’ belong to the same adjacency component. We developed
a method for finding an adjacency component for a perfect
Delaunay polytope. We have found that for each n < 8
all known perfect Delaunay n-polytopes belong to the same
adjacency component. This finding makes compelling the
following conjecture.

Conjecture 1 For any n € N all perfect Delaunay n-
polytopes belong to the same adjacency component.

2 Space of quadratic functions

Let us denote by Sym(n) the space of real symmet-
ric n X n matrices; by interpreting an element of Sym(n)
as a Gram matrix, we can regard Sym(n) as the space of
quadratic forms with real coefficients. Denote by Q(n) the
linear space of quadratic functions on R™ and by Qq(n) C
Q(n) the subspace of functions with zero constant term.
Since a quadratic function can be represented uniquely as
the sum of a quadratic form, a linear functional, and a con-
stant, it is convenient to introduce the projection operators

Quad : Q(n) — Sym(n), Lin: Q(n) — R"",

Const : Q(n) — R.

For two quadratic forms with Gram matrices A and B we
define the dot product on Sym(n) as trace(AB). For linear
functions defined by covectors a and b the dot product is just
a - b. The dot product on Qq(n) is defined as the direct sum
of the dot products on Sym(n) and R™".

The main idea of this paper is in interpreting quadratic
functions on R™ as elements of Qqp(n)*, the dual of Qq(n).
There is a natural correspondence between ellipsoids in R"
and closed (affine) halfspaces of Qg(n). Namely, if & =
{z € R" | Q[z — ¢] < p?}, then the corresponding halfs-
pace He is {X € Qo(n) | X - F > p? — Q|c]}, where F is
the quadratic function defined by F'(x) = Q[z] — 29(x, ¢).

Let D be a map from R™ into Qq(n) defined in the matrix
notation by

D:u (x—zl (uu)z +u’x),

where  and wu are treated as column vectors. Obviously,
D takes an integer vector to a quadratic function with in-
teger Gram matrix and integer linear part; such quadratic
function is called classically integer. The map D resembles
the Voronoi map V : R™ — Sym(n) that takes a vector u
to the quadratic form with Gram matrix uuT (see [RB79]
for details). Thus, we have D(u) = V(u) + u*, where u*
is linear functional dual to w. The map V can be seen as
the quadratic Veronese map from R™ to Sym(n), although
in contemporary literature the Veronese map is usually de-
fined in the projective setup. We call an ellipsoid in R™
empty if its interior is free of points of Z". If & = {x €
R"™ | Q[xz—c] < p*} is an empty ellipsoid, then H¢ contains
all of D(Z™). Thus, D(Z") C (1 He. The right

{& is empty}
hand side is the intersection of infinitely many halfspaces,

which can be replaced by the intersection of only those half-
spaces whose boundaries are completely determined by the
elements of D(Z™) that lie on them. Throughout the paper



we use conv .S to denote the convex hull of a set S C R"
and aff S to denote the minimal affine subspace containing
S.

We define the Erdahl polyhedron E(n) as the intersec-
tion of closed halfspaces Hg such that € is empty and
rank(0Hg ND(Z™)) = dim Qqp(n).

Theorem 3 The set D(Z™) coincides with D(R™)NOE(n).
Furthermore,

convD(Z") = E(n).

Proof. Each z € Z" belongs to the boundary of an empty
degenerate ellipsoid

E={zeR" | z-e1<x-2<z-e+1}.

It is easy to check that O€ is the only quadratic surface pass-
ing through Z" N 0& (or see [Er92] for a proof). Thus,
rank0He N D(Z") = dim Qp(n) and D(Z"™) C OE(n).

Let X € D(R™) N 9E(n). Then there is x € R™ with
X = D(x). Ifx ¢ Z" (for x € Z" see above), then
x =u+ ', wherew € Z" and =’ € [0, 1]™. Without loss
of generality assume that 2y ¢ Z. Then x € int £, where
& ={{z|u <z < wuy+ 1}, which means X ¢ Heg,
contradicting our choice of X. Thus, the only points of R"
that are mapped by D on 9 E(n) are elements of Z" and the
first claim of the theorem is proven.

Suppose X € E(n) and let us show X € conv D(Z").
It is enough to prove this implication for X € 9 E(n). If
X € 9E(n), then X lies on some Hg, where € is empty
and completely determined by elements of Z" that lie on its
boundary. If X ¢ convD(E N Z™), then there is a facet C
of conv D(E N Z™) such that X and the relative interior of
convD(E N Z™) lie in the different halfspaces of Hg with
respect to aff C. Let fe(xz) > 0 be an affine inequality
defining He and let go(z) = 0 be an affine equation of the
hyperplane passing through the point I (where I :  —
x” x) and aff C such that g (X) < 0. The equation of any
hyperplane in Qg (n) passing through aff C' can be written
as fe(x) + 0gc(x) = 0 for some p € R. Let us define

Om =sup{d € R | Vz € Z" f¢(D(2))+0gc(D(z)) > 0}

We claim that 6,,, > 0 and there exists u € Z™ \ E such
that

Je(D(u)) + Omge(D(u)) = 0.

The proof of these claims (which we omit due to the space
limitations) is based on standard techniques of geometry of
numbers and follows the line of argument used by Voronoi
in his first memoir [VorCol, Pages 177-179]. UJ

If an ellipsoid € is empty and OHg contains
dim Qp(n) + 1 affinely independent points, then & is
uniquely determined by the points of Z™ that lie on its

boundary: in this case € is called a perfect ellipsoid for
lattice Z™. Perfect ellipsoids were introduced by Erdahl
[Exr75, Er92]. Thus,

(| He.

E(n) = convD(Z") =
{E is perfect}

Note that E(n) is not a polyhedron in the sense of lin-
ear programming, where the number of constrains is al-
ways assumed to be finite. We will refer to the faces
of E(n) of dimension dimQq(n) — 1 as facets and the
facets of dimension dimQq(n) — 1 as faces. The facets
of E(n) correspond to perfect Delaunay polyhedra. The
bounded facets of E(n) correspond to perfect Delaunay
polytopes. Two perfect Delaunay polytopes are adja-
cent if the corresponding facets of E(n) share a bounded
ridge. Faces of E(n) correspond to Delaunay polyhedra
— bounded faces to bounded Delaunay polyhedra (poly-
topes) and unbounded faces to unbounded polyhedra. There
is a great deal of analogy between E(n) and Voronoi’s
polyhedron II(n), introduced by Venkov [Ven40] (see also
[RB79]). Recall that II(n) is defined as the convex hull
of {V(p) | p € Z™ and g.c.d.(p1,...,pn) = 1}, where
V : R™ — Sym(n,R) is the Voronoi map. The facets of
II(n) are defined by closed halfspaces corresponding to per-
fect forms, which were studied by Voronoi [VorI08] (part I).
The bounded facets of II(n) correspond to positive definite
perfect forms.

2.1 Geometry of E(n)

Denote by Af f,,(Z) the group of affine automorphisms
of Z™, i.e. the group of transformations of the form A(z) =
Lz +t, where L € GL,(Z) and t € Z™. The action of
Af frn(Z) on R™ can be naturally lifted to Qo(n) by

F s {a— F(A ' (@)},

The group Af f(Z) acts on E(n) in a way somewhat
similar to that of GL,(Z) acting on II(n). Subsets V and
V' of R™ are called arithmetically equivalent if there exists
A € Affn(Z) such that A(V) = V’. Obviously, arith-
metic equivalence preserves properties of ellipsoids such as
the Delaunay property, emptiness, and perfection. Since
there are only finitely many arithmetically distinct Delau-
nay polytopes in each dimension (e.g. [DL97]), the bound-
ary of E(n) has finitely many distinct arithmetic types of
faces. In fact, the definition of perfect ellipsoid implies that
arithmetically equivalent perfect ellipsoids are isometric.

There are beautiful connections between the polytope
E(n) and Delaunay tilings of Z™. The projection Lin :
Qo(n) — R™ maps the vertices of  E(n) onto the points
of Z™. The projection of each face of E(n) is a Delaunay
polyhedron in Del(Z", Q) for some positive quadratic form
Q. In particular, the projections of facets of E(n) are perfect
Delaunay polyhedra.



3 Algorithm

In this paper we present a practical algorithm that finds
all perfect Delaunay polytopes that belong to the adja-
cency component of a known n-dimensional perfect De-
launay polytope. Our algorithm is best explained geomet-
rically in terms of the geometry of Qq(n), although it is
easier to implement it in terms of Q(n) by representing the
closed halfspace H¢ corresponding to an empty ellipsoid
& ={x € R" | F(x) < 0} by the ray R F in Q(n).
In this dual interpretation we consider the convex hull C(n)
in Q(n) of all rays corresponding to all empty ellipsoids of
E(n). Each extreme ray of the cone C(n) is of the form
RP, where P is a perfect quadratic function. Thus, the ad-
jacency between the facets of E(n) corresponds to the adja-
cency between the extreme rays of the cone C(n), i.e., facets
of E(n) determined by perfect functions F' and F’ are ad-
jacent if an only if the rays RF and RF’ share a common
2-face of the cone C(n). The convenience of this represen-
tation for computing is much due to its homogeneity, that is,
affine transformations of R™ induce linear transformations
on Q(n).

We record our knowledge of the adjacency compo-
nent under investigation in the adjacency graph G(V, E),
where V' is the set of arithmetic types of perfect Delau-
nay polytopes and € is the set of arithmetic types of pairs
(P, P"), where P and P’ are perfect Delaunay polytopes
and grank(vert P N vert P’) = 2. Equivalently, one can
think of V" as of a set of inequivalent facets of E(n) and €
as the a set of inequivalent ridges of E(n). In the following
subsection we describe the basic step of the algorithm.

3.1 Step of the Algorithm

Let P € Del(Z™, Q) be a perfect Delaunay polytope and
let€ ={x e R" | F(x) < a, F € Qy(n)} be its empty
circumscribed ellipsoid. We regard P as a vertex of the
adjacency graph G(V, E). At each moment the algorithm
is looking at a particular vertex of this graph. First we find
a subset S of vert P with qrank S = 2. Let He = {X €
Qo(n) | F- X > a} andlet G - X = (3 be the equation of
the hyperplane in Qq(n) passing through the point I (where
I(z) = xTx) and aff D(S) such that G - D(v) < S for
all v € vert P. The equation of any hyperplane passing
through aff D(S) can be written as F'- X + pG- X = a+pf
for some p € R. Let

pm =sup{p €R | Vz € Z" F-D(2)+pG-D(z) > a+pl}.

In situations like this it is often said that the hyperplanes
{H(p)}, where

Hip) ={X|F- X +pG- X =a+pp},

hinge on the ridge aff D(S) N E(n) of the surface 9 E(n)
and that p is the hinge parameter.

It can be shown (see Theorem 3) there exists w € Z" \ P
such that

F-D(u) + pnG - D(u) > a+ pmp.

The search for w € Z" \ P such that F' - D(u) + pp,G -
D(u) > a+ pmF can be interpreted as continuous rotation
of the hyperplane H(p) from the initial position at p = 0
to the final position at p = p,, (see Figure 1). For small
values of p the hyperplane H(p) intersects with E(n) only
over the ridge aff D(S) N E(n). When p reaches the value
of p,, the rotational motion of the hyperplane is stopped by
the point D(w). S and w define a perfect quadratic function
and corresponding perfect Delaunay polyhedron. If the new
polyhedron is a polytope, we check whether it is arithmeti-
cally equivalent to any of the already discovered polytopes.
If it is a polytope distinct from the previously discovered
ones, we add it to the list of perfect n-polytopes and up-
date the adjacency graph. This procedure is similar to the
one used by Voronoi in the determination of perfect forms
in small dimensions. He referred to this procedure as the
method of continuous variation of parameters. The geomet-
ric interpretation of Voronoi’s method as that of hinging hy-
perplanes was given by Venkov [Ven40]. Later this method
was rediscovered in the context of polytopes by [CK70] and
dubbed as “gift wrapping method”.

The procedures described above paragraph are repeated
for each arithmetic class of subsets of vert P of quadratic
rank 2. When all such subsets are exhausted, we move to
another vertex of the adjacency graph G(V, E)

3.1.1 Finding p,, and ©

Let S C vert P and let qrank S = 2. Using some heuristic
we pick some z ¢ vert P with G - D(z) > ( and construct
an ellipsoid € through S and z. We find its center ¢ and
then look for the closest lattice point to ¢ in the metric de-
fined by €. This test can be done efficiently for n < 9 using
the program Lattice-CVP by Dutour (see [LCVP]). If
the closest lattice points happens to be at the same distance
from ¢ as z and S, then we declare Z™ N € the vertex set
of a perfect Delaunay polyhedron. If the interior of £ con-
tains a lattice point 2z’, then we abandon z and repeat the
computation for S and 2/, etc.

3.2 Using Symmetries in computation

Our algorithm would be impractical if we failed to use
symmetries in an efficient way. Two isomorphism problems
had to be addressed. The first is the problem of checking
whether two perfect Delaunay polytopes are arithmetically
equivalent. The second problem is finding all arithmetically



Figure 1. Going from facet conv{(1, 1), (4, 2)} to facet conv{(4,2), (9, 3)}.

inequivalent subsets S of vert P with grank S = 2. Algo-
rithms for these problems have been implemented in GAP
(some of them are available in [DuPol]) and rely on the use
of the program nauty [McKay]. See also [Du05].

3.3 Results

The graph G(V, E) constructed by the algorithm en-
codes the adjacency pattern for bounded facets of E(n).
More generally, denote by G(V, E) the graph whose ver-
tices are the arithmetic types of facets of E(n) and whose
edges are arithmetic types of pairs of facets sharing a com-
mon ridge. As of now this graph is completely known only
forn < 6. Forn = 6 G(V,E) has two vertices, which
correspond to the Gosset 6-polytope 251 and the unit slab
U. The quadratic form for the Gosset 6-polytope is E and
that for the unit slab is a rank one form (see Figure 2).

For n = 7 the discovered adjacency component of
G(V,E) has 4 vertices and that of G(V, E) has two ver-
tices (see Figure 3). The latter two vertices correspond to
the Gosset 7-polytope 321 and a polytope with 35 vertices
discovered earlier by Erdahl and Rybnikov (see [ErRyb]).

For n = 8 we have determined an adjacency component
of the restricted graph G(V, E). Below is the adjacency list

21 25
[
U

Figure 2. n = 6. left: G(V, E), right: G(V, E).

of the conjectured G(V, E) in GAP format. Note that the
graph has loops and multiple edges.

1: [1,2]

2: [2, 16], [2, 27], [2, 8], [2, 10], [2, 22], [2, 4], [2, 5], [2, 13],
[2,7], 12, 6], [2, 3], [2, 14], [2, 12], [2, 19], [2, 9], 2, 18], [2, 8],
[2, 11], [2, 15], [2, 6], [2, 11], [2, 2], [2, 17], [2, 1]

3: [3, 201, [3, 13], [3, 12], [3, 3], [3, 11], [3, 4], [3, 14], [3, 5],
[3, 15], [3, 10], [3, 6], [3, 2]

4: [4,5], [4, 6], [4, 10], [4, 22], [4, 3], [4, 2], [4, 8], [4, 14], [4, 20],
[4,19]

5: [5, 9], [5, 211, [5, 6], [5, 10], [5, 51, [5, 91, [5, 6], [5, 22], [5, 8],
[5,20], [5, 41, [5, 31, [5, 2]

6: [6, 22], [6, 10], [6, 5], [6, 4], [6, 101, [6, 3], [6, 2], [6, 9], [6, 6],
[6, 5], [6, 211, [6, 8], [6, 12], [6, 15], [6, 24], [6, 6], [6, 7], [6, 11],
[6, 2], [6, 15]

7: (7, 7], [7, 12], [7, 211, [7, 22], [7, 91, [7, 24], [7, 19], [7, 8],



35-tope 3 35-tope

Figure 3. n = 7. left: conjectured G(V, E), right: conjectured G(V, E).

[7,6],17,10], [7, 2]

8: [8, 22], [8, 21, [8, 271, [8, 8], [8, 16], [8, 81, [8, 10], [8, 20],
[8,91], 8, 61, [8, 2], [8, 51, [8, 81, [8, 41, [8, 13], [8, 12], [8, 7]

9: 9, 8], 19, 6], [9, 5], [9, 22], [9, 51, [9, 71, [9, 2], [9, 101, [9, 19],
[9, 21], [9, 23], [9, 20], [9, 22]

10: [10, 6], [10, 5], [10, 15], [10, 24], [10, 10], [10, 22], [10, 9],
[10, 12], [10, 21], [10, 7], [10, 10], [10, 10], [10, 3], [10, 2],
[10, 20], [10, 8], [10, 4], [10, 26], [10, 6], [10, 12], [10, 13],
[10, 16], [10, 16]

11: [11, 6], [11, 3], [11, 2], [11, 2]

12: [12, 10], [12, 20], [12, 3], [12, 8], [12, 10], [12, 2], [12, 7],
[12, 6], [12, 21]

13: [13, 10], [13, 20], [13, 3], [13, 8], [13, 2]

14: [14, 4], [14, 18], [14, 3], [14, 2]

15: [15, 2], [15, 6], [15, 6], [15, 3], [15, 10], [15, 21]

16: [16, 8], [16, 2], [16, 27], [16, 20], [16, 10], [16, 10],

17: [17, 2]

18: [18, 19], [18, 2], [18, 14]

19: [19, 9], [19, 7], [19, 2], [19, 4], [19, 20], [19, 18], [19, 25]
20: [20, 16], [20, 22], [20, 9], [20, 5], [20, 19], [20, 4], [20, 20],
[20, 12], [20, 3], [20, 13], [20, 10], [20, 8]

21: [21, 7], [21, 12], [21, 24], [21, 21], [21, 22], [21, 15], [21, 5],
[21, 9], [21, 23], [21, 26], [21, 6], [21, 10]

22: [22, 22], [22, 2], [22, 8], [22, 6], [22, 27], [22, 9], [22, 7],
[22, 4], [22, 5], [22, 10], [22, 9], [22, 22], [22, 21], [22, 20],

23: [23, 9], [23, 21], [23, 25]

24: [24, 6], [24, 21], [24, 7], [24, 10]

25: [25, 23], [25, 19]

26: [26, 10], [26, 21]

27: 27, 81, [27, 221, [27, 161, [27, 2]

The numbers of vertices correspond to the numbers of
polytopes in [DuErRy] where a complete analysis of exist-
ing data on perfect Delaunay polyhedra for n < 8 is given.

In practice the algorithm often encounters perfect ellip-
soids equivalent to the unit slab, i.e., to the set 0 < x7 < 1.
For n € {6,7,8} we know that any perfect polyhedron ad-
jacent to the unit slab is either a unit slab or the product of
Gosset’s 6-polytope 22; and R"~®. However, for n > 6
other unbounded perfect polyhedra appear, such as e.g. the
product of 251 and R? for n = 8. We are not able, at
the present, to comprehensively handle all subsets .S with
grank S = 2 for such polyhedra. That is why we cannot
formally claim that our results for n = 7, 8 are complete.

4 Discussion

The new method has many advantages over the one of
[Du05]:

1. Unlike the previous methods (see e.g. [Du05]), the
new method uses the full symmetry group of P. In
particular, the use of the full symmetry group of P
allows us to use the Recursive Adjacency Decompo-
sition Method of [BDS07] to terminate computations.
The termination problem is an important one. Previ-
ous methods did not have a satisfactory solutions to
the termination problem.

2. Previous methods had to select an affine basis for each
perfect Delaunay polytope. We do not know if it is
possible to find an affine basis for every perfect De-
launay polytope. The method of this paper does not
require this assumption.

3. Our method is no longer reduced to basic Delaunay
polytopes. We know that there exist non-basic Delau-
nay polytopes (see [DG07]) and we cannot exclude the
possibility that there exist non-basic perfect Delaunay
polytopes.

4. The new method has found all presently known 8-
dimensional perfect Delaunay polytopes. The method
of [Du05] run in dimension 8 does not find some
of these polytopes — they were found as sections of
higher-dimensional perfect Delaunay polytopes ob-
tained earlier by the old method; however, these sec-
tions were found by a heuristic approach without any
guarantee of completeness. On the other hand, if Con-
jecture 1 is true, then the new algorithm has provably
found all perfect Delaunay n-polytopes for n < 8. We
expect that running the new algorithm for n = 9,10
will uncover previously unknown perfect polytopes in
these dimensions.

Our method cannot deal at present with unbounded perfect
Delaunay polyhedra. When a perfect polyhedron P is un-
bounded, but not equivalent to the unit slab, it is difficult



to find all equivalence classes of its vertex subsets corre-
sponding to the ridges of E(n). For this reason we cannot
guarantee that our algorithm has found all perfect ellipsoids
in dimensions 7 and 8.
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