Assume all solutions are aqueous at 25°C. $K_w = 1.0 \times 10^{-14}$

1. Which of the following sparingly soluble salts will be more soluble in acid than in water? Circle your choice(s). (10 pts)

a) AgBr

(b) PbSO₄ (c) BaCO₃ d) Hg₂I₂

2. The solubility product for CaF_2 at 25°C is 1.5 × 10-10 . Will a precipitate of calcium fluoride form if 10.00 mL of 0.00150 M Ca(NO₃)₂ is added to 20.00 mL of 0.0250M KF? Clearly show your calculations and method and explain your reasoning. (10 pts)

Cafais = Catago +2Frago

[Ca2+] = 10,00mL (,00150M) = 5.00 X10 M

[F-] = 20,00ml (,0250M) = 1,67X10 M

Kgp = [Ca27[F] = 1.5 x1000

Q = (5.00 × 104)(1.67 × 102)² = 1.39 × 10⁻⁷

Lince O> Ksp, a precipitate will
form.

3. The oxidation state of Cr in $Cr_2O_7^{2-}$ is: +6 (4 pts)

The oxidation state of C in CO_3^{2-} is: ______ 44__ (4 pts

4. What element is being oxidized in the following redox reaction? (2 pts)

$$^{+7}$$
 $^{+3}$ $^{+4}$ MnO₄- (aq) + H₂C₂O₄(aq) \rightarrow Mn²+(aq) + CO₂(g)

is oxidized; Mn is reduced

5. Balance the following redox reaction if it occurs in acidic solution. Show your method. (10 pts)

$$MnO4^{-}$$
 (aq) + $H_2C_2O_4$ (aq) \rightarrow Mn^{2+} (aq) + CO_2 (g)

$$5(aC^{+3} \longrightarrow aC^{+4} + 2e^{-})$$

2 Mn+7 +10x ->2 mn+2

100+3 -> 10C+4 +10e-

2mn+7 +10c+3 > 10c+4 +2m,+2

64++2 MnO4 + 5H2GO4 > 10CO2 + 2Mn+2 -2

+8H20

Check 2 Mn 2

100 10

16H 16

28 0 28