Igneous Rocks - Occurrence and Classification

Classification of Igneous Rocks

Rocks are classified on the basis of

- Texture
- Mineralogy

Very fine-grained or glassy rocks are classified on the basis of chemistry

Silica		Grain Size				
Content of Magma	Resulting Volcanic Rock	s	Resulting Plutonic Rocks			
High (≈ 70%–75%)	Rhyolite lies at th felsic, high-silica end of the scale and consists largely of quartz and feldspars. It i usually pale, rang ing from nearly white to shades o gray, yellow, red, or lavender.		Granite, the plu- tonic equivalent of rhyolite, is common because felsic mag- mas usually crystal- lize before they reach the surface. It is found most often in continental crust, especially in the cores of moun- tain ranges.			
Intermediate (≈ 60%)	Andesite is an intermediate- silica rocks, with lots of feldspar mixed with darker mafic min- erals, such as am phibole or pyrox- ene. It is usually light to dark gray, purple, or green.		Diorite is the plu- tonic equivalent of andesite, an intermediate-silica rock.			
Low (≈ 45%–50%)	Basalt, a mafic rock, is dominant in oceanic crust and the most common igneous rock on Earth. Large, low-viscos ity lava flows from shield volcanoes and fissures are usually basaltic. Dark-colored pyrn it a dark gray, da	bxene and olivine give rk green, or black color.	Gabbro is the plu- tonic equivalent of basalt, a low-silica rock.			

Mode of Occurrence of Igneous Rocks

Extrusive igneous rocks – fine-grained or glassy

- Lava flows
- Volcanoes

Intrusive igneous rocks – medium to coarse-grained

- Hypabyssal transitional between fine- and coarse-grained. Often porphyritic.
- Plutonic coarse-grained

Physical Properties and Behavior of

Various Types of Magmas

Magma type	Basaltic	Andesitic	Dacitic	Rhyolitic
SiO ₂ (wt. %)	50.83	54.20	63.58	73.66
Eruptive T (°C)	1150	1000	900	800
Viscosity (Pa s)	50	1 x 10 ³	4 x 10 ³	4 x 10 ⁸
Eruptive behavior	Fluid —			Explosive

Magma Viscosity

Table 8.1 Viscosities of magmas and common substances.

Material	Viscosity (Pa·s)	Weight % SiO_2	Temp. (°C)
Water	1.002×10^{-3}	. <u> </u>	20
ASE 30 motor oil	2×10^{-1}	-	20
Kimberlite	$10^{-1} - 1$	30-35	~1000
Komatiite	$10^{-1} - 10$	40-45	1400
Ketchup	~5 × 10	-	20
Basalt	$10 - 10^2$	45-52	1200
Peanut butter	$\sim 2.5 \times 10^{2}$	-	20
Crisco shortening	2×10^{3}	-	20
Andesite	$\sim 3.5 \times 10^{3}$	~58-62	1200
Silly Putty	$\sim 10^{4}$		
Tonalite 6% H ₂ O	~104	65	950
Rhyolite	~10 ⁵	~73-77	1200
Granite 6% H ₂ O	~10 ⁵	75	750
Rhyolite	~108	~73-77	800
Average mantle	10 ²¹	-	-

Note: Magma viscosities from Dingwell (1995) and references therein. Granite and Tonalite viscosities from Petford (2003). Mantle viscosity is from King (1995).

Lava Flows and Columnar Joints

Types of volcanic eruptions

- Hawaiian fluid basaltic lava is thrown into the air in jets from a vent or line of vents (a fissure) at the summit or on the flank of a volcano.
- Strombolian distinct bursts of fluid lava (usually basalt or basaltic andesite) from the mouth of a magma-filled summit conduit.
- Vulcanian short, violent, relatively small explosion of viscous magma (usually andesite, dacite, or rhyolite).
- Pelean explosive outbursts that generate pyroclastic flows, dense mixtures of hot volcanic fragments and gas.
- Plinian caused by the fragmentation of gassy magma, and are usually associated with very viscous magmas (dacite and rhyolite).

VEI	Ejecta volume	Classification	Description	Plume	Frequency	Examples	Occurrences in last 10,000 years*
0	< 10,000 m ^s	Hawaiian	effusive	< 100 m	constant	Kilauea, Piton de la Fournaise	many
1	> 10,000 m ^s	Hawaiian/Strombolian	gentle	100– 1000 m	daily	Stromboli, Nyiragongo (2002)	many
2	> 1,000,000 m ^s	Strombolian/Vulcanian	explosive	1–5 km	wee <mark>k</mark> ly	Galeras (1993), Mount Sinabung (2010)	3477*
3	> 10,000,000 m ^s	Vulcanian/Peléan	severe	3–15 km	few months	Nevado del Ruiz (1985), Soufrière Hills (1995)	868
4	> 0.1 km ^s	Peléan/Plinian	cataclysmic	10–25 km	≥ 1 yr	Mount Pelée (1902), Eyjafjallajökull (2010)	421
5	> 1 km²	Plinian	paroxysmal	20–35 km	≥ 10 yrs	Mount Vesuvius (79 CE), Mount St. Helens (1980)	166
6	> 10 km²	Plinian/Ultra-Plinian	colossal	> 30 km	≥ 100 yrs	Krakatoa (1883), Mount Pinatubo (1991)	51
y.	> 100 km³	Ultra-Plinian	super- colossal	> 40 km	≥ 1,000 yrs	Thera (Minoan Eruption), Tambora (1815)	5 (+2 suspected)
8	> 1,000 km ^s	Supervolcanic	mega- colossal	> 50 km	≥ 10,000 yrs	Yellowstone (640,000 BP), Toba (74,000 BP)	0

Tephra – volcanic ash (< 2mm)

Lapilli – 2 to 64 mm

Bombs - >64 mm. Bombs form a cow pancake on landing

Shield Volcanoes

Mauna Kea

Mauna Loa

Jökulhlaup - glacial outburst flood. Generally, large and abrupt release of water from a subglacial or proglacial lake/reservoir.

Composite Volcano (Strato-volcano)

Shallow intrusive igneous bodies

Dikes – tabular intrusions that cross-cut existing layering (discordant)

Sills – tablular intrusions that are parallel to existing layering (concordant)

Salisbury Crags – Arthur's Seat

Palisades Sill

Sandstone

plag-amphibole layer (diorite)

plag-pyroxene layer (gabbro)

olivine-pyroxene layer (peridotite)

Sandstone

Ring dikes and cone sheets

Dikes are intruded by magma fracturing and sills involve lifting of the overlying rock (bouyancy). These are hypabyssal intrusions and imply that the crust showed brittle behavior.

Laccolith – domes up overlying strata – concordant intrusion

Lopolith

Batholith > 100 km² Stock < 100 km²

Batholiths are everywhere

Formation of Igneous Rocks

Earth's heat production

A 2- to 4-fold decrease from the Archean to now

Divergent plate boundary Convergent plate boundary

The Subduction Zone Factory

Why do rocks melt?

- Increasing temperature
- Decreasing pressure
- Adding water

Types of Mantle rocks

- Plagioclase lherzolite
- Spinel lherzolite
- Garnet lherzolite

Lherzolite \implies olivine > orthopyroxene > Ca-pyroxene > aluminous phase

Exsolution of magmatic gases and explosive volcanism

