ENVI.2010 – Systems I: Surface and Groundwater

The largest reservoir in the hydrologic cycle is the ocean

- Contains more than 97.5% of Earth's water
- Most of the water in the hydrologic cycle is saline, and not usable by humans

The largest reservoir of fresh water is the polar ice sheets

- Contain 74% of the Earth's fresh water

The largest reservoir of unfrozen fresh water is groundwater

Surface Water

Drainage patterns

The Hydrologic Budget

 $(P + GW_{in} + SW_{in}) - (E + ET) = (\Delta SW + \Delta GW + \Delta SM)$ \leftarrow inflows \rightarrow \leftarrow outflows \rightarrow \leftarrow change in storage \rightarrow where:

P is precipitation as rain or snow,

 GW_{in} is ground-water inflow volume,

SWin is surface-water inflow volume,

E is open-water evaporation,

ET is evapotranspiration from emergent vegetation,

 ΔSW is change in standing volume of surface water,

 ΔGW is change in ground-water volume of the saturated zone, and

ΔSM is change in ground-water volume of the unsaturated zone.

Stream capture

Waterfall formation

Reynolds Number Laminar versus turbulent flow

$$Re = \frac{\rho_w \nu R}{\mu}$$

 $P_{w} = \text{density of water (1000 kg/m^{3})}$ v = velocity (m/s) R = hydraulic radius (m) $\mu = \text{dynamic viscosity (for water at 20^{\circ}C)}$ $= 1.002 \text{ x } 10^{-3} \text{ Pa s)}$

	Reynolds Number		
Laminar flow	<2000		
Unstable flow	2000 - 4000		
Turbulent flow	>4000		

Bedform stability diagram

This bedform stability diagram indicates the bedform that will occur for a given grain size and velocity and has been constructed from experimental data.

Two general flow regimes are recognised: a lower flow regime in which s ripples, dunes and lower plane beds are stable and an upper flow regime where plane beds and antidunes form.

A bedform stability diagram which shows how the type of bedform that is stable varies with both the grain size of the sediment and the velocity of the flow.

Stream discharge and Velocity

Stream profiles, discharge, and stream maturity

Stream behavior is controlled by 5 basic factors

- 1. Average channel width and depth
- 2. Channel gradient
- 3. Average water velocity
- 4. Discharge
- 5. Sediment load

All streams experience a continuous interplay among these factors

Meandering River

Braided River

- The size of clasts a stream can transport is mainly related to velocity
- The size of clasts decreases downstream from the rocky headwaters
- A stream's load consists of three parts
 - Bed load
 - 5-50% of total sediment load
 - Move by rolling, sliding, or saltation
 - Suspended load
 - Particles of silt and clay provide the muddy character of many streams
 - Dissolved load
 - Comprised primarily of 7 ions
 - Bicarbonate, calcium, sulfate, chloride, sodium, magnesium, and potassium

Streams form three major depositional landforms

Floodplain: deposition of fine sediment beyond natural levees during a flood

Alluvial fan: a fan-shaped body of alluvium at the base of an upland area

Delta: triangular shaped deposit formed when a stream enters the standing water of a sea or lake

Continental Divides

Flooding and Flood control

Channelization

Dams

Levees

5

L - Wall Height 9 ft

2

H - Pile Length 92 ft

Splash Pad

AFTER

Sheet Pile Length 54 ft

H - Pile Length 92 ft

Sheet Pile Elevation -45 ft

Lakes

Lentic Ecosystems

In temperate regions, lakes often become thermally stratified during summer and again in winter

During spring and fall, the entire body of water approaches the same temperature, mixing occurs, occurs. Blooms of phytoplankton's often follow these turnovers, as nutrients from the bottom become available in the photic zone. Photic zone is the lighted portion of a lake inhabited by phytoplankton

Seasonal thermal structure of lakes as a function of latitude

*Warm water is less dense than cold water. *Fresh water is less dense than saline water.

Why do we care about the seasonal variation in temperature = Eutrophication

Groundwater

Porosity and permeability

Darcy's Law

Groundwater Recharge

Artesian Aquifer

Typical New England Aquifer

Cone of depression in a confined aquifer and effective stress

Resource sustainability – withdrawals from the High Plains aquifer

Salt water incursion

Springs

Sinkholes

Caves

Caves: subsurface cavities formed by dissolution of rock

Steps in the Formation of Caves

- 1. Extensive chemical weathering Requirements:

 - a. Abundant groundwater b. Soluble bedrock (limestone) ((gypsum))
- 2. Lowering of water table (for an air-filled cave)

3. Formation of cave deposits

Water Stress Indicator

Water Stress Indicator: Withdrawal-to-Availability Ratio

No Stress	Low Stress	Mid Stress	High Stress	Very High Stress	
0	0.1	0.2	0.4	0.8	

Water use worldwide

What if developing countries follow their developed counterparts?

Water use in the home

3%

Agriculture 67%

Safe Drinking Water Act - Protecting America's Public Health

EPA Regulated drinking water contaminants