## Earth Materials I <br> Crystal Structures





Isotopes - same atomic number, different numbers of neutrons, different atomic mass.


Table 1-1. Su mmary of quantu m numbers

| Name | Symbol | Values |
| :--- | :---: | :--- |
| Principal | n | $1,2,3, \ldots$, 划 |
| Azimuthal | l | $\mathrm{n}-1, \mathrm{n}-2, \mathrm{n}-3, \ldots, 0$ |
| Magnetic | m | $0, \pm 1, \pm 2, \ldots, \pm(\mathrm{l}-1), \pm \mathrm{l}$ |
| Spin | s | $\pm 1 / 2$ |











Shape of various electron orbitals. From Brownlow (1996).

Table 4.6 Summary of the three quantum numbers.

| Principal quantum number, $n$ (shell) | Azimuthal quantum number, I (subshell) | Subshell designation | Magnetic quantum number, $m$ | Number of orbitals in subshell | Maximum number of electrons |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (K) | 0 | $1 s$ | 0 | 1 | 2 |
| 2 (L) | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 2 s \\ & 2 p \end{aligned}$ | $\begin{aligned} & 0 \\ & -1,0,+1 \end{aligned}$ | $3$ | $\left.{ }_{2}^{2}\right\}^{4} 8$ |
| 3 (M) | $2$ | $\begin{aligned} & 3 s \\ & 3 p \\ & 3 d \end{aligned}$ | $\begin{aligned} & 0 \\ & -1,0,+1 \\ & -2,-1,0,+1,+2 \end{aligned}$ | $\begin{aligned} & 3 \\ & 5 \end{aligned}$ | $\left.\begin{array}{l} 2 \\ 6 \\ 10 \end{array}\right\} 18$ |
| 4 (N) | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 4 s \\ & 4 p \\ & 4 d \\ & 4 f \end{aligned}$ | $\begin{aligned} & 0 \\ & -1,0,+1 \\ & -2,-1,0,+1,+2 \\ & -3,-2,-1,0,+1,+2,+3 \end{aligned}$ | $3$ | $\left.\begin{array}{c} 2 \\ 6 \\ 10 \\ 14 \end{array}\right\} 32$ |

Table 4.7 Electron configurations of atoms with atomic number 1-54.

| Shell |  | K | L |  | M |  |  | N |  |  |  | 0 |  |  |  |  | P |  | Q |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elem |  | 1 s | 2 s | $2 p$ | 3 s | $3 p$ | $3 d$ | $4 s$ | $4 p$ | $4 d$ | $4 f$ | $5 s$ | 5p | 5d | $5 f$ | 5 g | $6 s$ | $6 p$ | 6 d | 7s |
| $1 .$ $2 .$ | H He | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3. <br> 4. <br> 5. <br> 6. <br> 7. <br> 8. <br> 9. <br> 10. | Li Be B C N O F Ne | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11. <br> 12. <br> 13. <br> 14. <br> 15. <br> 16. <br> 17. <br> 18. | Na <br> Mg <br> Al <br> Si <br> P <br> S <br> Cl <br> Ar | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19. <br> 20. <br> 21. <br> 22. <br> 23. <br> 24. <br> 25. <br> 26. <br> 27. <br> 28. | K <br> Ca <br> Sc <br> Ti <br> V <br> Cr <br> Mn <br> Fe <br> Co <br> Ni | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$ | 2 2 2 2 1 2 2 2 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| 29. <br> 30. <br> 31. <br> 32. <br> 33. <br> 34. <br> 35. <br> 36. | Cu <br> Zn <br> Ga <br> Ge <br> As <br> Se <br> Br <br> Kr | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ | 1 2 2 2 2 2 2 2 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
| 37. <br> 38. <br> 39. <br> 40. <br> 41. <br> 42. <br> 43. <br> 44. <br> 45. <br> 46. | Rb <br> Sr <br> Y <br> Zr <br> Nb <br> Mo <br> Tc <br> Ru <br> Rh <br> Pd | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ | 2 2 2 2 2 2 2 2 2 2 2 | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{gathered} 1 \\ 2 \\ 4 \\ 4 \\ 5 \\ 5 \\ 7 \\ 8 \\ 10 \end{gathered}$ |  | 2 2 2 1 1 2 1 1 |  |  |  |  |  |  |  |  |
| 47. <br> 48. <br> 49. <br> 50. <br> 51. <br> 52. <br> 53. <br> 54. | $\begin{aligned} & \mathrm{Ag} \\ & \mathrm{Cd} \\ & \mathrm{In} \\ & \mathrm{Sn} \\ & \mathrm{Sb} \\ & \mathrm{Te} \\ & \mathrm{I} \\ & \mathrm{Xe} \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$ | 2 2 2 2 2 2 2 2 2 | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ |  | 2 2 2 2 2 2 2 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |



Variation of energy levels for the various subshells as a function of atomic number. From Brownlow (1996).

| $\mathrm{H}^{1}$ |  | Periodic Table of the Elements |  |  |  |  |  |  |  |  |  | (C) www.elementsdatabase.com |  |  |  |  | $\mathrm{He}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Li ${ }^{3}$ | $\mathrm{Be}^{4}$ | $\square$ hydrogen poor metals <br> $\square$ alkali metals $\square$ nonmetals <br> $\square$ alkali earth metals $\square$ noble gases <br> $\square$ transition metals $\square$ rare earth metals |  |  |  |  |  |  |  |  |  | $B^{5}$ | $C^{6}$ | $N^{7}$ | $0^{8}$ | $F^{9}$ | $\mathrm{Ne}^{10}$ |
| $\mathrm{Na}^{11}$ | $\mathrm{Mg}^{12}$ |  |  |  |  |  |  |  |  |  |  | $\mathrm{Al}^{13}$ | $\mathrm{Si}^{14}$ | $P^{15}$ | $S^{16}$ | $\mathrm{Cl}^{17}$ | $\mathrm{Ar}^{18}$ |
| $K^{19}$ | $\mathrm{Ca}^{20}$ | $\mathrm{Sc}^{21}$ | $\mathrm{Ti}^{22}$ | $\mathrm{V}^{23}$ | $\mathrm{Cr}^{24}$ | $\mathrm{Mn}^{25}$ | $\mathrm{Fe}^{26}$ | $\mathrm{Co}^{27}$ | $\mathrm{Ni}^{28}$ | $\mathrm{Cu}^{29}$ | $\mathrm{Zn}^{30}$ | $\mathrm{Ga}^{31}$ | $\mathrm{Ge}^{32}$ | $\begin{aligned} & 33 \\ & \mathrm{As}^{3} \end{aligned}$ | $\mathrm{Se}^{34}$ | $\mathrm{Br}^{35}$ | $\mathrm{Kr}^{36}$ |
| $\mathrm{Rb}^{37}$ | $\mathrm{Sr}^{38}$ | $Y^{39}$ | $\mathrm{Zr}^{40}$ | $\mathrm{Nb}^{41}$ | $\mathrm{Mo}^{42}$ | Tc ${ }^{43}$ | $\begin{gathered} 44 \\ \mathrm{Ru} \end{gathered}$ | $\mathrm{Rh}^{45}$ | $\mathrm{Pd}^{46}$ | $\mathrm{Ag}^{47}$ | $\mathrm{Cd}^{48}$ | $1 n^{49}$ | Sn ${ }^{50}$ | $\mathrm{Sb}^{51}$ | Te | $1^{53}$ | $\times \mathrm{P}^{54}$ |
| $\mathrm{Cs}^{55}$ | $\mathrm{Ba}^{56}$ | $\mathrm{La}^{57}$ | $\mathrm{Hf}^{72}$ | $\mathrm{Ta}^{73}$ | $W^{74}$ | $\mathrm{Re}^{75}$ | $\mathrm{Os}^{76}$ | $\mathrm{Ir}^{77}$ | $\mathrm{Pt}^{78}$ | $\mathrm{Au}^{79}$ | $\mathrm{Hg}^{80}$ | T1 ${ }^{81}$ | $\mathrm{Pb}^{82}$ | $\mathrm{Bi}^{83}$ | $\begin{gathered} 84 \\ \mathrm{PO}^{8} \end{gathered}$ | $\mathrm{At}^{85}$ | $\mathrm{Rn}^{86}$ |
| $\begin{gathered} 87 \\ \mathrm{Fr}^{27} \end{gathered}$ | Ra ${ }_{\text {88 }}$ | Ac 8 | Unq 104 | $\begin{array}{\|c\|} \hline 105 \\ \text { Unp } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 106 \\ \hline \text { Unh } \end{array}$ | $\begin{array}{\|c\|} \hline 107 \\ \hline \text { Uns } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 108 \\ \hline \text { Uno } \\ \hline \end{array}$ | Une | Unn |  |  |  |  |  |  |  |  |


| Ce | Pr ${ }^{59}$ | $\mathrm{Nd}^{60}$ | Pm ${ }^{61}$ | $\mathrm{Sm}^{62}$ | Eu | Gd ${ }^{64}$ | Tb | Dy | Ho | Er | Tm | $\mathrm{Yb}^{70}$ | Lu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Th ${ }^{90}$ | Pa | U | Np ${ }^{93}$ | $\mathrm{Pu}^{94}$ | $\mathrm{Am}_{9}^{95}$ | $\mathrm{Cm}^{96}$ | $B^{97}$ | $\mathrm{Cf}^{98}$ | $E s^{99}$ | Fm | $\begin{array}{r} 101 \\ \mathrm{Md} \end{array}$ | No | 103 |

## Formation of Covalent Bonds

## Oxygen atom Carbon atom Oxygen atom



Carbon dioxide molecule $\left(\mathrm{CO}_{2}\right)$

## Ionic Bonding



NaCl crystal
(b)


## van der Waals Bonding



## Hydrogen Bonding



Negative side


Table 7-2. Electronegativities

| Z | Ion | Electro- <br> negativity | Z | $\mathrm{Ion}^{5}$ | Electro- <br> negativity | Z |  | Electro- <br> negativity |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathrm{H}^{+}$ | 2.20 | 33 | $\mathrm{As}^{5+}$ | 2.18 | 65 | $\mathrm{Dy}^{3+}$ | 1.22 |
| 3 | $\mathrm{Li}^{+}$ | 0.98 | 34 | $\mathrm{Se}^{2-}$ | 2.55 | 67 | $\mathrm{Ho}^{3+}$ | 1.23 |
| 4 | $\mathrm{Be}^{2+}$ | 1.57 | 35 | $\mathrm{Br}^{-}$ | 2.96 | 68 | $\mathrm{Er}^{3+}$ | 1.24 |
| 5 | $\mathrm{~B}^{3+}$ | 2.04 | 37 | $\mathrm{Rb}^{+}$ | 0.82 | 69 | $\mathrm{Tm}^{3+}$ | 1.25 |
| 6 | $\mathrm{C}^{4+}$ | 2.55 | 38 | $\mathrm{Sr}^{2+}$ | 0.95 | 70 | $\mathrm{Yb}^{3+}$ | --- |
| 7 | $\mathrm{~N}^{5+}$ | 3.04 | 39 | $\mathrm{Y}^{3+}$ | 1.22 | 71 | $\mathrm{Lu}^{3+}$ | 1.0 |
| 8 | $\mathrm{O}^{2-}$ | 3.44 | 40 | $\mathrm{Zr}^{4+}$ | 1.33 | 72 | $\mathrm{Hf}^{4+}$ | 1.3 |
| 9 | $\mathrm{~F}^{-}$ | 3.98 | 41 | $\mathrm{Nb}^{5+}$ | 1.6 | 73 | $\mathrm{Ta}^{5+}$ | 1.5 |
| 11 | $\mathrm{Na}^{+}$ | 0.93 | 42 | $\mathrm{Mo}^{6+}$ | 2.16 | 74 | $\mathrm{~W}^{6+}$ | 1.7 |
| 12 | $\mathrm{Mg}^{2+}$ | 1.31 | 43 | $\mathrm{Tc}^{2+}$ | 2.10 | 75 | $\mathrm{Re}^{7+}$ | 1.9 |
| 13 | $\mathrm{Al}^{3+}$ | 1.61 | 44 | $\mathrm{Ru}^{2+}$ | 2.2 | 76 | $\mathrm{Os}^{6+}$ | 2.2 |
| 14 | $\mathrm{Si}^{4+}$ | 1.90 | 45 | $\mathrm{Rh}^{2+}$ | 2.28 | 77 | $\mathrm{Ir}^{6+}$ | 2.2 |
| 15 | $\mathrm{P}^{5+}$ | 2.19 | 46 | $\mathrm{Pd}^{2+}$ | 2.20 | 78 | $\mathrm{Pt}^{4+}$ | 2.2 |
| 16 | $\mathrm{~S}^{2+}$ | 2.58 | 47 | $\mathrm{Ag}^{+}$ | 1.93 | 79 | $\mathrm{Au}^{+}$ | 2.4 |
| 17 | $\mathrm{Cl}^{+}$ | 3.16 | 48 | $\mathrm{Cd}^{2+}$ | 1.69 | 80 | $\mathrm{Hg}^{2+}$ | 1.9 |
| 19 | $\mathrm{~K}^{+}$ | 0.82 | 49 | $\mathrm{In}^{3+}$ | 1.78 | 81 | $\mathrm{Tl}^{3+}$ | 1.8 |
| 20 | $\mathrm{Ca}^{2+}$ | 1.00 | 50 | $\mathrm{Sn}^{2+}$ | 1.96 | 82 | $\mathrm{~Pb}^{2+}$ | 1.8 |
| 21 | $\mathrm{Sc}^{3+}$ | 1.36 | 51 | $\mathrm{Sb}^{5+}$ | 2.05 | 83 | $\mathrm{Bi}^{3+}$ | 1.9 |
| 22 | $\mathrm{Ti}^{4+}$ | 1.54 | 52 | $\mathrm{Te}^{2-}$ | 2.1 | 84 | $\mathrm{Po}^{4+}$ | 2.0 |
| 23 | $\mathrm{~V}^{3+}$ | 1.63 | 53 | $\mathrm{I}^{4+}$ | 2.66 | 85 | $\mathrm{At}^{5+}$ | 2.2 |
| 24 | $\mathrm{Cr}^{3+}$ | 1.66 | 55 | $\mathrm{Cs}^{+}$ | 0.79 | 87 | $\mathrm{Fr}^{+}$ | 0.7 |
| 25 | $\mathrm{Mn}^{2+}$ | 1.55 | 56 | $\mathrm{Ba}^{2+}$ | 0.89 | 88 | $\mathrm{Ra}^{2+}$ | 0.9 |
| 26 | $\mathrm{Fe}^{2+}$ | 1.83 | 57 | $\mathrm{La}^{3+}$ | 1.10 | 89 | $\mathrm{Ac}^{3+}$ | 1.1 |
| 27 | $\mathrm{Co}^{2+}$ | 1.88 | 58 | $\mathrm{Ce}^{3+}$ | 1.12 | 90 | $\mathrm{Th}^{4+}$ | 1.3 |
| 28 | $\mathrm{Ni}^{2+}$ | 1.91 | 59 | $\mathrm{Pr}^{3+}$ | 1.13 | 91 | $\mathrm{~Pa}^{4+}$ | 1.5 |
| 29 | $\mathrm{Cu}^{+}$ | 1.90 | 60 | $\mathrm{Nd}^{3+}$ | 1.14 | 92 | $\mathrm{U}^{6+}$ | 1.7 |
| 30 | $\mathrm{Zn}^{2+}$ | 1.65 | 62 | $\mathrm{Sm}^{3+}$ | 1.17 | 93 | $\mathrm{Nr}^{3+}$ | 1.3 |
| 31 | $\mathrm{Ga}^{3+}$ | 1.81 | 64 | $\mathrm{Gd}^{3+}$ | 1.20 | 94 | $\mathrm{Pu}^{4+}$ | 1.3 |
| 32 | $\mathrm{Ge}^{4+}$ | 2.01 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Increasing electronegativity


Table 7-3. Percent ionic character of a single chemical bond

| Difference in <br> electronegativity | Ionic <br> character, \% | Difference in <br> electronegativity | Ionic <br> character, \% |
| :---: | :---: | :---: | :---: |
| 0.1 | 0.5 | 1.7 | 51 |
| 0.2 | 1 | 1.8 | 55 |
| 0.3 | 2 | 1.9 | 59 |
| 0.4 | 4 | 2.0 | 63 |
| 0.5 | 6 | 2.1 | 67 |
| 0.6 | 9 | 2.2 | 70 |
| 0.7 | 12 | 2.3 | 74 |
| 0.8 | 15 | 2.4 | 76 |
| 0.9 | 19 | 2.5 | 79 |
| 1.0 | 22 | 2.6 | 82 |
| 1.1 | 26 | 2.7 | 84 |
| 1.2 | 30 | 2.8 | 86 |
| 1.3 | 34 | 2.9 | 88 |
| 1.4 | 39 | 3.0 | 89 |
| 1.5 | 43 | 3.1 | 91 |
| 1.6 | 47 | 3.2 | 92 |

Table 4.1 The 29 most common, naturally occurring elements and their common ionic states.

| Atomic <br> number | Element | Ion | Atomic <br> number | Element | Ion |
| :---: | :--- | :--- | :---: | :--- | :--- |
| 3 | Lithium | $\mathrm{Li}^{+}$ | 24 | Chromium | $\mathrm{Cr}^{3+}$ |
| 4 | Beryllium | $\mathrm{Be}^{2+}$ | 25 | Manganese | $\mathrm{Mn}^{2+}$ |
| 5 | Boron | $\mathrm{B}^{3+}$ |  |  | $\mathrm{Mn}^{4+}$ |
| 6 | Carbon | $\mathrm{C}^{4+}$ | 26 | Iron | $\mathrm{Fe}^{2+}$ |
| 8 | Oxygen | $\mathrm{O}^{2-}$ |  |  | $\mathrm{Fe}^{3+}$ |
| 9 | Fluorine | $\mathrm{F}^{-}$ | 27 | Cobalt | $\mathrm{Co}^{2+}$ |
| 11 | Sodium | $\mathrm{Na}^{+}$ | 28 | Nickel | $\mathrm{Ni}^{2+}$ |
| 12 | Magnesium | $\mathrm{Mg}^{2+}$ | 29 | Copper | $\mathrm{Cu}^{+}$ |
| 13 | Aluminum | $\mathrm{Al}^{3+}$ |  |  | $\mathrm{Cu}^{2+}$ |
| 14 | Silicon | $\mathrm{Si}^{4+}$ | 30 | Zinc | $\mathrm{Zn}^{2+}$ |
| 15 | Phosphorus | $\mathrm{P}^{5+}$ | 38 | Strontium | $\mathrm{Sr}^{2+}$ |
| 16 | Sulfur | $\mathrm{S}^{2-}$ | 40 | Zirconium | $\mathrm{Zr}^{4+}$ |
| 17 | Chlorine | $\mathrm{S}^{6+}$ | 47 | Silver | $\mathrm{Cl}^{+}$ |
| 19 | Potassium | $\mathrm{Kl}^{+}$ | 56 | Barium | $\mathrm{Ba}^{2+}$ |
| 20 | Calcium | $\mathrm{Ca}^{2+}$ | 92 | Lead | $\mathrm{Pb}^{2+}$ |
| 22 | Titanium | $\mathrm{Ti}^{4+}$ |  |  | Uranium |
| $\mathrm{U}^{4+}$ |  |  |  |  |  |


\section*{Table 4.2 Thirteen of the most common elements (exclusive of hydrogen) that make up $99 \%$ of the Earth's crust. <br> | O | Ti |
| :--- | :--- |
| K | Al |
| Na | Si |
| Ca | P |
| Mn | S |
| Fe | C |
| Mg |  |
| Note: Elements are listed in order of decreasing size of their most common ionic state. <br> Ionic radii are given in Table 4.4. |  | <br> Ionic radii are given in Table 4.4.}



Diagram illustrating Bragg's law. $\theta=$ angle of incidence and diffraction when Bragg's law conditions are met. $\mathrm{d}=$ interplanar spacing.


Table 4.3 Atomic radii in Ångstroms for 12-fold coordination.

| Atom | Radius | Atom | Radius |
| :--- | :---: | :--- | :---: |
| Li | 1.57 | Cr | 1.29 |
| Be | 1.12 | Mn | 1.37 |
| Na | 1.91 | Fe | 1.26 |
| Mg | 1.60 | Cu | 1.28 |
| Al | 1.43 | Ag | 1.44 |
| K | 2.35 | Sn | 1.58 |
| Ca | 1.97 | Pt | 1.39 |
| Ti | 1.47 | Au | 1.44 |

Source: Wells (1991)

## Pauling's Rules - 1. Coordination Principle

## Radius Ratio $=$ Radius cation/Radius Anion

This ratio determines how many anions can be packed around a cation.


Packing of anions around a cation for a coordination number of 4. The minimum radius ratio can be calculated from the geometry of the packing. $\mathrm{R}_{\mathrm{a}}$ and $\mathrm{R}_{\mathrm{c}}$ are the radii of the anion and cation, respectively. In this case, $\theta=45^{\circ}$.


Table 4.4 Radii of common ions (in Ångstroms) as a function of coordination number.

| Atomic number | Element | Ion | Radius as a function of coordination number |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | III | IV | VI | VIII | XII |
| 3 | Lithium | $\mathrm{Li}^{+}$ |  | 0.73 | 0.90 | 1.06 |  |
| 4 | Beryllium | Be ${ }^{2+}$ | 0.30 | 0.41 | 0.59 |  |  |
| 5 | Boron | $\mathrm{B}^{3+}$ | 0.15 | 0.25 | 0.41 |  |  |
| 6 | Carbon | $\mathrm{C}^{4+}$ | 0.06 | 0.29 | 0.30 |  |  |
| 8 | Oxygen | $\mathrm{O}^{2-}$ | 1.22 | 1.24 | 1.26 | 1.28 |  |
| 9 | Fluorine | F- | 1.16 | 1.17 | 1.19 |  |  |
| 11 | Sodium | $\mathrm{Na}^{+}$ |  | 1.13 | 1.16 | 1.32 | 1.53 |
| 12 | Magnesium | $\mathrm{Mg}^{2+}$ |  | 0.71 | 0.86 | 1.03 |  |
| 13 | Aluminum | $\mathrm{Al}^{3+}$ |  | 0.53 | 0.68 |  |  |
| 14 | Silicon | $\mathrm{Si}^{\text {+ }}$ |  | 0.40 | 0.54 |  |  |
| 15 | Phosphorus | $\mathrm{P}^{3+}$ |  |  | 0.58 |  |  |
|  |  | $\mathrm{P}^{5 .}$ |  | 0.31 | 0.52 |  |  |
| 16 | Sulfur | $\mathrm{S}^{2-}$ |  |  | 1.70 |  |  |
|  |  | $\mathrm{S}^{4+}$ |  |  | 0.51 |  |  |
|  |  | $\mathrm{S}^{6+}$ |  | 0.26 | 0.43 |  |  |
| 17 | Chlorine | $\mathrm{Cl}^{-}$ |  |  | 1.67 |  |  |
| 19 | Potassium | $\mathrm{K}^{+}$ |  | 1.51 | 1.52 | 1.65 | 1.78 |
| 20 | Calcium | $\mathrm{Ca}^{2+}$ |  |  | 1.14 | 1.26 | 1.48 |
| 22 | Titanium | Ti ${ }^{\text {+ }}$ |  | 0.56 | 0.65 | 0.88 |  |
| 24 | Chromium | $\mathrm{Cr}^{3+}$ |  |  | 0.76 |  |  |
| 25 | Manganese | $\mathrm{Mn}^{2+}$ |  | 0.80 | 0.97 | 1.10 |  |
|  |  | $\mathrm{Mn}^{++}$ |  | 0.53 | 0.67 |  |  |
| 26 | Iron | $\mathrm{Fe}^{2+}$ |  | 0.77 | 0.92 | 1.06 |  |
|  |  | $\mathrm{Fe}^{3+}$ |  | 0.63 | 0.78 | 0.92 |  |
| 27 | Cobalt | $\mathrm{Co}^{2+}$ |  | 0.72 | 0.88 | 1.04 |  |
| 28 | Nickel | $\mathrm{Ni}^{2+}$ |  | 0.69 | 0.83 |  |  |
| 29 | Copper | $\mathrm{Cu}^{+}$ |  | 0.74 | 0.91 |  |  |
|  |  | $\mathrm{Cu}^{2+}$ |  | 0.71 | 0.87 |  |  |
| 30 | Zinc | $\mathrm{Zn}^{2+}$ |  | 0.74 | 0.88 | 1.04 |  |
| 38 | Strontium | $\mathrm{Sr}^{2+}$ |  |  | 1.32 | 1.40 | 1.58 |
| 40 | Zirconium | $\mathrm{Zr}^{\text {+ }}$ |  | 0.73 | 0.86 | 0.98 |  |
| 47 | Silver | $\mathrm{Ag}^{+}$ |  | 1.14 | 1.29 | 1.42 |  |
| 56 | Barium | $\mathrm{Ba}^{2+}$ |  |  | 1.49 | 1.56 | 1.75 |
| 82 | Lead | $\mathrm{Pb}^{2+}$ |  |  | 1.33 | 1.43 | 1.63 |
| 92 | Uranium | $\mathrm{U}^{3+}$ |  |  | 1.17 |  |  |
|  |  | $\mathrm{U}^{++}$ |  |  | 1.03 | 1.14 | 1.31 |
|  |  | $\mathrm{U}^{6+}$ |  | 0.66 | 0.87 | 1.00 |  |

Note: These data represent the crystal radii reported by Shannon (1976). In textbooks such as Klein and Dutrow (2008) and Dyar et al. (2008), the traditional radii (based on the
radius of oxygen $=1.40 \AA$ ) are reported. The difference between crystal radii and traditional radii is a constant factor of $0.14 \AA$.

Table 4.5 Common ions in rock-forming minerals (exclusive of hydrogen) and their C.N. as a function of decreasing ionic size.

| Ion | C.N. with oxygen | Ionic radius in $\AA$ |
| :---: | :---: | :---: |
| $\mathrm{O}^{2-}$ |  | 1.26[IV] |
| $\mathrm{K}^{+}$ | VIII - XII | 1.65 [VIII] - 1.78 [XII] |
| $\begin{aligned} & \mathrm{Na}^{+} \\ & \mathrm{Ca}^{2+} \end{aligned}$ | $\left.\begin{array}{l}\text { VI - VIII } \\ \text { VI - VIII }\end{array}\right\}$ octahedral to cubic | $\begin{aligned} & 1.16[\mathrm{VI}]-1.32[\mathrm{VIII}] \\ & 1.14[\mathrm{VI}]-1.26[\mathrm{VIII}] \end{aligned}$ |
| $\mathrm{Mn}^{2+}$ <br> $\mathrm{Fe}^{2+}$ <br> $\mathrm{Mg}^{2+}$ <br> $\mathrm{Fe}^{3+}$ <br> $\mathrm{Ti}^{4+}$ <br> $\mathrm{Al}^{3+}$ | $\left.\begin{array}{l}\text { VI } \\ \text { VI }\end{array}\right\}$ octahedral | $\begin{aligned} & 0.97 \\ & 0.92 \\ & 0.86 \\ & 0.78 \\ & 0.65 \\ & 0.68 \end{aligned}$ |
| $\mathrm{Al}^{3+}$ <br> $\mathrm{Si}^{4+}$ <br> $\mathrm{P}^{5+}$ <br> $S^{6+}$ | $\left.\begin{array}{l} \text { IV } \\ \text { IV } \\ \text { IV } \\ \text { IV } \end{array}\right\} \text { tetrahedral }$ | $\begin{aligned} & 0.53 \\ & 0.40 \\ & 0.31 \\ & 0.26 \end{aligned}$ |
| $\mathrm{C}^{4+}$ | III triangular | 0.06 |

Note: Ionic radii taken from Table 4.4.

## Pauling's Rules - 2. Electostatic valency principle

 Bond strength (e.v.) = Z/C.N.$Z=$ charge on ion
C.N. = coordination number


## Types of bond strengths

Isodesmic - bonds are of the same strength throughout the structure

$$
\begin{aligned}
& \text { Chromite }-\mathrm{FeCr}_{2} \mathrm{O}_{4} \\
& \text { C.N. }-\mathrm{Fe}^{\mathrm{IV}}, \mathrm{Cr}{ }^{\mathrm{VI}}
\end{aligned}
$$

Calculate bond strengths


Anisodesmic - bond strengths inside of one type of polyhedra in a structure are different from that of other bonds in the structure

Examples are carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, and phosphates $\left(\mathrm{PO}_{4}{ }^{3-}\right)$

Calcite $\left(\mathrm{CaCO}_{3}\right)-\mathrm{Ca}^{2+(\mathrm{VI})}, \mathrm{CO}_{3}{ }^{2-}($ e.v. $=4 / 3)$


Sulfate $-\mathrm{S}^{6+(\mathrm{IV})}$, e.v. $=3 / 2$
Phosphate $-\mathrm{P}^{5+}{ }^{(\mathrm{IV})}$, e.v. $=5 / 4$

Mesodesmic - e.v. number is equal to $1 / 2$ the valence number of the anion


The silica tetrahedron is the basic building block of the silicate minerals

## Pauling's Rules - 3. Sharing of polyhedral elements I

Crystal structures become less stable when the polyhedra share edges and even more unstable when the polyhedra share faces.

This is because the cations are closer together and like charges repel.

Silica tetrahedra are linked through the oxygens at their apices. These are called bridging oxygens.


## Pauling's Rules -4 . Sharing of polyhedral elements II

In structures containing various cations, those of high charge and small C.N. tend not to share polyhedral elements. If they do, the shared edge contacts and the centers of the cations are displaced away from the shared edge.


Tetrahedron approach and are distorted because of repulsion of cations.

## Pauling's Rules -5 . The principle of parsimony

Crystal structures tend to have a limited set of distinctly different cation and anion sites. This leads to extensive replacement in the atomic sites (substitution or solid solution).

(B)
4
$\mathrm{Sil}^{4+}, \mathrm{Al}^{3+}$
$\mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$,
$\mathrm{Al}^{3+}, \mathrm{Ti}^{4+}$

- $\mathrm{Ca}^{2+}, \mathrm{Na}^{+}, \mathrm{Mn}^{2+}$

Crystal structure of amphibole

Building blocks for the basic silicate structures. Combine silica tetrahedron in different configurations.

## MINERAUX DES ROCHES


olivine

Sorosilicates


Béryl Familles des silicates

Phyllosilicates

tectosilicate


## Ionic (book calls it Atomic) Substitution

- Ions of one element can substitute for those of another in a crystal structure if their radii differ by less than about $15 \%$
- Ions that differ by one charge unit substitute readily for each other as long as charge neutrality is maintained. Note that this requires a coupled substitution, such as occurs in the plagioclase solid solution series.
- When two ions can occupy the same site in a crystal structure, the ion with the higher ionic potential preferentially enters the site.
- Even if the size and charge of the minor and major ion are similar, substitution may be limited for the minor ion if it has a very different electronegativity and forms a bond of very different character from that of the major ion.


## Solid solution series - olivine and feldspar



## Complete solid solution series and miscibility gap - role of temperature



## Types of solid solution

- Substitutional - simple and complex cation and anion substitutions. Ions of similar size and charge.
- Interstitial - ions, ionic groups, or molecules occupy a specific atomic site that is normally empty. Example - ions occupying normally empty channels in the beryl structure.

- Omission - unfilled sites in crystal structure. Example pyrrhotite, $\mathrm{Fe}_{1-\mathrm{x}} \mathrm{S}$. Some of the Fe sites are empty. In order to maintain charge balance, some of the Fe must be oxidized to $\mathrm{Fe}^{3+}$.

