Earth Materials I – Piezoelectricity, Density, and Magnetic Susceptibility

Piezolectricity

Figure 6.14 Piezoelectricity. (*a*) A silicon tetrahedron consists of a Si⁴⁺ centered within four O²⁻. The positive charge is centered within the negative charge as is shown schematically with the two circles below. (*b*) If deformed by pressing downward at *p*, an O²⁻ and the Si⁴⁺ are moved downward distance *d* and the three O²⁻ on the base are spread outward. Because only one O²⁻ moves down, the center of the positive charge on the Si⁴⁺ is moved downward relative to the center of mass of the negative charge on the four O²⁻. This charge displacement produces a voltage, that is positive on the bottom and negative on top.

> The crystal CANNOT have a center of symmetry. Common piezoelectric minerals are quartz, topaz, and tourmaline

Density and Specific Gravity

The specific gravity ($G = \rho/\rho_{H2O}$) of a mineral is a function of how tightly the ions/atoms are packed (the packing index) and the chemical composition. The packing index is

 $PI = \frac{V_I}{V_C} \ge 100$

where PI is the packing index, V_I = the total volume of the ions in the unit cell based on their ionic radii, and V_C = the volume of the unit cell.

Note that for Density and Specific Gravity have the same numerical value. However specific gravity is unitless. Density is reported either as g/cm³ (cgs units) or kg/m³ (SI units). The specific gravity of a mineral can be determined by using a pychnometer

Magnetism in minerals

- A spinning electron produces a magnetic field (Bohr magnetic moment).
- Bohr magnetic moment can be cancelled if there are two electrons in an orbital.
- In order for a mineral to be magnetic it must have orbitals with unpaired electrons.
- The most important elements are the transition metals (Fe, Mn, Ti, and Cr) that have only partially filled 3d orbitals.
- The strength of the magnetic moment depends on the number of unpaired electrons.
- Fe³⁺ and Mn²⁺ have 5 unpaired 3d electrons and thus the largest magnetic moment.
- The nature of the magnetic behavior of a mineral that contains these transition metals depends on how the magnetic moments of the atoms/ions are oriented within the crystal structure.

Diamagnetism – all orbitals of the atoms/ions contain paired electrons. No magnetic behavior. When placed in a magnetic field diamagnetic minerals will be slightly repelled.

Magnetic behavior

- Paramagnetism magnetic moments of constituent atoms/ions are not aligned. The net magnetic moment is zero. Applying a magnetic field leads to a slight alignment of the magnetic moments. Magnetic susceptibility is a measure of the strength of the magnetic moment. This depends on chemical composition and crystal structure.
- Ferromagnetism magnetic moments of the constituent atoms/ions become aligned forming magnetic domains. Application of an external magnetic field leads to the alignment of the magnetic domains and permanent magnetism.
- Ferrimagnetism there are some unpaired electrons that can form magnetic domains that can be aligned when placed in a magnetic field. Currie T and remnant magnetism.
- Antiferrimagnetism minerals in which antiparallel spins completely cancel to yield zero net magnetic moments.

	Spin Configuration	μ _B	No External Field	In External Field	External Field Removed
(a) Diamagnetic	Quartz (SiO ₂) Si ⁴⁺ (\uparrow 1)(\uparrow 1)(\uparrow 1) 3p 2O ²⁻ (\uparrow 1)(\uparrow 1)(\uparrow 1) 3p	0 0 0	Net = 0	$s \rightarrow N$ Magnet N Weak Repulsion	Net = 0
(b) Paramagnetic	Olivine (Fe ₂ SiO ₄) $2Fe^{2*}(\uparrow\downarrow)(\uparrow)(\uparrow)(\uparrow)(\uparrow)(\uparrow)$ 3d Si ^{4*} (\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow) $4O^{2*}(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)$ 2p	+8 0 0 8	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	S N Magnet Weak Attraction	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
(c) Ferromagnetic	Iron (Fe) Fe $(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)$ 3d	+2	Net = 0	S N Magnet Strong Attraction	s Net Net Magnetization
(d) Ferrimagnetic	$ \begin{array}{c} \text{Magnetite} \\ {}^{\text{IV}} \text{Fe}^{2*}(11)(1)(1)(1)(1)(1) \\ {}^{\text{VI}} \text{Fe}^{3*}(1)(1)(1)(1)(1)(1) \\ {}^{\text{IV}} \text{Fe}^{3*}(1)(1)(1)(1)(1)(1) \\ 4\text{O}^{2*}(11)(11)(11) \\ 2p \end{array} \right\} 3d$	+4 +5 -5 0 4	Net = 0	S N Magnet S Moderate Attraction	S Net Net Magnetization
(e) Anti- ferromagnetic	Ilmenite (<-183C) $^{VI}Fe^{2+}(\uparrow\downarrow)(\uparrow)(\uparrow)(\uparrow)(\uparrow)(\uparrow)$ $^{VI}Fe^{2+}(\uparrow\downarrow)(\downarrow)(\downarrow)(\downarrow)(\downarrow)(\downarrow)$ $^{VI}2Ti^{4+}(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)$ SD	+4 -4 0	Net = 0	S N N Repelled	Net = 0

Figure 6.13 Magnetism. See text for discussion. (*a*) Diamagnetism in quartz. Neither Si⁴⁺ nor O²⁻ has unpaired electrons so neither has a Bohr magnetic moment μ_{B} . (*b*) Paramagnetism in olivine. The Fe²⁺ has a net Bohr magnetic moment, but in the absence of an external magnetic field, the orientations are random. (*c*) Ferromagnetism in native iron. Each iron atom has two unpaired electrons and a Bohr magnetic moment of 2. Domains within the mineral have uniform magnetic orientation. (*d*) Ferrimagnetism in magnetic. The ^{IV}Fe³⁺ and ^{VI}Fe³⁺ each has five unpaired electrons but with opposite spins so their net magnetic moments cancel. The ^{IV}Fe²⁺ has a net magnetic moment and causes the magnetite to have ferromagnetic properties. (*e*) Antiferromagnetism in ilmenite below -183° C. Fe²⁺ in adjacent sites has antiparallel spins. Net magnetic moments cancel. Antiferromagnetic materials are repelled by a magnet.

Magnetic Susceptibility

Magnetic susceptibility characterizes the ability of a substance to be magnetized when exposed to external magnetic field. In magnetically isotropic substances, it is defined as follows M = k H,

where M represents the vector of the induced magnetization (in SI of units in A/m), H is the vector of the intensity of magnetic field (also in A/m) and k is the magnetic susceptibility (dimensionless scalar entity). In some substances, the susceptibility is constant, while in the others it is a complex function of the field intensity.

