SAUDI ARABIA ENERGY USE

ELIZABETH BROMM
KARA CLEGHORN
MATT BAPTISTA

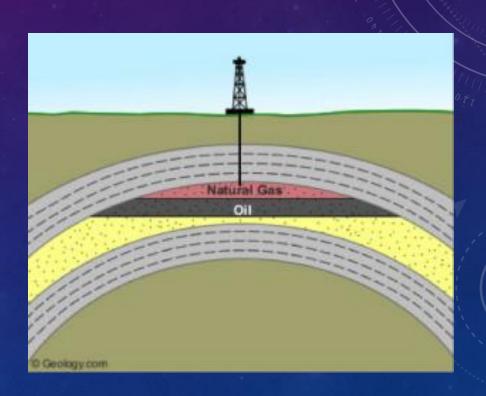
ABOUT SAUDI ARABIA

- Located on the Arabian Peninsula
- Monarchy King Salman
- 5th largest Asian country by area
- Population: 32.28 million (2016)
- World's largest oil producer and exporter
- GDP (PPP): \$1.75 trillion (2017)

This map is presented for information only. The Department of Foreign Affairs and Trade accepts no responsibility for errors or omission of any geographic feature. Nomenciature and territorial boundaries may not necessarily reflect Australian Government policy. For the latest travel advice visit smartraveller.gov.au. Provided by the Commonwealth of Australia under Creative Commons Attribution 3.0 Australia licence.

OIL PROFIT

- Represents 1.04% of the world economy
- All time high in 2014 of \$756.35 billion
- All time low in 1948 of \$4.19 billion


WHO OWNS ELECTRIC

- Saudi Electric Company (SEC)
 - Government-owned company
 - Provide most of the electricity for the country
 - Generation cap of 69 GW (2015)
- Residential 18 halalas per kWh
 - 30 halalas after 6000 kWh
 - 25 halalas = \$0.07

WHO OWNS OIL AND GAS

- Saudi Aramco
 - Government-owned company
 - Manages oil and gas production
 - Works with SEC to provide power

WHAT ENERGY THEY USE NOW

- 60% of electricity relies on petroleum including natural gas, with the rest of their energy coming from solar (25MW) and geothermal (44MW)
- Use of solar and geothermal began in 2016
- First wind turbine built in January 2017
- Very little oil used
 - Make too much in exporting to use

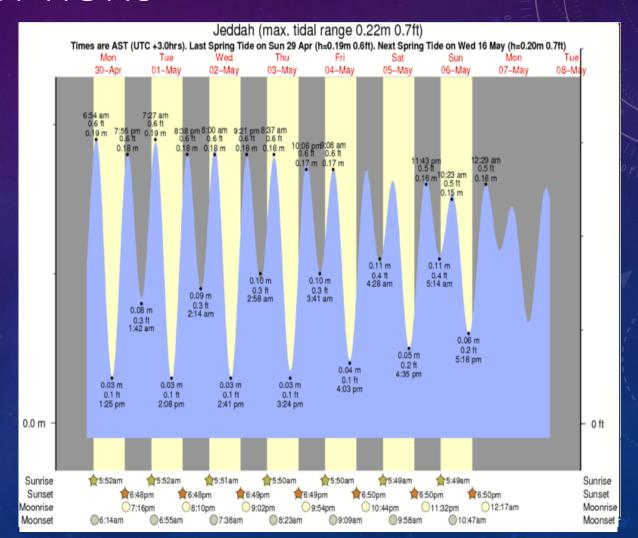
HAWIYAH GAS PLANT

- Hydraulic turbine electric generator, also called a turbocharger, was lunched in a pilot demonstration in early 2015
- Converts normally wasted hydraulic energy to electrical power
- 300 kW of anticipated average energy output
- Goals for this technology include lower costs and reduced carbon footprint
- If successful, more turbochargers will be implemented

ENERGY BREAKDOWN AND COMPARISON TO USA

SAUDI ARABIA								
Gross Domestic	Energy	Electricity	Carbon Dioxide	Electricity per	Carbon Dioxide			
Product	Production	Consumption	Emissions	Population	per Population			
\$672.21 billion 2010 USD	648.61 Mtoe	313.06 TWh	531.46 Mt	U UZ IVIVVh /canita	16.85 t CO₂/capita			
UNITED STATES								
Gross Domestic	Energy	Electricity	Carbon Dioxide	Electricity per	Carbon Dioxide			
Product	Production	Consumption	Emissions	Population	per Population			
\$16597.45 billion 2010 USD	2018.53 Mtoe	4128.51 TWh	4997.50 Mt		15.53 t CO ₂ /capita			

FUTURE ENERGY PREDICTIONS

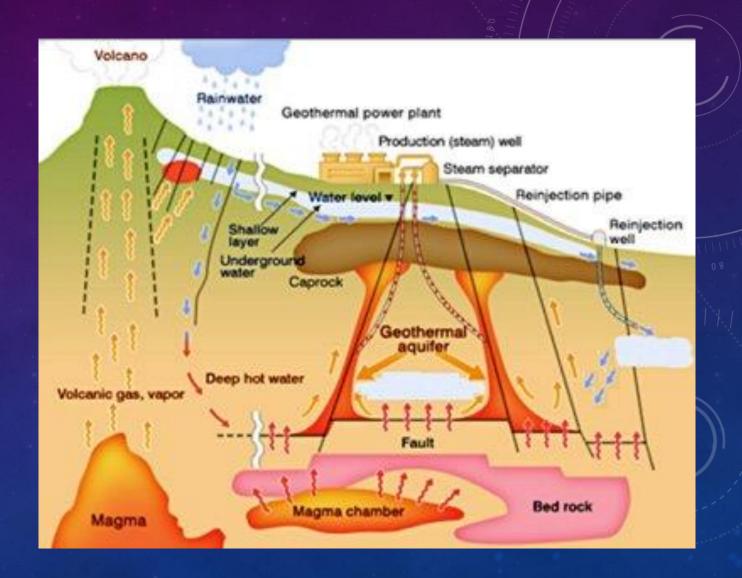

- Power generation capacity will need to expand from 77GW in 2014 to an estimated 156GW in 2040
 - This will require a yearly investment of approximately \$5 billion in generation and \$4 billion in distribution from the government
- All electric generation will be privatized by 2020
- Improving the country's energy efficiency by just 4 % per year could save the equivalent of 1 million barrels a day of crude oil by 2030

CHANGES ALREADY PLANNED

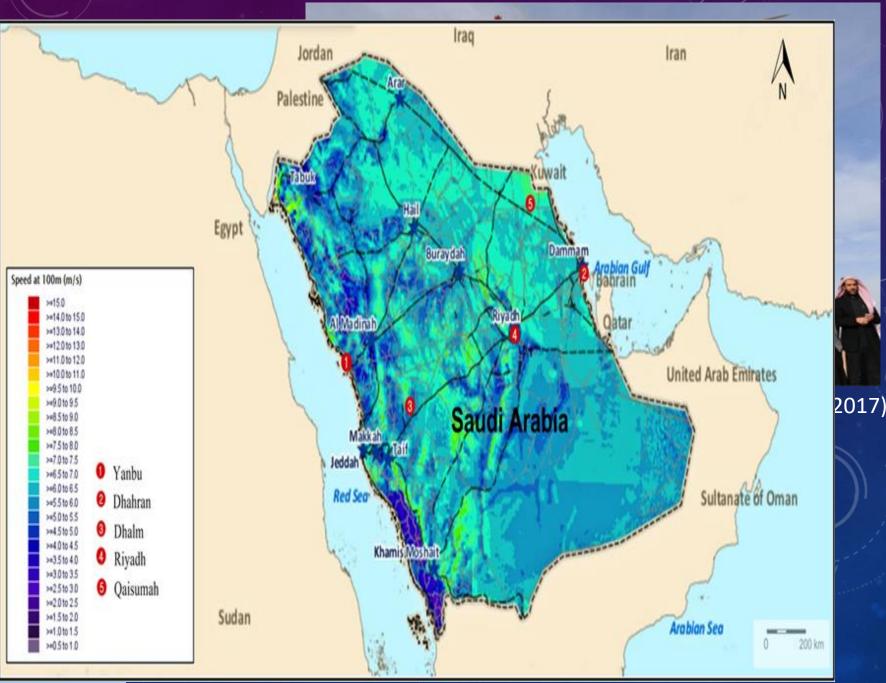
- To reduce energy waste:
 - Upgrade and replace old transformers, substations, and other infrastructure by 2023.
- To meet power demands:
 - Modernize the power grid and to increase connectivity
- To provide more energy sources:
 - Diversify the sources of energy used including adding more alternative and renewable forms of energy.
 - Installation of solar and wind power sources

RENEWABLE ENERGY OPTIONS

- Hydro
- Biomass
- Geothermal
- Wind
- Solar
- Tida


GEOTHERMAL

- Geothermal resource exploration started in 1980
 - Aramco
- Large volcanic fields
 - Western region near Jeddah and Makkah
- 10 thermal springs found around 120°C
 - 6 in Jizan
 - 4 in Al-Lith area


GEOTHERMAL

- Desired growth in global installed capacity
 - 10.5 GW to 31 GW by 2020
- Criteria High Enthalpy
 - Geothermal Fluids <150°C
 - Near volcanic areas
 - Flow Rate <70 L/s

WIND ENERGY

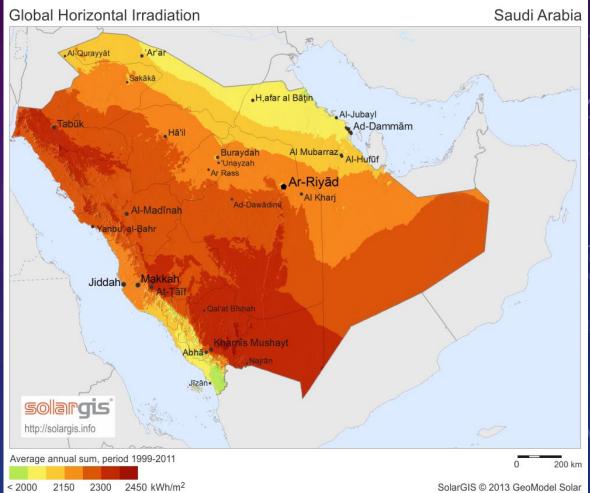
WIND ENERGY

Wind Observation Stations in

S/N	City	Stations	>+9.5 to 10.0 >+9.5 to 10.0		
1	Al Wajh	Al Saih	>=8.5 to 9.0 >=8.0 to 8.5 >=7.5 to 8.0	Makkan Taril	
2	Al-Jouf	Abu Ajram	>=7.0 to 7.5 >=6.5 to 7.0 Yanbu >=6.0 to 6.5	Jeddah Pad San	
3	Hafar Al-Batin	Hafar Al-Batin	>=5510 60	ned sed	
4	Jeddah	AlJazeera ***********************************		Khamis	
5	King Abdullah City	Plant A	>=25to30	Sudan	
6	King Abdullah City	Plant B	>+1.510.2.0 >+1.010.1.5 >+0.510.1.0	Sudan	
7	Sharurah	Sharurah	17.07511	17.525 12	
8	Turaif	Turaif	47.07314	17.32342	
9	Yanbu	Yanbu Northern Plant	37.48445	24.34202	
10	Yanbu	Yanbu Southern Plant	38.5026	23.78191	
Source: King Abdullah City for Atomic and Renewable Energy (K.A.CARE)					

Speed at 100m (m/s)

Saudi Arabia


Sultanate of Oma

Utilizing these wind stations, average windspeeds at 100 meters were the fastest at 6.73 m/s in 2016.

Utility-scale wind power plants require minimum average wind speeds of 6 m/s (13 mph).

SOLAR ENERGY

THE COST OF RENEWABLE ENERGY

Renewable	Installation Cost	Energy Cost
Geothermal	\$3400 per kilowatt	\$0.01-\$0.03 per kWh
Wind	\$1.3-2.2 Million per MW	\$0.082 per kWh
Solar	\$1 per watt	\$0.122 per kWh

MOVING FORWARD...

- Saudi Arabia already has plans in place to implement renewable energy. These plans include
 - Geothermal
 - Expected power output 10.5 GW to 31 GW by 2020
 - Wind Energy
 - Expected power output 400-megawatt wind plant by 2030
 - Solar Energy
 - Expected power output 300 MW for the new photovoltaic project set to begin use in 2018
- The total power output from these changes is 31.7 GW

REFERENCES

- http://www.saudiaramco.com/en/home/our-business/upstream/optimizing-performance.html
- https://www.export.gov/article?id=Saudi-Arabia-Energy
- https://www.worldenergy.org/data/resources/country/saudi-arabia/gas/
- https://www.iea.org/statistics/statisticssearch/report/?country=USA&product=indicators&year=2015
- https://www.iea.org/statistics/statisticssearch/report/?year=2015&country=SAUDIARABI&product=Indicators
- https://tradingeconomics.com/saudi-arabia/gdp
- https://www.renewableenergyworld.com/articles/2017/02/saudi-arabia-turning-to-wind-and-solar-power.html
- https://gulfnews.com/business/renewables/now-oil-rich-saudi-arabia-eyes-geothermal-energy-too-1.1963641