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The Terrestrial Planets, Life Cycle, and Atmosphere




Thermal History of the Terrestrial Planets

Heat sources for early Earth FIG. 7-13 A first-order explanation for differences in the present geologic state of the planets,
based on the proposition that cooling of the outer layers of planets brings on different stages of
geologic activity (right edge of diagram), and small planets cool faster than large ones.
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Characteristics of the Atmospheres of Venus, Earth and Mars

Surface Surface
T (°C) P (Atm) Co,

Venus 468 99 96.4
Earth 15 1 0.033
Mars -63 0.0052 95.32

Origin of the Atmospheres

N,
3.4

78.084
2.7

H,O
0.14

Var
0.03

Ar

18.6
ppm
0.934

1.6

* Primary — left over from the formation of the solar system

* Secondary — formed after construction of the planet
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1)

2)

3)

Holland’s Three Stage Model for the Origin of the Earth’s Atmosphere

First Stage — prior to core formation. Native iron present. Volcanic gases are highly
reduced. H,, CH,, NH;. 4.5 to 4.0 Ga.

Second Stage — after core formation. Atmosphere becomes less reducing. Major
changes are CO, replacing CH, and N, replacing NH;. 4.0 to 2.0 Ga.

Third Stage — photosynthesis initiated and free oxygen builds up. Large banded iron
formations do not form after 2.0 Ga which indicates a build-up in oxygen which inhibits
the transport of iron in solution. 2.0 Ga to present

Other patterns deduced from the geologic record:

1)

2)

3)

The concentration of various gases in the atmosphere has varied throughout geologic
time.

There have been times in the past when oxygen content has been much greater than
today (30% versus 21%) and spontaneous wildfires have occurred.

Carbon dioxide concentrations in the atmosphere have been both significantly lower
and significantly greater than at present.



Venus and Earth are very similar planets in terms of size and
density. Why are their atmospheres so different?

 Total amount of C, H, and N in

the surface reservoirs for
both planets are very similar
but they are found in
different reservoirs —
atmosphere for Venus;
hydrosphere, polar caps and
sediments for Earth.

e Relative to Venus and Earth,
very little C, H, and N in Mars
surface reservoirs. Because
Mars is smaller than Earth
and Venus its active thermal
history is much shorter. A lot
less degassing.

Table 4-3 Carbon, Hydrogen, and Nitrogen Contained

in Combined Atmospheres, Hydrosphere, Polar Caps,
and Sediments of Planets

CARBON HYDROGEN NITROGEN
Planet (kg/cm2)
VENUS 30 <0.06 <1.6
EARTH 20.4 60 0.8
MARS ~0.004 ~ 0.06 ~4 x 104




So why are Venus and Earth different? It all has to do with liquid water versus water vapor. Liquid
water formed on Earth, not on Venus. Carbon dioxide was removed from the Earth’s atmosphere
by photosynthesis and oxygen was added. Life did not develop on Venus. Mars may be a different
story, but the limited amount of degassing inhibited the process.
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FIG. 4-10 A model that rationslizes differences in the evolution of atmospheres of Venus, Earth,
and Mars. As H,0 vapor was evolved from the interiors of the three planets, the H30 vapor pressure
in their atmospheres built to higher and higher values (three tracks with srrows). Differences in
starting temperatures for the three atmospheres are duse to differences in proximity to the sun. When
atmospheres accumulate more than ~ 103 dynes/cm2 of H,0 vapor, the greenhouse effect begins
to operate, raising the temperature of the atmosphere. But no more than ~ 20 dynes/cm?2 of H,0
vapor could accumulate in the Martian atmosphere; any additional H,O vapor evolved from the
interior of Mars froze out as ice on the surface. Similarly, H, 0 vapor in excess of ~ 104 dynes/cm?
in the terrestrial atmosphere condensed as liquid water. In the case of Venus, however, it has been
suggested that increasing efficiency of the greenhouse elfect (a “runaway greenhouse™) prevented
H,0 from ever condensing, no matter how much was added to the atmosphere. After S. |. Rasool
and C. de Bergh, Nature, v. 226, 1970, 1037-1039.



FIGURE 1.4

Some major events in the
history of life on Earth. The ori-
gins of life and photosynthesis
are uncertain, and the dates
given for the last 500 million
years represent the earliest
definitive fossil evidence.
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FIGURE 1.5

A rough estimate of Earth’s temperature history over the past 3 billion years shows that much
of the time it has been warmer than the present, despite the Sun’s steadily increasing energy

output. The temperature scale is only semiquantitative, with the overall variation shown being
about 30°C—comparable to winter—-summer differences in today’s temperate climates. Note

that the horizontal timescale is not uniform.



Atmosphere

FIGURE 1.6

Over geological time, removal
of CO, by precipitation and
chemical weathering of rocks
balances volcanic CO, emis- \Volcanoes
sions. Carbon dioxide removal
increases with temperature,
providing a negative feed-
back that regulates Earth’s
temperature.
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The author Max Roser licensed this visualisation under a CC BY-SA license. You find more information at the source: http://www.OurWorldinData.org/world-population-growth
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End-use accounting

Commercial 15% Commercial 21%

Industrial
25%

Residential
22%

Residential
26%

Transportation
37%

(a) (b)
FIGURE 2.5

Primary energy accounting

Industrial
28%

Transportation
26%

Energy consumption by sector for the 34 countries that constitute the Organization for Economic
Cooperation and Development (OECD), with (a) end-use accounting and (b) accounting for primary

energy. Inefficiencies in electric power generation explain most of the difference.
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FIGURE 2.6

Sources of energy in the mid-
2010s, shown as percentages.
(@) Some 82% of U.S. energy
comes from fossil fuels. The
“Other” category includes
geothermal, wind, and solar
energy. (b) Fossil fuels supply
about 86% of the world’s
energy. Here the “Other”
category includes biomass,
geothermal, wind, and solar
energy.
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FIGURE 2.7

Per capita GDP (in thousands
of U.S. dollars per year) versus
per capita energy consump-
tion for 10 countries. The 6
countries that fall near the
straight line have approxi-
mately the same energy inten-
sity, or energy consumed per
unit of GDP (GDP figures used
here are what economists call
GDP ppp, for “purchasing
power”). Japan and Switzer-
land are more energy efficient,
and Russia and China less so.
Multiplying the numbers on
the horizontal axis by 10 gives
the number of energy servants
per capita.
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FIGURE 2.3

Life expectancy versus energy
consumption for the six
countries that lie near the line
in Figure 2.7. Only at very low
energy-consumption rates is
there a correlation; at higher
energy-consumption rates,
the life expectancy curve
saturates. Many other quality-
of-life indicators show similar
behavior in relation to energy
consumption.



E‘n’ergy ‘Cons‘u‘r‘nptjion Per Person, by ;Quntry, 2010.
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1 million Btu = roughly 8 gallons of gasoline

British thermal unit (Btu) = amount of heat needed to raise one pound of
water at maximum density through one degree Fahrenheit.

1Btu = 1.054 x 103 joules
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Primary energy consumption by fuel Shares of primary energy
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2017 Energy Outiook @ BPp.l.c.2017

tonne of oil equivalent (toe) = the amount of energy released by burning one tonne of crude oil.
It is approximately 42 gigajoules or 11,630 kilowatt hours.



U.S. energy consumption by energy source, 2016

Total = 97.4 quadrillion
British thermal units (Btu) Total = 10.2 quadrillion Btu

geothermal 2%
= solar 6%
— wind 21%

biomass waste 5%

biofuels 22% biomass

46%

wood 19%

hydroelectric 24%

Note. Sum of components may not egual 100% because of independent rounding.

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3
and 10.1, April 2017, preliminary data
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L. 5. electricity net generation by fuel, 1990-2035 =
trillion kilowatthours peryear d

b
history 2010 projections

5
4 natural gas 21%
3 renewables 16%
2 39%
.1

oil and other liquids 2" | nuclear 18%

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035
1 watt =1 joule s?

1 kilowatt-hour = 1000W x 3600 s = 3.6 x 10° J



