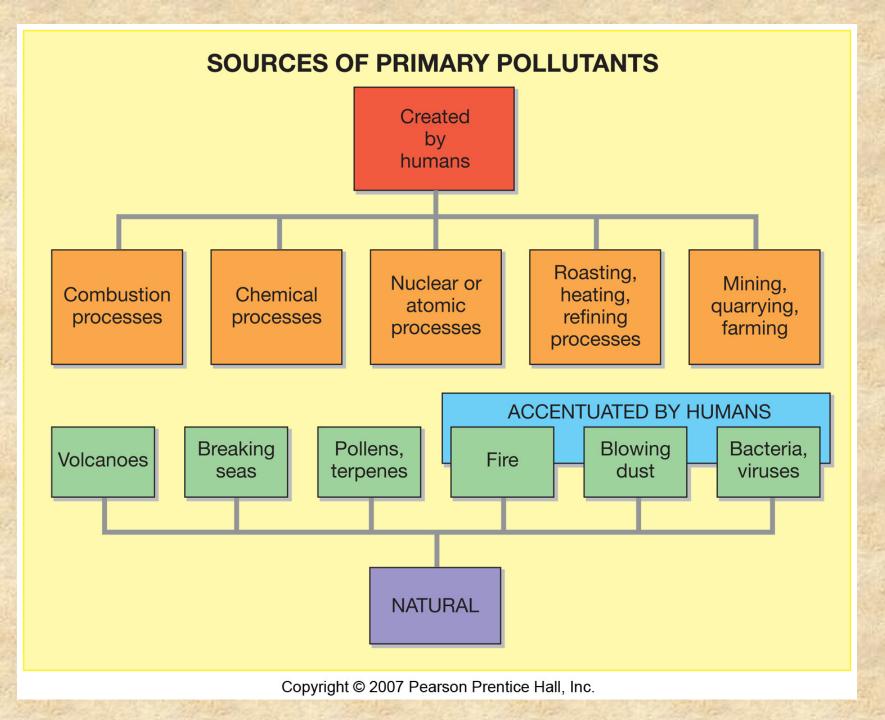
Air Pollution

Copyright © 2007 Pearson Prentice Hall, Inc.

Beijing, China, 2008


Kuala Lumpur

Copyright © 2010 Pearson Prentice Hall, Inc.

Sources & Types of Air Pollution

- Air pollutants are airborne particles and gases that occur in concentrations that endanger the health and well-being of organisms, or disrupt the orderly functioning of the environment
- Pollution is divided into two categories
 - 1. Primary
 - 2. Secondary
- Aerosols are solid or liquid particulates between 0.1 and 100 µm in size.
- Primary Pollutants are emitted directly from identifiable sources.
- They pollute the air immediately when they are emitted
- Secondary Pollutants are produced in the atmosphere when certain chemical reactions take place among primary pollutants, and with natural air & water. e.g. smog
- Secondary pollutants have more severe effects on humans than primary pollutants

Primary Pollutants

0.1

US Sales (Tg)

Evaporated

Gasoline

Fuel

381

(±14)

On-Road

Gasoline

Exhaust

364

(±11)

Off-Road

Gasoline

Exhaust

17

(±9)

On-Road

Diesel

Exhaust

121

(±6)

Off-Road

Diesel

Exhaust

47

(±5)

Pesticides

3.1

(±1.5)

Coatings,

Inks,

Adhesives

11

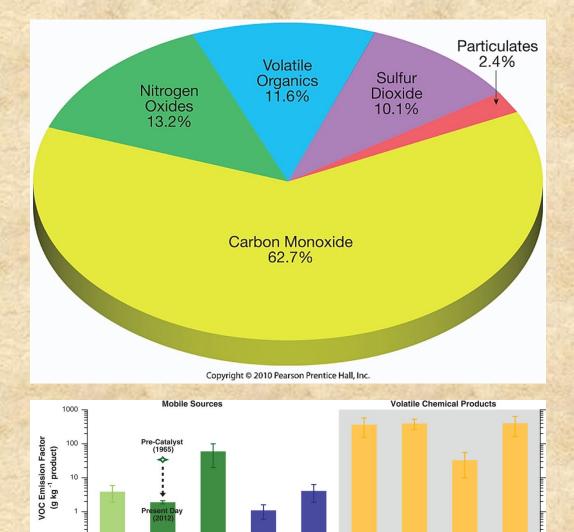
Cleaning

Agents

20

(±9)

Personal


Care

3.5

(±1.6)

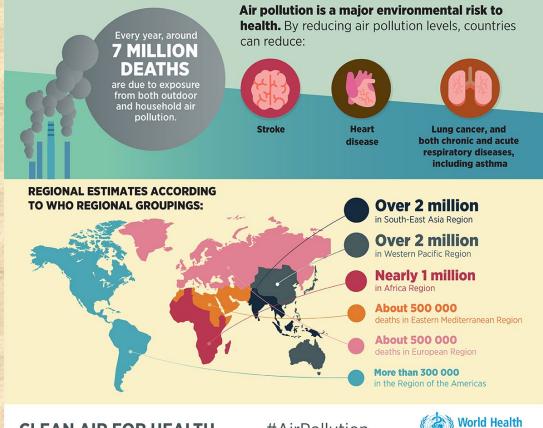
1.Particulates
2.Sulfur oxides
3.Nitrogen oxides (NOx)
4.Volatile organic compounds (VOC)
5.Carbon monoxide
6.Lead

Primary Pollutants

Where do they come from:

- **1.Transportation**
- 2. Stationary source fuel combustion
 3. Industrial processes
 4. Solid waste disposal
 5. Miscelloneous
- 5.Miscellaneous

2			13	
N.M.				
	Pollutant	Description	Primary Sources	Effects
	Carbon monoxide (CO)	CO is an odorless, colorless, poisonous gas. It is produced by the incomplete burning of fossil fuels.	Sources of CO are cars, trucks, buses, small engines, and some industrial processes.	CO interferes with the blood's ability to carry oxygen, slowing reflexes and causing drowsiness. In high concentrations, CO can cause death.
	Nitrogen oxides (NO _x)	When combustion (burning) temperatures exceed 538°C, nitrogen and oxygen combine to form nitrogen oxides.	NO _x comes from burning fuels in vehicles, power plants, and industrial boilers.	NO _x can make the body vulnerable to respiratory infections, lung diseases, and cancer. NO _x contributes to the brownish haze seen over cities and to acid precipitation.
	Sulfur dioxide (SO ₂)	SO ₂ is produced by chemical interactions between sulfur and oxygen.	SO ₂ comes mostly from burning fossil fuels.	SO ₂ contributes to acid precipitation as sulfuric acid. Secondary pollutants that result from reactions with SO ₂ can harm plant life and irritate the respiratory systems of humans.
	Volatile organic compounds (VOCs)	VOCs are organic chemicals that vaporize readily and form toxic fumes.	VOCs come from burning fuels. Vehicles are a major source of VOCs.	VOCs contribute to smog formation and can cause serious health problems, such as cancer. They may also harm plants.
	Particulate matter (particulates or PM)	Particulates are tiny particles of liquid or solid matter.	Most particulates come from construction, agriculture, forestry, and fires. Vehicles and industrial processes also contribute particulates.	Particulates can form clouds that reduce visibility and cause a variety of respiratory problems. Particulates have also been linked to cancer. They may also corrode metals and erode buildings and sculptures.

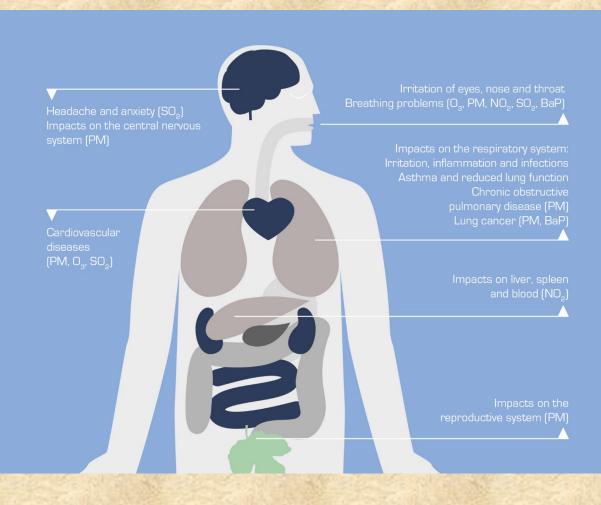

Particulate Matter (PM)

- Mixture of solid particles and liquid droplets found in the air
- Particulates reduce visibility. Leave deposits of dirt on surfaces, and may carry other pollutants dissolved in or on them
- Some are visible to the naked eye, some are not frequently the most obvious form of air pollution
- Sizes range from fine (<2.5 micrometers in diameter) to coarse (>2.5 micrometers)
- Fine particles (PM2.5) result from fuel combustion (motor vehicles, power generation, industrial facilities, residential fireplaces & wood stoves)
- Coarse particles (PM10) result from things such as vehicles travelling on unpaved roads, materials handling, grinding & crushing & wind-blown dust
- EPA standards are defined for PM2.5 and PM10

Particulate Matter

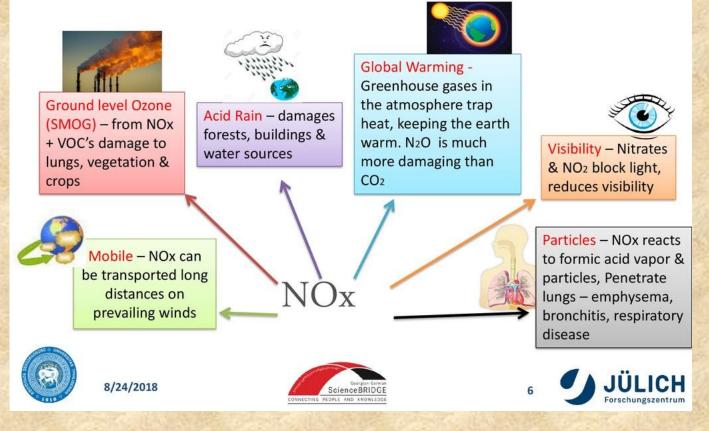
- Inhalable particular matter includes both coarse & fine particles
- Coarse particles lead to diseases like asthma
- Fine particles are associated with heart & lung diseases, decreased lung function, premature death.
- Sensitive groups include elderly people with cardiopulmonary disease (e.g. asthma) and children.

AIR POLLUTION – THE SILENT KILLER

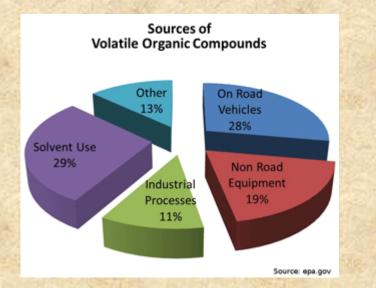

CLEAN AIR FOR HEALTH

#AirPollution

Sulfur Dioxide


- SO₂ is a colorless and corrosive gas that originates from the combustion of material containing sulfur, e.g., coal and oil.
- Acrid and poisonous.
- Frequently transformed into SO₃.
 Add water (H₂O), get H₂SO₄ sulfuric acid
- Leads to acid precipitation (acid rain)

Nitrogen Oxides (NOx)

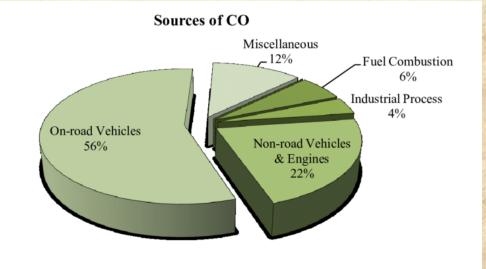

- Form during the hightemperature combustion of fuel, when nitrogen in the fuel reacts with oxygen.
- Primary sources are power plants and motor vehicles
 - N + O -> NO + O -> NO₂
 - NO₂ is a reddish-brown gas
 - NOx occur naturally, but in much lower concentrations

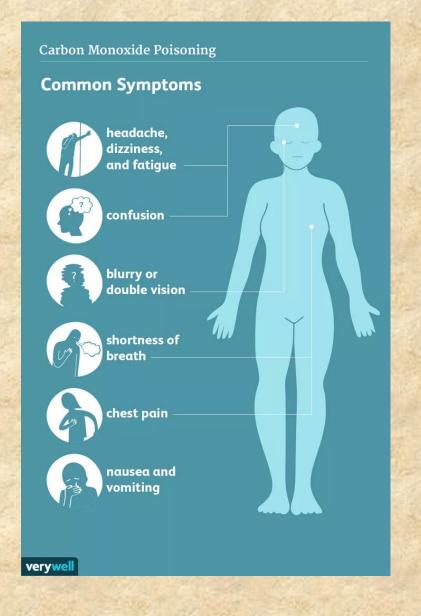
What Are the Environmental Impacts of NOx?

Volatile Organic Compounds (VOC)

- These are hydrocarbons hydrogen + carbon
- Can be solid, liquid or gas
- Most abundant is methane (CH₄, greenhouse gas)
- VOCs are important in themselves, but also lead to noxious secondary pollutants

Volatile Organic Compounds (VOC's)


- VOCs include methane and other hydrocarbons, such as benzene, toluene and xylene.
- VOCs are significant greenhouse gases via their role in creating ozone and in prolonging the life of methane in the atmosphere.
 VOC's are suspected carcinogens and may lead to leukemia through prolonged exposure.



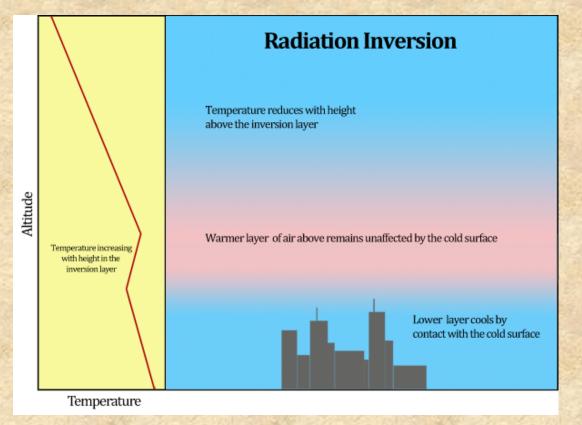
Carbon Monoxide

- CO colorless, tasteless, odorless and poisonous
- Formed by incomplete combustion of carbon
- The most abundant primary pollutant, caused mostly be transportation industry
- CO enters the blood stream via the lungs, and reduces oxygen delivery to the body's organs and tissues
- Hazardous in high concentrations e.g. underground parking stations.

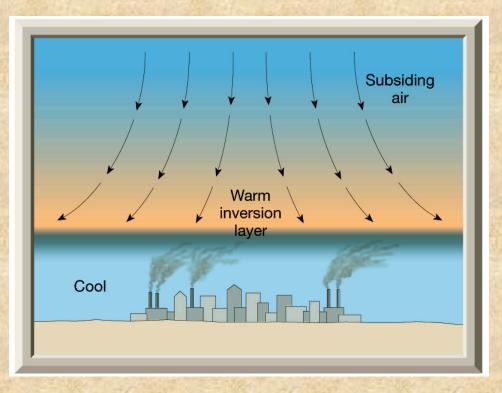
Secondary Pollutants

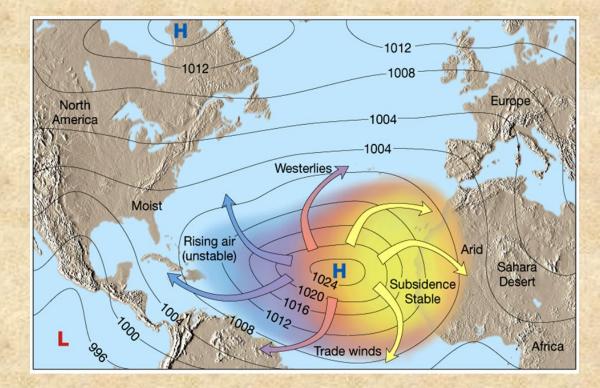
- Formed by reactions among primary pollutants, and with H₂O and O₂ of the air
- For example, SO₂ + O -> SO₃
- Smog = SMoke + fOG
- Nowadays, used as a general term for air pollution
- Term is usually qualified by a location where that type of smog is/was common, or by descriptions of the cause.
- e.g., London fog; photochemical smog.
- **Photochemical** reactions sunlight reacts with primary pollution, causing a chemical reaction.
- Occur during the day, maximizing in the summer depends on sun angle.
- **Photochemical smog** is a noxious mixture of gases and particles very reactive, irritating and toxic.

Types of Smog

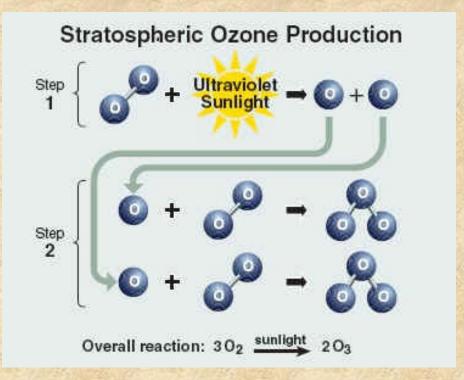

Characteristic	Classical	Photochemical
First occurrence noted	London	Los Angeles
Principal pollutants	So _x , particulates	O ₃ , No _x , HC, CO, free radicals
Principal sources	Industrial and household fuel combustion (coal, petroleum)	Motor vehicle fuel combustion (petroleum)
Effects on humans	Lung & throat irritation	Respiratory dysfunction
Effects on compounds	Reducing	Oxidizing
Time of occurrence of worst episodes	Winter months (early mornings)	Summer months (mid- day)

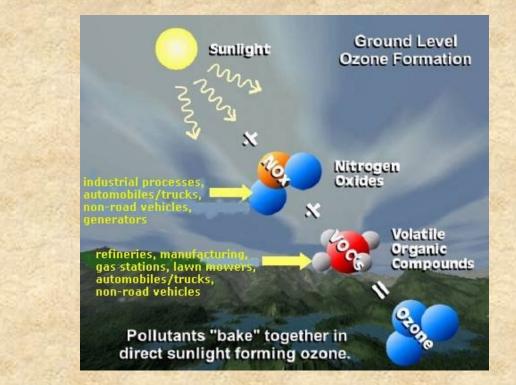
Surface Temperature Inversions


- The temperature usually decreases as the altitude decreases.
- In an inversion, the air at some altitude becomes warmer than on the ground, so the surface air will not rise up through it.



Inversions Aloft


- These are associated with descending air in anticyclones.
- As the air descends, it is compressed, and therefore warms
- Work is done compressing the air. Some of this work is converted to heat. (First Law of Thermodynamics)
- Turbulence near the surface prevents the descending air from reaching the surface, so we get a warm inversion layer



Ozone - Good or Bad?

- Major component of photochemical smog is ozone.
- Ozone causes eye and lung irritation, lowers crop yields, damages material such as rubber etc.
- Ozone in the upper atmosphere is a good thing (protects us from solar UV)
- Ozone at ground level is a bad thing

Clean Air Act of 1990

- 1. Tighter controls on air quality
- 2. Lower acceptable limits on auto emissions
- 3. Greater restraints on the use of indoor pollutants
- 4. Reduction of acid rain
- 5. Limits on and then abolishment of the use of CFCs and other ozone-depleting compounds
- 6. Data collection on greenhouse gases and anything that contributes to long-term climate change

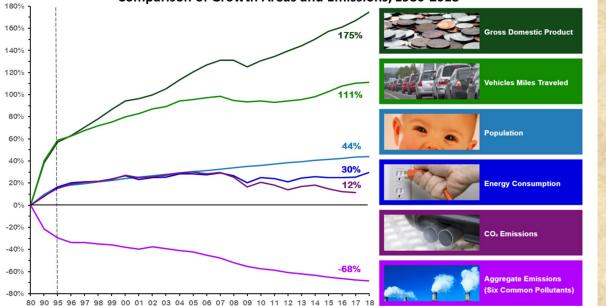
Trends in Air Quality

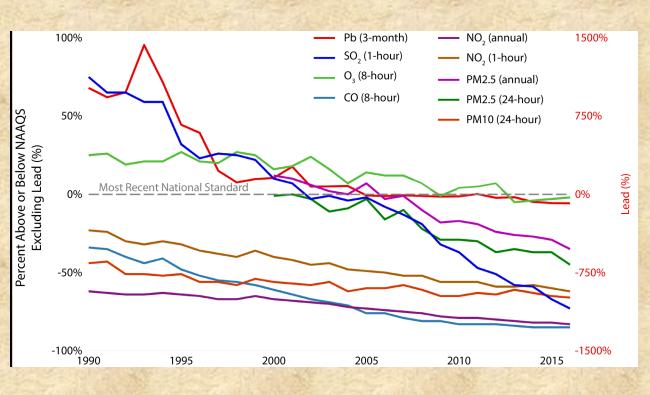
- Solution is education, and then action
- Regulations Clean Air Act of 1970, National Ambient Air Quality Standards
- Acceptable levels are set by what a human being can tolerate without noticeable ill effects - minus 10 to 50% margin of safety

Short-term and long-term levels are set for some contaminants

Acute - life-threatening within a few days or hours
 Chronic - effects are additive over a period of years

Office of Air Quality Planning and Standards


National Ambient Air Quality Standards


Pollutant	Primary Standards	Averaging Time	Secon	dary Standards
Carbon	9 ppm	8-hour	None	
Monoxide	(10 mg/m ³)			
	35 ppm	1-hour		
	(40 mg/m ³)			
Lead	3	Rolling 3-Month	_	
	0.15 μg/m ³	Average	Same as Primary	
Nitrogen		Annual		
Dioxide	53 ppb	(Arithmetic Average)	Same as Primary	
	100 ppb	1-hour	None	
Particulate	3			
Matter (PM10)	150 μg/m ³	24-hour	Same as Primary	
Particulate		Annual		
Matter (PM2.5)	15.0 μg/m ³	(Arithmetic Average)	Same as Primary	
	35 μg/m ³	24-hour	Same as Primary	
Ozone	0.075 ppm	8-hour	Same as Primary	
	(2008 std)			
	0.08 ppm	8-hour	Same as Primary	
	(1997 std)			
Sulfur	0.03 ppm	Annual	0.5 ppm	3-hour
Dioxide		(Arithmetic Average)		
	0.14 ppm	24-hour		
	75 ppb	1-hour	Î	None

4

Trends in Air Quality

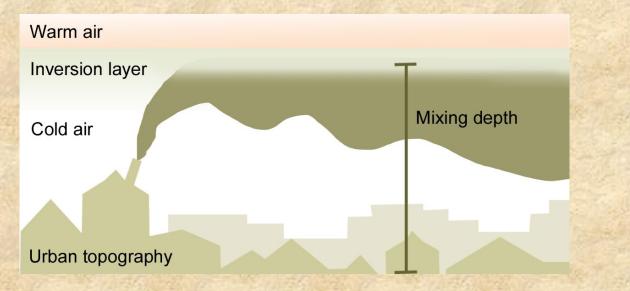
Comparison of Growth Areas and Emissions, 1980-2018

Meteorological Factors Affecting Air Quality

- The solution to pollution is dilution disperse the contaminants
- Spread the contaminants around, keeping the levels below the toxic levels. (This cannot work forever.)
- Meteorological Factors affecting *Dispersion* 1.The strength of the wind
 2.The stability of the air

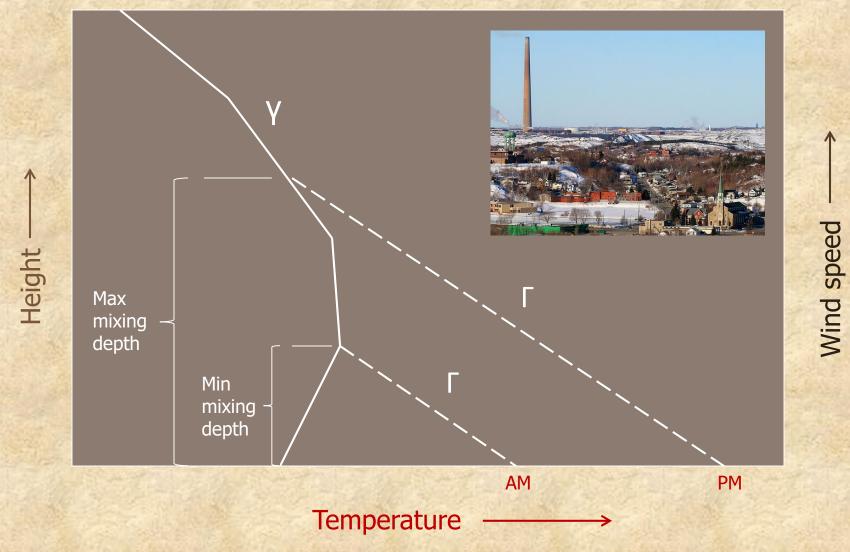
Meteorological Aspects

Processes that cause air to rise and pollutants to disperse


- Convective air flow due to heating of earth's surface
- Orographic ascent
- Air mass lifting due to advection

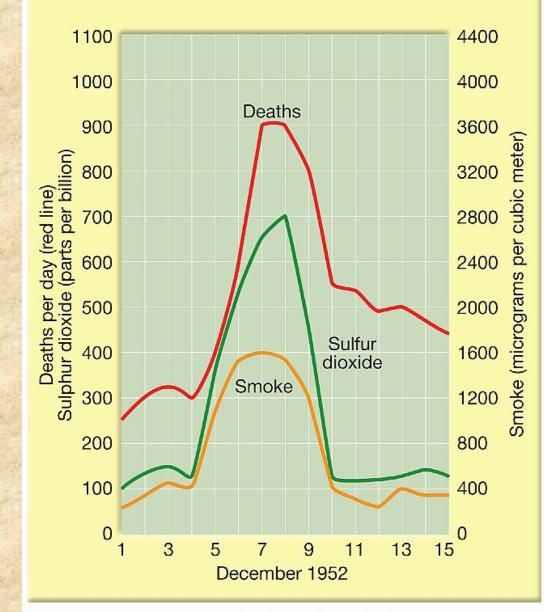
Turbulence dilutes pollutants by mixing with surrounding air. Types of turbulence –

- Mechanical due to air passing over a rough surface
- Thermal thermal heating and convectional air flow
- Strong winds blow the pollution away (to someone else's backyard)
- The stronger the wind, the more turbulent the air and the better the mixing of the contaminants with the wind.


Atmospheric Stability

- Atmospheric stability determines the extent to which vertical motions will mix the pollution with the air above (most pollution occurs at the surface)
- The vertical extent to which convection causes mixing is called the *mixing depth*.
- Greater mixing depths lead to less air pollution.
- Need a mixing depth of several km. Mixing depths are greatest in the afternoon in Summer.
- If the air is stable, convection is limited, and the mixing depths are small.
- Stable air is often associated with a high pressure region (mid-latitude anti-cyclone)
- Temperature inversions will trap the pollution.

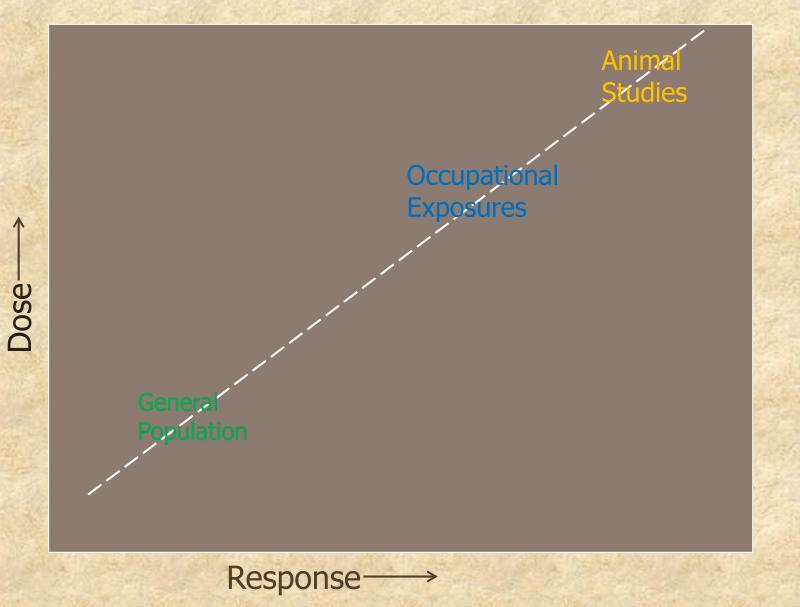
Forecasting Air Pollution Potential (FAPP)



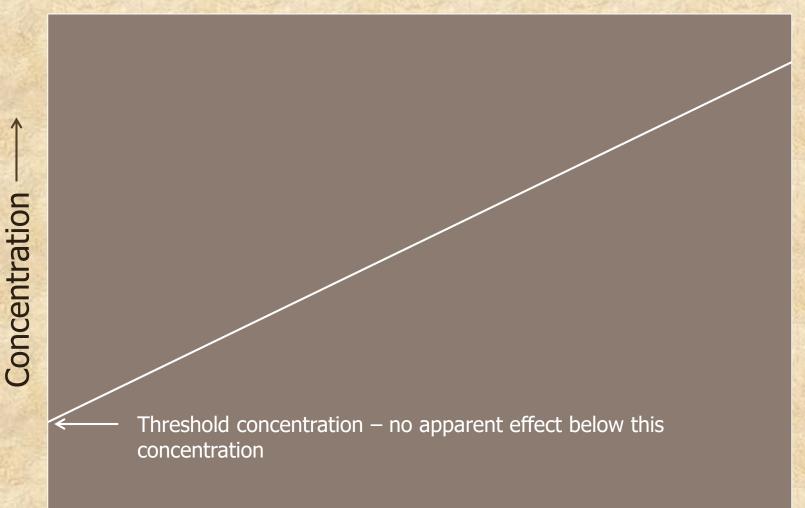
Rate of ventilation = depth of mixing layer x average wind speed mixing layer

Health Aspects of Air Pollution – Air Pollution Episodes

YAN'T LOOK	Date	Place	Excess Deaths	Cause
	Feb 1930	Meuse Valley, Belgium	63	Inversion, SO ₂
	Oct 1948	Donora, PA	20	Inversion (valley), SO_2
	Dec 1952	London	4,000	Subsidence inversion, SO ₂ + particulates
No. N	Nov 1953	New York	250	Inversion, high SO ₂
	Jan 1956	London	1,000	Subsidence inversion, SO ₂ + particulates
	Jan 1957	London	800	Subsidence inversion, SO ₂ + particulates
(C TO PARCE)	Jan 1962	London	700	Subsidence inversion, SO ₂ + particulates
	Jan 1963	New York	400	Inversion, high SO_2
	Nov 1966	New York	168	Inversion, high SO ₂

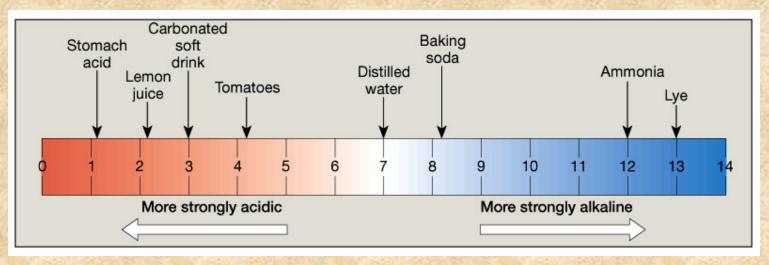


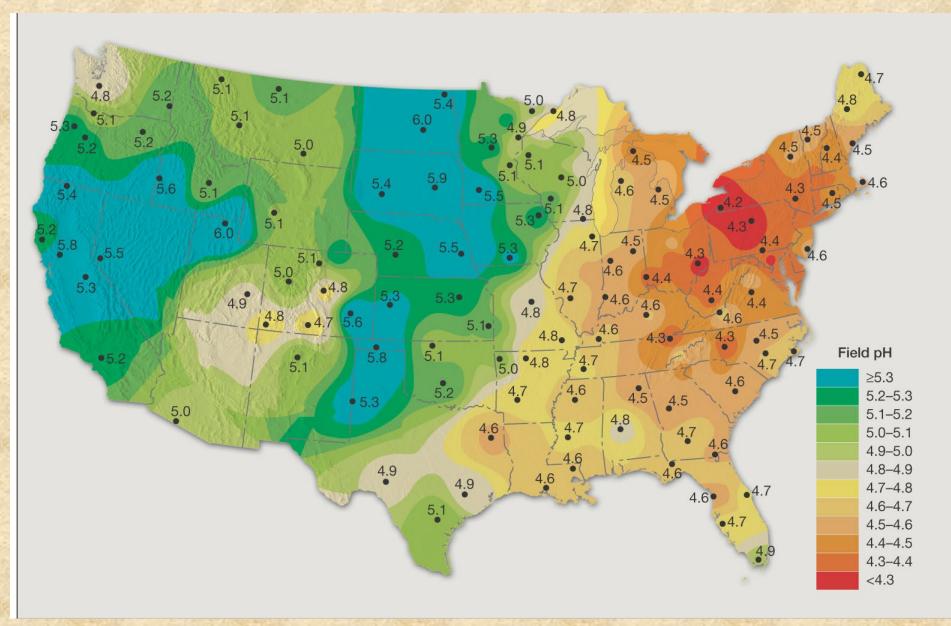
Copyright © 2007 Pearson Prentice Hall, Inc.


ACOD XC

Copyright © 2010 Pearson Prentice Hall, Inc.

Determining "Cause and Effect"


The "Threshold" concept


Effect \longrightarrow

Acid Precipitation

- Some pollutants end up as acids e.g. SO₂ + O + H₂O gives H₂SO₄ sulfuric acid.
- Also get nitric acid from NOx + water.
- Some acids fall to Earth as acid rain or snow (acid precipitation)
- Water is naturally somewhat acidic (ph ~ 5.6) CO₂ + H₂O gives carbonic acid (appears in aerated drinks)

Precipitation [pH 5.6 is good]

Effects of Acid Precipitation

- 1. Low pH in lakes and streams lead to more leaching of aluminum from the soils, and aluminum is toxic to fish. Calcium carbonate helps (acid breaks it down to $CO_2 \& H_2O$)
- 2. Reduces crop yields
- 3. Impairs the productivity of forests damages leaves & roots, and leaches out the trace minerals
- 4. Corrodes metals and damages stone structures

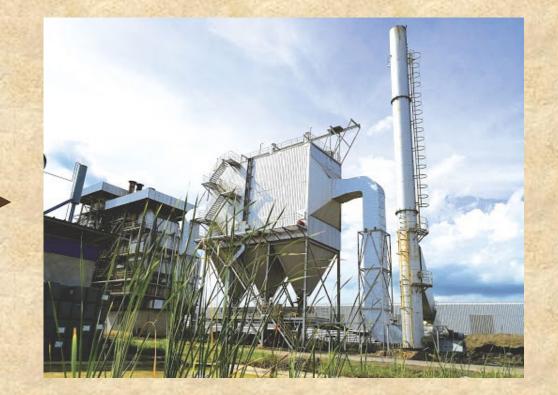
Houses of Parliament

2011

Westminster Abbey

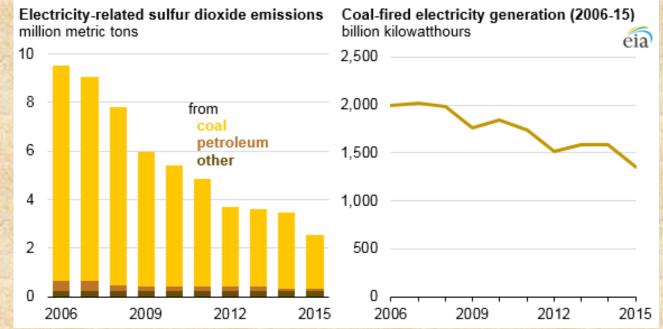
> London 2011

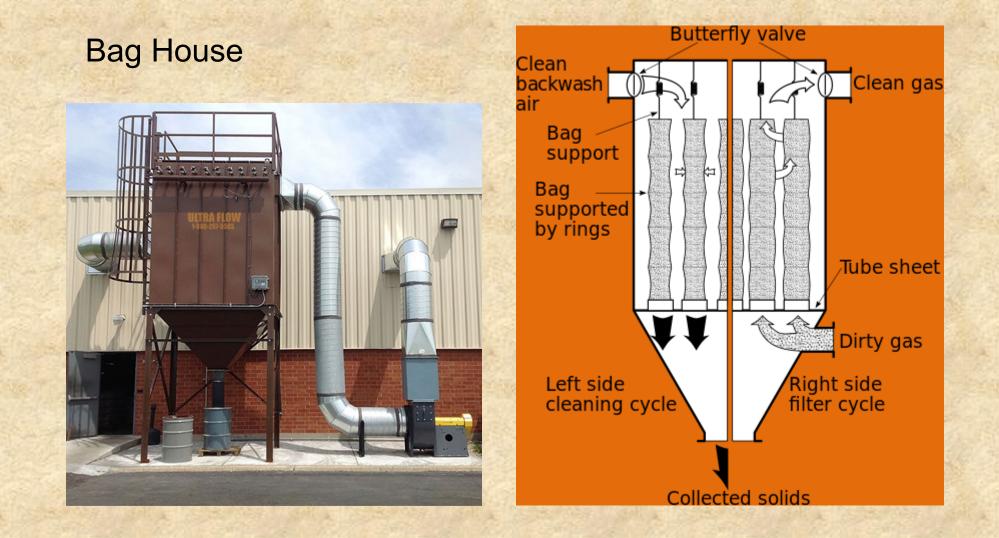
London 1973



Air Pollution Abatement

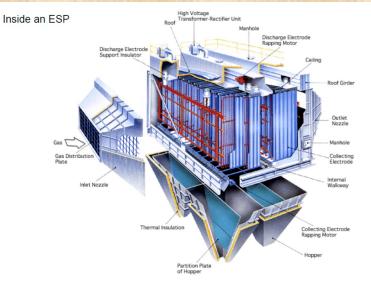
- Disperse pollutants \rightarrow dilution = solution
- Change in process
- Fuel substitution
- Removal of pollutants
 - Electrostatic precipitators
 - Bubblers and Scrubbers



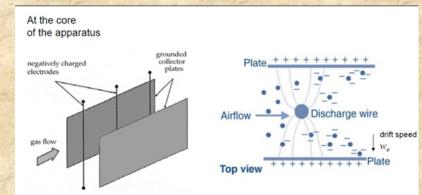

Emission Control

- Products of incomplete combustion (PIC) and CO lean mixture
- Control of particles Electrostatic precipitators and bag houses
- Sulfur control before (coal washing, coal gasification, oil desulfurization) or after combustion (sorbent injection, wet scrubber, dry scrubber)
- Nitrogen oxide during (low-No_x burner) or after (selective catalytic reduction, selective noncatalytic reduction) combustion.
- Mercury
- Toxic metals
- Waste disposal

Removal of Particulates



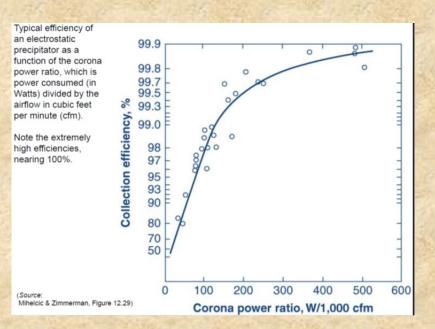
(www.dom.com/)


Electrostatic precipitators (ESPs) are major pieces of equipment and are expensive.

(http://www.ppcesp.com/ppcart.html)

(http://www.qrbiz.com/product/1472881/Electrostatic-Precipitator.html)

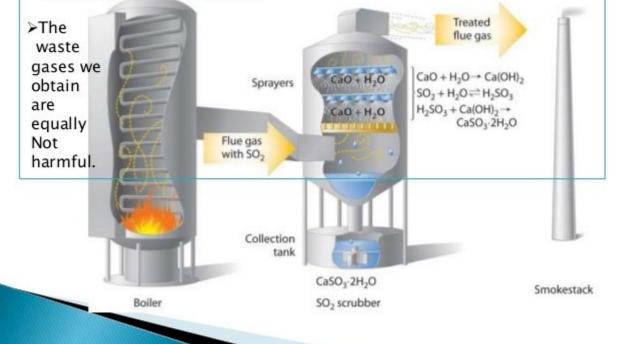
Principle: Electrodes at high voltage create a corona effect (ionized atmosphere) surrounding them. This charges the passing particles. Once charged, particles are subject to a transverse electrostatic force that pulls them toward the collecting plates. Plates are periodically "rapped" (vibrated) to make the collected particles fall down into a receiver basket in the bottom of the apparatus.


Efficiency of an electrostatic precipitator (Deutsch equation)

 $\eta = 1 - \exp(-wA/Q)$

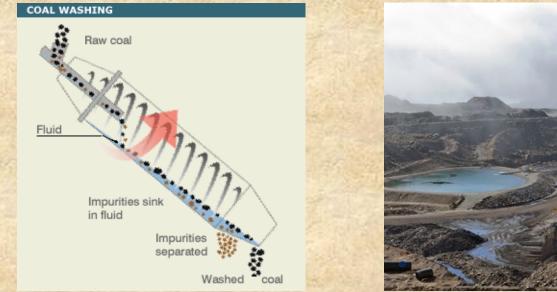
w = drift velocity $\approx 0.05d_p \text{ m s}^{-1}$

d_p = particle diameter in microns


- A = total area of plates
- Q = volumetric flow rate

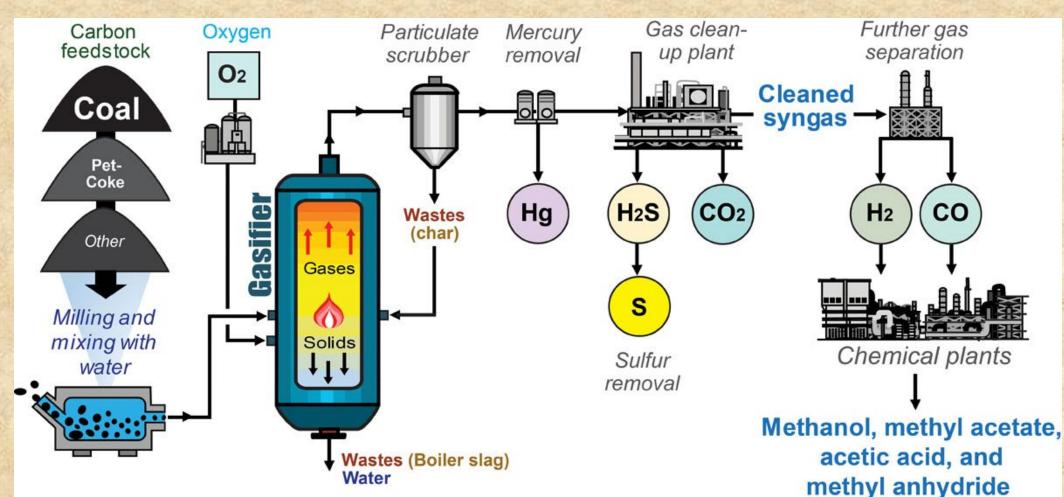
Removal of Sulfur Dioxide from Effluent Stream - Scrubber

Flue-gas Desulfurization


>In this chamber sulfur dioxide is converted into solid sulfur which is then sent to the scrubber.

Removal of sulfur before combustion

1) Coal washing – remove mineral components which sink while coal floats. In terms of sulfur emissions the removal of pyrite (FeS_2) is most important. Sulfur that occurs in the organic molecules is not removed by this process. Post-combustion clean-up may be required.



2) Coal gasification

3) Oil desulfurization

$$\begin{split} &\mathsf{RS} + \mathsf{H}_{2(g)} \to \mathsf{H}_2\mathsf{S}_{(g)} + \mathsf{R} \ (\mathsf{R} = \text{organic radical, catalyst present}) \\ &\mathsf{H}_2\mathsf{S}_{(g)} + 0.5\mathsf{O}_2 \to \mathsf{H}_2\mathsf{O} + \mathsf{S} \end{split}$$

Coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen (H₂), carbon dioxide (CO₂), natural gas (CH₄), and water vapour (H₂O)—from **coal** and water, air and/or oxygen.

