Nuclear-fueled Power Plants
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Public Perception of Nuclear Power

When you think of “nuclear power”

Fukushima what is the first word or phrase that comes to your mind?
nuclear
: m2005 ®2011
accident 30
March 11,
2011 .
E 20
g
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Disaster Energy War Good Bad Other Facilities Waste

Source: Yale/GMU March 2011



FIGURE 7.4

Isotopes of hydrogen, helium,
and oxygen. Each isotope

is designated by its element
symbol (H, He, O, etc.), a
preceding subscript giving
the number of protons (darker
spheres), and a preceding
superscript giving the total
number of nucleons. Only the
hydrogen isotopes have their
own names.
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Change in

Type Nuclear equation RUpes St mass/atomic numbers

A: decrease by 4

A
Alpha decay | ZX Z: decrease by 2

v
2

A A: unchanged

Beta decay | ZX v Z: increase by 1
<
Gamma A 0 A A: unchanged
decay zX oY + ZY V Z: unchanged
VNANS,
Excited nuclear state

Positron A A: unchanged

emission Z: decrease by 1

A: unchanged
Z: decrease by 1

Electron A 0 A
X e Y
capture z -18 + v-1




TABLET7.] | SOME IMPORTANT RADIOACTIVE ISOTOPES
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Number of undecayed nuclei
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Isotope Half-life (approximate) Significance

Carbon-14 5,730 years Formed by cosmic rays; used in radiocarbon dating for objects up to 60,000
years old.

lodine-131 8 days Product of nuclear fission; released into the environment from nuclear weap-

ons tests and reactor accidents. Lodges in the thyroid gland where it can
cause cancer.

Potassium-40

1.25 billion years

Isotope constituting 0.012% of natural potassium and the dominant radia-
tion source within the human body. Used for dating ancient rocks and to
establish Earth’s age.

0 1 2 3
Time (half-lives)

FIGURE 1.5

Decay of a radioactive sample initially containing 1,000 nuclei.

Plutonium-239 24,000 years Isotope produced in nuclear reactors from U-238. Can be used in nuclear
weapons.

Radon-222 3.8 days Gas formed by the decay of natural radium in rocks and soils, ultimately
from uranium-238. Can be a health hazard when it seeps into buildings.

Cesium-137 30 years Product of nuclear fission responsible for widespread land contamination at
Chernobyl and Fukushima. Soluble in water; mimics potassium in the body.

Strontium-90 29 years Product of nuclear fission that chemically mimics calcium, so it's absorbed
into bone. Still at measurable levels in the environment following above-
ground nuclear weapons tests of the mid-twentieth century.

Tritium (hydrogen-3) 12 years Produced in nuclear reactors. Radioactive hydrogen isotope used to “tag”

water and other molecules for biological studies. Used to boost the explo-
sive yield of fission weapons.

Uranium-235

704 million years

Fissile isotope constituting 0.7% of natural uranium; fuel for nuclear reactors
and some nuclear weapons.

Uranium-238

4.5 billion years

Dominant uranium isotope (99.3%). Cannot sustain a chain reaction, but
boosts the yield of thermonuclear weapons. Depleted uranium— after
removal of U-235—Is used for armor-penetrating conventional weapons
because of its high density.




Radioactivity — alpha and beta particles, gamma rays
Alpha - relatively heavy particle, penetration depth ~ 1mm
Beta particle — light particle (electron), penetration depth several cm

Gamma ray — high energy EM radiation, penetration depth measured in
meters

Decay rate and half-life
N = Ng exp(-kt) and t,,, = In2/k

Measuring radioactivity
1 Ci =3.7(E10) Bg, where Bq = 1 decay/second
1 Gy = 1 J of absorbed energy per Kg, also 1 rad = 0.001 Gy

Seivert (Sv) is used to measure the dose equivalent which takes into
account the quality (Q) of the absorbed radiation. Q = 1 for X-rays, y-rays, and
B particles, 10 for neutrons, and 20 for a particles.

1 rem (roentgen equivalent man) = 0.01 Sv and 1 millirem = 1E-5 Sv
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Binding energy per nucleon of the isotopes

_ Fe
B The "iron group” : » yield from
8r of isotopes are the : + nuclear fission
- most tightly bound. : .
E - : u g: Ni (most tightly bound) :
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= S = 56 Fe : than iron can yield
A E 26" pave 8.8 MeV: energy by nuclear
E E - per nucleon fission.
o S 4H vyield from binding energy. :
© £ |4 nuclear fusion :
o
= f I
% | l
ma 2 ;
» Average mass
I of fission fragments 235
B » is about 118. U:
P 1 1 11 1 1 1 1 1 EI | (S N (S N N N —— — :
50 100 150 200

Mass Number, A

235 + 1n — ,,,Ba + 89Kr + 3n +177 MeV (1 MeV = 1.6E-13 J)

238U vl ln ket 239U 5 y — 239Np + B = | 239Pu + B

Fissile nuclei (split after absorbing thermal neutron) = 233U, 235U, 23%9Pu

Fertile nuclei (absorb fast neutron and convert into fissile nuclei) = 232Th, 238U



Nuclear fission reactors

Natural U is 99.3% U-238 and 0.7% U-235

U-235 is the fissionable isotope

For reactor fuel enrich U-235 to 4.0%

The neutrons emitted during the fission event have
an energy of 2.0 MeV. Lower energy neutrons (2
eV) are much more effective at inducing fission
(capture cross-sections)

A moderator is used to slow down the neutrons

A control rod made of a neutron absorber is used to
control the reaction

Criticality is achieved when the reaction is at
equilibrium

What is an Electron Volt (eV)?

1eV = energy required to
move a charge equal to
1e- across a potential
difference of 1V.

It is a unit of energy.
1eV =1.602 x 10"°J
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Controlling the Nuclear Reaction

* Control rods: Keep Control rods
reaction from going too
fast by absorbing some of
the neutrons; often

made of cadmium
* Moderator: slows down

neutrons so that the
reactor fuel (23°U or 23°Pu)

(Neutron caichers)

Fissila
L

Maoderator

can capture them; water
and graphite are good
moderators

Hoat removal
(&.g. walar)

Radation
prolection barriar




Nuclear Power Plant
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e Control rods
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1 The core of a breeder reactor

contains fissile uranium and REACTOR
plutonium, atoms that split easily CORE
and release energy as heat and !
radiation. Neutrons released

during this reaction are absorbed

by a “blanket" of fertile uranium

surrounding the core. Fertile

HEAT
EXCHANGER

o
STEAM 1|| | TUREBINE GENERATOR

>, GEMERATOR 1 [_/— ﬁj“
1
P

uranium, harder to split than fissile
uranium, turns into plutonium when
it absorbs neutrons.

Sodium Sodium
Unlike conventional reactors that
use water to transfer heat, a
breeder uses liquid sodium. 2 The sodium surrounding 3 The heat then passes through a steam 4 The steam drives a turbine,
The sodium does not slow the the core flows through a heat generator, If there is a leak and the generating electricity.
neutrons like water, and exchanger, a cluster of sodium comes into contact with water or
high-energy neutrons are more thin-walled metal tubes, and air, the sodium burns. A 1995 fire caused
readily absorbed by the fertile transfers its energy to a by a sodium leak shut down the Monju

uranium to create plutonium. separate stream of sodium. breeder reactor for 14 years.
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FIGURE 7.14

Nuclear fuel cycles. A once-
through cycle is shown in
black; additional steps in a
reprocessing cycle are shown
in gray. On-site storage
involves pools of water for Mining vy

short-term storage of fresh, Und g
highly radioactive waste, ?e e(:girtzun
followed by longer-term £ Iy

dry-cask storage.



TABLE7.2 | SOME OPTIONS FOR NUCLEAR WASTE DISPOSAL

Option

Dry-cask storage

Shallow burial (~1 km)

Sub-seabed burial

Deep-hole burial (~10 km)

Advantages

Available short-term option.
Waste kept on site; no need to
transport.

Relatively easy construction and
access. Waste is recoverable and easily
monitored.

Keeps waste far from population
centers.

Keeps waste well below groundwater.

Disadvantages

Most nuclear plants are near population
centers and waterways.

Proximity to groundwater poses
contamination risk. Subject to
geological disturbance.

Probably not recoverable. Requires interna-
tional regulatory structure. Currently banned
by treaty.

Not recoverable. Behavior of waste at
high temperature and pressure not well
understood. Subject to geological
disturbance.

Space disposal (dropped
into Sun or stored on Moon)

Permanent removal from Earth
environment.

Impractical and economically prohibitive.
Risk of launch accidents.

Ice-sheet disposal

Island disposal

Keeps waste far from population
centers.

Burial under remote islands keeps
waste away from population centers.

Expensive due to remoteness and weather.

Recovery difficult. Global climate change is

diminishing ice sheets. Treaty bans radioac-
tive waste from Antarctica.

Ocean transport poses safety issues.
Possible seawater leakage into waste
repository. Seismic and volcanic activity
common at island sites.

Liguid-waste injection

Transmutation

Waste locked in porous rock below
impermeable rock.

Advanced reactor designs, high-energy
particle accelerators, or “fusion torches”
induce nuclear reactions that render
waste non-radioactive or very
short-lived.

Requires processing waste to liquid
form. Movement of liquid waste might
result in radiation release. Liquid injection
can increase seismic activity.

Technology not proven or available.
Requires shorter-term recoverable
storage option until technology is
operational.
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TABLE7.3 | IMPACTS OF TYPICAL 1-GWe COAL AND NUCLEAR POWER PLANTS

Impact

Coal

Nuclear

Fuel consumption

360 tons coal per hour

30 tons uranium per year

Air pollutants

400,000 tons per year

6,000 tons per year

Carbon dioxide

1,000 tons per hour

0

Solid waste

30 tons ash per hour

20 tons high-level radioactive waste per
year

Land use (includes mining)

17,000 acres

1,900 acres

Radiation release

1 MBg per minute from uranium, thorium,
and their decay products, but varies with
composition of coal

50 MBq per minute from tritium,
carbon-14, inert gases, iodine-131

Mining deaths

1.5 per year from accidents; 4 per year
from black lung disease

0.1 per year from radon-induced lung
cancer

Deaths among general public

30 premature deaths per year from air
pollution

0.1-10 deaths per year from radiation-
induced cancer




D-T fusion reaction

“H +%H — 3He + 3N + 2.8 pJ

pJ = 1012 ]

FIGURE 1.24

The deuterium-tritium (D-T)
fusion reaction of Equation 7.3
produces a helium nucleus
(3He), a neutron, and energy.



Nuclear Fusion — Magnetic Confinement

Fusion reactions require:
» High temperature (100EG6 °C)
» High particle density
» Relatively small energy loss per
unit time
The above three items comprise the
Lawson Criterion.
herugecas  FUEI IS deuterium and tritium

+ Tritium from
Blanket

Clean-up and DT
Fuel Recowve

“¢ Helium to Stack

E
]
=

Lithium in the walls of the chamber
react with fast neutrons to produce
additional tritium (half-life = 12.3 years)




Nuclear Fusion — Laser Ignition

10-20% of
the laser
energy to
capsule

Energy
Int |-
the } <

Hohlraum

National Ignition Facility (NIF) — use lasers
to initiate fusion

View of upper 1/3 of target
chamber

Fuel is a mix of
deuterium and tritium.
In most designs laser
beams directly
compress the target.
In this design X-rays,
generated by lasers,
compress the target.
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Possible design for a D-T
fusion power plant with a
tokamak fusion reactor. The
D-shaped structure at left is

a cross section through the
tokamak. The neutral deute-
rium beam supplies both fuel
and energy to heat the plasma.
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