
Other Geological Applications to Forensic Investigations –Rocks, Geologic Maps, and Building Materials

Geologic maps

Rocks

There are 3 major types of rocks

IGNEOUS formed from molten magma

SEDIMENTARY formed from sediment (soil, sand, etc,)

METAMORPHIC formed by applying heat and pressure to existing rocks

Characterizing Rocks

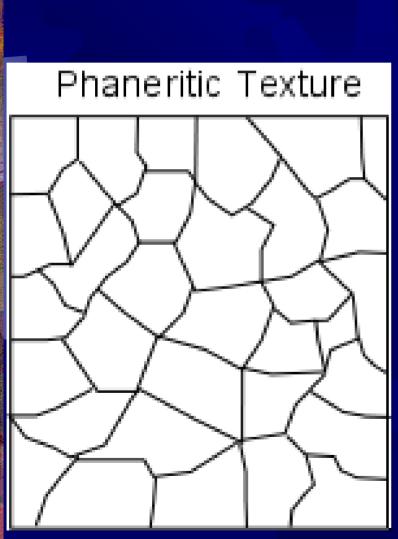
The three major chacterizing features of rocks are:

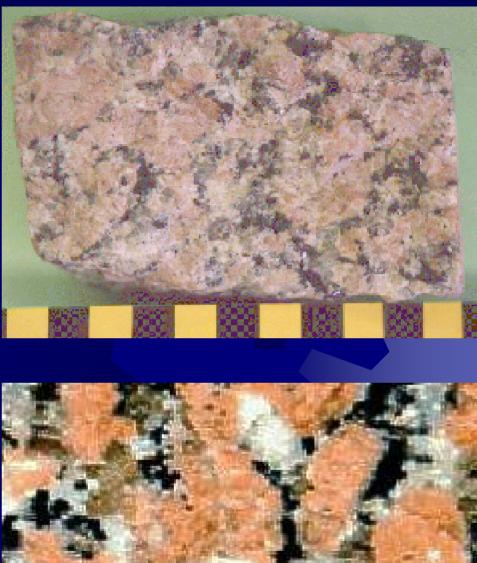
- Color
- Composition (Mineralogy/Chemistry)
- Texture

Note: Even the most sophisticated geological classification schemes are based on these features

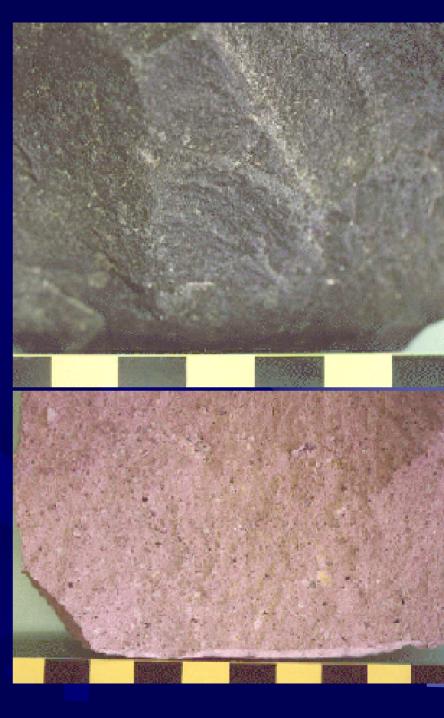
Characterizing Rocks

Classification by Color Color Index (used mainly for igneous rocks)


- Leucoratic
- Mesocratic
- Melanocratic
 - and/or
- Felsic
- Mafic


Characterizing Rocks Textures of Igneous Rocks

- Aphanitic
- Phaneritic
- Porphyritic
- Inclusions
 - > Xenoliths
 - > Xenocrysts


Phaneritic Texture


Aphanitic Texture

Aphanitic Texture

Vesicular & Glassy Textures

vesicular basalt

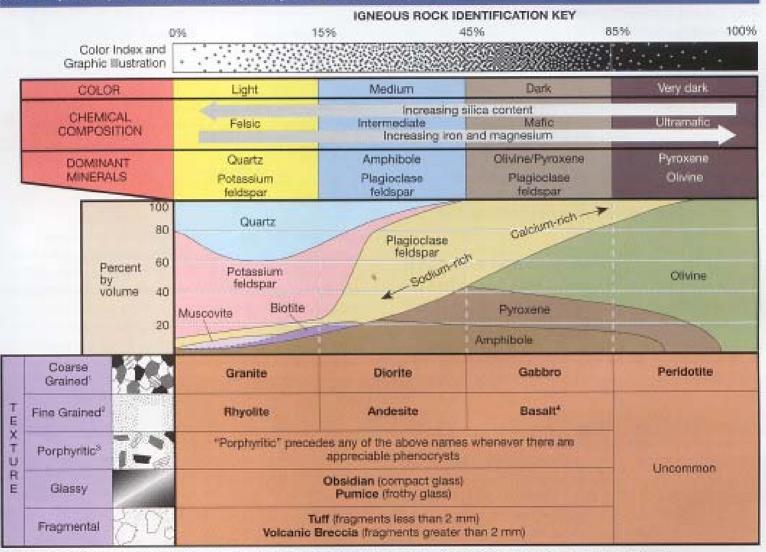

vesicle /

Table 2.1 Igneous rock identification key. Color, with associated mineral composition, is shown along the top axis. Each rock in a column has the color and composition indicated at the top of the column. Texture is shown along the left side of the key. Each rock in a row has the texture indicated for that row. To determine the name of a rock, intersect the appropriate column (color & mineral composition) with the appropri-

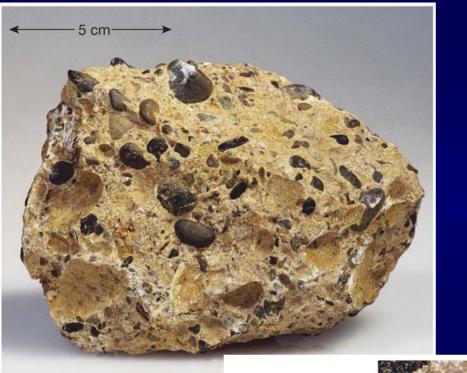
ate row (texture) and read the name at the place of intersection.

¹ Also called phenomic. Crystals generally 1-10 mm (1 cm). The term pegmetite is added to the rock name when crystals are greater than 1 cm; e.g. grante-pegmetite. ² Also called aphentic. Crystals generally less than 1 mm.

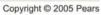
³ For example, a granite with phenocrysts is called porphyritic granite.

*Baselt with a cinder-like appearance that develops from gas bubbles trapped in cooling lave (a testure releared to as vea/cular) is called scored.

Sedimentary Rocks


Detrital & Chemical Rock ClassificationDetrital RocksChemical RocksConglomerateLimestoneSandstonesChert (Flint)SiltstoneSalt (Evaporite)

Shale



Detrital Sedimentary Rocks

Conglomerates
Poorly Sorted particle sizes
Well-rounded particles
Usually particles are gravel sized

Conglomerate

Close up

Copyright © 2005 Pearson Prentice Hall, Inc.

Detrital Sedimentary Rocks

Breccia

Poorly sorted grains

Angular grains

Gravel sized grains

Copyright © 2005 Pearso

Close up

Breccia

Copyright © 2005 Pearson Prentice Hall, Inc.

spheric

Department Environmental, Earth, & Atm

Detrital Sedimentary Rocks

Well sorted particles

Particles can be angular to rounded

Sand-sized Particles

Copyright © 2005 Pearson Prentice Hall, Inc.

Other types of sandstone Graywacke – contains rock fragments Arkose – contains significant feldspar

Close up

Quartz Sandstone

Detrital Rocks

Microscopic grain size
Consist of silt and clay size grains
Cannot see grains with naked eye
Occur in "quiet" depositional environments

Chemical Rocks

Classification
 Inorganic - Not produced by living things.

Biochemical - Are produced by or are remnants of living things (e.g. shell fragments, coral reefs, etc)

Chemical Rocks

Limestone

Most abundant chemical rock
Inorganic (oolitic limestone, Travertine) or Biochemical (Chalk, Coquina)

Limestone (Chemical Rocks)

Travertine **Common in** caves Happen when calcium carbonate is precipitated out of groundwater

Copyright © 2005 Pearson Prentice Hall, Inc.

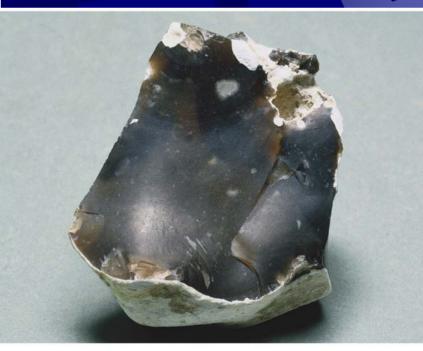
Limestone (Chemical Rocks)

 Coquina
 Consists of loosely
 cemented
 shell
 fragments

Copyright © 2005 Pearson Prentice Hall, Inc.

Limestones

Chemical Sedimentary Rocks


Chert (Flint) Consists of Microcrystalline Silica Two major occurrences of chert Irregular shaped nodules in limestone layers of rock Most likely Biochemical

Copyright © 2005 Pearson Prentice Hall, Inc.

Chert

Agate

Various size

fragments

Bituminous Coal

DETRITAL ROCKS				CHEMICAL ROCKS			
Texture (grain size)		Composition	Rock Name	Composition	Texture (grain size)	Rock Nam	e
Coarse (over 2 mm) with large grains		Rounded fragments of quartz and/or chert	Conglomerate	Calcite, CaCO, (will effervesce)	Fine to coarse crystalline	Crystalline Limestone	
		Angular fragments of quartz and/or chert	Breccia		Visible shells and shell fragments loosely cemented	Coquina	Biochemicane
Medium (1/16 to 2 mm) feels "sandy"		Quartz usually dominates					
		(If abundant feldspar is present the rock is called Arkose)	Sandstone		Various size shells and shell fragments cemented with calcite cement	Fossiliferous Limestone	
Fine (1/16 to 1/256 mm)		Quartz and clay	Siltstone		Microscopic shells	Chalk	
Very fine		Quartz and clay	Shale		and clay	Gnaix	and the state
(less than 1/256 mm)				Dolomite CaMg(CO ₃) ₂ (will effervesce if powdered)	Fine to coarse crystalline	Dolostone	
				Quartz, SIO ₂	Very fine crystalline	Chert (light co Flint (dark col	
				Gypsum CaSO ₄ •2H ₂ O	Fine to coarse crystalline	Rock Gyps	um
				Halite, NaCl	Fine to coarse crystalline	Rock Sal	t

Altered plant

fragments

E

Metamorphic Rocks

Classified into two main groups Foliated Rocks Non-foliated Rocks

Progression of Shale to Gneiss
 Slate Low Metamorphic Grade
 Phyllite
 Schist
 Gneiss High Metamorphic Grade

Foliated Textures

Slaty

Phyllitic

Schistosity

Gneissic

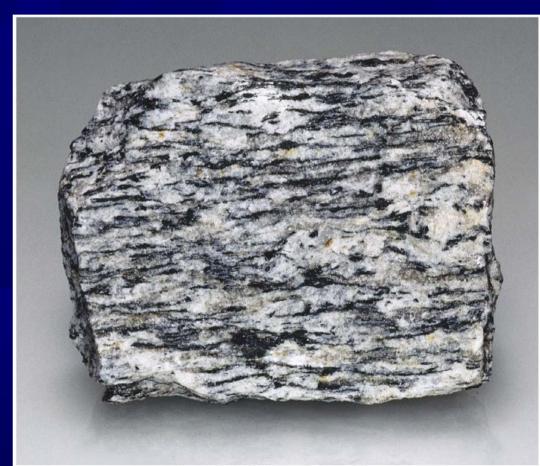
Slate

Parent Rock
 Shale
 Slaty Cleavage

Department Environmental, Earth, & Atmospheric Sciences

Phyllite Parent Rock Slate Characteristic sheen/shine Phyllitic Texture

Schist


Parent Rock
 Phyllite
 Characteristic scaly appearance
 Schistosity

Gneiss

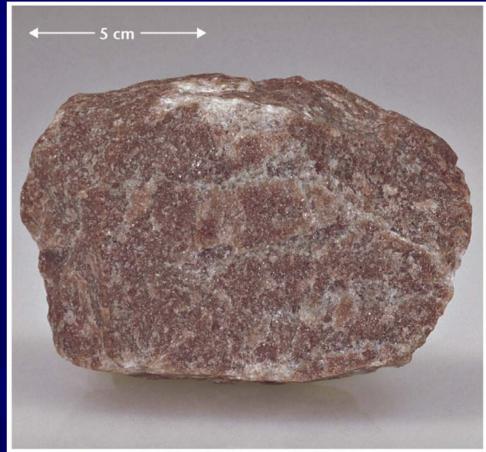
Parent Rock
 Schist
 Characteristic of light and dark banding
 Gneissic Texture

Copyright © 2005 Pearson Prentice Hall, Inc.

Non-foliated Rocks

Rocks that show no Foliation Crystalline Rocks Marble Quartzite Anthracite

Marble



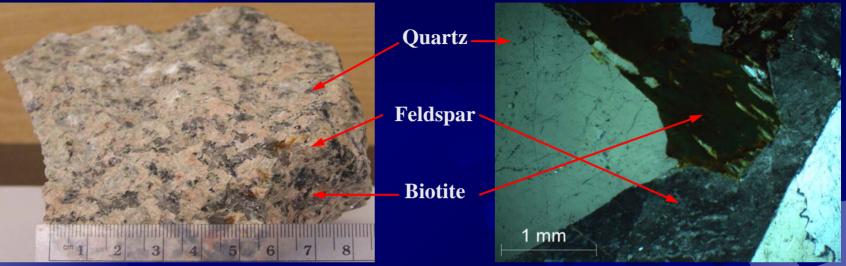
Copyright © 2005 Pearson Prentice Hall, Inc.

(b) Marble

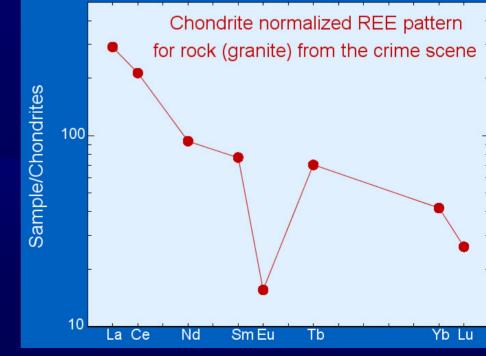
Quartzite

 Parent Rock
 Sandstone
 Moderate to high metamorpism
 Very Hard

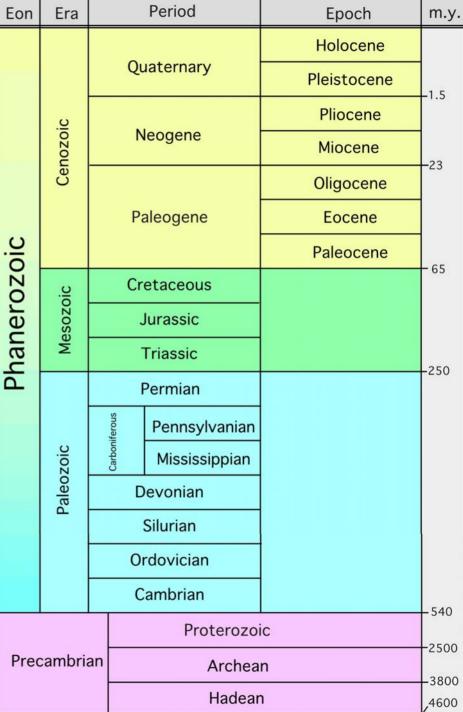
Copyright © 2005 Pearson Prentice Hall, Inc.


Table 2.5 Metamorphic rock identification key. Metamorphic rocks are divided into the two textual groups, foliated and nonfoliated. Foliated rocks are further subdivided based upon the size of the mineral grains.

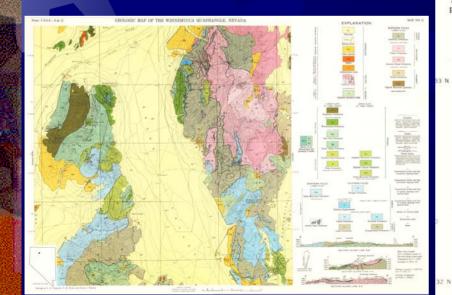
Foliated	Orietated		Very fine	Slate	I M n e	Excellent rock cleavage, smooth dull surfaces	Shale, mudstone, or siltstone
			Fine	Phyllite	c t r a e m	Breaks along wavey surfaces, glossy sheen	Slate
			Medium to Coarse	Schist	a o s r i D	Micaceous minerals dominate, scaly foliation	Phyllite
	Banded		Medium to Coarse	Gneiss	n h g i s	Compositional banding due to segregation of minerals	Schist, granite, or volcanic rocks
		150	Medium to Coarse	Migmatite	m	Banded rock with zones of light- colored crystalline minerals	Gneiss
N o n f o l i		2000	Medium to Coarse	Marble		Interlocking calcite or dolomite grains	Limestone, dolostone
		1000	Medium to Coarse	Quartzite		Fused quartz grains, massive, very hard	Quartz sandstone
			Fine	Hornfels		Usually, dark massive rock with dull luster	Any rock type
8 1			Fine	Anthracite		Shiny black rock that may exhibit conchoidal fracture	Bituminous coal
e		ENGLAS	Medium to very coarse	Fault breccia		Broken fragments in a haphazard arrangement	Any rock type

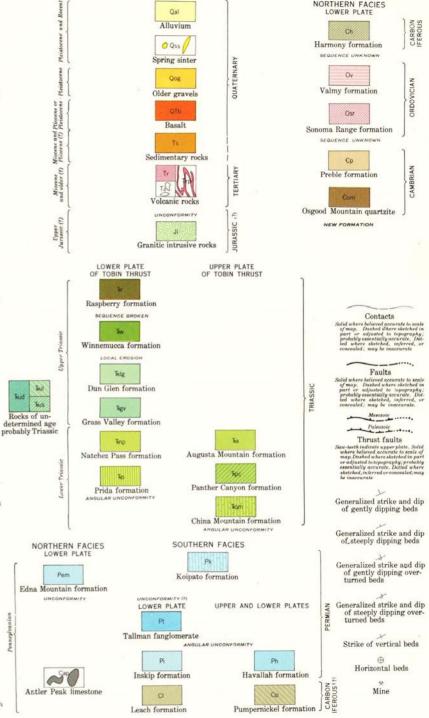


Department Environmental, Earth, & Atmospheric Sciences


Rock Identification

Rock chemistry		
SiO ₂	74.89	
TiO ₂	0.13	
Al ₂ O ₃	12.02	
Fe ₂ O ₃	1.11	
FeO	1.27	
MnO	0.06	
MgO	0.02	
CaO	0.69	
Na ₂ O	3.61	
K ₂ O	4.89	




Geologic Time Scale

On a geologic map the various rock units are arranged in order of their formation – i.e., according to the geologic time scale

The identification of a rock and linking the sample with a particular location using a geologic map can be useful in solving certain kinds of crimes

Department Environmental, Earth, & Atmospheric Sciences

Mysterious Glacial Boulders

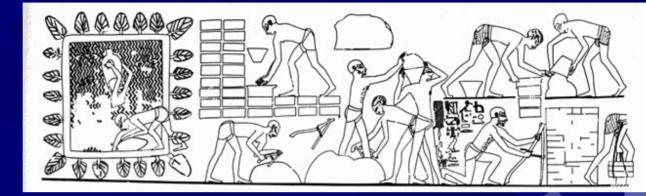
- At a gas works in Massachusetts igneous boulders showing up in the coal the plant was importing were damaging plant equipment
- When the rocks were examined they were found to be of local origin
- In turned out that a shovel operator that drank on the job was scooping the coal with too deep a setting and picking up the local glacial boulders in the soil under the coal pile

Victim: Enrique Camarena *Location*: Mexico *Crime*: Homicide/Cover-up Evidence: Rocks from the body recovered during a MFJP raid on a Michoacan farm were shown through a study of Mexican volcanic rocks to have come from

near Guadalajara. This information lead to the finding of the original burial site and thus exposed the cover-up. (thanks to Ray Murray)

Rocky Scotch Whiskey Case

- When a Canadian importer opened some cases of expensive scotch whiskey he found that the whiskey had been replaced with limestone rocks
- The rocks were traced to their point of origin in central England in a specific limestone quarry
 - A specific worker for liquor company had access to the quarry and had been seen taking rocks home (thanks to Ray Murray)

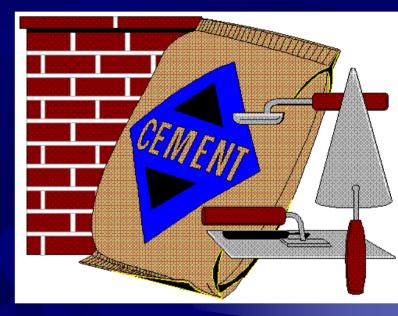

Building Materials

Many building materials are made of or derived from geological materials: Stone, gravel, sand, slate, etc. **Roofing granules** Bricks, roof and floor tiles Cement, concrete, cinder blocks Wallboard, plaster Glass Cleansing powders, abrasives Insulation

Department Environmental, Earth, & Atmospheric Sciences

Bricks have been made since the beginning of civilization

- The basic process is to: * Find a suitable clay
- * Press it into a brick mold
- * Dry the bricks
- * Fire the bricks to 1000°C



Cement Manufacture

Cement is made by mixing limestone, sand, clay, and sometimes coal fly ash, with minor amounts of iron and aluminum compounds

 The mixture is fired in a kiln to ~1500°C where the limestone is calcined into lime which reacts with the silicates to form di-and tri calcium silicates, and triand tetra calcium aluminates

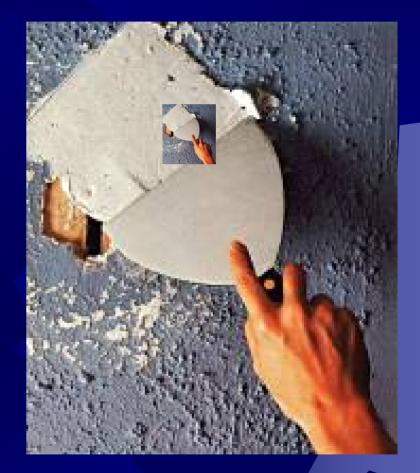
Concrete Manufacture

- Concrete is made by mixing cement with sand, gravel, and water.
- This cement slurry coats the aggregate and hardens into a solid mix

Plaster Manufacture

 Plaster is made by calcining gypsum CaSO₄• 2H₂O at ~150°C to its hemi-hydrate CaSO₄• 1/₂H₂O

 This is an ancient process again going back to the beginning of civilization



After the great fire of London in1666 the king of France ordered that all of the wooden structures be coated with plaster to make them fire resistant

In modern processing various additives, filler, conditioners are added with the result that most plasters can be differentiated from each other

Department Environmental, Earth, & Atmospheric Sciences

Plaster Manufacture

Today ~88% of the gypsum mined is used in the manufacture of wallboard (39 millions tons/year)

Sciences

Department Environmental, Earth, & Atmospheric

Glass Manufacture

 Glass making again goes back into ancient times

 Crushed recycled glass, silica sand, soda ash (Na₂CO₃), limestone, and various additives are melted together at temperatures from 1250°C to 1550°C

 The molten glass is then rolled, blown, molded into glass products. Ancient Roman Glass

Abrasives

Abrasive materials are used in a variety of ways from sanding wood to polishing diamonds to cutting steel

 While diamonds are the hardest abrasives, corundum, garnet, SiC, cubic boron nitride, Zi/AI alloys, pumice, and colloidal silica as well as other materials are also used

Diamond

Silicon Carbide

Pumice

Corundum

The Role of the Forensic Geologist

- All of these materials have textural and compositional properties well suited to petrographic, chemical, isotopic, x-ray diffraction (except for glass), and spectral analytical methods familiar to geologists
- In fact, it can be argued that the geologist is the ideal scientist to do such a variety of analysis

Building Materials Cases

In an attempted rape case the rescuer of the victim was followed by the suspect and beaten with an aluminum baseball bat and had the windows of his car smashed out

Glass adhering to the suspects bat matched the glass from the rescuer's car (Murray, 2004, page 101)

Department Environmental, Earth, & Atmospheric Sciences

Building Materials Cases

In a classic case a home owner who had insulated his attic with a variety of glass wool insulation bought at various sales

An intruder who enter the home through the attic was found to have a similar variety of insulation particles on his clothes tying him to the scene (Murray, 2004, page 103)

Building Materials Cases

In a diplomatic case the neutral Dutch were accused by the British in WW1 of letting the Germans ship sand and gravel for the construction of military sites through their country

A British geologist, Capt. W. B. R. King took 39 samples of concrete aggregate from captured German pillboxes and found that 32 of them came from German and not Dutch sources

(Murray, 2004, page 107)

Department Environmental, Earth, & Atmospheric Sciences

*

Department Environmental, Earth, & Atmospheric Sciences

Building Materials Cases

In a Japanese case an arsonist tried to conceal his crime by poking a small hole in the outside wall of a building and injecting fuel into the hole

Investigators found a suspect's screwdriver with fragments of paint and gypsum, that matched the stucco on the house (Murray, 2004, page 109)

Building Materials Cases

In a case in Israel a safe cracker stole a safe tried to cut into it using a carbide grinding wheel with two different abrasive discs

Investigators recovered the grinder and were able to match the grinder to the grinding marks on the safe as well as matching metal particles found on the suspects' shirts to the grinding debris at the scene

(Zeichner et al., 1993, J. For. Sci., p. 1516-1522)

Acknowledgements

Many thanks to Jack Crelling (retired), Southern Illinois University, who's classroom PowerPoint presentations form the basis of much of this presentation.