Mechanical Systems

Peter Avitabile
Mechanical Engineering Department
University of Massachusetts Lowell
Mechanical Systems - Translational Mass Element

Translation of a particle moving in space due to an applied force is given by:

\[f = \frac{dp}{dt} \]

Where:
\[f = \text{force} \]
\[p = \text{momentum} = mv \]

Considering the mass to be constant:

\[f = \frac{d(mv)}{dt} \Rightarrow f dt = m dv \Rightarrow f = m \frac{dv}{dt} = ma \]
Mechanical Systems - Translational Mass Element

Displacement, velocity, and acceleration are all related by time derivatives as:

\[a = \frac{dv}{dt} = \frac{d^2x}{dt^2} \]

\[a = \dot{v} = \ddot{x} \]
Mechanical Systems - Rotational Mass Element

Centroidal mass moment of inertia - \(I_c \) (not to be confused with \(I \) - area moment of inertia used in strength of materials)

Angular acceleration

\[
\alpha = \frac{d\omega}{dt} = \dot{\omega}
\]

where:

\(\omega = \text{angular velocity} \)

\(\theta = \text{angular displacement} \)

Then:

\[
\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt}
\]
Mechanical Systems - Translational Spring Element

A linear spring is considered to have no mass described by:

\[
f_k = kx_{rel} = k(x_1 - x_2)
\]

(Torsional spring follows the same relationship)
Translational Spring Element

- **Hardening Spring**
- **Linear**
- **Softening Spring**

Bi-Linear

\[f \]

\[x \]

Gap

\[f \]

\[x \]

Cubic

\[f \]

\[x \]

\[k = \text{lb/in} \]

\[= \text{N/m} \]
Damper Element

Viscous (fluid), Coulomb (dry friction), and structural damping (hysteretic)

Viscous Dashpot

\[f_c = c v_{rel} \]

Coulomb Damper

In order to have motion, the applied force must overcome the static friction. As soon as sliding occurs, the dynamic friction becomes appropriate.

\[f_c = c(v_1 - v_2) \]
Equivalence - Springs in Parallel

Both springs see the same displacement

\[f = f_1 + f_2 \]

\[k_{eq}x = k_1x + k_2x \]

\[\therefore k_{eq} = k_1 + k_2 \]
Equivalence - Springs in Series

Both springs see the same force but different displacements

\[\delta = \delta_1 + \delta_2 \]
\[\frac{f}{k_{eq}} = \frac{f_1}{k_1} + \frac{f_2}{k_2} \]

But \[f = f_1 = f_2 \]

\[f = k_1(x_1-x_2) = k_1 \delta_1 \]
\[f_2 = k_2 x_2 = k_2 \delta_2 \]

\[\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} \]

\[k_{eq} = \frac{k_1 k_2}{k_1 + k_2} \]
Translational Systems

Newton's Second Law - THE RIGHT WAY

\[\sum F = ma \quad \text{OR} \quad \sum F_x = m a_x \quad \rightarrow^+ \]
\[\sum F_y = m a_y \quad \uparrow^+ \]

Note that this applies to the center of mass which is not necessarily the center of gravity.

Free-Body Diagram & Sign Convention
Translational Systems - Newton's 2nd Law

Assume spring and dashpot are stretched

\[
\sum F_x = ma_x
\]

\[
f(t) - F_c - F_k = m\ddot{x}
\]

OR

\[
f(t) - c\dot{x} - kx = m\ddot{x}
\]

or in standard input-output differential form

\[
m\dddot{x} + c\ddot{x} + kx = f(t) \iff \dddot{x} + \frac{c}{m}\ddot{x} + \frac{k}{m}x = \frac{f(t)}{m}
\]

\[
\dddot{x} + 2\zeta\omega_n\ddot{x} + \omega_n^2 x = f(t)
\]

\[
\begin{align*}
\zeta &= \frac{c}{c_c} \\
c_c &= 2m\omega_n \\
\omega_n^2 &= \frac{k}{m}
\end{align*}
\]

- **damping ratio**
- **critical damping**
- **natural frequency**
D’Alembert’s Principle – The Fictitious Force

The mass times acceleration is sometimes described as a ‘fictitious force’, ‘reverse effective force’ or ‘apparent force’

\[\sum F + (-ma) = 0 \]

Initially developed since it looks like a classical force balance – but often confuses many students.

DO NOT USE D’ALEMBERT!!!!!
USE NEWTON’S SECOND LAW
Example - Pendulum Problem

Mass at end of massless string

\[J = ml^2 \]

\[\begin{align*}
J\ddot{\theta} &= -mg\sin\theta \\
\text{OR} \quad ml^2\ddot{\theta} + mg\sin\theta &= 0
\end{align*} \]

Then

\[\ddot{\theta} + \frac{g}{l}\sin\theta = 0 \]

\[\begin{align*}
\text{for small } \theta, \quad &\ddot{\theta} + \frac{g}{l}\theta = 0 \\
\text{Nat'l freq.} \quad &\omega_n = \sqrt{\frac{g}{l}}
\end{align*} \]
Example – Differential Equation about Equilibrium

\[\sum F_y = ma_y \]
\[-ky + mg = m\ddot{y} \]
\[-k(x_{st} + x) + mg = m\ddot{x} \]
\[\text{but } mg = kx_{st} \]
\[\therefore m\ddot{x} + kx = 0 \]

Source: Dynamic Systems - Vu & Esfandiari

Therefore, the equations can be written about the equilibrium point and the effect of gravity makes no difference.
Systems with Displacement Input

\[\sum F_x = m a_x \]

\[FBD \]

\[k(y-x) + c(\dot{y} - \dot{x}) = m\ddot{x} \quad \text{OR} \quad m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky \]

In terms of natural frequency and damping ratio

\[\ddot{x} + 2\zeta\omega_n \dot{x} + \omega_n^2 x = 2\zeta\omega_n \dot{y} + \omega_n^2 y \]

The force exerted can be found to be

\[f(t) = k(y-x) + c(\dot{y} - \dot{x}) \]
Transfer Function and State Space

\[m\ddot{x} + c\dot{x} + kx = f(t) \]

\[\mathcal{L}(m\ddot{x}) = s^2mX(s) - msX_0 - m\dot{X}_0 \]
\[\mathcal{L}(kx) = kX(s) \]
\[\mathcal{L}(c\dot{x}) = scX(s) - cX_0 \]
\[\mathcal{L}(f(t)) = f(s) \]

\[s^2mX(s) - msX_0 - m\dot{X}_0 + scX(s) - cX_0 + kX(s) = f(s) \]
Transfer Function and State Space

Grouping and rearranging:

\[(ms^2 + cs + k)X(s) = f(s) + (ms + c)X_0 + m\dot{X}_0\]

Assume initial conditions are zero and rearranging terms to obtain OUT/IN form

Then:

\[H(s) = \frac{X(s)}{F(s)} = \frac{1}{ms^2 + cs + k}\]

Sometimes written with

\[b(s) = ms^2 + cs + k\]
Frequency Response Function - SDOF

The frequency response function is the system transfer function evaluated along $s = j\omega$

Recall:

$$h(s) = \frac{1}{ms^2 + cs + k}$$

The complex valued function defines the surface shown

Source: Vibrant Technology
SDOF – Transfer Function

Polynomial Form

\[h(s) = \frac{1}{ms^2 + cs + k} \]

Pole-Zero Form

\[h(s) = \frac{1/m}{(s-p_1)(s-p_1^*)} \]

Partial Fraction Form

\[h(s) = \frac{a_1}{s-p_1} + \frac{a_1^*}{s-p_1^*} \]

Exponential Form

\[h(t) = \frac{1}{m\omega_d} e^{-\zeta\omega t} \sin \omega_d t \]
SDOF – Frequency Response Function

Polynomial Form

\[h(j\omega) = \frac{1}{-m\omega^2 + cj\omega + k} \]

Pole-Zero Form

\[h(j\omega) = \frac{1/m}{(j\omega - p_1)(j\omega - p_1^*)} \]

Partial Fraction Form

\[h(j\omega) = \frac{a_1}{(j\omega - p_1)} + \frac{a_1^*}{(j\omega - p_1^*)} \]
SDOF - Transfer Function

Transfer Function approach is used extensively in design but is limited to linear, time-invariant systems.

1. **T.F.** - method to express output relative to input
2. **T.F.** - system property - independent of the nature of excitation
3. **T.F.** contains necessary units but does not provide physical structure of system
4. If **T.F.** is known, then response can be evaluated due to various inputs
5. If **T.F.** is unknown, it can be established experimentally by measuring output response due to known measured inputs
S-plane Plots

\[\sigma + j \omega \]

\[\zeta = 0 \]
\[\zeta = 0.1 \]
\[\zeta = 0.3 \]
\[\zeta = 0.7 \]
\[\zeta = 1.0 \]

UNSTABLE
STABLE
Experimental Determination of Damping Ratio

Determine decay of amplitude x_1 at t_1 and again at n cycles later x_n at $t_1 + (n-1)T$

Then

$$\frac{x_1}{x_2} = \frac{e^{-\zeta \omega_n t}}{e^{-\zeta \omega_n (t+T)}} = \frac{1}{e^{-\zeta \omega_n T}} = e^{\zeta \omega_n T}$$

OR

$$\frac{x_1}{x_n} = \frac{1}{e^{-\zeta \omega_n (n-1)T}} = e^{(n-1)\zeta \omega_n T}$$
Log Decrement

\[
\ln\left(\frac{x_1}{x_2}\right) = \frac{1}{n-1} \ln\left(\frac{x_1}{x_n}\right) = \zeta \omega_n T
\]

\[
= \zeta \omega_n \frac{2\pi}{\omega_d} = \frac{2\pi \zeta}{\sqrt{1 - \zeta^2}}
\]

\[
\therefore \frac{1}{n-1} \ln\left(\frac{x_1}{x_n}\right) = \frac{2\pi \zeta}{\sqrt{1 - \zeta^2}}
\]

For damping < 10%

\[
\ln \frac{x_1}{x_2} \approx 2\pi \zeta
\]

Note: This damping ratio formulation is applicable to any 2nd order system of this form
Estimate of Response Time

The response of a mechanical system due to an initial displacement is given as:

\[x(t) = \frac{X_0}{\sqrt{1-\zeta^2}} \, e^{-\zeta \omega_n t} \cos(\omega_d t - \phi) \]

The exponential response envelope is

\[\frac{X_0}{\sqrt{1-\zeta^2}} \, e^{-\zeta \omega_n t} \]

whose time constant \(T \) of the exponential is

\[\frac{1}{\zeta \omega_n} = \frac{1}{\sigma} \]
Estimate of Response Time

The response of the second-order system in terms of the settling time is

\[
t_s = 4T = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma}
\]

which will cause 2% of the initial value

Source: Dynamic Systems - Vu & Esfandiari
State Space Representation

The 'state' of the system can be described in terms of the displacement and velocity as

\[
\begin{bmatrix}
\frac{x_1}{x_2}
\end{bmatrix} = \begin{bmatrix}
\frac{x}{\dot{x}}
\end{bmatrix} \quad \rightarrow \quad X = \begin{bmatrix}
\frac{x_1}{x_2}
\end{bmatrix} = \begin{bmatrix}
\frac{x(\text{displ})}{\dot{x}(\text{velocity})}
\end{bmatrix}
\]

\(u = f(\text{force})\) and \(y = x(\text{measured by sensor})\)

Then

\[
\ddot{x} = -\frac{k}{m}x - \frac{c}{m}\dot{x} + \frac{1}{m}f(t)
\]

OR

\[
\dot{x}_2 = -\frac{k}{m}x_1 - \frac{c}{m}x_2 + \frac{1}{m}u
\]
State Space Representation

So that the state space representation is

\[
\begin{align*}
\text{State Equation} & \quad \left\{ \begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array} \right\} = \left[\begin{array}{cc} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{array} \right] \left\{ \begin{array}{c} x_1 \\ x_2 \end{array} \right\} + \left\{ \begin{array}{c} 0 \\ \frac{1}{m} \end{array} \right\} u \\
\text{Output Equation} & \quad y = \left[\begin{array}{cc} 1 & 0 \end{array} \right] \left\{ \begin{array}{c} x_1 \\ x_2 \end{array} \right\} + 0 \cdot u
\end{align*}
\]
Lagrange’s Equations

\[
\frac{d}{dt} \left(\frac{\partial T}{\partial q_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial V}{\partial q_i} = Q_{nci}
\]

\(T\) - Kinetic energy
\(V\) - Potential energy
\(Q_{nci}\) - non-conservative generalized forces
\(q_i\) - independent generalized coordinates
\(n\) - total # independent generalized coordinates

Kinetic Energy is a function of \(T(q_i,t)\) \(dq/dt\)
Potential energy is the sum of elastic potential \(V_e\)
and gravitational potential \(V_g\)
Potential Energy is a function of \(V(q_i,t)\)
Lagrange’s Equations

One standard form of Lagrange’s Equation

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_{nci} \quad \text{where } L = T - V
\]

We can then write

\[
\frac{d}{dt} \left(\frac{\partial (T - V)}{\partial \dot{q}_i} \right) - \frac{\partial (T - V)}{\partial q_i} = Q_{nci}
\]

(Note V is not a function of \(\dot{q}_i \))
Lagrange’s Equations

Kinetic energy for a particle

1D ⇒ \(T = \frac{1}{2}mv^2 \)

2D ⇒ \(T = \frac{1}{2}mv^2 + \frac{1}{2}I_c \omega^2 \)

If the mass is not located at a point (such as a particle), then a more complicated form of these equations is necessary

Potential Energy of an elastic element is

\(V_e = \frac{1}{2}k\delta^2 \)

Potential Energy of a mass is

\(V_g = mgh \)
Lagrange's Equations

Non-conservative Forces are those that cannot be derived from a potential function (i.e., external forces, frictional forces)

Generalized Forces are given by Virtual Work.

\[\delta W = \sum Q_i \delta q_i = Q_1 \delta q_1 + Q_2 \delta q_2 + \cdots \]

To determine \(Q_j \), obtain \(\delta W \), then let all \(\delta q_i = 0 \) except \(\delta q_j \)

Thus

\[Q_j = \frac{\delta W}{\delta q_j} \quad \left\{ \begin{array}{c} \delta q_j = 0 \\ j \neq i \end{array} \right. \]
Lagrange’s Equations

Non-conservative Forces are then:

\[\delta W_{nc} = \sum Q_{nci} \delta q_i = Q_{nc1} \delta q_1 + Q_{nc2} \delta q_2 + \cdots \]

Then

\[Q_{nci} = \frac{\delta W_{nc}}{\delta q_i} \begin{cases} \delta q_i = 0 \\ j \neq i \end{cases} \]
Example using Lagrange Equation

Use Lagrange EQ to obtain differential equation for SDOF system

Only one independent generalized coordinate exists: \(q=x \)

\[
\begin{align*}
\text{Kinetic Energy} & \quad T = \frac{1}{2} m v_c^2 = \frac{1}{2} m \dot{x}^2 \\
\text{Potential Energy} & \quad V = V_e = \frac{1}{2} k x^2 \quad (V_g = 0) \\
\text{Non-conservative Forces} & \quad f(t) - \text{applied} \\
& \quad c \dot{x} - \text{dissipative}
\end{align*}
\]
Example using Lagrange Equation

Non-Conservative Forces

\[\delta W_{nc} = [f(t) - c\dot{x}] \delta x \]

\[\delta W_{nc} = Q_{nc} \delta x \]

\[Q_{nc} = \frac{\delta W_{nc}}{\delta x} = f(t) - c\dot{x} \]

Lagrange Equation

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) - \frac{\partial T}{\partial x} + \frac{\partial V}{\partial x} = Q_{nc} \]
Example using Lagrange Equation

Lagrange Equation

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) - \frac{\partial T}{\partial x} + \frac{\partial V}{\partial x} = Q_{nc} \]

Where

\[\frac{\partial T}{\partial \dot{x}} = \frac{\partial}{\partial \dot{x}} \left(\frac{1}{2} m \dot{x}^2 \right) = m \ddot{x} \]

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) = m \ddot{x} \]

\[\frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{2} m \dot{x}^2 \right) = 0 \]

\[\frac{\partial V}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{2} kx^2 \right) = kx \]

Then substituting

\[m \ddot{x} + kx = f(t) - c \dot{x} \]

OR

\[m \ddot{x} + c \dot{x} + kx = f(t) \]
Example using Lagrange Equation

Now let's repeat this with the Lagrange function

\[
L = T - V = \frac{1}{2} m \ddot{x}^2 - \frac{1}{2} kx^2
\]

\[
\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = Q_{nc}
\]

\[
\frac{\partial L}{\partial \dot{x}} = \frac{\partial}{\partial \dot{x}} \left(\frac{1}{2} m \dot{x}^2 - kx^2 \right) = m \ddot{x}
\]

\[
\frac{\partial L}{\partial \dot{x}} = m \ddot{x}
\]

\[
\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}} \right) = m \dddot{x}
\]

\[
\therefore m \dddot{x} + c \ddot{x} + kx = f(t)
\]
Example - Translational Mechanical System

Solution

(a) The datum (reference) for V_g for y is shown in Fig. 4.57. This system has only one independent generalized coordinate, namely $q = y$. The kinetic energy is

$$T = \frac{1}{2} m v_c^2 = \frac{1}{2} m \dot{y}^2$$

The potential energy is

$$V = V_c + V_g = \frac{1}{2} k \delta^2 + mgh = \frac{1}{2} k y^2 + mg(-y)$$

The nonconservative virtual work δW_{nc} is zero:

$$\delta W_{nc} = 0$$

Source: Dynamic Systems - Vu & Esfandiari
Example – Translational Mechanical System

The Lagrange’s equation becomes

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{y}} \right) - \frac{\partial T}{\partial y} + \frac{\partial V}{\partial y} = 0 \]

We have

\[\frac{\partial T}{\partial \dot{y}} = \frac{\partial}{\partial \dot{y}} \left(\frac{1}{2} m \dot{y}^2 \right) = m \ddot{y} \quad \Rightarrow \quad \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{y}} \right) = m \ddot{y} \]

\[\frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{2} m \dot{y}^2 \right) = 0 \]

\[\frac{\partial V}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{2} ky^2 - mg y \right) = ky - mg \]

Thus,

\[m \dddot{y} + ky - mg = 0 \]

The differential equation is

\[m \dddot{y} + ky = mg \]

(b) The datum (reference) for \(V_g \) for \(x \) is shown in Fig. 4.58. The kinetic energy is

\[T = \frac{1}{2} m v_c^2 = \frac{1}{2} m x^2 \]

Source: Dynamic Systems - Vu & Estandiari
Example - Translational Mechanical System

The potential energy is

\[V = V_c + V_g = \frac{1}{2}k\delta^2 + mgh = \frac{1}{2}k(x_{st} + x)^2 + mg(-x) \]

Source: Dynamic Systems - Vu & Esfandiari
Example - Translational Mechanical System

The nonconservative virtual work δW_{nc} is zero:

$$\delta W_{nc} = 0$$

The Lagrange's equation becomes

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) - \frac{\partial T}{\partial x} + \frac{\partial V}{\partial x} = 0$$

We have

$$\frac{\partial T}{\partial \dot{x}} = \frac{\partial}{\partial \dot{x}} \left(\frac{1}{2} m \dot{x}^2 \right) = m \ddot{x} \implies \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) = m \dddot{x}$$

$$\frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{2} m \dot{x}^2 \right) = 0$$

$$\frac{\partial V}{\partial x} = \frac{\partial}{\partial x} \left[\frac{1}{2} k(x_{st} + x)^2 - mgx \right]$$

$$= k(x_{st} + x)(1) - mg = kx_{st} - mg + kx = kx$$

because at static equilibrium $kx_{st} = mg$. Finally, the differential equation is

$$m \dddot{x} + kx = 0$$

where the term mg does not enter into the equation. We can conclude that it is simpler to represent the mathematical model in terms of x, which is the displacement measured from the static equilibrium position. Thus, gravity may be ignored for this type of mass-spring system.

Source: Dynamic Systems - Vu & Esfandiari
Example - Two DOF Systems

Consider

$$f_1(t) \rightarrow m_1 \rightarrow x_1 \leftarrow k(x_1 - x_2) \rightarrow m_2 \rightarrow f_2$$

FBD (assume $x_1 > x_2$)

$$\sum F = ma(1) f_1(t) - c(\ddot{x}_1 - \ddot{x}_2) - k(x_1 - x_2) = m_1 \ddot{x}_1$$

$$\sum F = ma(2) f_2(t) + c(\ddot{x}_1 - \ddot{x}_2) + k(x_1 - x_2) = m_2 \ddot{x}_2$$

STATE ASSUMPTIONS!!!
Example - Two DOF Systems

Rearranging Terms

\[m_1 \ddot{x}_1 + c \dot{x}_1 - c \dot{x}_2 + kx_1 - kx_2 = f_1(t) \]

\[m_2 \ddot{x}_2 - c \dot{x}_1 + c \dot{x}_2 - kx_1 + kx_2 = f_2(t) \]

\[
\begin{bmatrix}
 m_1 & 0 \\
 0 & m_2
\end{bmatrix}
\begin{bmatrix}
 \ddot{x}_1 \\
 \ddot{x}_2
\end{bmatrix}
+ \begin{bmatrix}
 c & -c \\
 -c & c
\end{bmatrix}
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
\end{bmatrix}
+ \begin{bmatrix}
 k & -k \\
 -k & k
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} = \begin{bmatrix}
 f_1 \\
 f_2
\end{bmatrix}
\]
Example - Two DOF Systems

Consider

\[f_1(t) \rightarrow m_1 \rightarrow c(\ddot{x}_2 - \ddot{x}_1) \leftarrow m_2 \rightarrow f_2(t) \]

FBD (assume \(x_2 > x_1 \))

\[\sum F = ma(1) \quad f_1(t) - k_1x_1 + c(\ddot{x}_2 - \ddot{x}_1) + k_2(x_2 - x_1) = m_1\dddot{x}_1 \]

\[\sum F = ma(2) \quad f_2(t) - c(\ddot{x}_2 - \ddot{x}_1) - k_2(x_2 - x_1) = m_2\dddot{x}_2 \]
Example - Two DOF Systems

Rearranging terms

\[m_1 \ddot{x}_1 + c \dot{x}_1 - c \dot{x}_2 + (k_1 + k_2)x_1 - k_2x_2 = f_1(t) \]
\[m_2 \ddot{x}_2 - c \dot{x}_1 + c \dot{x}_2 - k_2x_1 + k_2x_2 = f_2(t) \]

\[
\begin{bmatrix}
 m_1 & 0 \\
 0 & m_2 \\
\end{bmatrix}
\begin{bmatrix}
 \ddot{x}_1 \\
 \ddot{x}_2 \\
\end{bmatrix}
+
\begin{bmatrix}
 c & -c \\
 -c & c \\
\end{bmatrix}
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2 \\
\end{bmatrix}
+
\begin{bmatrix}
 (k_1 + k_2) & -k_2 \\
 -k_2 & k_2 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
\end{bmatrix}
=
\begin{bmatrix}
 f_1 \\
 f_2 \\
\end{bmatrix}
\]
Rotational Systems

A rotational system follows the same equations developed for translation

Newton’s Second Law

\[\sum M_0 = I_0 \alpha \]

- \(M_0 \) – moments applied
- \(I_0 \) – mass moment of int
- \(\alpha \) – \(\dot{\omega} \) angular accel.

Mass moment of inertia of rigid body about axis

\[J \text{ or } I_0 = \int r^2 \, dm \]
Rotational Systems

Torsion spring stiffness similar to translation

\[T_k = K_T (\theta_2 - \theta_1) \]

\[T_k = K_T (\theta_{\text{REL}}) \]

Dashpot similar to translation

\[T_D = C_D (\dot{\theta}_2 - \dot{\theta}_1) \]

\[T_D = C_D (\theta_{\text{REL}}) \]

Right hand rule convention determines +/-
Rotational Systems

\[\theta_{IN} \rightarrow J \rightarrow \theta_{OUT} \]

FBD

\[T_S \quad J \quad T_D \]
Rotational Systems - Equations

\[\sum M = J\alpha \Rightarrow T_S + T_D = J \frac{d^2\theta}{dt^2} = I\alpha \]

\[T_S = K_T (\theta_{IN} - \theta_{OUT}) \]

\[T_D = -B\dot{\theta}_{OUT} \]

\[K_T (\theta_{IN} - \theta_{OUT}) - B\dot{\theta}_{OUT} = J\ddot{\theta}_{OUT} \]

\[J\ddot{\theta}_{OUT} + B\dot{\theta}_{OUT} + K_T \theta_{OUT} = K_T \theta_{IN} \]

Most systems we will treat will be 2D or planar systems. Modeling of general 3D bodies is more complex and beyond the scope of this course.
Example - SDOF Torsional System

A torsional system: (a) physical system, (b) FBD
Example - SDOF Torsional System

Consider a single-degree-of-freedom (SDOF) torsional system. The system consists of a shaft of torsional stiffness K, a disk of mass-moment of inertia J, and a torsional damper B. Derive the differential equation.

Solution. Applying the moment equation about the mass center along the longitudinal axis.

$$ + \sum M_c = I_c \alpha $$

This sign convention is simpler and useful for the given angle θ. Thus,

$$ T(t) - K\theta - B\dot{\theta} = J\ddot{\theta} $$

The differential equation in the input-output form is

$$ J\ddot{\theta} + B\dot{\theta} + K\theta = T(t) $$
Example - Two DOF Torsional System

Example 4.15. Consider the TDOF torsional system shown in Fig. 4.40. The system consists of a shaft of torsional stiffness K, two disks of polar moments of inertia J_1 and J_2, and a torsional damper B. Draw the necessary free-body diagrams and derive the differential equations. Then express the equations in the second-order matrix form.

Source: Dynamic Systems - Vu & Esfandiari
Example - Two DOF Torsional System

Solution. Assuming $\theta_1 > \theta_2 > 0$, the free-body diagrams of the disks are shown in Fig. 4.41. Applying the moment equation about the mass centers along the longitudinal axis,

$$ + \sum M_c = I_c \alpha + $$

Disk 1:

$$ T_1(t) - K(\theta_1 - \theta_2) - B(\dot{\theta}_1 - \dot{\theta}_2) = J_1\ddot{\theta}_1 $$

Disk 2:

$$ T_2(t) - K(\theta_1 - \theta_2) + B(\dot{\theta}_1 - \dot{\theta}_2) = J_2\ddot{\theta}_2 $$

The differential equations of the system are expressed in the standard input-output form as

$$ J_1\ddot{\theta}_1 + B\dot{\theta}_1 - B\dot{\theta}_2 + K\theta_1 - K\theta_2 = T_1(t) $$

$$ J_2\ddot{\theta}_2 - B\dot{\theta}_1 + B\dot{\theta}_2 - K\theta_1 + K\theta_2 = T_2(t) $$

and in the second-order matrix form as

$$ \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} + \begin{bmatrix} B & -B \\ -B & B \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} + \begin{bmatrix} K & -K \\ -K & K \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} T_1(t) \\ T_2(t) \end{bmatrix} $$

Note that this torsional system is analogous to the corresponding TDOF translational system (Fig. 4.28).

Source: Dynamic Systems - Vu & Esfandiari
Example - Rigid Body in Planar Motion

Point mass on string - Moment method

\[\sum M_0 = I_0 \alpha \]

\[-L \sin \theta \ mg = (0 + ml^2) \ddot{\theta} \]

\[mL^2 \ddot{\theta} + mgL \sin \theta = 0 \]

As before \[\ddot{\theta} + \frac{g}{L} \sin \theta = 0 \]
Example – Pendulum Problem

Thin uniform rod of mass m and length l is a pendulum

\[\sum M_0 = I_0 \alpha \]

\[-\frac{L}{2} \sin \theta \ mg = I_0 \ddot{\theta} \]

Then

\[I_0 \ddot{\theta} + mg \frac{1}{2} \sin \theta = 0 \]
Example – Pendulum Problem

Linearization: For small $\theta \rightarrow \sin \theta \Rightarrow \theta$

\[
I_0 \ddot{\theta} + \frac{mgL}{2} \theta = 0
\]

or
\[
\ddot{\theta} + \frac{mgL}{2I_0} \theta = 0
\]

where
\[
I_0 = I_c + md^2
\]
\[
= I_c + m\left(\frac{L}{2}\right)^2
\]
\[
I_0 = \frac{1}{3} mL^2
\]
\[
I_c = \frac{1}{12} mL^2
\]
Mixed Translation and Rotation

Pulley system

I_c of pulley, mass m of radius r,
Tension in string

Newton's second law for mass m \[m\ddot{x} = -T \]
(everything measured from equilibrium so no mg term)

Rotation of pulley \[J\ddot{\theta} = Tr - krx \]

For small angle $x = r\theta$ then \[J\ddot{\theta} = -m\ddot{x}r - krx \]

and \[(J + mr^2)\ddot{\theta} + kr^2\theta = 0 \]

or \[\ddot{\theta} + \frac{kr^2}{J + mr^2} \theta = 0 \]

The natural frequency is \[\omega_n = \sqrt{\frac{kr^2}{J + mr^2}} \]
Example - Cart-Pendulum Problem

Consider the pendulum system shown attached to a horizontal cart.

Cart moves horizontally on frictionless surface. Mass on inextensible string.

This is a mixed problem. First solve the pendulum and then the cart translation.

The general moment about point P (where the string is attached to the cart mass) is needed to sum the forces for Newton’s Second Law.
Example - Cart-Pendulum Problem

\[\sum M_p = I_p \alpha + m r_{c/p} \times a_p \]

\[P_y \]
\[P_x \]
\[L \sin \theta \]
\[L \sin \theta \]
\[mg \]
\[a_p = \ddot{x} \]
\[r_{c/p} = L \]
\[C_i \]
Example – Cart-Pendulum Problem

The cross product term is
\[r_{c/p} \times a_p = \left| r_{c/p} \right| a_p \sin \phi \]
\[= L\ddot{x}\sin(90 - \theta) = L\ddot{x}\cos \theta \]

Using the parallel axis theorem, the mass of the pendulum at a distance \(L \) gives
\[I_p = mL^2 \Rightarrow I_p \alpha = mL^2\ddot{\theta} \]

The moment about \(P \) due to the mass on the pendulum is
\[M = -mgL\sin \theta \]

The general moment equation becomes
\[-mgL\sin \theta = mL^2\ddot{\theta} + mL\ddot{x}\cos \theta \]
Example - Cart-Pendulum Problem

Now the translational equation is evaluated. Only horizontal is considered.

\[M \rightarrow f(t) \]

\[\theta \]

\[L \sin \theta \]

\[kx \]

\[cx \]

\[M \]

\[a_{px} = \ddot{x} \]

\[\text{centripetal} \]

\[\text{tangential} \]

\[L\dot{\theta}^2 \sin \theta \]

\[L\dot{\theta} \cos \theta \]

\[L\dot{\theta} \]

\[\theta \]

\[L \]

\[m \]
Example – Cart-Pendulum Problem

For the cart, Newton's Second Law

The acceleration of the pendulum mass

\[
\ddot{x} + L\ddot{\theta}\cos\theta - L\dot{\theta}^2\sin\theta
\]

cart\ (tangential)\ (centripetal)

\[
\sum F = ma \Rightarrow f(t) - kx - cx
\]

\[
= m(\ddot{x} + L\ddot{\theta}\cos\theta - L\dot{\theta}^2\sin\theta) + M\ddot{x}
\]

\[
\theta \rightarrow mL^2\ddot{\theta} + mL\dddot{x}\cos\theta + mgL\sin\theta = 0
\]

\[
x \rightarrow (M+m)\ddot{x} + m(L\ddot{\theta}\cos\theta - L\dot{\theta}^2\sin\theta) + cx + kx = f(t)
\]
Example - Cart-Pendulum Problem

For small motion, the equations can be linearized

\[\cos \theta \approx 1; \sin \theta \approx \theta; \dot{\theta}^2 \approx 0 \]

\[mL^2 \ddot{\theta} + mL \ddot{x} + mgL \theta = 0 \]

\[(M+m) \ddot{x} + mL \ddot{\theta} + c \dot{x} + kx = f(t) \]

or in matrix forms as

\[
\begin{bmatrix}
 mL^2 & mL \\
 mL & (M+m)
\end{bmatrix}
\begin{bmatrix}
 \ddot{\theta} \\
 \ddot{x}
\end{bmatrix}
+ \begin{bmatrix}
 0 & 0 \\
 0 & c
\end{bmatrix}
\begin{bmatrix}
 \dot{\theta} \\
 \dot{x}
\end{bmatrix}
+ \begin{bmatrix}
 mgL & 0 \\
 0 & k
\end{bmatrix}
\begin{bmatrix}
 \theta \\
 x
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 f(t)
\end{bmatrix}
\]
\[\frac{k_{\text{eq}}}{k_1 + k_2} = \frac{k_1 k_2}{k_1 + k_2} \]

\[\ln \frac{x_1}{x_2} \approx 2\pi\zeta \]

\[F(s) \rightarrow \frac{1}{MS^2 + CS + K} \rightarrow x(s) \]