Consistent Vector Scaling

Peter Avitabile
Modal Analysis and Controls Laboratory
University of Massachusetts Lowell
Consistent Vector Scaling

Objectives of this lecture:

• Identify the various groups of vectors sets that may exist as part of a modal data set
• Describe the consistent vector scaling
Consistent Vector Scaling

The set of modal vectors may consist of rigid body vectors, experimentally measured vectors and supplemental analytical vectors as shown

\[\Phi = \begin{bmatrix} R & : & E & : & A \end{bmatrix} \]
Consistent Vector Scaling

The experimental vectors may have been obtained through an expansion process using

\[
\begin{bmatrix}
E_n \\
E_d
\end{bmatrix} = \begin{bmatrix}
E_a \\
E_d
\end{bmatrix} = [T] E_a
\]

\(X_F = \) full set of dof's

\(X_A = \) active set of dof's

\[
\begin{bmatrix}
E_n \\
E_d
\end{bmatrix} = \begin{bmatrix}
E_a \\
E_d
\end{bmatrix} = [T_u] E_a = [U_n] [U_a]^g [E_a]
\]

NOTE: SEREP used for expansion process !!!
Consistent Vector Scaling

The improved mass is given by

\[[M_I] = [M_S] + [V]^T[I] - [\bar{M}_S][V] \]

\[[\bar{M}_S] = [E]^T[M_S][E] \]

Projection of analytical FEM seed mass from physical space to modal space

\[[\Delta \bar{M}] = [I] - [\bar{M}_S] \]

Discrepancy of modal mass in modal space

\[[\Delta M] = [V]^T[I] - [\bar{M}_S][V] \]

Projection of the discrepancy of modal mass in modal space to physical space

\[[V] = [\bar{M}_S]^{-1}[E]^T[M_S] \]
Consistent Vector Scaling

Vector set \(\Phi = \begin{bmatrix} R & E & A \end{bmatrix} \) satisfy orthogonality

\[
[\Phi]^T [M][\Phi] = [I]
\]

\[
[\Phi]^T [M][\Phi] = \begin{bmatrix}
\end{bmatrix}
\]
Consistent Vector Scaling

\[\Phi = \begin{bmatrix} R & E & A \end{bmatrix} \]

Vector set

\[[E]^T [M][E] = [I] \]

Partition #1

\[[E]^T M E = I \]

Since the mass was improved based on the expanded experimental vectors, the relationship must be satisfied.

Expanding this equation out gives

\[[E]^T M E = [E]^T \left[\begin{bmatrix} E & S \end{bmatrix} + [V]^T (I - [E]^T S E) V \right] E \]

and recalling that

\[[V] E = \begin{bmatrix} E & S \end{bmatrix}^{-1} E S E = I \]

and substituting equation (8) into equation (7) gives

as expected.
Consistent Vector Scaling

\[\Phi = \begin{bmatrix} R & E & A \end{bmatrix} \]

Vector set

\[[R]^T [M][R] = [I] \]

Partition #2

\[R^T M R = I \]

It is not obvious that the rigid body modes and the improved mass will satisfy

\[R^T M R = I \]

(9)

Let's look at expanding equation (9)

\[R^T M R = R^T \left[M_s + V^T (I - E^T M_s E) V \right] R \]

(10)

\[= R^T M_s R + (V R)^T (I - E^T M_s E) (V R) \]

and note that we can write

\[V R = R^{-1} E^T M_s R = 0 \]

(11)

since

\[E^T M_s R = E_a U_g^T U_n^T M_s R = 0 \]

because

\[U_n^T M_s R = 0 \]

from the orthogonality condition.

Now equation (10) becomes

\[R^T M R = R^T M_s R = I \]

(12)

and satisfies our requirement.
Consistent Vector Scaling

\[\Phi = [R \quad E \quad A] \]

Vector set

\[[R]^T [M] [E] = [0] \]

Partition #3

\[
\begin{align*}
R^T M E &= 0 \\
&= [R^T] [M] [E] = 0
\end{align*}
\]

We now must check the cross orthogonality relationship between the rigid body modes and the expanded experimental modes with the improved mass matrix to assure that

\[
R^T M E = 0 \quad (13)
\]

Expanding equation (13) gives

\[
R^T M E = R^T \left(M_s + V^T (I - E^T M_s E) V \right) E
\]

\[
= R^T M_s E + (V R)^T (I - E^T M_s E) (V E)
\]

From equation (11), this reduces to

\[
R^T M E = R^T M_s E \quad (15)
\]

which can be expanded to

\[
R^T M E = R^T M_s \left(U \ U^T \ E \right) = 0
\]

due to the orthogonality condition and satisfies our condition.
Consistent Vector Scaling

\[\Phi = [R : E : A] \]

Vector set

\[
\begin{bmatrix} R \end{bmatrix}^T \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A \end{bmatrix} = [0]
\]

Partition #4

\[R^T M A = 0 \]

We now must check the cross orthogonality relationship between the rigid body modes and the analytical modes with the improved mass matrix to assure that

\[R^T M A = 0 \] \hspace{1cm} (16) \]

Expanding equation (16) gives

\[
R^T M A = R^T \left[M_S + V^T \left(I - E^T M_S E \right) V \right] A
\]

\[
= R^T M_S A + \left(V R \right)^T \left(I - E^T M_S E \right) \left(V A \right)
\]

From equation (11), this reduces to

\[R^T M A = R^T M_S A = 0 \] \hspace{1cm} (18) \]

due to the orthogonality condition and satisfies our condition.
Consistent Vector Scaling

\[\Phi = [R \quad E \quad A] \]

Vector set

\[[E]^T[M][A] = [0] \]

Partition #5

\[E^T M = 0 \]

We now must check the cross orthogonality relationship between the expanded experimental modes and the analytical modes with the improved mass matrix to assure that

\[E^T M A = 0 \]

Expanding equation (19) gives

\[E^T M A = E^T M S A + (V E)^T (I - E^T M S E) (V A) \]

and using the same development as in equation (11), it can be shown that

\[V A = 0 \]

which reduces equation (19) to

\[E^T M A = E^T M S A \]

which can be expanded to give

\[E^T M A = E^T U_0^T U_0 U^T M A = 0 \]

due to the orthogonality condition and satisfies our condition.
Consistent Vector Scaling

\[\Phi = \begin{bmatrix} R & : & E & : & A \end{bmatrix} \]

Vector set

\[[A]^T[M][A] = [I] \]

Partition #6

It is not obvious that the analytical FEM modes and the improved mass will satisfy

\[A^T M A = I \] \hspace{1cm} (22) \]

Let's look at expanding equation (22)

\[A^T M A = A^T \begin{bmatrix} M_S & V^T \left(I - E^T M_S E \right) V \end{bmatrix} A \] \hspace{1cm} (23) \]

\[= A^T M_S A + (V A)^T \left(I - E^T M_S E \right) (V A) \]

and note that we can write

\[V A = M_S^{-1} E^T M_S A = 0 \] \hspace{1cm} (24) \]

since

\[E^T M_S A = E_a U_a^T U_n M_S A = 0 \]

because

\[U_n M_S A = 0 \]

from the orthogonality condition.

Now equation (23) becomes

\[A^T M A = A^T M_S A = I \] \hspace{1cm} (25) \]

and satisfies our requirement.
Consistent Vector Scaling

\[\Phi = [R \quad E \quad A] \]

Vector set satisfies orthogonality

\[[\Phi]^T [M][\Phi] = [I] \]

\[
[\Phi]^T[M][\Phi] = \begin{bmatrix}
\end{bmatrix}
\]