Second Order Online Acquisition System - RUBE

Peter Avitabile, Tracy Van Zandt, Jeff Hodgkins, Nels Wirkkala
Mechanical Engineering Department
University of Massachusetts Lowell
Most of the student’s educational exposure is to well behaved, deterministic problems with known results.

Most courses expose students to
- material in modules in book chapters
- with exercises/problems at end of the chapter
- majority of the material found in chapter/book
Laboratory is the perfect place for students to become exposed to real world problems and solutions to those problems.

Laboratory is the perfect place to put student’s knowledge of basic STEM material to the test.
However, many times the real world measurement is much more complicated than the textbook.

Students often struggle with methods and procedures to solve a real measurement problem (with no answer at the back of the book)
A simple mass, spring, dashpot system is used to measure displacement and acceleration.

Numerical processing of integration/differential needed to process data.
MCK Measurement System

Requires extensive use of a wide variety of different analytical tools.

Significant numerical data manipulation needed.

- Regression Analysis
- Data Cleansing
- Integration
- Differentiation
The data acquisition system and transducers are intentionally selected such that the majority of possible errors exist in the data.

- **Drift**
- **Bias**
- **Offset**
- **Quantization**
- **Noise**
The students are forced to integrate key STEM material and concepts to solve this problem.

- Numerical processing
- Filtering
- Thinking is required !!!
Virtual Measurement vs RUBE

The paper is broken down into two basic parts.

The Virtual Measurement System which “prepares” the student with a simulation system where all the “contaminants” can be added to the system in a very controlled fashion to see the effects.

vs.

The RUBE (Response Under Basic Excitation) where the actual measurements (whatever they may be) are acquired via an online measurement system.
The Virtual Measurement System
The Virtual Measurement System

The real test configuration has many problems that all simultaneously plague the measurement.

Many times students are frustrated with the significant open-ended aspects of this exercise.

This is due to the large number of items that simultaneously plague the measurement.
The Virtual Measurement System

In order to assist the student in understanding all of the individual effects, a virtual measurement system was developed.

This enables the student to add individual effects and see the result on the measurement made.

The pieces of the Virtual Measurement System are described in the following sections.
The Virtual Measurement System

The entire Simulink model
The Virtual Measurement System

The SDOF system portion
The Virtual Measurement System

The accelerometer measurement portion

The LVDT & RC filter measurement portion
The Virtual Measurement System

The entire GUI Interface
The Virtual Measurement System

The system characteristic definition of mass, damping and stiffness along with IC and forcing function.
The Virtual Measurement System

The accelerometer parameters can be entered along with the LVDT and RC filter setting.
User enters M, C, K system. User enters the amount of experimental distortion on the accel. (sensitivity, bias, drift) and displacement LVDT (sensitivity, bias, noise) and the low pass filter characteristics to virtually “simulate” the measurement environment.

Data can be exported with ability to select which outputs and what effects are included on the measurement.
Virtual Measurement Simulation

The student can quickly study the measurement issues associated with drift, bias and offset.

These effects are significant when numerically processing the data to perform differentiation and integration.

Several cases are shown to illustrate the usefulness of the Virtual Measurement System.
Virtual Measurement Simulation

Differentiation of LVDT measurement and noise

No Noise

Small Noise

More Noise

LVDT

LVDT sensitivity (V/m), Ls

LVDT bias (V), Lb

LVDT sinusoidal noise amplitude (V), Lna

Second Order Online Acquisition System - RUBE

Dr. Peter Avitabile, Associate Professor
Mechanical Engineering Department
Virtual Measurement Simulation

Integration of the accelerometer measurement

No Drift or Offset

Negative Drift
RUBE

Response Under Basic Excitation
Online Measurement System

RUBE

Response Under Basic Excitation

Variable Mass

Variable Stiffness

Variable Damping

System Characteristics

\[k_{\text{eq}} = k_{\text{leaf}} + k_{\text{coil}} \]

Excitation

Impact Force

Initial Displacement

Measurement Devices

Accelerometer

LVDT

COILLEAF kkk

DYNamic SYSTEMs
Online Measurement System

RUBE

Response Under Basic Excitation
The variable mass is achieved by using a water reservoir to provide a constantly changing mass of the system.

This variable mass allows the total mass of the system to vary by approximately 15%.
The damping results from an adjustable airpot damper.

There is also damping effect from the bearing support system.
A variable spring is achieved with a variable length leaf spring supported with a coil spring.

The variable spring stiffness allows the total spring stiffness to vary by approximately 20%.

Leaf spring length is adjusted by a rack and pinion.
Initial displacement is provided with a three probed cam with different lengths

Impact excitation is provided with a solenoid
Online Measurement System

RUBE I
Response Under Basic Excitation

RUBE II
Online Measurement System

"RUBE" Response Under Basic Excitation

To gain control of the VL, right-click and select "Request Control of VL"
Online Measurement System

RUBE

System can be remotely run

Stiffness is changed for each run

Sampling rate can be set

Impact is available

Initial displacements – three inputs

LVDT and accelerometers can be turned on and off as desired

Data saved and captured to browser

URL to download data (copy and paste into a new browser window)
http://dynsys-daq.uml.edu:8999/dynsys_092605_0952AM_46.html
Online Measurement System Variation

$4.5 \text{Hz} < f_n < 5.7 \text{Hz}$

$m = .14m$

$k = .16k$

No Water

Add Water

Low damping

High damping

12 Inch Supports

16 Inch Supports
Online Measurement System Output

LabVIEW Measurement

<table>
<thead>
<tr>
<th>Value</th>
<th>0.000000</th>
<th>0.000000</th>
<th>0.000000</th>
<th>0.000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.004000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.006000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Second Order Online Acquisition System - RUBE

Dr. Peter Avitabile, Associate Professor
Mechanical Engineering Department
Online Measurement System Output
Tutorials cover a wide assortment of integrated material - both paper tutorials with Matlab and Labview modules with voice annotated multimedia overviews.
Student Reactions & Comments

Student A

- Useful to be forced to use earlier material
- Laboratory helped show these problems not easy
- Assumptions may not be correct
- Homework is easy; reality is not as easy at all
Student B

- I learn better when I do it (not being instructed)

- Project forced me to understand the material (not just complete an assignment)

- Relevant hands-on experience is much more effective than theory by itself
Student Reactions & Comments

Student C

- Approach to material is unlike any previous class

- Theory and class materials are driven home during project preparation

- Forced me to think “outside the box”
Student Reactions & Comments

Student D

• Admittedly, this course required more work and time than many other courses taken before

• Hands-on approach and struggling through the projects is exactly the process by which the information was absorbed
 - by not only learning, but really understanding
Student Reactions & Comments

Student D (cont.)

• Very few engineering courses are successful at integrating information from previous semesters into a logical path to a problem solution

--This one did a great job at that--
Student Reactions & Comments

Student E

• **Important concepts from earlier courses usually don't click** in the same semester as the course

• **Usually the concepts “click” later always leaving me feeling a semester behind**

• **The Dynamic Systems course was different**
Student Reactions & Comments

Student F

• Projects reinforced the material ... and forced us to think beyond the stated objectives

• The projects did not have simple solutions
Student Reactions & Comments

Student G

- Involved interpretation of data, application of concepts discussed in lecture, and understanding of the physical system in the lab

- ...struggled through each project but had a much firmer understanding of the overall system
Summary

Student comprehension of basic STEM material for dynamic systems applications needs to be reinforced through active experiences.

Response Under Basic Excitation (RUBE) is a second order mechanical system which is available as an online experiment.

Virtual Measurement System (VMS) is a preview of most of the inherent problems associated with real-world data taken with RUBE (prepares the student).
Overall the students have clearly indicated that the problem presented has helped them to better understand the basic material needed to solve the problems encountered in the measurement system.

The measurement system has definitely helped the students to comprehend solutions to problems where clearly defined parameters are not available (as is the case in most real-world situations).
This project is partially supported by NSF Engineering Education Division Grant EEC-0314875

Multi-Semester Interwoven Project for Teaching Basic Core STEM Material Critical for Solving Dynamic Systems Problems

Acknowledgements

Peter Avitabile, Tracy Van Zandt, Jeff Hodgkins, Nels Wirkkala
Tutorials cover a wide assortment of integrated material - both paper tutorials with Matlab and Labview modules with voice annotated multimedia overviews.
Acknowledgements

A special thanks to the students who have really been the driving force in making all this happen.

Tracy Van Zandt, Nels Wirkkala, Wes Goodman and Jeffrey Hodgkins
Mechanical Engineering Department
University of Massachusetts Lowell

I could not have done any of this without their dedication and devotion to making this all happen.

I have the pleasure of working with them and having them contribute to this effort.
Acknowledgements

And to the undergraduate students who have also participated

Adam Butland, Dana Nicgorski, Aaron Williams, Chris Chipman
Mechanical Engineering Department
University of Massachusetts Lowell

This past year they have also made significant contributions to the overall project

I am very happy for their continued support and dedication
Second Order Online Acquisition System - RUBE

Peter Avitabile, Tracy Van Zandt, Jeff Hodgkins, Nels Wirkkala
Mechanical Engineering Department
University of Massachusetts Lowell