Composition:

Consider the function $f(x) = \sqrt{x+1}$. Then

$$f(0) = 1,$$
$$f(1) = \sqrt{2},$$
$$f(x^4) = \sqrt{x^4 + 1},$$
$$f(\sin x) = \sqrt{\sin x + 1},$$
$$f(g(x)) = \sqrt{g(x) + 1},$$

and

$$f(\text{whatever}) = \sqrt{\text{whatever} + 1}.$$
Example: Let \(f(x) = x^3 + 2x \) and \(g(x) = x^4 \). Then what is \(f(g(x)) \)?

\[
f(g(x)) = (g(x))^3 + 2g(x) = (x^4)^3 + 2x^4 = x^{12} + 2x^4
\]

Example: If \(f(x) = \sin x \) and \(g(x) = \sqrt{x + 1} \), then what is \(f(g(x)) \) and \(g(f(x)) \)?

a) \(f(g(x)) = \sin(g(x)) = \sin \sqrt{x + 1} \).

b) \(g(f(x)) = \sqrt{f(x) + 1} = \sqrt{\sin x + 1} \).

Notice that \(f(g(x)) \neq g(f(x)) \).

Definition: \(f(g(x)) \) is called the composition of \(f \) with \(g \). Its symbol is \(f \circ g \), and its evaluation at a point \(x \) is denoted \((f \circ g)(x) \).

Example: Let \(f(x) = \frac{1}{x^2} \), and \(g(x) = \sec x \). Find \((f \circ g)(x) \).

Solution: \((f \circ g)(x) = f(g(x)) = \frac{1}{(g(x))^2} = \frac{1}{\sec^2 x} = \cos^2 x \).
Decomposition

In the composition, \(f(g(x)) \), \(f \) is called the outer function, and \(g \) is called the inner function. Taking derivatives of functions that are composites requires using the chain rule. It is important to let \(f \) be the outermost function (because there may be several ways of decomposing). How can you find the outermost function? Answer: if you were to evaluate the function at some point, the last operation you would do corresponds to the outermost function.

Example: Decompose the function \(y(x) = (x^3 + 1)^4 \)

If you were to evaluate this function (at \(x = 1 \) for example), the last operation would be to take the fourth power. So \(f(x) = x^4 \) is the outermost function. Clearly \(g(x) = x^3 + 1 \) is the inner function, and \((f \circ g)(x) = (g(x))^4 = (x^3 + 1)^4 \).
Hence, \(f(x) = x^4, \ g(x) = x^3 + 1 \) gives the desired decomposition.

Example: Decompose the function \(y(x) = \cot^2 x \).

Since \(\cot^2 x \) means \((\cot x)^2\), the last operation is to take the square. So \(f(x) = x^2 \) is the outer function and \(g(x) = \cot x \) is the inner function.

Example: Decompose the function \(y(x) = \sin \sqrt{x} \).

Here you would take \(x \), take its root, and then take sine of the result. So \(f(x) = \sin x \) is the outer function, and \(g(x) = \sqrt{x} \) is the inner function.

Example: Decompose the function \(y(x) = \cos \sqrt{x^6 + 1} \).

The outermost function is \(f(x) = \cos x \), and the inner function is \(g(x) = \sqrt{x^6 + 1} \). (By the way, for the next step in using the chain rule, the function \(g(x) = \sqrt{x^6 + 1} \) must itself be decomposed, which yields the outer function \(\sqrt{x} \) and the inner function \(x^6 + 1 \).)
The Chain Rule

Consider a spherical balloon that is being filled with air. The volume of the balloon is a function of radius, \(V(r) = \frac{4}{3} \pi r^3 \), and the radius is a function of time, \(r = r(t) \). So the volume really is a function of time. This is a typical composition. Given any time \(t \), plugging \(t \) into \(r \) gives the radius and then plugging \(r \) into \(V \) gives the volume. A natural question is how quickly does the balloon fill w.r.t. time.

\[
\begin{align*}
 t & \quad \rightarrow \quad r(t) \\
 & \quad \quad \quad \rightarrow \quad V(r) \\
 & \quad \quad \quad \quad \rightarrow \quad V(r(t))
\end{align*}
\]
Derivation of the Chain Rule

Suppose \(y(x) = (f \circ g)(x) = f[g(x)] \) is a composition function.

\[
y'(x) = \lim_{h \to 0} \frac{y(x + h) - y(x)}{h} = \lim_{h \to 0} \frac{f[g(x + h)] - f[g(x)]}{h}
\]

\[
= \lim_{h \to 0} \frac{f[g(x + h)] - f[g(x)]}{g(x + h) - g(x)} \cdot \frac{g(x + h) - g(x)}{h}
\]

If we write \(g(x + h) = g + \Delta g \), then \(\lim_{h \to 0} g(x + h) - g(x) = \lim_{h \to 0} \Delta g = 0 \), and we can rewrite this last line as

\[
y'(x) = \lim_{\Delta g \to 0} \frac{f[g + \Delta g] - f[g]}{\Delta g} \cdot \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} = f'(g) \cdot g'(x).
\]
So,

\[(f \circ g)'(x) = f'[g(x)] = f''(g) \cdot g'(x)\]

In Leibniz notation

\[
\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}
\]

or, if \(y = y(u)\), and \(u = u(x)\), then

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

In terms of inside and outside functions

\[
\frac{dy}{dx} = \text{(the derivative of the outside)} \times \text{(the derivative of the inside.)}
\]
Example: Calculate the derivative of \(y = \sin(x^3) \)

Since \(\frac{d}{du} \sin u = \cos u \), and \(\frac{d}{dx}(x^3) = 3x^2 \),

\[
\frac{dy}{dx} = (\cos u)(3x^2) = 3x^2 \cos(x^3)
\]

Example: Calculate the derivative of \(y = (x^2 + 1)^{10} \)

Since \(\frac{d}{du} u^{10} = 10u^9 \), and \(\frac{d}{dx}(x^2 + 1) = 2x \),

\[
\frac{dy}{dx} = (10u^9)(2x) = \left(10(x^2 + 1)^9\right)(2x) = 20x(x^2 + 1)^9
\]
Examples:

a) \[\frac{d}{dx} [(x^5 + 1)^{100}] = 100(x^5 + 1)^{99}(5x^4) = 500x^4(x^5 + 1)^{99} \]

b) \[\frac{d}{dx} (\sin(x^2)) = \cos(x^2)(2x) = 2x\cos(x^2) \]

c) \[\frac{d}{dx} (\cos(x^2)) = -\sin(x^2)(2x) = -2x\sin(x^2) \]

d) \[\frac{d}{dx} (\sin(e^x)) = \cos(e^x)(e^x) = e^x\cos(e^x) \]

e) \[\frac{d}{dx} (e^{x^4}) = e^{x^4}(4x^3) = 4x^3e^{x^4} \]

f) \[\frac{d}{dx} (e^{\tan x}) = e^{\tan x}(\sec^2 x) = \sec^2 x e^{\tan x} \]
g) \[\frac{d}{dx}(\tan(x^3)) = \sec^2(x^3)(3x^2) = 3x^2 \sec^2(x^3) \]

h) \[\frac{d}{dx}(\sec(\sin x)) = \sec(\sin x) \tan(\sin x)(\cos x) = \cos x \sec(\sin x) \tan(\sin x) \]

i) \[\frac{d}{dx}(\sin(\cos x)) = \cos(\cos x) \cdot (-\sin x) = -\sin x \cos(\cos x) \]

j) \[\frac{d}{dx}(\sqrt{x^2 + 1}) = \frac{d}{dx}(\sqrt{x^2 + 1}) = \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}}(2x) = \frac{x}{\sqrt{x^2 + 1}} \]
Sometimes you will have to apply the chain rule more than once.

Examples:

a)
\[
\frac{d}{dx} \left(e^{\sin x^4} \right) = e^{\sin(x^4)} \frac{d}{dx} (\sin x^4) = e^{\sin(x^4)} (\cos x^4) \frac{d}{dx} (x^4). \\
= e^{\sin(x^4)} (\cos x^4) (4 x^3) = 4 x^3 \cos x^4 \ e^{\sin(x^4)}
\]

b)
\[
\frac{d}{dx} \left(\sin(e^{3x^2+x}) \right) = \cos(e^{3x^2+x}) \frac{d}{dx} \left(e^{3x^2+x} \right) \\
= \cos(e^{3x^2+x}) e^{3x^2+x} \frac{d}{dx} (3x^2 + x). \\
= \cos(e^{3x^2+x}) e^{3x^2+x} (6x + 1) \cdot = (6x + 1) e^{3x^2+x} \cos(e^{3x^2+x})
\]
c) \[
\frac{d}{dx} (\sin^2(4x)) = \frac{d}{dx} ((\sin(4x))^2) = 2\sin(4x) \cdot \frac{d}{dx} \sin(4x)
\]
\[= 2\sin(4x)\cos(4x) \cdot (4)\]
\[= 8\sin(4x)\cos(4x)\]

d) \[
\frac{d}{dx} (\cos^4 \sqrt{x}) = 4\cos^3 \sqrt{x} \cdot \frac{d}{dx} \cos \sqrt{x} = 4\cos^3 \sqrt{x} \cdot (-\sin \sqrt{x}) \frac{d}{dx} \sqrt{x}
\]
\[= -\frac{2}{\sqrt{x}} \cos^3 \sqrt{x} \cdot \sin \sqrt{x}\]
This “nesting” of functions can get ugly, but the chain rule still works.

Example:

\[
\frac{d}{dx} \left([1 + \cos \sqrt{x^2 + 1}]^4 \right) = 4[1 + \cos \sqrt{x^2 + 1}]^3 \cdot \frac{d}{dx} \left[1 + \cos \sqrt{x^2 + 1} \right]
\]

\[
= 4[1 + \cos \sqrt{x^2 + 1}]^3 \cdot \left[\frac{d}{dx} \cos \sqrt{x^2 + 1} \right]
\]

\[
= 4[1 + \cos \sqrt{x^2 + 1}]^3 \cdot \left[(-\sin \sqrt{x^2 + 1}) \cdot \frac{d}{dx} \sqrt{x^2 + 1} \right]
\]

\[
= 4[1 + \cos \sqrt{x^2 + 1}]^3 \cdot \left[(-\sin \sqrt{x^2 + 1}) \cdot \frac{1}{2\sqrt{x^2 + 1}} \frac{d}{dx} (x^2 + 1) \right]
\]

\[
= 4[1 + \cos \sqrt{x^2 + 1}]^3 \cdot \left[(-\sin \sqrt{x^2 + 1}) \cdot \frac{1}{2\sqrt{x^2 + 1}} (2x) \right]
\]

\[
= -\frac{4x \sin \sqrt{x^2 + 1}[1 + \cos \sqrt{x^2 + 1}]^3}{\sqrt{x^2 + 1}}
\]
Generalized Derivatives

\[
\frac{d}{dx} \left[(u(x))^n \right] = n(u(x))^{n-1} \cdot u'(x) \quad \text{..........} \quad \frac{d}{dx} [e^{u(x)}] = u'(x)e^{u(x)}
\]

\[
\frac{d}{dx} \sin(u(x)) = u'(x)\cos(u(x)) \quad \frac{d}{dx} \cos(u(x)) = -u'(x)\sin(u(x))
\]

\[
\frac{d}{dx} \tan(u(x)) = u'(x)\sec^2(u(x)) \quad \frac{d}{dx} \cot(u(x)) = -u'(x)\csc^2(u(x))
\]

\[
\frac{d}{dx} \sec(u(x)) = u'(x)\sec(u(x))\tan(u(x))
\]

\[
\frac{d}{dx} \csc(u(x)) = -u'(x)\csc(u(x))\cot(u(x))
\]
Examples:
\[y = \sin(x^2 + 1) \quad y' = 2x \cos(x^2 + 1) \]
\[y = \sin(x^4 + x) \quad y' = (4x^3 + 1) \cos(x^4 + x) \]
\[f(x) = e^{x^2} \quad f'(x) = 2xe^{x^2} \]
\[f(x) = e^{\sin x + \cos x} \quad f'(x) = (\cos x - \sin x)e^{\sin x + \cos x} \]
\[y = \cot(x^5 + 5x) \quad y' = -(5x^4 + 5)\csc^2(x^5 + 5x) \]
In particular

\[
\frac{d}{dx} \sin(\omega x) = \omega \cos(\omega x) \quad \frac{d}{dx} \cos(\omega x) = -\omega \sin(\omega x) \quad \frac{d}{dx} [e^{kx}] = k e^{kx}
\]

Examples

\[\begin{align*}
y &= \sin \pi x & y' &= \pi \cos \pi x \\
y &= \cos 2x & y' &= -2 \sin 2x \\
f(x) &= e^{4x} & f'(x) &= 4e^{4x} \\
f(x) &= e^{-x/2} & f(x) &= -\frac{1}{2}e^{-x/2}
\end{align*}\]