1) a) Write down the limit definition of the derivative of a function \(f'(x) \).
 b) Using part (a) calculate \(f'(x) \), for \(f(x) = 6x + 2 \). How does the result compare to what you already know about linear functions?

2) a) Write down the limit definition of the derivative of a function \(f'(x) \).
 b) Using part (a) calculate \(f'(x) \), for \(f(x) = 2x^2 + 4x - 3 \).
 c) Write down the power rule, and use it to check your answer in part (b).

3) a) Write down the limit definition of the derivative of a function \(f'(x) \).
 b) Using part (a) calculate \(f'(x) \), for \(f(x) = 3x^2 - 3x + 2 \).
 c) Write down the power rule, and use it to check your answer in part (b).

4) a) Using the limit definition of the derivative, calculate \(f'(x) \), for \(f(x) = \frac{1}{x} + \frac{x^3}{3} \).
 b) Use the power rule to check your answer.

5) a) Using the limit definition of the derivative, calculate \(f'(x) \), for \(f(x) = \frac{1}{x^2} + \frac{x^2}{2} \).
 b) Use the power rule to check your answer.

6) Consider the function \(f(x) = (x - 2 | x |)^2 + \pi^3 \).
 a) Write down the limit definition for the derivative of a function.
 b) Using the definition of the derivative, determine whether or not the function \(f(x) \) differentiable at \(x = 0 \). **Justify your steps using limit laws or theorems.**
 c) Is \(f(x) \) continuous at \(x = 0 \)? Explain your reasoning.

7) Consider the function \(f(x) = (x + | x |)^2 + 1 \).
 a) Using the definition of the derivative, determine whether or not the function \(f(x) \) differentiable at \(x = 0 \).
 b) Is \(f(x) \) continuous at \(x = 0 \)? Explain your reasoning.

8) Suppose that the function \(f(x) \) is defined by the rule
\[
 f(x) = \begin{cases}
 ax^2 + 1 & x \leq 2 \\
 x^3 + a & x > 2
 \end{cases}
\]
where \(a \) is a real constant. What must the value of \(a \) be in order for the function to be continuous at \(x = 2 \)? Justify your reasoning.

9) Suppose that the function \(f(x) \) is defined by the rule
\[
 f(x) = \begin{cases}
 x^2 + a & x < 1 \\
 bx + 1 & x \geq 1
 \end{cases}
\]
What relationship must \(a \) and \(b \) satisfy for the function to be continuous at \(x = 1 \)?

10) Using the limit definition of the derivative, calculate \(f'(x) \), for \(f(x) = x^{\frac{3}{2}} \). Use the power rule to check your answer.
Solutions

1) a) \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

b) \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{6(x+h) + 2 - 6x - 2}{h} \]
\[= \lim_{h \to 0} \frac{6x + 6h + 2 - 6x - 2}{h} \]
\[= \lim_{h \to 0} \frac{6h}{h} = 6 \]

Since \(f(x) = 6x + 2 \) is a linear function its graph is a line whose constant slope is 6. (Slope = Derivative)

2) a) \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

b) \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2(x+h)^2 + 4(x+h) - 3 - [2x^2 + 4x - 3]}{h} \]
\[= \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 + 4x + 4h - 3 - 2x^2 - 4x + 3}{h} \]
\[= \lim_{h \to 0} \frac{4xh + 2h^2 + 4h}{h} = \lim_{h \to 0} 4x + 2h + 4 = 4x + 4 \]

c) Power rule is \(\frac{d}{dx} x^k = kx^{k-1} \). With \(f(x) = 2x^2 + 4x - 3 \)
\[f'(x) = \frac{d}{dx} (2x^2 + 4x - 3) = (2)(2x) + 4(1) - 0 = 4x + 4 \]

3) a) \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

b) \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{3(x+h)^2 - 3(x+h) + 2 - [3x^2 - 3x + 2]}{h} \]
\[= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x - 3h + 2 - 3x^2 + 3x - 2}{h} \]
\[= \lim_{h \to 0} \frac{6xh + 3h^2 - 3h}{h} = \lim_{h \to 0} 6x + 3h - 3 = 6x - 3 \]

c) Power rule is \(\frac{d}{dx} x^k = kx^{k-1} \). With \(f(x) = 3x^2 - 3x + 2 \)
\[f'(x) = \frac{d}{dx} (3x^2 - 3x + 2) = (3)(2x) - 3(1) - 0 = 6x - 3 \]
4) a) \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left(\frac{1}{x+h} + \frac{(x+h)^3}{3}\right) - \left(\frac{1}{x} + \frac{x^3}{3}\right)}{h} \)

\[
= \lim_{h \to 0} \frac{\left[\frac{1}{x+h} - \frac{1}{x}\right] + \frac{(x+h)^3 - x^3}{3}}{h} = \lim_{h \to 0} \frac{\left[\frac{1}{x+h} - \frac{1}{x}\right] + \left[\frac{(x+h)^3 - x^3}{3}\right]}{h} \\
= \lim_{h \to 0} \left[\frac{x - (x+h)}{x(x+h)}\right] + \lim_{h \to 0} \left[\frac{3hx^2 + 3h^2 x + h^3 - x^3}{3h}\right] = -\frac{1}{x^2} + x^2
\]

b) Power rule is \(\frac{d}{dx} x^k = kx^{k-1} \). With \(f(x) = \frac{1}{x} + \frac{x^3}{3} = -\frac{1}{x^2} + x^2 \)

\[
f'(x) = \frac{d}{dx} \left(x^{-1} + \frac{1}{3} x^3 \right) = (-1)(x^{-2}) + \frac{1}{3}(3x^2) = -\frac{1}{x^2} + x^2
\]

5) a) \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left(\frac{1}{(x+h)^2} + \frac{(x+h)^2}{2}\right) - \left(\frac{1}{x^2} + \frac{x^2}{2}\right)}{h} \)

\[
= \lim_{h \to 0} \frac{\left[\frac{1}{(x+h)^2} - \frac{1}{x^2}\right] + \frac{(x+h)^2}{2} - \frac{x^2}{2}}{h} = \lim_{h \to 0} \frac{\left[\frac{1}{(x+h)^2} - \frac{1}{x^2}\right]}{h} + \lim_{h \to 0} \left[\frac{(x+h)^2 - x^2}{2}\right] \\
= \lim_{h \to 0} \left[\frac{x^2 - (x+h)^2}{x^2(x+h)^2}\right] + \lim_{h \to 0} \left[\frac{x^2 + 2xh + h^2}{2} - \frac{x^2}{2}\right] = -\frac{2}{x^3} + x
\]

b) Power rule is \(\frac{d}{dx} x^k = kx^{k-1} \). With \(f(x) = \frac{1}{x^2} + \frac{x^2}{2} = x^{-2} + \frac{1}{2} x^2 \)

\[
f'(x) = \frac{d}{dx} \left(x^{-2} + \frac{1}{2} x^2 \right) = (-2)(x^{-3}) + \frac{1}{2}(2x) = -\frac{2}{x^3} + x
\]
Consider the function \(f(x) = (x - 2| x |)^2 + \pi^3 \).

a) Write down the limit definition for the derivative of a function \(f(x) \) at \(x = 0 \), that is \(f'(0) \).

\[
f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}
\]

b) Using the definition of the derivative, determine whether or not the function \(f(x) \) differentiable at \(x = 0 \). Justify your steps using limit laws or theorems.

\[
f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{(h - 2|h|)^2}{h}
\]

Since \(|h| \) is piecewise defined as \(|h| = \begin{cases} -h & h < 0 \\ h & h \geq 0 \end{cases} \), one has to examine both the left hand and right hand limits to see if \(f'(0) = \lim_{h \to 0} \frac{(h - 2|h|)^2}{h} \) exists.

\[
\lim_{h \to 0^+} \frac{(h - 2|h|)^2}{h} = \lim_{h \to 0^+} \frac{(h-2)^2}{h} = \lim_{h \to 0^+} \frac{(-h)^2}{h} = \lim_{h \to 0^+} \frac{h^2}{h} = \lim_{h \to 0^+} h = 0 \quad \text{by limit law 8.}
\]

\[
\lim_{h \to 0^-} \frac{(h - 2|h|)^2}{h} = \lim_{h \to 0^-} \frac{(h+2)^2}{h} = \lim_{h \to 0^-} \frac{9h^2}{h} = \lim_{h \to 0^-} \frac{9h^2}{h} = \lim_{h \to 0^-} 9h = 0 \quad \text{by limit laws 4, 7, & 8.}
\]

Since the left and right hand limits are both 0, the limit exists, and \(f'(0) = 0 \). Since the derivative exists at \(x = 0 \), \(f(x) \) differentiable at \(x = 0 \).

c) Is \(f(x) \) continuous at \(x = 0 \)? Justify your answer. Yes since it is differentiable at \(x = 0 \), and differentiability implies continuity.

7) a) Using the limit definition of the derivative, we need to show whether, or not, \(f'(0) \) exists.

\[
f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{[(h+|h|)^2 + 1] - [1]}{h} = \lim_{h \to 0} \frac{(h+|h|)^2}{h}.
\]

The definition of the absolute value of \(x \) is \(|x| = \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases} \).

We now consider the left and right-hand limits. If they both exist and are the same value then the limit above exists and is the same value.

\[
\lim_{h \to 0^+} \frac{(h-h)^2}{h} = \lim_{h \to 0^+} \frac{0}{h} = 0 \quad \text{and} \quad \lim_{h \to 0^-} \frac{(h+h)^2}{h} = \lim_{h \to 0^-} \frac{4h^2}{h} = \lim_{h \to 0^-} 4h = 0
\]

Since the left and right hand derivatives are both equal to 0, the function is differentiable at \(x = 0 \), and \(f'(0) = 0 \).

b) Since differentiability at a point implies continuity at that point, and because \(f(x) \) is differentiable at \(x = 0 \), the function \(f(x) \) is continuous at \(x = 0 \).
Some will, no doubt, use the definition of continuity. If so:

The definition of continuity at \(x = 0 \) is \(\lim_{x \to 0} f(x) = f(0) \).

First off the function is defined \(x = 0 \). \(f(0) = (0 + |0|)^2 + 1 = 1 \).

Now, to show the limit exists consider the left and right limits:

\[
\lim_{x \to 0} f(x) = \lim_{x \to 0} [(x - x)^2 + 1] = \lim_{x \to 0} 1 = 1 ,
\]
\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} [(x + x)^2 + 1] = \lim_{x \to 0^+} (4x^2 + 1) = 1.
\]

Since the left-hand and right-hand limit are equal, \(\lim_{x \to 0} f(x) = 1 = f(0) \), so \(f(x) \) is continuous at \(x = 0 \).

Here’s another possibility:
Since \(x \) and \(|x|\) are both continuous at \(x = 0 \), \(g(x) = x + |x| \) is continuous at \(x = 0 \).
Since \(g(x) = x + |x| \) is continuous at \(x = 0 \), and \(x^2 + 1 \) is continuous everywhere (it’s a polynomial,) \(h(x) = f(g(x)) = (x + |x|)^2 + 1 \) is continuous at \(x = 0 \). (Using Continuity of a Composition Theorem.)

8) The definition for \(f(x) \) to be continuous at \(x = 2 \) is: \(\lim_{x \to 2} f(x) = f(2) \).

i) \(f(2) = 4a + 1 \), so \(f \) is defined at 2.

ii) For \(\lim_{x \to 2} f(x) \) to exist, both the left and right hand limits must exist and be equal.

\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} (x^3 + a) = 8 + a ,
\]

since \(x^3 + a \) is a polynomial, and hence continuous.

\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} (ax^2 + 1) = 4a + 1 ,
\]

since \(ax^2 + 1 \) is a polynomial, and hence continuous.

so \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \) iff \(8 + a = 4a + 1 \), or \(a = \frac{7}{3} \).

iii) Since \(\lim_{x \to 2} f(x) = \frac{7}{3} = f(2) \), \(f \) is continuous at \(x = 2 \).
9) Suppose that the function \(f(x) \) is defined by the rule
\[
 f(x) = \begin{cases}
 x^2 + a & \text{if } x < 1 \\
 b x + 1 & \text{if } x \geq 1
\end{cases}
\]

What relationship must \(a \) and \(b \) satisfy for the function to be continuous at \(x = 1 \)?

The definition of continuity of \(f(x) \) at \(x = 1 \), is \(\lim_{x \to 1} f(x) = f(1) \).

From the rule above \(f(1) = b + 1 \).

As for the limit; For the limit \(\lim_{x \to 1} f(x) \) to exist, both the left and right hand limits must exist and be equal.

The Right Hand Limit:
\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (b x + 1) = b + 1 , \quad \text{since } b x + 1 \text{ is a polynomial, and hence continuous everywhere}
\]

so that the limit is indeed the definition, i.e. you can simply plug \(x = 1 \) into \(b x + 1 \). Alternatively you could use the limit laws.

\[
\lim_{x \to 1^+} (b x + 1) = \lim_{x \to 1^+} (b x) + \lim_{x \to 1^+} (1) = b \lim_{x \to 1^+} (x) + \lim_{x \to 1^+} (1) = b \cdot 1 + 1 = b + 1
\]

The left hand limit
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^2 + a) = 1 + a , \quad \text{since } x^2 + a \text{ is a polynomial, and hence continuous everywhere}
\]

so that the limit is indeed the definition, i.e. you can simply plug \(x = 1 \) into \(x^2 + a \). In this case too, you could use the limit laws.

\[
\lim_{x \to 1^-} (x^2 + a) = \lim_{x \to 1^-} (x^2) + \lim_{x \to 1^-} (a) = \left(\lim_{x \to 1^-} (x) \right)^2 + \lim_{x \to 1^-} (a) = 1^2 + a = 1 + a
\]

Setting the LH and RH limits equal gives \(b + 1 = 1 + a \) or \(a = b \).

10) Since \(f(x) = x^{\frac{3}{2}} \), \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{(x+h)^3} - \sqrt{x^3}}{h} \).

Conjugating this expression we get:
\[
f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h(\sqrt{(x+h)^3} + \sqrt{x^3})} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}\sqrt{(x+h)^3} + \sqrt{x^3}
\]
\[
= \lim_{h \to 0} \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - x^3}{h}\sqrt{(x+h)^3} + \sqrt{x^3}
\]
\[
= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}\sqrt{(x+h)^3} + \sqrt{x^3}
\]
\[
= \lim_{h \to 0} \frac{3x^2 + 3xh + h^2}{\sqrt{(x+h)^3} + \sqrt{x^3}} = \frac{3x^2}{\sqrt{3} + \sqrt{x^3}} = \frac{3x^2}{2} \cdot \frac{1}{x^{\frac{3}{2}}} = \frac{3}{2} \cdot x^{\frac{3}{2}}
\]

Power Rule is \(\frac{d}{dx} (x^k) = kx^{k-1} \), so \(\frac{d}{dx} (x^{\frac{3}{2}}) = \frac{3}{2} (x^{\frac{3}{2}-1}) = \frac{3}{2} x^{\frac{1}{2}} \).