Given the reaction N₂O₄ → 2NO₂ at 24.85°C. The reaction occurs in a 2.25L flask which contains 0.055 mol NO_2 and 0.082 mol N_2O_4 and a K_p = 6.7

Calculate Q and determine if the reaction is at equilibrium.

We have
$$C$$
 and determine if the reaction is at equilibrium.

$$C = [NO_2] / [NO_4] = (.055 \text{ MeV}_2.25L)^2 / (.082 \text{ MeV}_2.25L) = .024^2 / .036 = 0.016$$

$$K_P = K_C (RT)^{4/2} = 6.7 = K_C (.0820 \text{ Lohn } 298 \text{ K})^1 \quad K_C = 0.273 > Q$$

b. If the reaction is not at equilibrium, tell which direction the reaction is going. Circle one:

> FORWARD BACKWARD

c. Prepare an ICE table and determine the equilibrium concentrations of the reactant and product. Note: for an expression ax2+bx+c=0, the equation x=[-b± $\sqrt{b^2-4ac}$] / 2a should be used.

Ke = 0.273 = (1024+2x)	
Nou (036-x)	
I ,036 ,024 0.273 (,036-x) = (,024+2x)	
= -x +2K .0098273 x = 5.76E-4 + 4x2 + .09	6×
E .036-X .024+21 0= 4x2 + .369 x009	
$x =369 + \sqrt{.369^2 - 4(4)(0092)} =369 + \sqrt{.283} =369 + .532 = .020$	4
$K_c = 0.273 = \frac{(.0648)^2}{.0156} = .269$	

- 2. Consider the following exothermic reaction: $CO(g) + Cl_2(g) \iff COCl_2(g)$ tell what would happen if the following change was made:
 - Pressure is increased.

Answer = number

b. COCl₂ is removed from the system.

Answer = number

Cl₂ is added to the system.

Answer = number

Temperature is increased.

Answer = number

Your choices are:

- 1. = the reaction will proceed to the right
- 2. = the equilibrium will remain undisturbed
- = the reaction will proceed to the left

- 3. Given the reaction A(g) \Leftrightarrow B(g) + 2C(g) with an initial [A]=2.1M, [B]=0.0040M, [C]=0.0090M; and a Kc=9.6x10⁻¹⁵.
 - a. Determine the value for Q.

b. Tell what direction the reaction is proceeding. Circle one:

FORWARD

BACKWARD

Prepare and ICE table and determine the equilibrium concentrations of A,
 B, and C. Use any appropriate simplifying assumptions and, if you use them, verify that

your assu	mptions are valid			to an ar-board and in the designation of		
	A -	5 B +	- 2C	Kc = 9.6 × 10-15		
I	2.1	.004	.009			
0	+×	→ ×	-2K	assumption Kc is		
E	2.1+8	,004	1009-28	so small that the		
ic - " Nex	2.10,004	,004-,004	,009-,008	reaction substantially		
best =	2.100	0	100.	goes in the reverse		
in Different Li				direction to powdent		
= Kreverse = 1.04 x 1014						
	(for war	l .	ev owe			
			-	100 - 11		