MATHEMATICAL SCIENCES ODE(92:234(201,001) Jan 23rd  -June 30th 2012 Instructor Rida Mirie                                                                 Office:   Olney Hall  416c Phone:         (978) 934-2443                                               E-mail   Rida_mirie@uml.edu Office Hours:   .  9:00-:9:50  and  5-6pm  MWR                                                      And by appointment

SEE CourseSMART.com

Text; Zill . Seventh edition (or if available previous editions) Ordinary differential equations with BVP.  Brooks/Cole ISBN2008024835.

The course will be captured on

Http://echo360.uml.edu/rmirie2011/diffequationsSpring.html

>=3Exams       50          %

Hw              20              %

Final             30             %

1 calculator (keep a spare battery) + 1 sheet are allowed in exams, and final. .
No makeup.          Attendance is required . Coverage rate  will vary. (You are responsible for the material covered ).

 . Calendar items The first day of class is Monday, January 23. The last day of class is Monday, May 7. The last day to administer quizzes or exams prior to the final exam is Monday, April 30. There are no classes on the following days: Monday, February 20, for Presidents Day Monday, March 12, through Friday, March 16, for spring break. Monday, April 16, for Patriots Day Friday, April 27, for University Day There are no days on which we follow a different day's class schedule. The undergraduate and graduate academic calendars are available at http://www.uml.edu/registrar/calendars/academic_calendar.html

Plan for the material covered.

.

HW From the text:

Page    Section          Topics                                                   Problems

10      1.1                  Introduction                                         (1-17) odd, 21,23,30,31,32

50      2.2                   Separable                                          (1-21) odd

60      2.3                   Linear                                               (1-11) odd, 18,21

Test #1

69      2.4                   Exact.                                                (1-11) Odd, 14,27,28

75      2.5                   Substitution                                      (1-21) odd

Test #2.

129    4.1                    Homogeneous and particular solutions        1,3,5,23,25,27,29

132    4.2                    Reduction of Order                                  (1-17) odd, 20,23

161    4.6                    Variation of parameters                 (1-15) odd

172    4.7                    Cauchy-Euler Equation                      (1-31) odd

Test  #3.

138    4.3                    higher orders                                               (1-25) odd, 36.

148    4.4                    Undetermined superposition                (1-21) odd

156    4.5                    Undetermined Annihilator                   (1-21) odd

Test #4

177    4.9                     Nonlinear Differential equations*            1,3,5,7,9

 7.1 Definition of Laplace Transform 7.2 Inverse Transform and Derivatives 7.3.1 Translation on the s-Axis 7.3.2 Translation on the t-Axis 7.4 Additional Operational Properties

The sixth edition syllabus is to follow:

 Section Topic Homework Assignment 1.1 Definition and terminology 1-13odd 1.2 Initial Value Problem 1,3-5,7-11119odd, 21-25 1.3 Diff Eons as Mathematical Models 1,5,7,9,15,17 2.1 Solution Curves without solution 1,3,5,7,15-25odd 2.2 Separable Variables 1--29odd 2.3 Linear Equations 1-29odd 2.4 Exact equations 1-11odd, 21,23,25 2.5 Solutions by Substitution 1,5,9-15odd, 23,25 3.1 Modeling with    linear equations 1,3,5,7,11,13,17,119,21,29 3.2 Modeling with nonlinear equations 1,3,9,13 \ 4,1,1 Initial Value and Boundary Value Problems 1-11odd 4.1.2 Homogeneous Equations 15-29odd 4.1.3 No Homogeneous equations 311,33,35 4.2 Reduction of Order 1,3,557,13,15 4.3 Hom. Linear with constant coefficients 1-13odd, 19,23,25,31,33,35 4.4 Undetermined coefficients 1-13odd, 17,21,25,31,33 4.6 Variation of parameters 1,5,9,13,19,21 4.7 Cauchy-Euler  equations 1-13odd 4.8 Solving  systems of eqns with elimination 1,3,5,7 4.9 Nonlinear Equations 1,3,5,7 \\ 5.1.1 Free un-damped motion 1-11 odd 5.1.2 Free  damped motion 17-27odd 5.1.3 Driven motion 29-35odd 5.1.4 Series  circuit Analogue 45,47,49,51 7.1 Definition of Laplace Transform 1-35odd 7.2 Inverse  Transform and Derivatives 1,3,7,11,15,19,23,27,35,37,39 7.3.1 Translation on the s-Axis 1-19odd, 23,27 7.3.2 Translation on the t-Axis 37-47odd, 55,59,63,65 7.4 Additional Operational Properties 1,5,9,13,17,27,29