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Abstract

We show a simple and yet very precise upper bound on self-intersection time of a Markov chain,
i.e. the expected number of steps until some state has been visited twice. When applied to
certain birthday attacks the bound matches even the lead coefficient in simulation data to over
4 significant digits. This precision makes it possible to explain the differing performance between
attacks that are superficially similar, such as Pollard’s Rho for discrete logarithm and Teske’s
additive walks, and can also be used in optimizing birthday attack design.

1 Introduction

Birthday attacks use probabilistic “paradoxes” to solve cryptographic problems. However, the
heuristics used to justify these attacks are usually not strong enough to differentiate a more efficient
approach from a less efficient one. We remedy this shortcoming with a very precise result that
applies to those attacks modeled on a Markov chain.

The Birthday Paradox states that if samples are taken with replacement from a set of N
distinct items, then the expected number of samples required until some item is chosen twice is
(1 + o(1))

√
π
2 N . This can be interpreted as a statement that a Markov chain on the complete

graph KN with transitions P (i, j) = 1/N will have a self-intersection or collision in expected time√
π
2 N ∼ 1.253

√
N . For a more general Markov Chain if the Markov chain draws nearly uniform

samples after some τ ¿ N steps then a common heuristic is to assume then the standard birthday
paradox more-or-less explains what happens subsequently, as each step generates a sample which
is nearly uniform and independent of those τ or more steps earlier. However, as noted by Teske
[5], simulations show neither this is not quite correct, with some walks colliding nearly as quickly
as predicted by the birthday paradox, while other walks are much slower. For instance, Pollard’s
Rho walk on the cycle ZN has transitions P(i, i + 1) = P(i, i + k) = P(i, 2i) = 1/3 for some
fixed constant k and reportedly requires around 1.596

√
N steps, while Teske’s r-adding walk with

P(i, i + sj) = 1/r for a random set of elements {sj}r
j=1 requires ω(

√
N) steps in the 3-adding case

but a nearly optimal 1.292
√

N in the 20-adding case [5].
Although there are some theoretical results in this area [3, 2, 5] and a sharper heuristic [1], it

is not well understood what causes two walks of equal degree to perform very differently, unless
one approaches its stationary distribution dramatic slower than the other. Our new result shows,
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rather counterintuitively, that if two independent copies of the walk are started from the same state
then the faster they are expected to intersect each other the slower the expected collision (self-
intersection) time of the Markov chain. Or more simply, self-intersection time is largely determined
by how locally tree-like the underlying graph is: the fewer short cycles there are then the faster the
collision time.

The paper proceeds as follows. In Section 2 we develop our new heuristic and compare it to
previous ideas. The heuristic is then used to study several birthday attacks in Section 3 and found
to be extremely precise.

2 Collision time: Old and New Heuristics

In 1978 Pollard introduced his Rho algorithm for finding discrete logarithm [4] over a prime-order
cyclic group G = 〈g〉. Given some X0 = ga0hb0 = ga0+b0k and partition S1

∐
S2

∐
S3 = G, with Si

all of sizes roughly |G|/3, consider the process with

Xi+1 =





Xig if Xi ∈ S1

Xih if Xi ∈ S2

X2
i if Xi ∈ S3

Floyd’s cycle finding method can be used to find when a cycle occurs and the same group element
Xi = Xj has been reached twice, i.e. a self-intersection. It is easy to track the exponents (ai, bi) with
Xi = gaihbi , and so once Xi = Xj then ai + bik = aj + bjk mod |G| and so k = (ai− aj)(bj − bi)−1

mod |G|, determining discrete logarithm k except in the degenerate case when bi ≡ bj mod |G|.
Typically the partition is fixed by a hash function, so it is not fully random. In this case no

method is known for precisely studying the Rho method. However, this is essentially a deterministic
implementation of the Markov chain P(g, gg) = P(g, gh) = P(g, g2) = 1/3 on G, and if the partition
is chosen by randomly and independently assigning each group element to a partition then this is
exactly a Markov chain, at least until it self-intersects by visiting a previously visited state. In
this setting the methods of [3, 2, 1] apply, with the analysis simplified by the observation that
this is equivalent to a walk on ZN × ZN with P((ai, bi), (ai + 1, bi)) = P((ai, bi), (ai, bi + 1)) =
P((ai, bi), (2ai, 2bi)) = 1/3.

Pollard suggested that the run time of the Rho method should be similar to that of the birthday
problem, a heuristic which is correct for order of magnitude but off by about 30% for the lead
constant. Much later, Teske proposed speeding this up by considering an alternative “additive”
walk, and simulations found this to be only 3% slower than a birthday problem [5].

In recent years several methods have been proposed for studying these walks. Blackburn and
Murphy [1] give an improved heuristic suggesting that a walk on a regular digraph of degree r has

collision time of (1 + o(1))
√

r
r−1

√
πN
2 steps, a good but not exactly sharp result which cannot

differentiate between fast and slow walks of equal degree. Miller and Venkatesan [3] give the first
rigorous result of order nearly O(

√
N), that collision time is bounded by O(

√
N τs(1/2)) where

τs(ε) = min{n : ∀u, v ∈ V, Pn(u, v) ≥ (1 − ε)π(v)} is mixing time in separation distance. Kim,
Montenegro, Peres and Tetali [2] improve this to O(

√
N max{Aτ , A∗τ}), where

∀x, y ∈ V :
1− ε

N
≤ Pτ (x, y) ≤ 1 + ε

N

Aτ = max
v∈V

1 +
τ∑

i,j=1

Pr (Xi = Yj | X0 = Y0 = v)
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i.e. τ := τ∞(1/2) is the L∞ mixing time, Aτ is the expected number of collisions in the neighborhood
of two walks starting at the same state, and A∗τ is the same for the time-reversal (adjoint) P∗(x, y) =
π(y)P(y,x)

π(x) . In the special case of Pollard’s Rho walk they use this to prove expected collision time

of at most (52.5 + o(1))
√

N steps, the first rigorous proof of O(
√

N).
In spite of these improvements it is still not clear what properties of a random walk govern its

collision time. For instance, the heuristic of Blackburn and Murphy cannot explain the differing
performance of the Rho and 3-adding walks, whereas the bound of Kim et.al. can explain this
but is not sharp enough to differentiate the Rho walk from the 20-adding walk. We remedy this
shortcoming with a very precise result that applies to attacks modeled on a Markov chain. In
particular, we find the following:

Heuristic 2.1. The expected collision time of Markov chain P on a state space of cardinality N is

T + (1 + o(1))
√

π

2
NAT (1 + ε)

The value of AT can be estimated recursively, since if the walks intersect in some small number
of steps t then another AT−t ≈ AT subsequent collisions are to be expected, so that

AT ≤ 1 + Pr (∃i, j ∈ [1, 2, . . . , t], Xi = Yj | X0 = Y0) AT

⇒ AT ≤ 1
1− Pr (∃i, j ∈ [1, 2, . . . , t], Xi = Yj | X0 = Y0)

(1)

After a small number of steps the walks are usually sufficiently randomized that if they haven’t
intersected yet then there is a negligible probability of them colliding, so the early collision proba-
bilities will give a good estimate for AT .

In Section 3 this recursive estimate is used to study important birthday attacks and it is found
that this matches simulation results to at least 4 significant digits.

The accuracy of the heuristic suggests the following counterintuitive principle:

Heuristic 2.2. If two independent copies of a walk are started from the same state then the faster
they are expected to intersect each other the slower the expected collision self-intersection time of
a single copy of the Markov chain. Or more simply, self-intersection time is largely determined by
how locally tree-like the underlying undirected graph is: the fewer short cycles there are then the
faster the collision time.

Remark 2.3. In rare cases the t-step estimate on AT does not approach a constant as t increases,
in which case it is also necessary to determine T . Such a situation arises in Teske’s additive walk
when there are fewer than 5 generators [5], a case in which we are able to use ideas similar to those
here to show AT = ω(1) and collision time ω(

√
N) (unpublished work).

To see why the heuristic is appropriate, note that once a collision occurs then it will be part of
a sequence of around AT collisions on average, so in particular a randomly chosen intersection has
about a 1/AT chance of being the first in such a sequence. As a result, if i ≥ j + T are far enough
apart that Xi and Xj are minimally correlated then while

Pr (Xi = Xj | i ≥ j + T ) ≈ 1
N

is the probability of a collision,

Pr (Xi = Xj ∧ (no intersection in previous T steps of Xi) | i ≥ j + T ) ≈ 1
NAT

(2)
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is the probability that there have been no recent collisions as well. Then the relation Pr (Xi = Xj) =
1/N used in standard proofs for the Birthday Problem can be replaced by (2), leading to a bound
on expected time until the first collision which was not recently proceeded by other collisions, i.e.
the expected time until first collision. This effectively replaces the N in

√
π
2 N with N AT and an

initial warm-up of some T steps, leading to Heuristic 2.1 above. Furthermore, after the first T steps
the subsequent states will be drawn from a nearly uniform distribution, so if only collisions after
the first T steps are considered then once a collision occurs it will be at a fairly typical state, and
so AT need only be calculated for such typical states.

For most walks of interest in number theory there is a canonical notion of direction for the
walk. When this is not the case then a collision Xi = Xj may be followed by collisions with
Xj+∆ intersection states visited before Xi, i.e. the time-reversed walk P∗ may quickly intersect the
original non-reversed walk when both start from the same state. When this is not the case, i.e. P∗

has a non-trivial chance of intersecting P quickly, then the definition of AT might be changed to

AT = max
average state v

1+
∑T

i,j=1 Pr (Xi = Yj | X0 = Y0 = v)

+Pr
(
Xi = Y ∗

j | X0 = Y0 = v
)

with (1) redefined to consider when either Xi = Yj or Xi = Y ∗
j . However, this is not quite right

as the walk referred to as Y ∗
j above cannot visit states visited before Xi, as otherwise Xi would

not be the time of the first intersection, so this seems unlikely to give the correct result unless the
graph has very high degree.

Remark 2.4. Blackburn and Murphy give a heuristic based on an idea of Brent and Pollard [1].
Consider a walk Xi on a directed regular graph of constant in and out-degrees r. If the first collision
occurs at time i + 1 then Xi is an initial vertex on a directed edge into a previously visited state
– {X0, X1, . . . , Xi−1} – and the walk transitions along this edge. There are approximately (r − 1)i
such directed edges in the graph, and so Xi+1 is a collision with probability approximately (r−1)i

N
1
r .

In contrast, in the Birthday problem the equivalent probability of Xi colliding with an earlier state
is i

N , and so the new heuristic effectively replaces N by r
r−1N in the Birthday problem, leading to

expected time:

(1 + o(1))
√

r

r − 1

√
π

2
N

In our heuristic the simplest non-trivial estimate for AT is found by using Pr (X1 = Y1) ≥ 1
r ,

which implies AT ≥ 1
1−1/r = r

r−1 and expected time until a collision of at least (1+o(1))
√

r
r−1

√
π
2 N ,

the same as Blackburn and Murphy’s heuristic. Adding further terms to the estimate for AT in (1)
improves on the old heuristic.

3 Pollard’s Rho and Teske’s Walk

In this section we apply our new heuristic to two random walks related to the Discrete Logarithm
Problem, Pollard’s original Rho walk and Teske’s additive version. We finish by using our heuris-
tic to develop a walk for Discrete Logarithm that is (very slightly) faster than either of these,
demonstrating how our result may be helpful in speeding up birthday attacks.

Example 3.1 (Pollard’s Rho). Recall that Pollard’s Rho walk on ZN for prime order N has
transitions P(x, x + 1) = P(x, x + k) = P(x, 2x) = 1/3 for some constant k. Simulations by Teske
indirectly estimate collision time to be 1.596

√
N steps [5], while a much larger simulation of our
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own 1 has 95% confidence interval of 1.6252
√

N to 1.6257
√

N . These suggest that collision time in
the Rho walk is about 30% slower than the 1.2533

√
N steps required in the birthday problem.

To apply our new method suppose that walks Xi and Yj start at the same state X0 = Y0 and
calculate the probability of intersection within a few steps:

• Pr (X1 = Y1 | X0 = Y0) = 1/3

• Pr (X2 = X0 + 1 + k = Y0 + k + 1 = Y2, X1 6= Y1 | X0 = Y0) = 2/34

• Pr (X3 = X0 + 1 + k + k = Y3, no prior Xi = Yj | X0 = Y0) = 2/36

Likewise for X3 = X0 + 1 + 1 + k = Y3.

• Pr (X3 = 2X0 + 1 + 1 = 2(Y0 + 1) = Y2, no prior Xi = Yj | X0 = Y0) = 1/35

Likewise when the roles of X and Y are switched, and/or when +k is used instead of +1, for
a total of 4

35 .

Then
Pr (∃i, j ≤ 3, Xi = Yj | X0 = Y0) =

1
3

+
2
34

+
4
36

+
4
35

= 0.37997

and so Heuristic 2.1 then suggests collision time of

T +
√

π

2
N ≈

√
1.6128π

2
N = 1.592

√
N

To get a more accurate estimate a computer was used to enumerate all walks of length t ≤ 10
and from this determine the probability of intersection in ≤ t steps. When t > 10 then 1010 runs
of two independent walks were used estimate this probability, for a 95% margin of error of 10−5.

t Pr (intn in ≤ t steps) Estimated collision time
1 0.333333 1.53499

√
N

2 0.358025 1.56423
√

N

3 0.37997 1.59168
√

N

4 0.387289 1.60115
√

N

5 0.394808 1.61107
√

N

10 0.403805 1.62318
√

N

20 0.405482± 0.00001 (1.62546± 0.00001)
√

N

40 0.405546± 0.00001 (1.62555± 0.00001)
√

N

64 0.405545± 0.00001 (1.62555± 0.00001)
√

N

In conclusion, a back of the envelope calculation of the first 3 steps suffices to explain 90% of
the deviation from the birthday heuristic, a 10 step estimate accounts for 99.7% of this, and by 20
steps the bound is within our 95% confidence interval for the true collision time.

1 We did 45 million runs of Pollard’s Rho walk on ZN with N ranging from 108 to 1013, in each case determining the
exact number of steps until the first collision. The mean collision time was 1.6254

√
N with sample standard deviation

of 0.8495
√

N . Simulations were run on an AMD Phenom II desktop CPU with the SIMD oriented Mersenne Prime
Twister (SFMT) used to generate pseudorandom numbers.
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Remark 3.2 (Optimizing Rho transitions). The previous example can be generalized to find the
optimal choice of transition probabilities for the additive and multiplicative steps. If additive steps
are taken with probability p each and the multiplicative step with probability 1− 2p then

Pr (∃i, j ≤ 3, Xi = Yj | X0 = Y0)

= (1− 2p)2 + 2p2 + 2p4 +
4p6

1− p2
+

4p3(1− 2p)2

1− p2 − p3

This is minimized when p = 0.3071, with an expectation of 1.590
√

N steps until collision. This
shows that Pollard’s suggestion that each transition have type have equal probability is at worst
negligibly slower than the optimal choice of transition probabilities.

Example 3.3 (Teske’s r-adding walks). Recall the r-adding walk on ZN has transitions P(x, x +
sk) = 1/r, where sk ∈ {s1, s2, . . . , sr} is one of r values fixed (but chosen randomly) from
{1, 2, . . . , N − 1}. Teske estimates average collision time of around 1.292

√
N steps [5], while our

much larger run of simulations 2 have a 95% confidence interval of 1.2877
√

N to 1.2880
√

N . These
suggest that collision time is about 3% slower than the 1.2533

√
N steps required in the birthday

problem.
This time the probability that two independent walks with X0 = Y0 intersect within a few steps

is

Pr (∃i, j ≤ 3, Xi = Yj | X0 = Y0)

=
1
r

+ rP2
1
r2

1
r2

+
3 rP3 + 2 rP2

r6

=
1
r

+
1
r2

+
2
r3

+ O(1/r4)

When r = 20 then this leads to an estimate on collision time of

T +

√
πAT

2
N ≈

√
1.0557π

2
N = 1.287709

√
N

which is already within the 95% confidence interval given by simulation data. An exact enumeration
of walks of length t = 5 increases the estimate only negligibly to 1.287765

√
N steps, at t = 10

to 1.287770
√

N steps, and the sampling based estimate at length t = 100 gave an estimate of
(1.287769± 0.000003)

√
N with 95% confidence.

So in this case a mere 3 steps already explains 99.7% of the 20-additive walk’s deviation from
the birthday heuristic, and by 5 steps the estimate becomes essentially constant.

Example 3.4 (Mixed walks). Teske also considers mixed walks with r additive and s doubling
steps. This walk on ZN has probability 1

r+s for each additive step, and s
r+s for the doubling step.

The probability of two walks of length t = 3 intersecting when started from the same state is

Pr (∃i, j ≤ 3, Xi = Yj | X0 = Y0) (3)

=
r + s2

(r + s)2
+

r(r − 1)
(r + s)4

+
3 rP3 + 2 rP2

(r + s)6
+

4rs2

(r + s)5

When r = 16 and s = 4 then this is probability 0.081985, and so our result predicts expected
collision time of 1.308

√
N , quite close to the 1.301

√
N found in Teske’s simulations.

2 We did 75 million runs under the same circumstances as the Rho walk, and found mean collision time of
1.2878

√
N with sample standard deviation of 0.6732

√
N .
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Remark 3.5 (More efficient attacks). To finish up, observe that in the final example when r+s = 20
is fixed then the intersection probability is minimized at s = 1, with (3) inducing expected collision
time of 1.2875

√
N versus 1.2877

√
N for the 20-additive walk (r = 20 and s = 0). Sampling 1010

random pairs of length 20 paths improves this to (1.287571± 0.000003)
√

N , again better than the
20 step estimate of (1.287771± 0.000003)

√
N for the 20-adding walk.

While this is a negligible improvement, and within the margin of error of sampling based
estimates for the true complexity of both walks, it demonstrates how our theoretical result may be
useful for fine tuning proposed birthday attacks.
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