
Near Optimal Bounds for Collision in Pollard Rho for Discrete Log

Jeong Han Kim
Department of Mathematics

Yonsei University
Seoul, 120-749 Korea
jehkim@yonsei.ac.kr

Ravi Montenegro
Department of Mathematical Sciences
University of Massachusetts Lowell

Lowell, MA 01854
ravi montenegro@uml.edu

Prasad Tetali
School of Mathematics and College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

tetali@math.gatech.edu ∗

Abstract

We analyze a fairly standard idealization of Pollard’s
Rho algorithm for finding the discrete logarithm in a cyclic
group G. It is found that, with high probability, a colli-
sion occurs in O(

√
|G| log |G| log log |G|) steps, not far

from the widely conjectured value of Θ(
√
|G|). This im-

proves upon a recent result of Miller–Venkatesan which
showed an upper bound of O(

√
|G| log3 |G|). Our proof is

based on analyzing an appropriate nonreversible, non-lazy
random walk on a discrete cycle of (odd) length |G|, and
showing that the mixing time of the corresponding walk is
O(log |G| log log |G|).

1 Introduction

The classical discrete logarithm problem on a cyclic
group deals with computing the exponents, given the gen-
erator of the group; more precisely, given a generator x of
a cyclic group G and an element y = xk, one would like to
compute k efficiently. Due to its presumed computational
difficulty, the problem figures prominently in various cryp-
tosystems, including the Diffie-Hellman key exchange, El
Gamal system, and elliptic curve cryptosystems. About 30
years ago, J.M. Pollard suggested algorithms to help solve
both factoring large integers [11] and the discrete logarithm
problem [12]. While the algorithms are of much interest in
computational number theory and cryptography, there has
been very little work on rigorous analyses. We refer the
reader to [9] and other existing literature (e.g., [18, 3]) for
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further cryptographic and number-theoretical motivation for
the discrete logarithm problem.

Pollard’s Rho algorithm for finding discrete logarithms
is based on a pseudo-random approximation to a Markov
chain on a cyclic group G. While there has been no rig-
orous proof of rapid mixing of the corresponding Markov
chain of order O(logc |G|) until recently, a proof of mix-
ing of order O(log3 |G|) steps by a non-trivial argument
involving characters and quadratic forms was provided
by Miller-Venkatesan [9]. In addition, they proved that
with high probability the collision time is bounded by
O(
√
|G| log3 |G|) in the Pollard Rho algorithm. In this pa-

per we improve on this and prove the correct order mixing
time bound of a closely related walk, along with a nearly
optimal bound on the mixing time of the Pollard Rho algo-
rithm.

Our first approach will be an elementary proof based on
canonical paths which shows the same O(log3 |G|) mixing
time as [9]. In fact, related methods including log-Sobolev
and Spectral profile can show no better than O(log2 |G|)
mixing, still far from the correct bound. As such we then
turn to a different method and next show that arguments
used to study a related walk by Aldous and Diaconis [1]
and Chung, Diaconis and Graham [2] can be modified to
apply to this problem. In particular, a strong stationary time
is given to show O(log |G| log log |G|) mixing time when
|G| = 2m−1 for some m, while a Fourier analysis approach
can show the same bound for general odd order |G|. We
then combine this with an improved argument on collision
time of a walk, in showing that O(

√
|G| log |G| log log |G|)

steps suffice until a collision occurs and discrete logarithm
is possibly found, not far from the widely conjectured value
of Θ(

√
|G|). Finally we observe that our approach is ro-
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bust enough to allow analysis of other variants of the Pollard
Rho algorithm, such as those mentioned in the survey article
by Teske [18]; we will include the necessary details in the
journal version of this manuscript. A noteworthy remark
here is that the walks analyzed in [1, 2] and other similar
walks studied by Hildebrand [5] always double the current
position (and then add or subtract one with some probabil-
ity); the subtlety in our problem arises from the original
(unaltered) Pollard Rho algorithm demanding that we dou-
ble only with 1/3 probability. It turns out that this requires
a more careful analysis, since standard comparison-type ar-
guments result in additional log p factors in the mixing time.

In terms of prior (and not-so-recent) history, we remark
that Shoup [14] had shown that any generic algorithm which
solves (with high probability) the discrete logarithm prob-
lem on integers modulo p, must perform at least Ω(

√
p)

group operations, where p is the largest prime dividing n.
The notion of generic includes among others, Pollard’s Rho
method and Pohlig-Hellman algorithm (see [14] for details.)
Pollard has shown that if the iterating function F gives per-
fectly random samples then the expected time until a colli-
sion occurs is in fact O(

√
p), but it is not known whether

the form of iterating function proposed by Pollard gives a
sufficient level of randomness, and secondly one would like
to estimate such a collision time with high probability. For
one of the variants of the Pollard Rho algorithm, see [6],
wherein the authors replace the squaring step by a walk on
a Cayley graph of the group, and obtain bounds of the form
O(
√

p), up to factors of log p.
The paper proceeds as follows. In Section 2 the Pollard

Rho algorithm is introduced, and a relation is shown be-
tween collision time and mixing time in separation distance.
We then use the canonical path method to bound mixing
time of this walk in Section 3. This is followed in Section
4 by a proof of a near optimal mixing bound in terms of
strong stationary times when |G| = 2m − 1. In Section 5,
a Fourier approach is used to show the same bound for the
general case. Finally, in conclusion, we discuss limitations
of various commonly used methods for this problem.

2 Collision time of Pollard’s Rho algorithm

While the majority of analysis in this paper is devoted to
studying the precise mixing time of a certain nonreversible,
non-lazy random walk on a cycle of odd length, we first re-
duce the collision time problem (of Pollard’s Rho discrete
logarithm algorithm) to such a mixing time question. While
such a reduction was already described in [9], our propo-
sition below improves on their idea in yielding a smaller
factor (see below for further clarification). First, let us in-
troduce the algorithm.

Consider a cyclic group G of prime order p = |G| 6= 2,
and suppose x is a generator, that is G = {xi}p−1

i=0 . Given

y ∈ G, the discrete logarithm problem asks us to find k such
that xk = y. Pollard suggested an algorithm on Z×p based
on a random walk and the Birthday Paradox. A common ex-
tension of his idea to groups of prime order is to start with
a partition of G into sets S1, S2, S3 of roughly equal sizes,
and define an iterating function F : G → G by F (g) = gx
if g ∈ S1, F (g) = g2 if g ∈ S2 and F (g) = gy = gxk if
g ∈ S3. Then consider the walk gi+1 = F (gi). If this walk
passes through the same state twice, say xa+kb = xα+kβ ,
then xa−α = xk(β−b) and so a − α ≡ k(β − b) mod p
and k ≡ (a − α)(β − b)−1 mod p, which determines k
unless β ≡ b mod p. Hence, if we define a collision to
be the event that the walk passes over the same group ele-
ment twice, then the first time there is a collision it might
be possible to determine the discrete logarithm.

To estimate the running time until a collision one heuris-
tic is to treat F as if it outputs uniformly random group
elements. By the Birthday Paradox if O(

√
|G|) group el-

ements are chosen uniformly at random, then there is a
high probability that two of these are the same. However,
Teske [16] has given experimental evidence that the time
until a collision is slower than what would be expected by
a truly random process. We analyze instead the weaker
idealization in which it is assumed only that each g ∈ G
is assigned independently and at random to a partition S1,
S2 or S3. In this case, although the iterating function F
described earlier is deterministic, because the partition of
G was randomly chosen then the walk is equivalent to a
Markov chain (i.e. a random walk), at least until the walk
visits a previously visited state and a collision occurs. The
problem is then one of considering a walk on the expo-
nent of x, that is a walk R on the cycle Zp with transitions
R(i, i + 1) ≈ R(i, i + k) ≈ R(i, 2i) ≈ 1/3.

Recall that the event of revisiting an already visited state
is called a collision. Our analysis of the time until a col-
lision occurs will be done by examining the rate of con-
vergence of the Markov chain to its stationary distribution
π. The separation distance between a distribution σ and sta-
tionary distribution π is sep(σ, π) = maxy∈V 1− σ(y)

π(y) . The
mixing time of a Markov chain P with state space V is

τs(ε) = min{n : ∀x, y ∈ V, 1− Pn(x,y)
π(y) ≤ ε} ,

which is the worst-case number of steps required for the
separation distance to drop to ε. The following result relates
τs(1/2) to the time until a collision occurs for any Markov
chain P with uniform distribution on G as the stationary
distribution.

Proposition 2.1. With the above definitions, after

1 + τs(1/2) + 2
√

2c |G| τs(1/2)

steps, a collision occurs with probability at least 1 − e−c,
for any c > 0.
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Proof. Let S denote the first
⌈√

2c |G| τs(1/2)
⌉

states vis-
ited by the walk. If two of these states are the same then
a collision has occurred, so assume all states are distinct.
Even if we only check for collisions every τs(1/2) steps,
the chance that no collision occurs in the next tτs(1/2) steps
(so consider t semi-random states) is then at most

(
1− 1

2
|S|
|G|

)t

≤

(
1−

√
c τs(1/2)

2|G|

)t

≤ e
−t
q

c τs(1/2)
2|G| .

When t =
⌈√

2c|G|
τs(1/2)

⌉
, this is at most e−c, as desired, and

so at most

⌈√
2c |G| τs(1/2)

⌉
+

⌈√
2c|G|

τs(1/2)

⌉
τs(1/2)

steps are required for a collision to occur with probability at
least 1− e−c.

Remark 2.2. By assuming each g ∈ G is assigned inde-
pendently and at random to a partition we have eliminated
one of the key features of the Pollard Rho algorithm, space
efficiency. However, if the partitions are given by a hash
function f : (G, p) → {1, 2, 3} which is sufficiently pseudo-
random then we might expect behavior similar to the model
with random partitions.

Remark 2.3. The analysis can easily be extended to the
case when there are many partitions, of varying sizes, each
with their own transition rule, as long as a partition occupy-
ing at least a constant fraction of the space corresponds to
g → gx and another such partition corresponds to g → g2.

Throughout the analysis in the following sections, we as-
sume that the size p of the cycle Zp (on which the random
walk is performed) is odd. Indeed there is a standard re-
duction – see [13] for a very readable account and also a
classical reference [10] – justifying the fact that it suffices
to study the discrete logarithm problem on cyclic groups of
prime order.

3 Canonical Paths

Perhaps the most widely used approach to bounding
mixing times is the method of canonical paths. However,
this method has been used primarily for walks which are ei-
ther lazy or reversible, and usually both. The Pollard Rho
walk is neither, but as we will now see, it is still possible to
apply the canonical path method.

Canonical path methods rely on studying the spectral
gap:

Definition 3.1. Given Markov chain P on state space V the
spectral gap λ = λP is defined by

λP = inf
f :V→R,

Varπ(f) 6=0

EP(f, f)
Varπ(f)

,

with Varπ(f) = Eπf2 − (Eπf)2 and Dirichlet form

EP(f, f) =
1
2

∑
x,y∈V

(f(x)− f(y))2π(x)P(x, y) .

Fill [4], building on work of Mihail [8], showed a bound
on the mixing time.

Theorem 3.2. The mixing time of a finite Markov chain P
on state space V is at worst

τs(ε) ≤
⌈

1
λPP∗

log
1

επ0

⌉
,

where π0 = minx∈V π(x) and the time reversal P∗ is given
by P∗(x, y) = π(y)P(y,x)

π(x) .

One of the more common ways of bounding the spectral gap
is via canonical paths [15].

Theorem 3.3. Consider a finite Markov chain P on state
space V . For every x, y ∈ V , x 6= y, define a path γxy

from x to y along edges of P (i.e. γxy ⊂ E = {(a, b) ∈
V × V : P(a, b) > 0}). Then

λ ≥
(

max
(a,b)∈E

1
π(a)P(a, b)

∑
(x,y): x6=y,
(a,b)∈γxy

π(x)π(y)|γxy|
)−1

.

It suffices to bound the mixing time of the walk R2, be-
cause the mixing time of R is at most twice this.

Lemma 3.4. Let K(i, 2i) = K(i, 2i − 1) = 1/2 be a walk
on the odd cycle Zp. The Pollard Rho walk R satisfies

λR2(R2)∗ ≥
2
81

λK .

Proof. Observe that, from the definition of spectral gap,

∀i 6= j : R2(R2)∗(i, j) ≥ c K(i, j) ⇒ λR2(R2)∗ ≥ c λK.

Now, K(i, j) 6= 0 only if j = 2i− 1 or j = 2i, so it suffices
to consider these transitions:

R2(R2)∗(i, 2i− 1)
≥ R(i, 2i)R(2i, 2i + 1)R∗(2i + 1, 2i)R∗(2i, 2i− 1)

≥ 2
81

K(i, 2i− 1) ,

R2(R2)∗(i, 2i)
≥ R(i, i + 1)R(i + 1, 2i + 2)

R∗(2i + 2, 2i + 1)R∗(2i + 1, 2i)

≥ 2
81

K(i, 2i) .

Here we are using the fact that (R2)∗ = (R∗)2.
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Lemma 3.5. Let K(i, 2i) = K(i, 2i − 1) = 1/2 be a walk
on the odd cycle Zp. Then,

λK ≥
1

2 (dlog2 pe)2
.

Proof. Suppose x, y ∈ V and let n = dlog2 pe. To con-
struct a path from x to y, let x0 = x and consider all possi-
ble paths of length n, i.e. x = x0 → x1 → · · · → xn with
xi = 2xi−1 − ci and ci ∈ {0, 1}. Then

xn ≡ 2nx0 −
n∑

i=1

2n−i ci mod p . (3.1)

Each value in {0, 1, . . . , 2n − 1} can be written in exactly
one way as a sum

∑n
i=1 2n−i ci, and so there are either one

or two possible paths from x0 to xn = y. Pick one as the
canonical path γxy .

To apply Theorem 3.3, fix edge (a, b) with K(a, b) > 0
and suppose that (a, b) is the i-th edge in path γxy . Then
x ∈ {z : Ki−1(z, a) > 0} and y ∈ {z : Kn−i(b, z) > 0},
and so there are at most |{z : Ki−1(z, a) > 0}| × |{z :
Kn−i(b, z) > 0}| ≤ 2i−1 × 2n−i = 2n−1 < p such paths.
There are n = dlog2 pe possible values of i, so there are at
most p × dlog2 pe paths through this edge, each of length
|γxy| = dlog2 pe. Theorem 3.3 completes the proof.

It follows from Theorem 3.2, Lemma 3.4 and Lemma 3.5
that τs(ε) = O((log p)2 log(p/ε)).

The preceding argument was based on the observation
that studying Rm for some m > 1 may be easier than study-
ing the walk R directly, as was done in [9]. In Concluding
Remarks we sketch an argument for why this approach can-
not be used to show better than τs(1/2) = O((log p)2/m)
for the Pollard Rho walk.

4 Separation via Stopping Time

While canonical paths are much more widely used for
bounding mixing time, the most direct route for bounding
the separation distance is via a strong stationary time.

Definition 4.1. A stopping time for a random walk {Yi}∞i=0

is a random variable T ∈ N such that the event {T ≤ t}
depends only on Y0, Y1, . . . , Yt. A stopping time T is a
strong stationary time with stationary distribution π, if

∀y, Pr[Yt = y|T ≤ t] = π(y) .

The key point here is that

Pr[Yt = y] ≥ Pr[T ≤ t] Pr[Yt = y|T ≤ t]
= π(y) Pr[T ≤ t]

and so

sep(Pt(x, ·), π) = max
y∈V

1− Pt(x, y)
π(y)

≤ Pr[T > t] .

We first consider the case p = 2m − 1. The construction
can be thought of as an extension of the approach of Aldous
and Diaconis [1]. In the following section a similar bound
for general odd p will be shown.

Theorem 4.2. If p = 2m − 1 then the Pollard Rho walk on
the cycle Zp has mixing time

τs(1/2) = O(log p log log p) .

Proof. The key to the proof will be to reduce the problem
to one of constructing a strong stationary time for a walk
with transitions i → 2i+0 and i → 2i+1, each with equal
probability.

Let us refer to the three types of moves that the Pol-
lard Rho random walk makes, namely (i, i + 1), (i, i + k),
and (i, 2i), as moves of Type 1, Type 2, and Type 3, re-
spectively. In general, let the random walk be denoted by
Y0, Y1, Y2, . . . , with Yt indicating the position of the walk
(modulo p) at time t ≥ 0.

Define new random variables Ti, bi and Xi: Let X0 = 0
and T0 = 0. Let T1 be the first time, after time 0, that
the walk makes a move of Type 3. Let b1 = YT1−1 − YT0

(i.e., the ground covered, mod p, only using consecutive
moves of Types 1 and 2.) Let X1 = 2X0 + b1. (Thus
X1 = YT1−1 − YT0 .) More generally, let Ti be the first
time, since Ti−1, that a move of Type 3 happens. Let bi =
YTi−1 − YTi−1 , and let Xi = 2Xi−1 + bi = YTi−1 − YT0 .
Observe that Ti, for each i, is a valid stopping time.

Auxiliary Randomness: For the sake of the analysis, we
generate the above random walk using an auxiliary random
process: at each time step t ≥ 0, we generate an integer
Rt uniformly at random from the set of integers [1..9]. The
integers 1,2,3 are associated with (or interpreted as) a move
of Type 1, and the integers 4,5,6 with Type 2, and finally the
integers 7,8,9 with a move of Type 3.

Define History: To keep the independence of random vari-
ables transparent, it is best to associate history vectors Hi,
with the random walk as follows. The entries of the history
vector are from [1..9]; every time a doubling move happens,
we stop the current history vector (after recording the cur-
rent RTi

value), and start growing a new vector. Thus H1 =
(R1, ..., RT1), and in general, Hi = (RTi−1+1, ..., RTi

),
and note that the history vector always ends in a 7, 8, or
a 9, since those are identified with a Type 3 move.

Special history vectors: We call certain history vectors of
length one or two, as special: H is special if H = (7)

4



or H = (a, b), where a ∈ {1, 2, 3}, and b ∈ {7, 8, 9}.
Note that given the history vectors and Y0, all other (ran-
dom) variables, Yi, bi, Ti, Xi, can (uniquely) be determined.
Moreover, if a history Hi were special, then it implies that
the corresponding bi equals 0 or 1, depending on whether
Hi = (7) or (a, b), respectively; in the latter case, a being
1, 2, or 3 implies that a move of Type 1 took place before
the doubling, and hence the ground covered is simply +1.

This completes the set up.

The Actual Analysis:
Let s = rm. (Recall that m = log2(p + 1); we will

choose later r = c log2 m, for c > 0 a suitable constant.)
Consider

Xs = 2s−1b1 + 2s−2b2 + · · ·+ 20bs ,

which may be rewritten (using modulo p) as

Xs = 2m−1(b1 + bm+1 + b2m+1 + ... + b(r−1)m+1)

+2m−2(b2 + bm+2 + b2m+2 + ... + b(r−1)m+2)

+ · · ·+ 20(bm + b2m + ... + brm).

In other words, if we refer to each set of terms inside
the parentheses as a Block then there are m Blocks, each
associated with 2i for i = m− 1,m− 2, ..., 0.

Define Auxiliary random variables using Special History:
Recall that each history vector Hi produces a bi. Let
C1 = bjm+1, where j ∈ {0, 1, ..., (r − 1)} is the first
(smallest) index in Block 1 such that bjm+1 comes from
a special history. More generally, for i = 1, 2, ...,m− 1, let
Ci = bjm+i, where j ∈ {0, 1, ..., (r−1)} is the first (small-
est) j such that bjm+i comes from a special history. If no
such j were present (which is possible, since there need not
be any occurrences of special history in the corresponding
interval), then denote such a Ci to be ∞ (or undefined.)

By the remarks above, each Ci (once defined) is 0 or 1,
and moreover each Ci is an independent (of all the other
Cj’s) Bernoulli trial, since the corresponding bi’s are mutu-
ally independent. Then we may rewrite Xs as follows:

Xs = 2m−1C1 + 2m−2C2 + · · ·+ 20Cm

+2m−1(Rest1) + 2m−2(Rest2) + · · ·+ (Restm),

where Resti is the sum (over j) of bjm+i minus the special
b that became Ci.

The Basic Dyadic Randomness argument from [1]: What is
relevant or important here is that if all Ci are defined then

Xs = 2m−1C1 + 2m−2C2 + · · ·+ 20Cm + REST
=: Sm + REST,

where, as we will see shortly, the first part (Sm) random-
izes Xs so that the REST will not matter; more formally, if
Sm 6= ∞ then

Pr[Xs = w]

=
∑
R

Pr[REST = R] Pr[Sm + R = w|REST = R],

and Pr[Sm = w − R|REST = R] = 1/2m except that if
w − R = 0 then Pr[Sm = 0|REST = R] = 2/2m (when
all Ci’s are 0 or all 1). This holds even if we condition on
Ts = constant as well.

Consider the stopping rule T such that T = Trm for the
first r for which all Ci are well-defined, except that if all
Ci are 1 then set all Ci to undefined and begin the process
again. The above shows that this is a strong stationary time
for the Rho walk.

It remains to bound the time until all Ci are well-defined,
which (by coupon-collector intuition) should be roughly
m log m: Observe that for a fixed i,

Pr[Ci = ∞] = (1− 2/9)r . (4.2)

since Pr[appropriate history Hi is special] = 1/9+1/9,
and each of the r (independent!) possibilities in the ith
Block ought to have been unsuccessful.

So as long as r > (1 + δ)(log m)/ log(9/7), the prob-
ability in (4.2) is at most 1/m(1+δ). Hence, Pr[all Ci ∈
{0, 1}] ≥ 1 − m/m1+δ = 1 − m−δ , and so Pr[all Ci ∈
{0, 1} ∩ not all Ci = 1] ≥ (1 − 1/2m)(1 − 1/mδ). For
s = rm with r = d3(log m)/ log(9/7)e, we have

Pr[T ≤ Ts] ≥ (1− 1/2m)(1− 1/m2) .

A Type 3 move occurs on average every 3 steps and so by
Markov’s inequality since E[Ts] = 3s then Pr[Ts > 9s] <
1/3. Hence, if k = 9md 3 log m

log(9/7)e then

Pr[T ≤ k] ≥ Pr[T ≤ Ts]− Pr[Ts > k]
≥ (1− 1/2m)(1− 1/m2)− 1/3 > 1/2 .

In Concluding Remarks it will be shown that the mixing
bound τs(1/2) = O(log p log log p) found here for Xs is of
the correct order.

5 Fourier Analysis

We now turn to the general case of p odd, where we work
with Fourier analysis. The construction can be thought of as
an application of the ideas of Chung, Diaconis and Graham
[2].

In the previous two sections a bound on mixing time of
the Rho walk was used to derive a bound on collision time.
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This time we consider a “block walk” in which a single step
corresponds to a Rho walk truncated on an i → 2i step, i.e.
a walk Zi where Zi = 2(Zi−1 + bi) with bi defined as in
Section 4. Note that in t steps of the Rho walk the expected
number of block steps is t/3, and Chebyshev’s Inequality
shows that Prob(#block steps < t/4) ≤ 32

t . Hence, if
τ b
s (1/2) denotes the mixing time of the block walk, then in

t = 4(1 + τ b
s (1/2) + 2

√
2c |G| τ b

s (1/2)) steps of the Rho
walk a collision occurs with probability at least 1 − e−c −
Prob(#block steps < t/4) ≥ 1− e−c − 32

t .
To bound mixing time of the block walk it suffices to

show that for large enough s the distribution νs of

Xs = 2s−1b1 + · · ·+ bs

is close to the uniform distribution u. More precisely, we
will show that

p

p−1∑
j=0

(νs(j)− u(j))2 ≤ 2
(
(1 + ξ2bs/mc)m−1 − 1

)
,

(5.3)
where νs(j) = Pr[Xs = j], ξ = 1− 4−

√
10

9 , and m satisfies
2m−1 < p < 2m. This suffices to bound the separation
distance, as shown in Remark 5.2 at the end of the section.

The proof uses the standard Fourier transform and the
Plancherel identity: For any complex-valued function f
on Zp and ω = e2πi/p, recall that the Fourier transform

f̂ : Zp → C is given by f̂(`) =
p−1∑
j=0

ω`jf(j), and the

Plancherel identity asserts that

p

p−1∑
j=0

|f(j)|2 =
p−1∑
j=0

|f̂(j)|2 .

For the distribution µ of a Zp-valued random variable X , its
Fourier transform is

µ̂(`) =
p−1∑
j=0

ω`jµ(j) = E[ω`X ].

Thus, for the distributions µ1 , µ2 of two independent ran-
dom variables Y1, Y2, the distribution ν of X := Y1 + Y2

has the Fourier transform ν̂ = µ̂1 µ̂2 , since

ν̂(`) = E[ω`X ] = E[ω`(Y1+Y2)]
= E[ω`Y1 ]E[ω`Y2 ] = µ̂1(`)µ̂2(`).

Generally, the distribution ν of X := Y1 + · · · + Ys with
independent Yi’s has the Fourier transform ν̂ =

∏s
j=1 µ̂j .

Moreover, for the uniform distribution u, it is easy to check
that

û(`) =
{

1 if ` = 0,
0 otherwise.

As the random variables 2jbs−j’s are independent, ν̂s =∏s−1
j=0 µ̂j , where µj are the distributions of 2jbs−j . The

linearity of the Fourier transform and ν̂s(0) = E[1] = 1
yield

ν̂s − u(`) = ν̂s(`)− û(`) =
{

0 if ` = 0∏s−1
j=0 µ̂j(`) otherwise.

By Plancherel’s identity, it is enough to show that

Lemma 5.1.

p−1∑
`=1

∣∣∣ s−1∏
j=0

µ̂j(`)
∣∣∣2 ≤ 2

(
(1 + ξ2bs/mc)m−1 − 1

)
.

Proof. Let Aj be the event that bs−j = 0 or 1. Then,

µ̂j(`) = E[ω`2jbs−j ]

= Pr[bs−j = 0] + Pr[bs−j = 1]ω`2j

+Pr[Āj ]E[ω`2jbs−j |Āj ],

and, for x := Pr[bs−j = 0] and y := Pr[bs−j = 1],

|µ̂j(`)| ≤ |x + yω`2j

|+ (1− x− y)|E[ω`2jbs−j |Āj ]|

≤ |x + yω`2j

|+ 1− x− y.

Notice that

|x + yω`2j

|2 = (x + y cos 2π`2j

p )2 + y2 sin2 2π`2j

p

= x2 + y2 + 2xy cos 2π`2j

p .

If cos 2π`2j

p ≤ 0, then

|µ̂j(`)| ≤ (x2 + y2)1/2 + 1− x− y

= 1− (x + y − (x2 + y2)1/2)

Since x = Pr[bs−j = 0] ≥ 1/3 and y = Pr[bs−j = 1] ≥
1/9, it is easy to see that x + y − (x2 + y2)1/2 has its min-
imum when x = 1/3 and y = 1/9. (For both partial deriv-
atives are positive.) Hence,

|µ̂j(`)| ≤ ξ = 1− 4−
√

10
9

, provided cos 2π`2j

p ≤ 0.

If cos 2π`2j

p > 0, we use the trivial bound µ̂j(`) =

E[ω`2jbs−j ] ≤ 1.
For ` = 1, ..., p − 1, let φs(`) be the number of j =

0, ..., s− 1 such that cos 2π`2j

p ≤ 0. Then

s−1∏
j=0

|µ̂j(`)| ≤ ξφs(`). (5.4)

6



To estimate φs(`), we consider the binary expansion of

`/p = .α
`,1α`,2 · · ·α`,s

· · · ,

α
`,j
∈ {0, 1} with α

`,j
= 0 infinitely often. Hence, `/p =∑∞

j=1 2−jα
`,j

. The fractional part of `2j/p may be written

{`2j/p} = .α
`,j+1α`,j+2 · · ·α`,s

· · · .

Notice that cos 2π`2j

p ≤ 0 if the fractional part of `2j/p

is (inclusively) between 1/4 and 3/4, which follows if
α

j+1 6= α
j+2 . Thus, φs(`) is at least as large as the number

of alterations in the sequence (α
`,1 , α`,2 , ..., α`,s+1).

We now take m such that 2m−1 < p < 2m. Ob-
serve that, for ` = 1, ..., p − 1, the subsequences α(`) :=
(α

`,1 , α`,2 , ..., α`,m
) of length m are pairwise distinct: If

α(`) = α(`′) for some ` < `′ then `′−`
p is less than∑

j≥m+1 2−j ≤ 2−m, which is impossible as p < 2m.
Similarly, for fixed j and ` = 1, ..., p− 1, all subsequences
α(`; j) := (α

`,j+1 , α`,j+2 , ..., α`,j+m
) are pairwise distinct.

In particular, for fixed r with r = 0, ..., bs/mc − 1, all sub-
sequences α(`; rm), ` = 1, ..., p − 1, are pairwise distinct.
Since the fractional part { 2rm`

p } = .α
`,rm+1α`,rm+2 · · ·

must be the same as `′

p for some `′ in the range 1 ≤ `′ ≤
p−1, there is a unique permutation σr of 1, ...p−1 such that
α(`; rm) = α(σr(`)). Writing |α(σr(`))|A for the number
of alternations in α(σr(`)), we have

φs(`) ≥
bs/mc−1∑

r=0

|α(σr(`))|A ,

where σ0 is the identity. Therefore, (5.4) gives

p−1∑
`=1

∣∣∣ s−1∏
j=0

µ̂j(`)
∣∣∣2 ≤ p−1∑

`=1

ξ2
Pbs/mc−1

r=0 |α(σr(`))|
A .

Using

ξx+y + ξx′+y′

≤ ξmin{x,x′}+min{y,y′} + ξmax{x,x′}+max{y,y′}

inductively, the above upper bound may be maximized
when all σr’s are the identity, i.e.,

p−1∑
`=1

∣∣∣ s−1∏
j=0

µ̂j(`)
∣∣∣2 ≤ p−1∑

`=1

ξ2bs/mc|α(`)|
A .

Note that 1/p ≤ `/p ≤ 1− 1/p implies that α(`) is neither
(0, ..., 0) nor (1, ..., 1) (both are of length m). This means
that all α(`) have at least one alternation. Since α(`)’s are
pairwise distinct,

p−1∑
`=1

ξ2bs/mc|α(`)|
A ≤

∑
α:|α|

A
>0

ξ2bs/mc|α|
A ,

where the sum is taken over all sequences α ∈ {0, 1}m with
|α|

A
> 0.

Let H(z) be the number of α’s with exactly z alterations.
Then

H(z) = 2
(

m− 1
z

)
,

and hence

∑
α:|α|

A
>0

ξ2bs/mc|α|
A = 2

m−1∑
z=1

(
m− 1

z

)
ξ2bs/mcz

= 2
(
(1 + ξ2bs/mc)m−1 − 1

)
.

Remark 5.2. To show a bound on the separation distance,
we use Cauchy-Schwartz:∣∣∣∣P2s(x, y)− π(y)

π(y)

∣∣∣∣2
=

∣∣∣∣∑z (Ps(x, z)− π(z)) (Ps(z, y)− π(y))
π(y)

∣∣∣∣2
=

∣∣∣∣∣∑
z

π(z)
(

Ps(x, z)
π(z)

− 1
)(

P∗s(y, z)
π(z)

− 1
)∣∣∣∣∣

2

≤
∑

z

π(z)
∣∣∣∣Ps(x, z)

π(z)
− 1
∣∣∣∣2 ∑

w

π(w)
∣∣∣∣P∗s(y, w)

π(w)
− 1
∣∣∣∣2

For the “block walk” the first sum after the inequality is
equal to the quantity upper bounded in equation (5.3), while
the second is the same quantity but for the time-reversed
walk P∗(a, b) = π(b)P(b, a)/π(a). To bound the mixing
time of the reversed walk let b∗i denote the sum of steps taken
by R∗ between the (i − 1)-st and ith time that j → j/2 is
chosen (i.e. step size taken by time-reversed block walk), let
X∗

s = 2−s+1 b∗1 + · · ·+ b∗s and let bi = −b∗i . Then

Pr[−2s−1X∗
s = j] = Pr[b1 + 2b2 + · · ·+ 2s−1bs = j]

= Pr[Xs = j]

because the bi are independent random variables from the
same distribution as the blocks of R. It follows from (5.3)
that

1− Pr[X2s = y]
u(y)

≤ 2
(
(1 + ξ2bs/mc)m−1 − 1

)
,

and so after 2s ≈ m logξ
ε/2

m−1 ≤ 2m log 2(m−1)
ε blocks

the separation distance drops to ε.

Remark 5.3. In recent work with Yuval Peres to appear in
the journal version of this paper, we build on techniques
from this paper and an idea from [7] and manage to im-
prove the collision time bound to the conjectured value of
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Θ(
√

p). The argument is based on showing that in Θ(
√

p)
steps the number of collisions S in the Xs walk satisfies
E(S)2 = Θ(E(S2)), and so with constant probability there
is a collision. This was in turn shown by re-writing E(S2)
in terms of a quantity closely related to the Plancherel iden-
tity appearing in our Fourier proof of mixing time.

6 Concluding Remarks

We sketch here some reasoning for why many common
methods for bounding mixing times will not be useful in
showing the optimal mixing bound in separation distance
for the Pollard Rho walk.

A coupling argument bounds only the weaker total-
variation distance, i.e. shows only that

max
A⊂G

π(A)− Pr[Xt ∈ A] ≤ ε .

To bound τs(1/2) with this requires ε ≤ 1/2p, which typi-
cally increases the mixing bound by a multiplicative factor
of log(1/ε). Total variation mixing time τ(1/2) is trivially
at least log3 p−1, and so this gives a separation bound of at
best O(log2 p). Alternatively, re-working the collision time
argument in terms of variation distance results in a

√
log p

loss.
When working with spectral gap, spectral profile, log-

Sobolev and Nash inequalities a weakness arises in that
mixing bounds in terms of these quantities are based on
studying the rate of decay of variance. As such these do
a poor job of distinguishing mixing time of a non-reversible
walk P from that of its additive reversibilization P′ = P+P∗

2 ,
or lazy additive reversibilization P′′ = I

2 + P+P∗

4 . The lazy
additive reversibilization R′′ = I

2 + R+R∗

4 of the Pollard
Rho walk mixes in time τs,R′′(1/2) = Ω(log2 p) (see be-
low), and so we expect that the aforementioned methods for
bounding mixing time of R will do no better than this.

More precisely, the mixing time bounds involving these
quantities can be shown by using the relation Varπ(kt+1

x )−
Varπ(kt

x) = −EPP∗(kt
x, kt

x) for the t-step density kt
x

of a walk started at state x. By a comparison argu-
ment it can be shown that if k = p − 1 and m ≥ 2
then 64m2

3 E(R′′)(R′′)∗(f, f) ≥ ERmR∗m(f, f). Hence these
Dirichlet form based methods will show a mixing time
bound on Rm which is no better than 64m2

3 times faster
than the corresponding upper bound on the mixing time of
R′′. To bound the mixing time of R′′ let n = 1

2 blog2 pc,
x = 1/2n ∈ Zp and T = 1

9∗32 (blog2 pc)2. It can then be
shown that (R′′)T (x, S) ≥ 7/9 where

S =
3
√

T/2⋃
i=−3

√
T/2

T 2n+3
√

T/2−1⋃
j=−T 2n+3

√
T/2−1

{
1 + j

2n−i

}
.

But π(S) ≤ 1
p (6

√
T/2 + 1)(T 2n+3

√
T/2 + 1) ≤ 1/8 and

so for some y /∈ S we must have

(R′′)T (x, y)
π(y)

≤ (R′′)T (x, Sc)
π(Sc)

< 3/10 .

It follows that τs,R′(1/2) ≥ T = Ω(log2 p). The corre-
sponding mixing bound on Rm can then lead to a bound of
at best

τs,R(1/2) ≤ mτs,Rm(1/2) = O((log p)2/m) .

Hence if m � log p
log log p then none of these methods will

match our O(log p log log p) mixing bound.
It thus appears that to show a better than O(log2 p) mix-

ing time bound it will be necessary to use a more specialized
method, such as a more refined operator technique or com-
putation involving a high power of the transition probability
matrix. Two methods involving high powers were consid-
ered in this paper, a strong stationary time and a Fourier
analysis argument.

We now turn to limitations of the block approach of
working with Xs which was taken in our strong stationary
time and Fourier analysis arguments. As with the random
walk considered by [1, 2], we might expect that the correct
order of the mixing time of the Xs walk considered in this
paper is indeed Θ(log p log log p), at least for p of the form
2m−1 and k = p−1. This is in fact the case by an argument
fairly similar to that of Section 4 “A proof of Case 2” of [5],
which in turn closely follows a proof of [2]. The basic idea
is by now fairly standard: choose a function and show that
its expectation under the stationary distribution and under
the n-step distribution Pn are far apart, with sufficiently
small variance to conclude that the two distributions (Pn

and π) must differ significantly.
In keeping with notation of [5], suppose p = 2t − 1

and let k denote a variable over Z (no longer the exponent
y = xk). The “separating function” of interest f : Zp → C
in this case is

f(k) :=
t−1∑
j=0

qk2j

where q = e2πi/p .

Then EU (f) = 0 if p > 1, and EU (ff̄) = t and so
Varπ(f) = t where π = U denotes the uniform distribu-
tion. As in [5], if n = rt and Pn denotes the distribution af-
ter n steps of the block walk (i.e. Y0+Xn) (the analysis uses
r = δ log t− d ∈ N for some fixed δ), then EPn

(f) = t Πr
1

and EPn(f f̄) = t
∑t−1

j=0 Πr
j where Πj = P̂t(2j − 1), and

so VarPn
(f) = t

∑t−1
j=0 Πr

j − t2|Π1|2r.
In order to bound variance and expectation we must ap-

proximate the Πj . To do this, recall that Xi = 2Xi−1 + bi;
a generic such increment will be denoted by b, since the bi
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are independent random variables from the same distribu-
tion. Let ak = Pr[b = k] = Pr[b = −k]. This satisfies the
recurrence relation

ak =
1
3

(ak−1 + ak+1), a0 =
1
3

+
2
3

a1, a∞ = 0

which can be solved to find that ak = 1√
5

(
3−
√

5
2

)|k|
. It

will also be useful to introduce a bit of notation. If 0 ≤ j ≤
t− 1 then define µα(x) = Pr[b = x2−α] = ax2−α and

Πj = P̂t(2j − 1) =
t−1∏
α=0

G

(
2α(2j − 1)

p

)
where

G(x) =
1√
5

1−
(

3−
√

5
2

)2

1 +
(

3−
√

5
2

)2

− (3−
√

5) cos(2π x)
.

The remainder of the argument differs little from that of
[5]. There is a small mistake in the proof of Claim 1 in [5],
but it does not effect the proof for the Rho walk.
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