1. Calculate the transition frequencies in cm^{-1} for the Lyman series with n'=4 and for the Balmer series with n'=5. What is the energy of the photons of these transitions.

2.) Which of the following molecules have a dipole moment and why?

$$HF,\, H_2CO,\, H_2S,\, CO_2,\, N_2O,\, O_2,\, F_2,\, C_6H_6$$

3) Given the following frequencies for H³⁵Cl transitions calculate the B rotational constant and the equilibrium internuclear separation.

J" → J'	E / cm ⁻¹
0 →1	20.87827
1 → 2	41.74388
2 → 3	62.58417
3 → 4	83.38649
4→ 5	104.13829
5 → 6	124 82697

4. Calculate the number of revolutions per second that a HCl molecule undergoes when in the (a) J=0 state and (b) the J=3 state.(Remember that ω is in radians per second.)