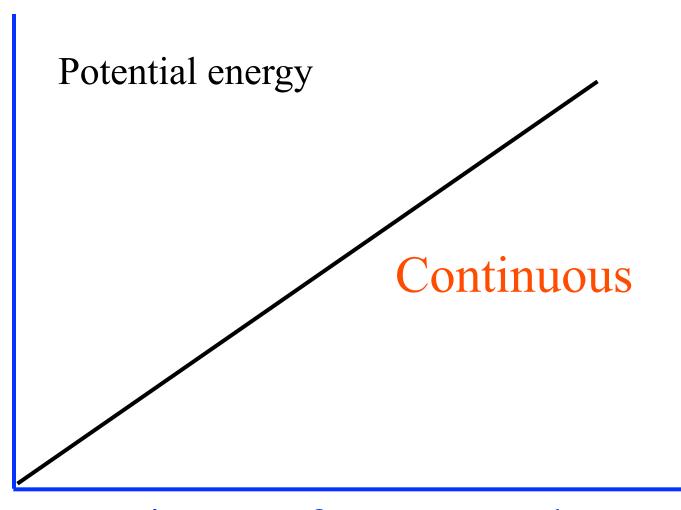
Planck's formula

In 1900 Planck derived a formula that matched the measured curve exactly. His derivation was based on the blackbody having energy states that are *quantized*.

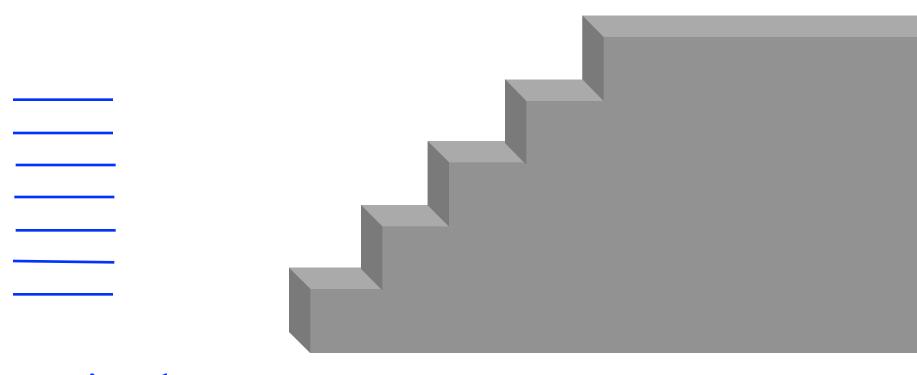
$$E = nhv$$

$$n = 1, 2, 3, \dots$$



Distance from ground

Planck's proposed energy



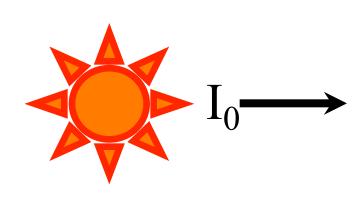
quantized

Spectra of atoms and molecules

Atoms and molecules interact with electromagnetic radiation.

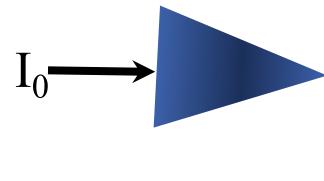
Energy of the radiation at certain frequencies can be absorbed when it hits the atom or molecule

Energy is conserved so it has to go somewhere

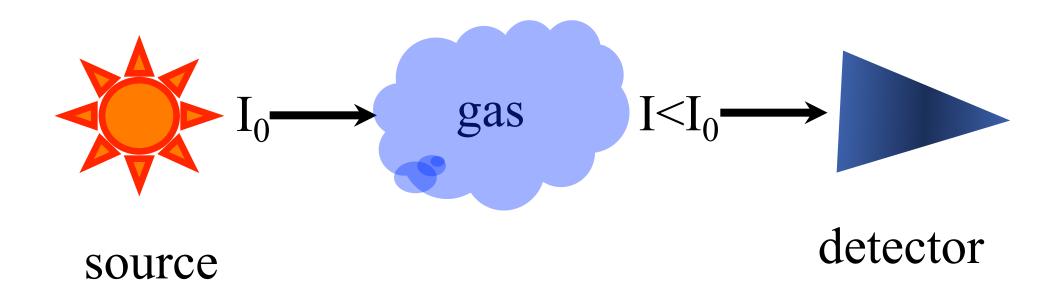


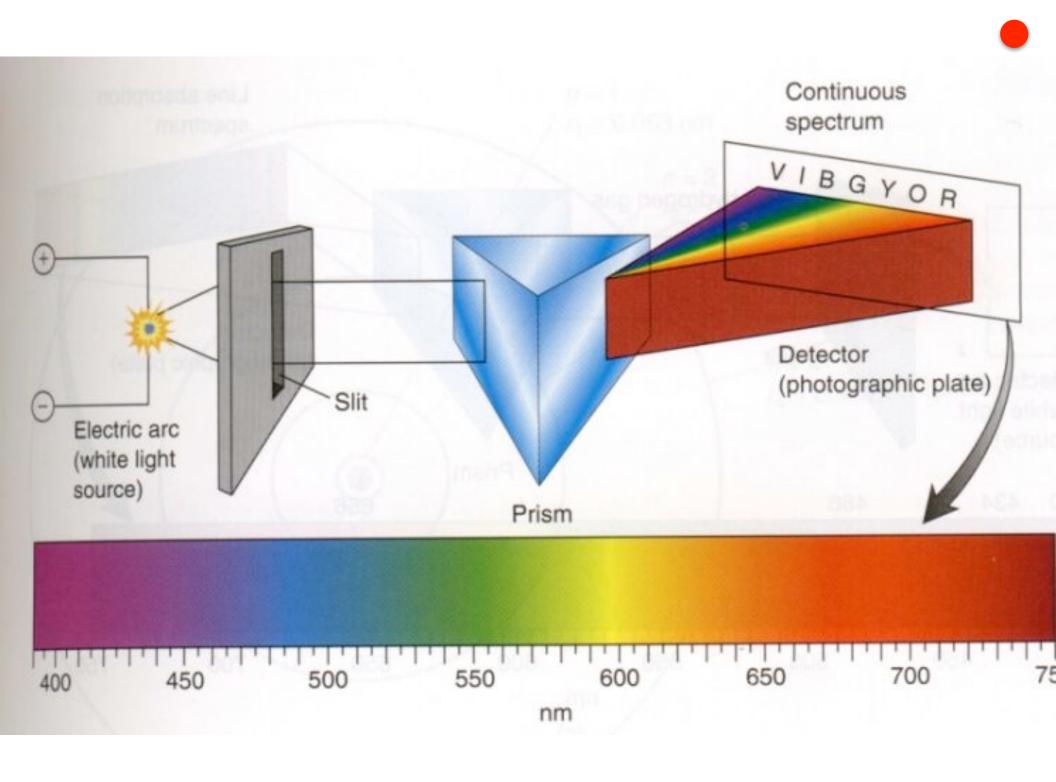
no gas

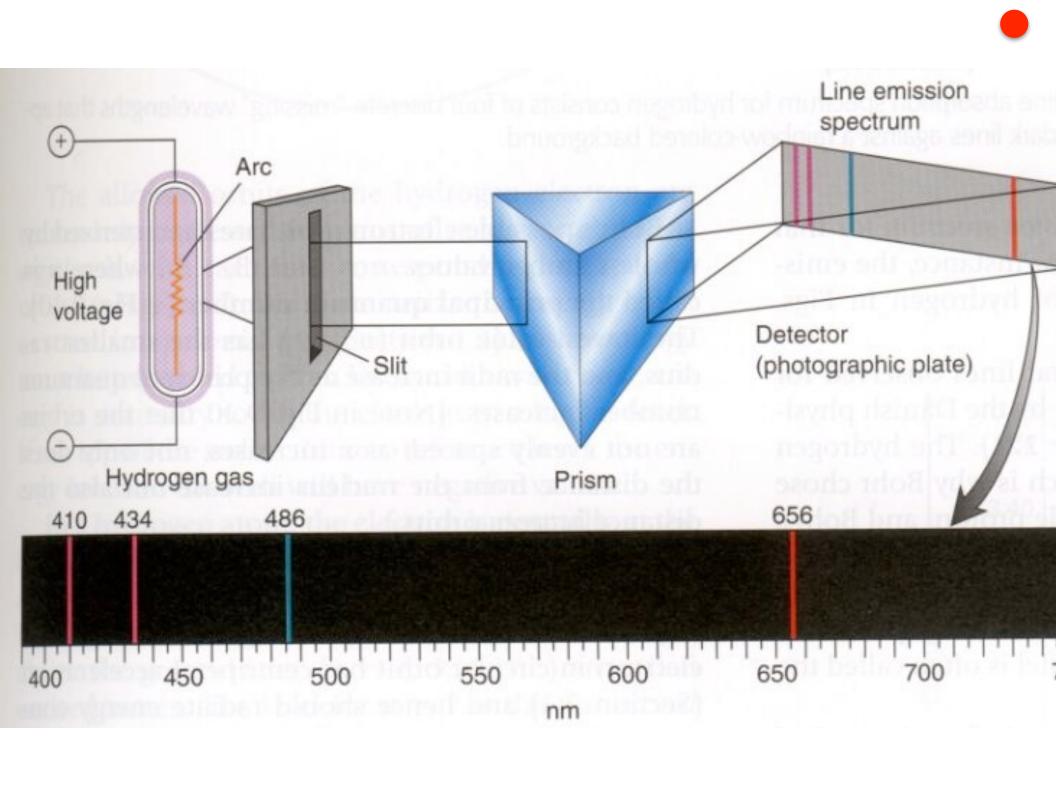
source

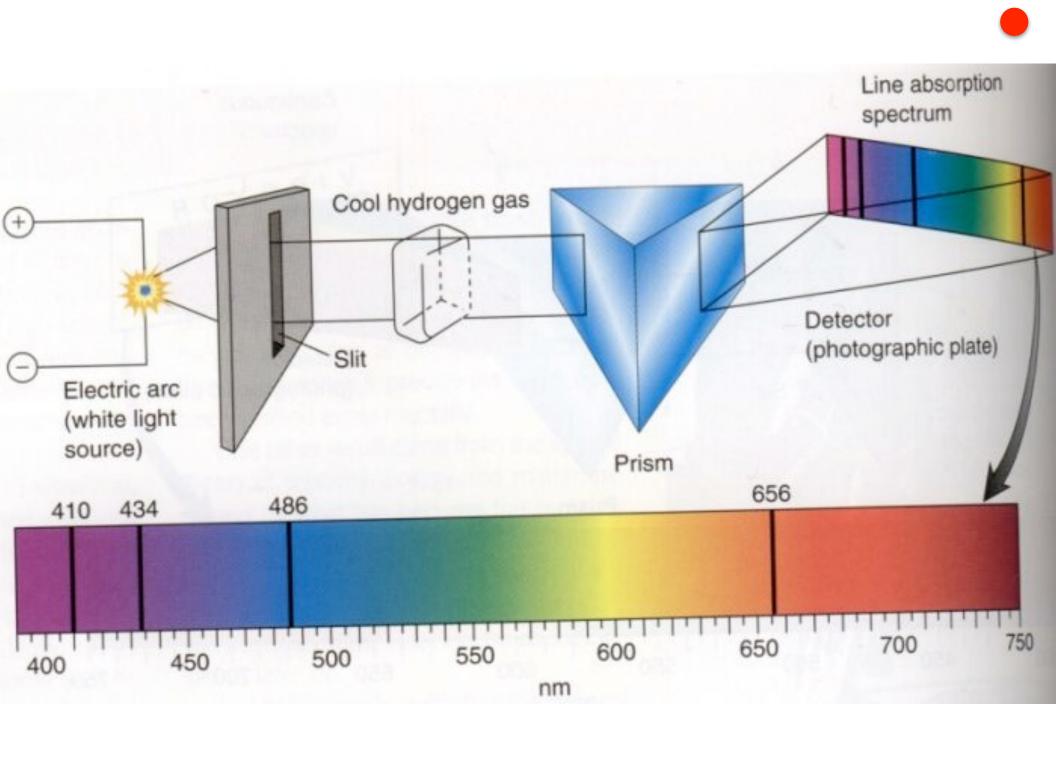


detector







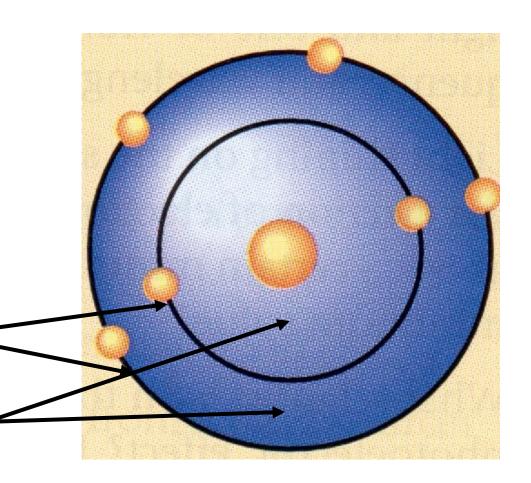


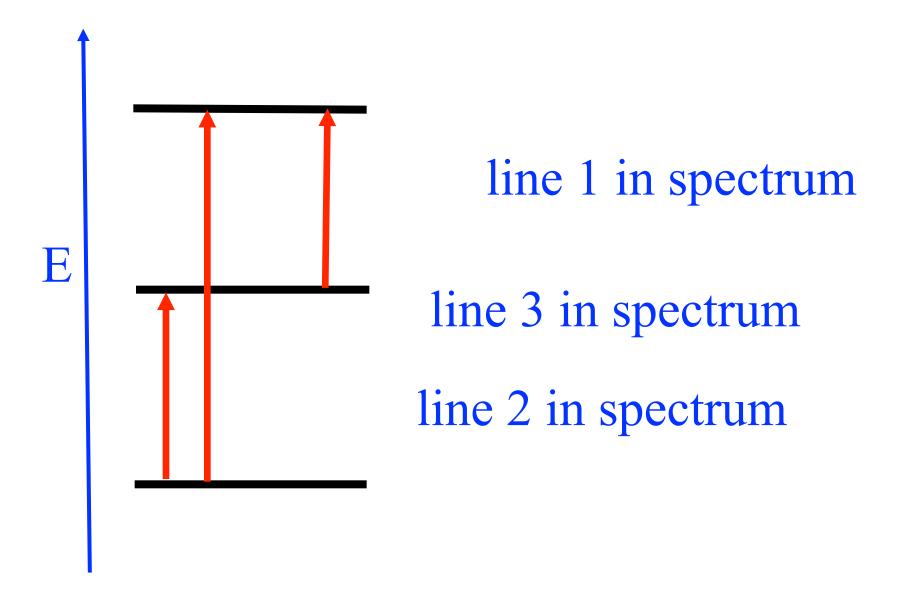
Explanation: quantization of energy of atoms and molecules

First model was Bohr's planetary model of the atom

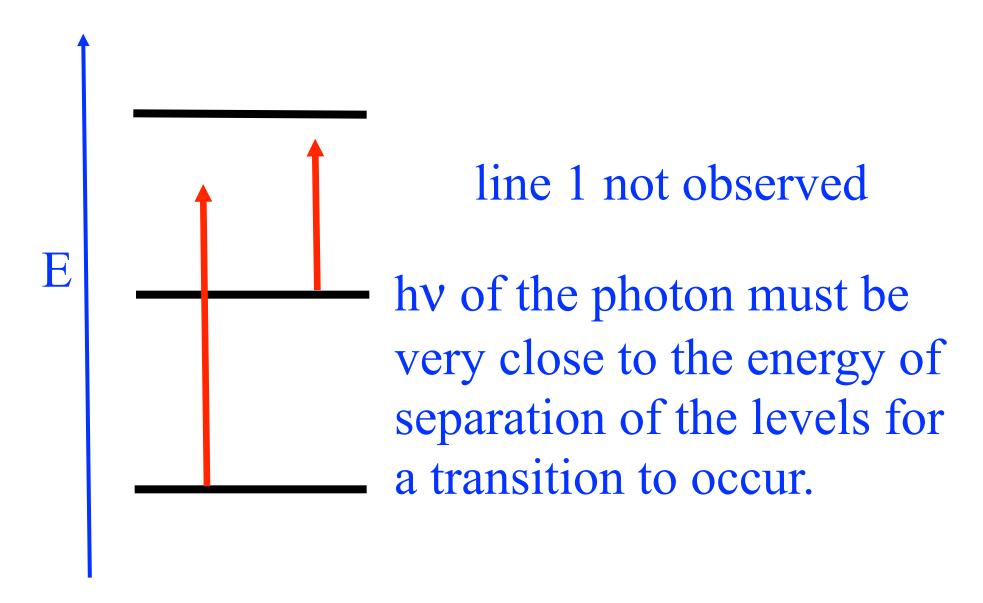
Allowed energy state

Disallowed energy state-





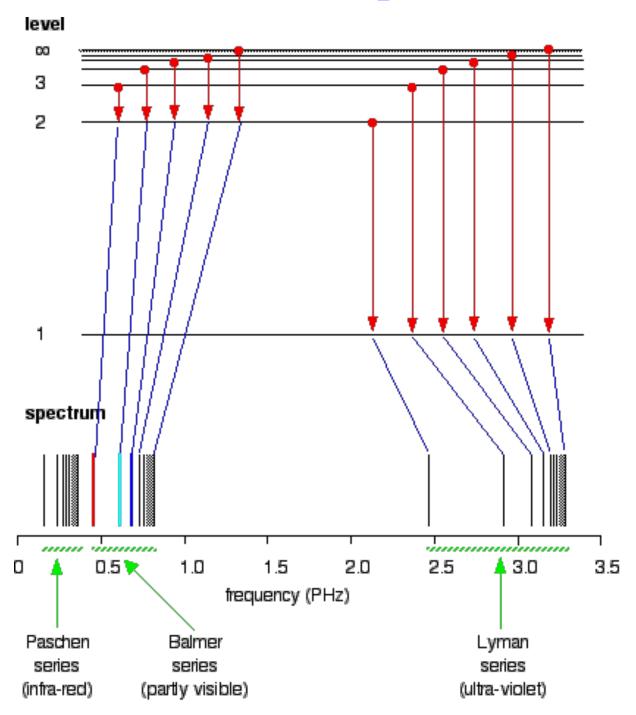
Allowed states



Allowed states

What was observed - Electronic Spectra

Electronic Spextra



Electronic Spectra

$$\frac{1}{\lambda} = R \left(\frac{1}{(n'')^2} - \frac{1}{(n')^2} \right)$$

where is the Rydberg constant:

$$R = 1.097373 \times 10^7 \text{ m}^{-1}$$

Microwave – molecular rotation

Electronic Spectra

when n''=1 \Rightarrow Lyman series

when n''= $2 \Rightarrow$ Balmer series

when n'= $3 \Rightarrow$ Paschen series

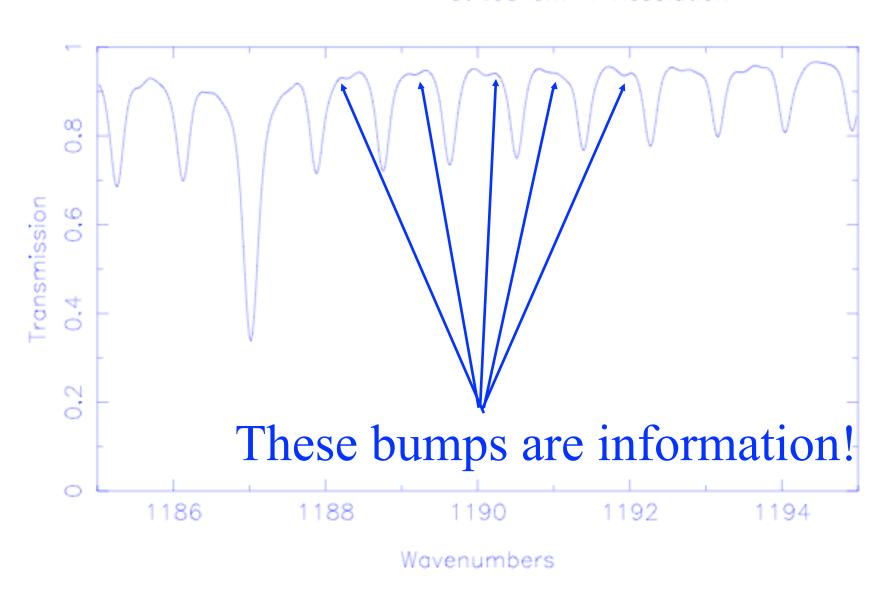
when n''= $4 \Rightarrow$ Brackett series

Visible region – electronic spectra

Infrared – molecular vibration and rotation

Microwave – molecular rotation

What do we see?



Carbon Dioxide

Isotopically enriched sample ¹⁷O

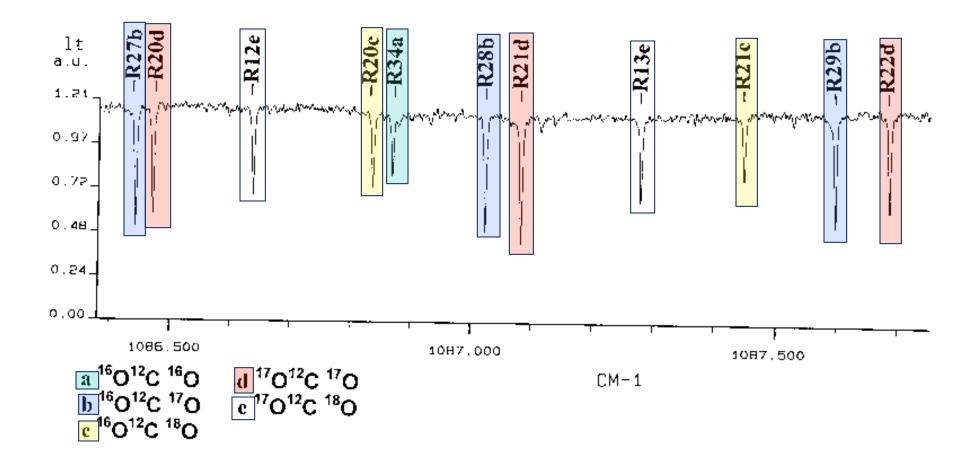
$$^{16}O^{12}C^{16}O m = 44 g/mol$$

$$^{16}O^{12}C^{17}O m = 45 g/mol$$

$$^{16}O^{12}C^{18}O m = 46 g/mol$$

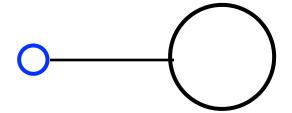
$$^{17}O^{12}C^{17}O m = 46 \text{ g/mol}$$

$$^{17}O^{12}C^{18}O m = 47 g/mol$$



molecules with dipole moments

HC1



 H_2O

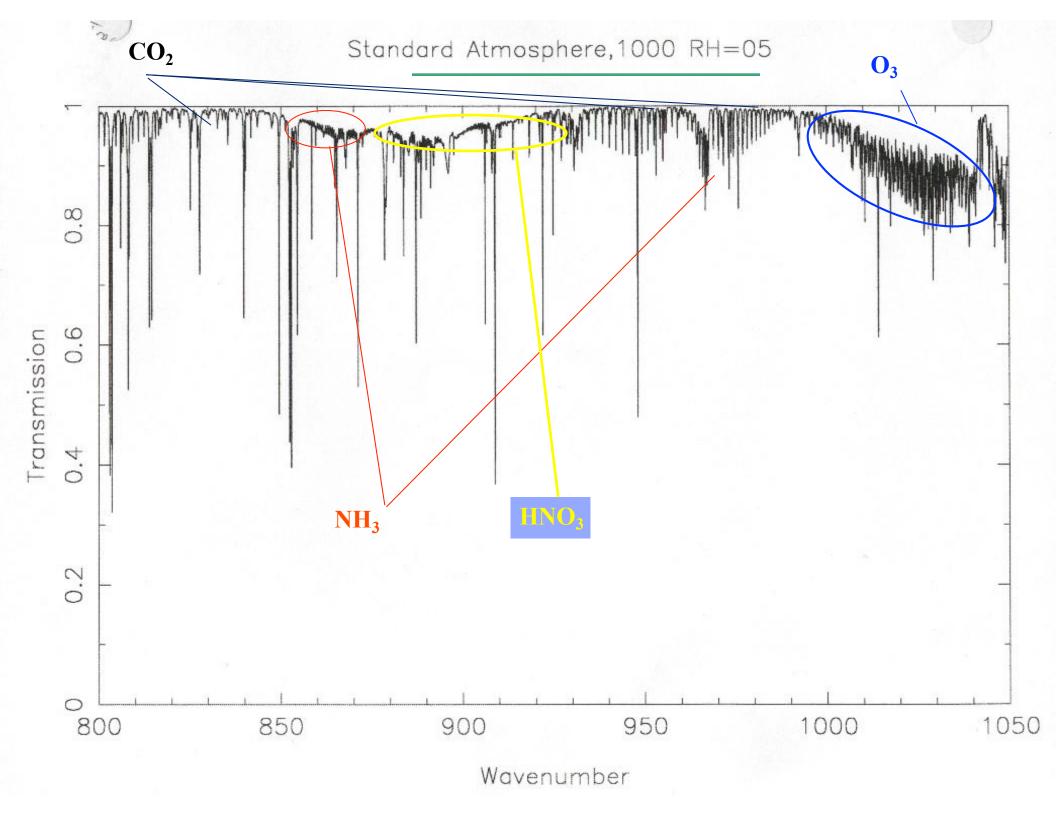
HNO₃

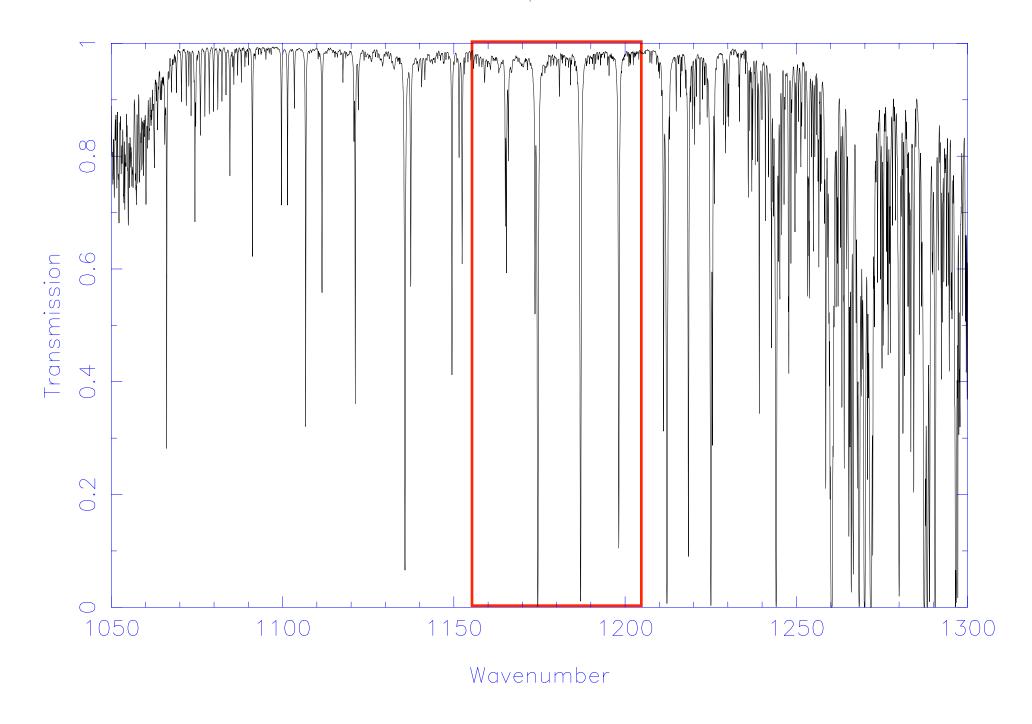
$$O-N$$

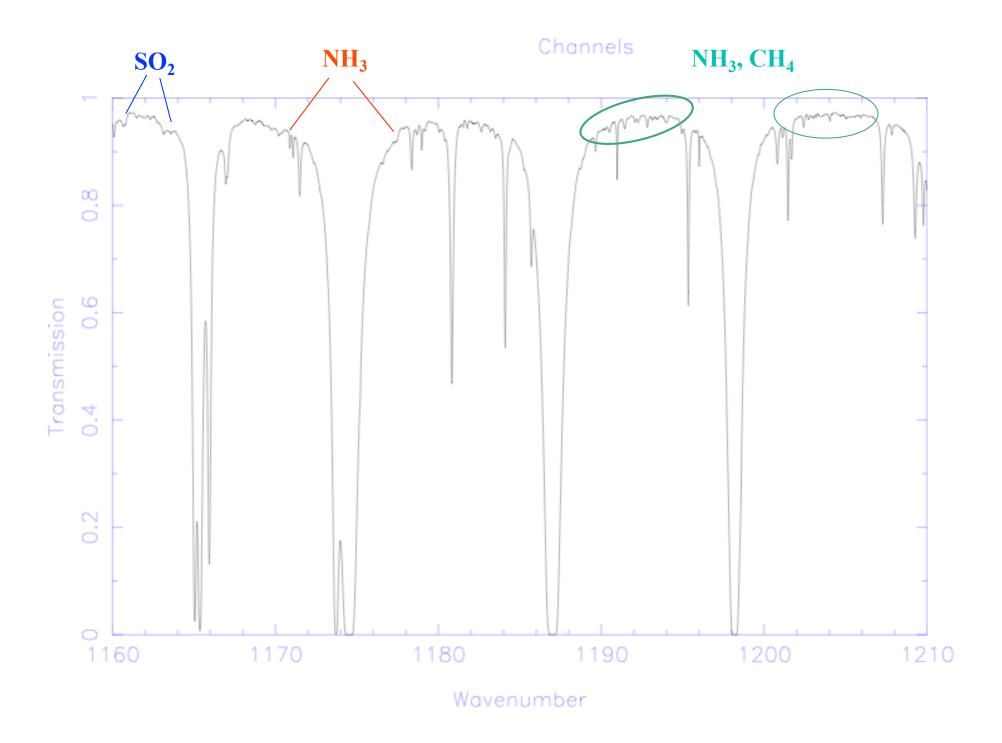
molecules with quadrupole moment more symmetric, cylindrical distribution

examples:

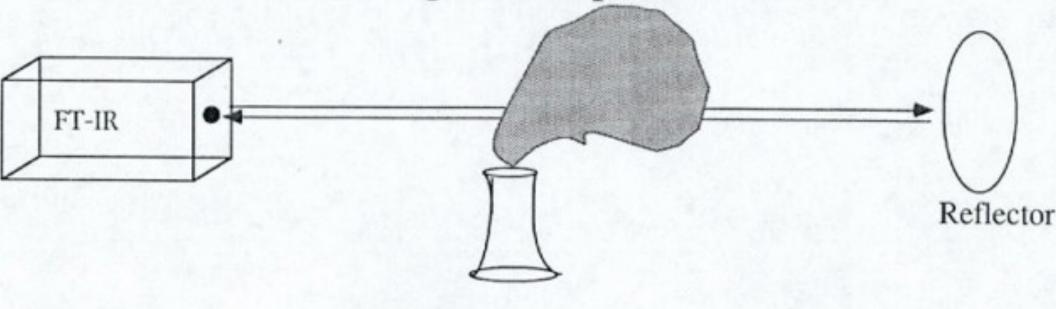
 N_2

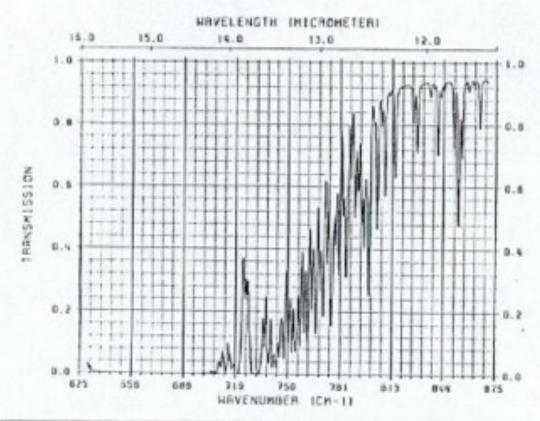




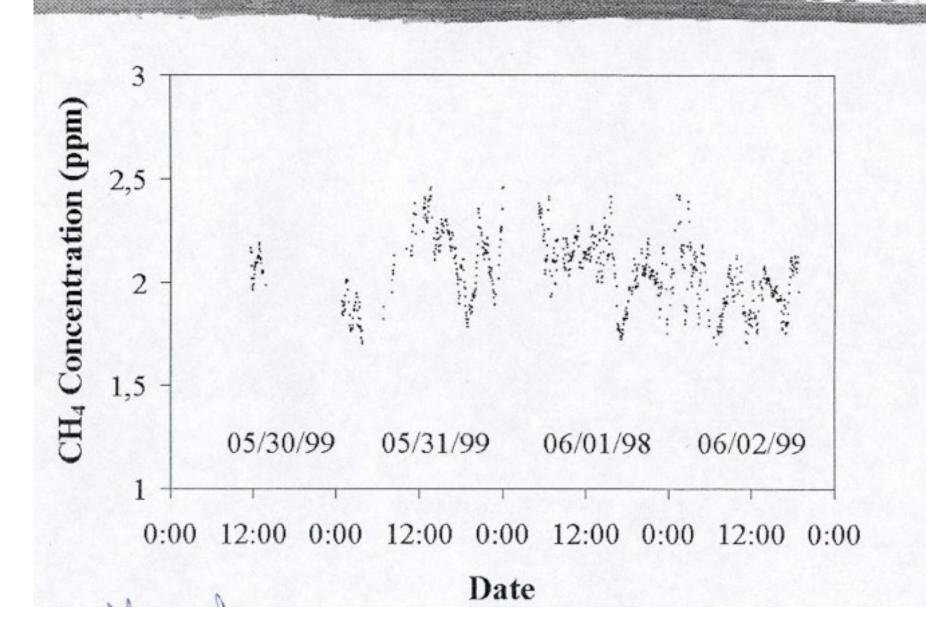


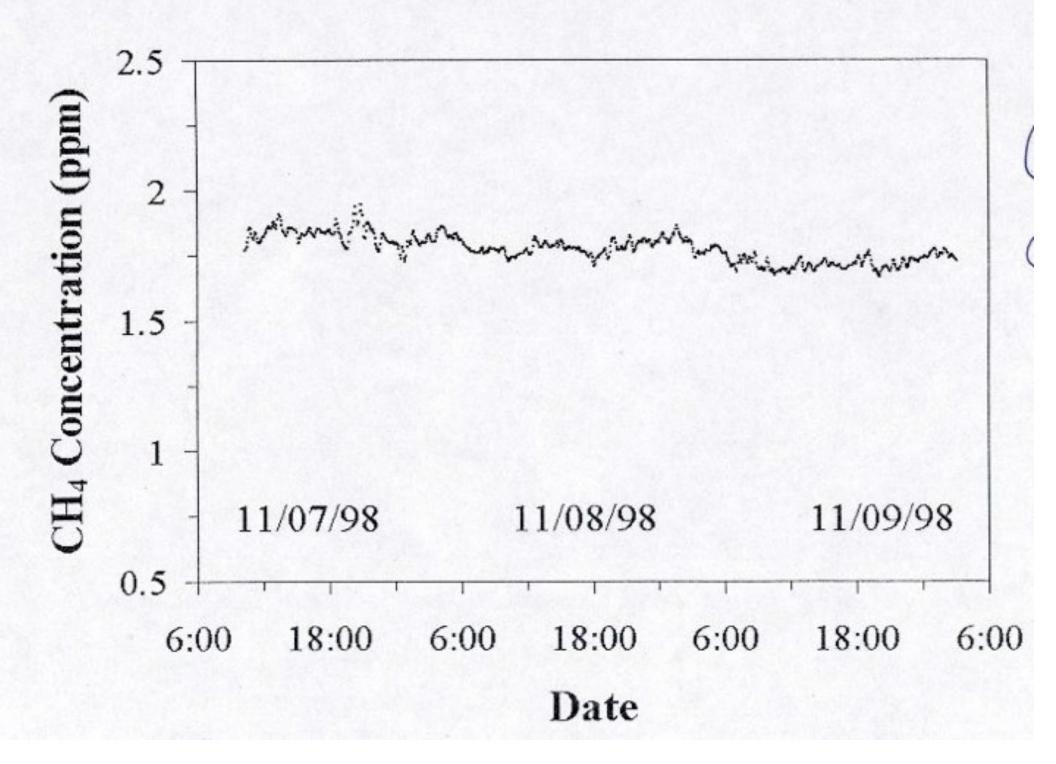
Remote Sensing of Atmospheric Pollutants





Monitoring of CH₄ above the "Lac Piché" (June 99)





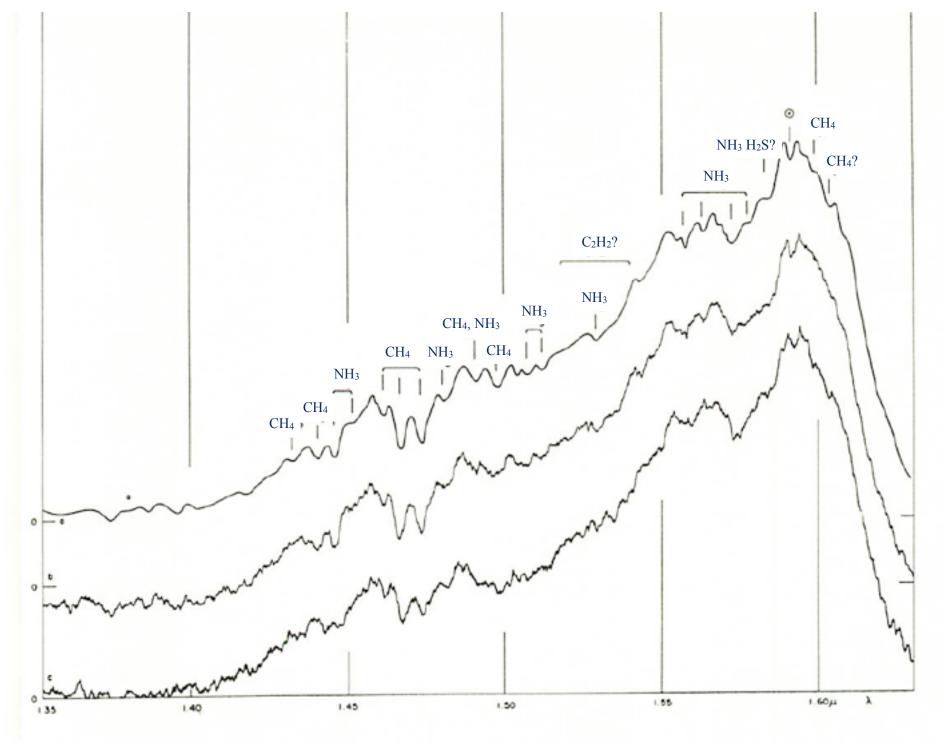
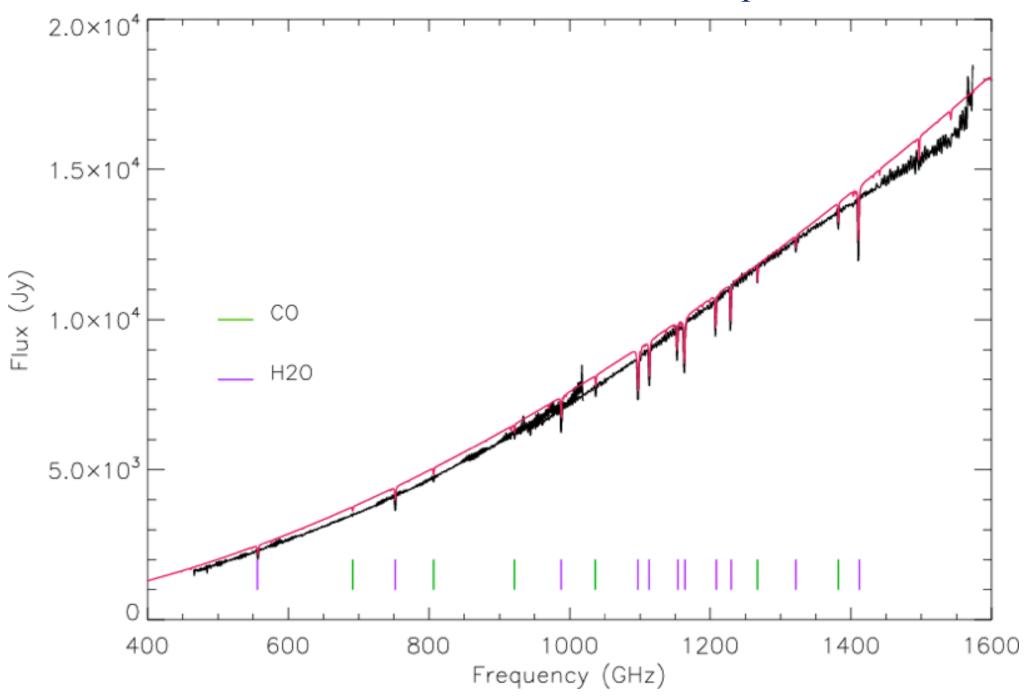
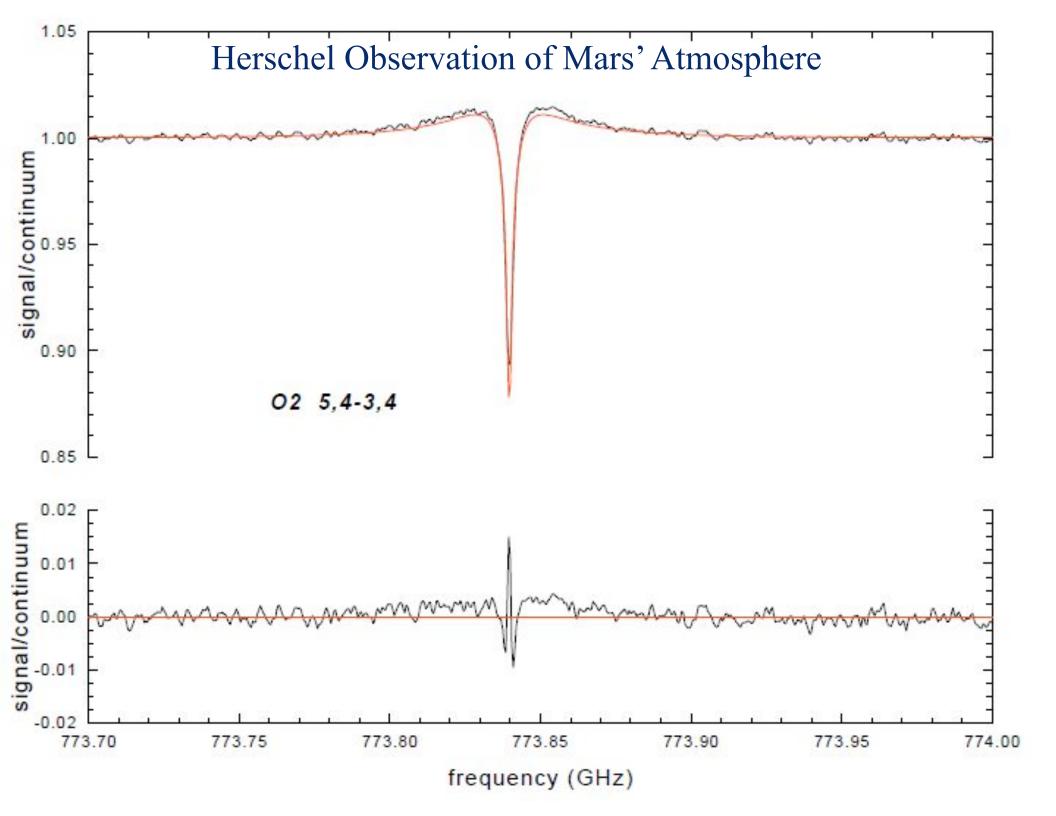


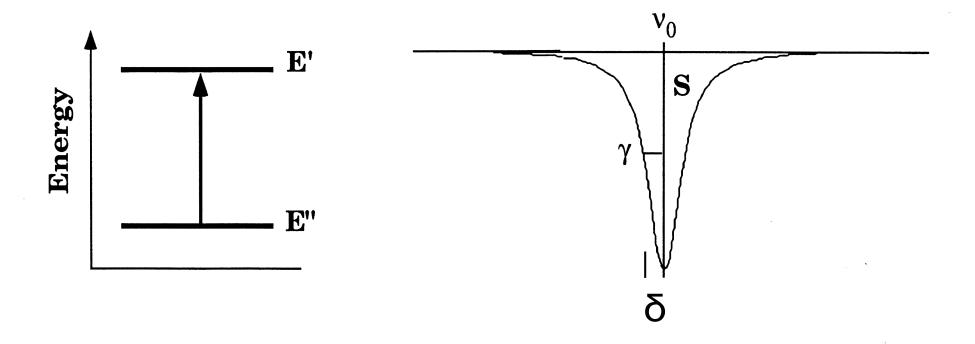
Fig. 3 Spectrum of Jupiter, Part 3, 1.35-1.63 μ ; as Fig. 1.

Herschel Observation of Mars' Atmosphere



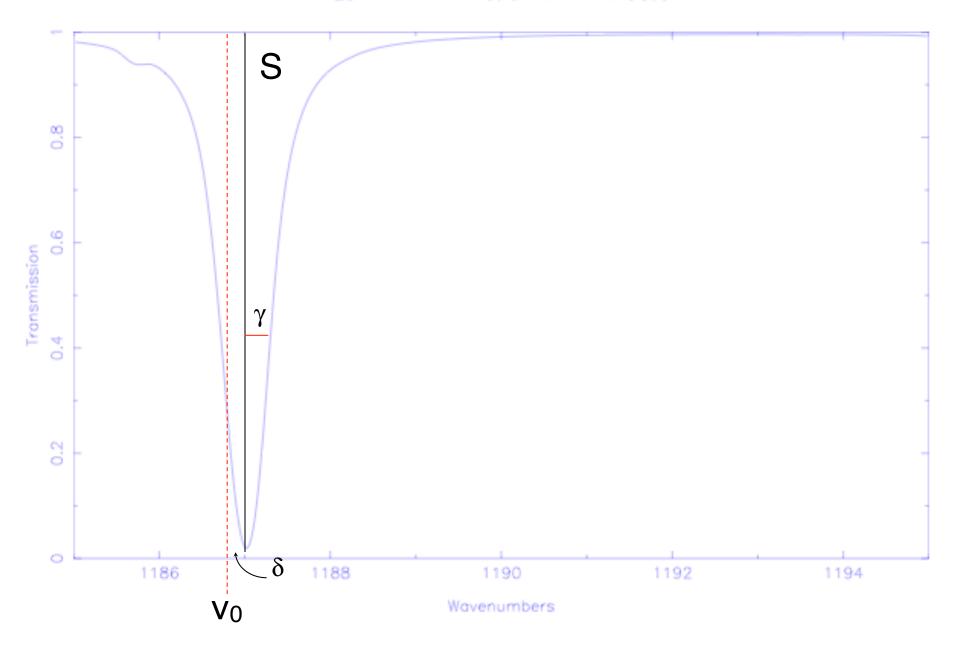


Important Line Parameters



Quantized Energy Transition Broadened Lorentzian Line Shape

at 0.1 cm-1 Resolution

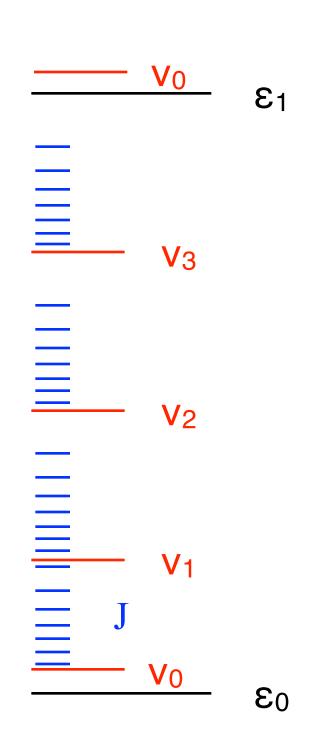


Spectral Parameters

- v_0 vacuum wavenumber (cm⁻¹)
- S line intensity (cm⁻¹/(molecule cm⁻²))
- γ half-width at half-maximum (cm⁻¹/atm)
- δ line shift (cm⁻¹/atm)
- E" lower state energy (cm⁻¹)
- n temperature dependence of γ

____ V₁

Energy Structure



Visible - UV region

ε1

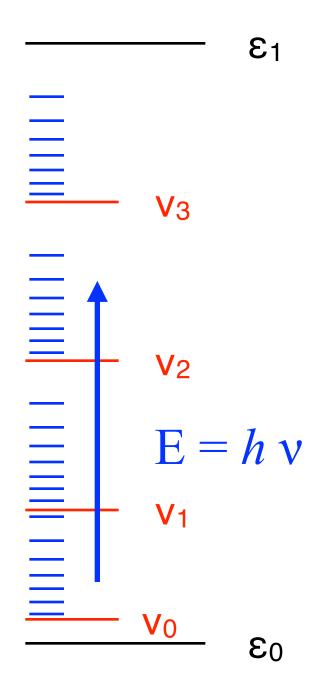
change in the electronic state

high energy

E = h v

>14,000 wavenumbers

Infrared region



transitions are between rovibrational states

1000 to 14,000 wavenumbers

microwave region

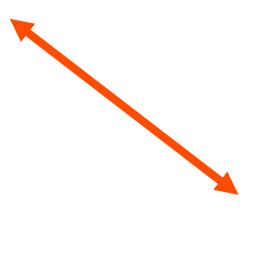
____ v₀

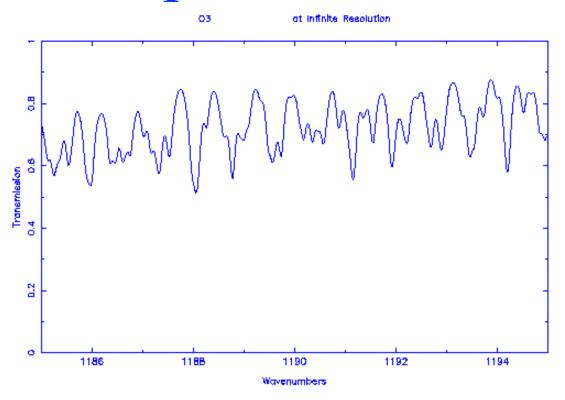
transitions are between rotational levels

0 to 1000 wavenumbers

Parameters ←→ Spectrum

Spectral Parameters



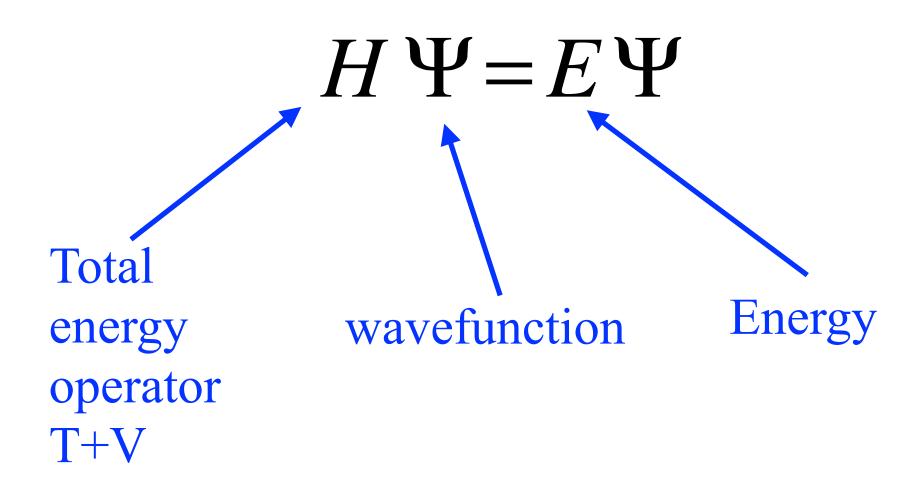


Spectral parameters come from:

- HITRAN Database
- GEISA Database

But data is incomplete and only approximate

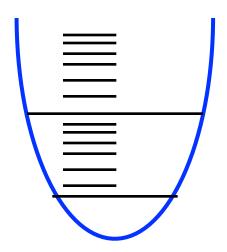
Energy Structure The Schrodinger Equation



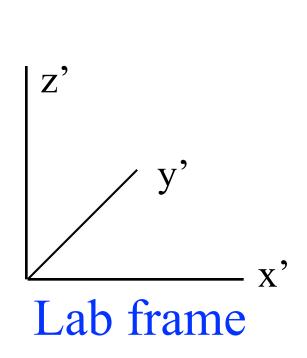
Rotational Energy Structure

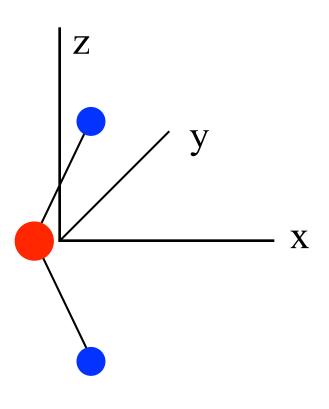
$$H\Psi = E\Psi$$

Here the kinetic energy is that of the molecule rotating and potential energy of the vibrational state.

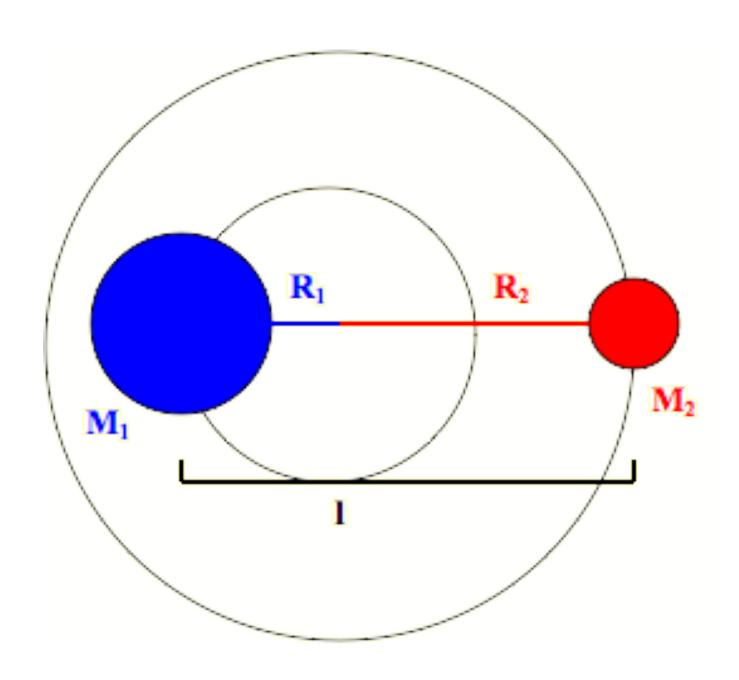


Lab vs. molecule fixed frames

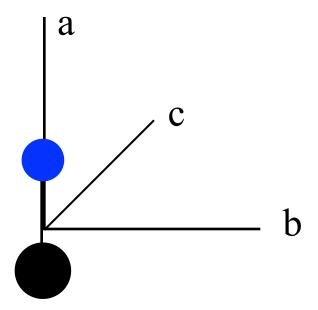




where $I = \sum m_i r_i^2$, I is a tensor



Linear Molecule



$$I_A = 0$$
 and $I_B = I_C$

moment of inertia

The energy of a rotation molecule is given in terms of the moment of inertia

$$E(cm^{-1}) = \frac{1}{2hc}I_B\omega^2$$

$$E(cm^{-1}) = \frac{h}{8\pi^2 c I_B} J(J+1)$$

Linear Molecules

$$E = \frac{h}{8\pi^2 c I_B} J(J+1)$$

we define the rotational constant B

$$B = \frac{h}{8\pi^2 c I_B}$$

which gives

$$E = BJ(J+1)$$

Determining the Rotational Constants

Consider the transitions $J \rightarrow J + 1$ and $J+1 \rightarrow J + 2$.

The frequencies are given by

$$v_1 = E_{J+1}$$
- E_J and $v_2 = E_{J+2}$ - E_{J+1} .

The separation between the lines is

$$\Delta \mathbf{v} = \mathbf{v}_2 - \mathbf{v}_1$$

$$E = BJ(J+1)$$

Determining the Rotational Constants

Consider the transitions from a level J to J + 1

$$\nu = E_{J+1} - E_J$$

$$\Delta v = B(J+1)(J+2) - BJ(J+1)$$

Determining the Rotational Constants

$$\Delta v = B(J^2 + 3J + 2 - J^2 - J)$$

$$\Delta v = 2B(J+1)$$

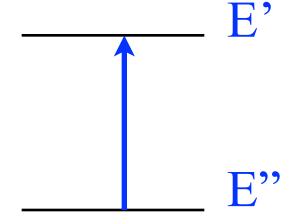
The spacing between adjacent lines is

Get the separation between lines (Δv) from the spectra

$$\Delta \nu (J+1) - \Delta \nu (J) = 2B$$

Spectroscopic Convention

Consider a transition from some lower state to an upper state.

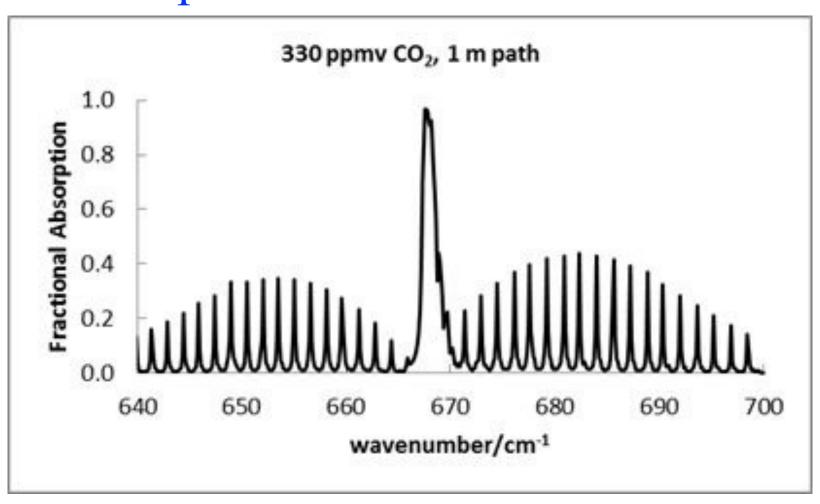


The frequency is given by v = E'-E''The spectroscopic convention is

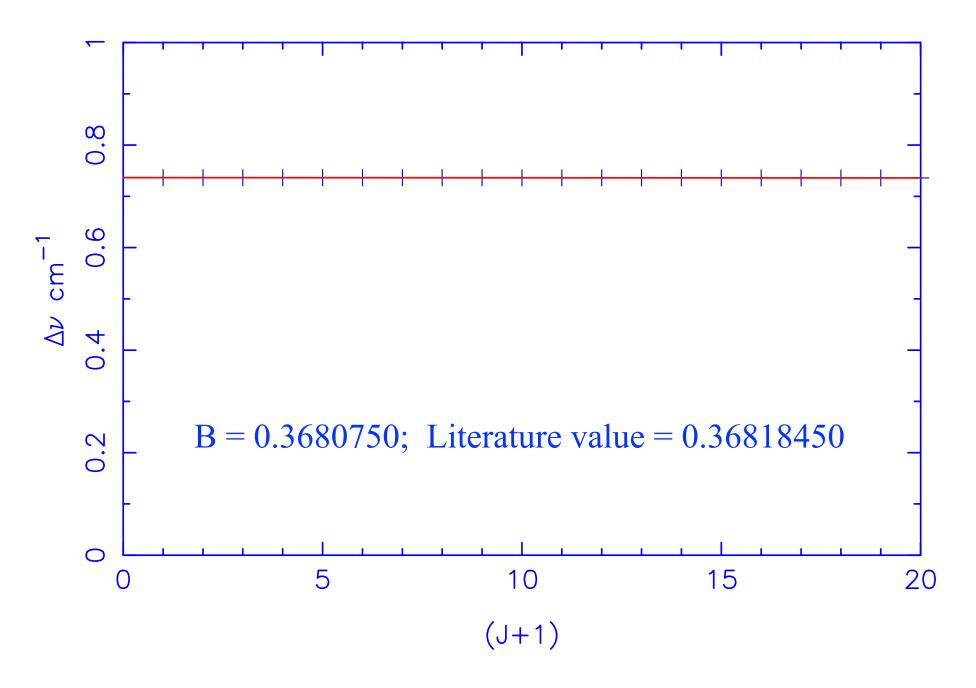
- ' labels the upper state and
- "labels the lower state.

CO_2

Get the separation between lines (Δv) from the spectra



¹⁶O¹²C¹⁸O rotation band



¹⁶O¹²C¹⁸O rotation band 0.8 0.2 B = 0.3664074; Literature value = 0.3681845020 40 60 80 (J+1)

Rotational Energy of a Linear Molecule

$$E = BJ(J+1)-DJ^{2}(J+1)^{2}+HJ^{3}(J+1)^{3}+\cdots$$

guess B, D, H, ...

calculate E

determine

-- transition

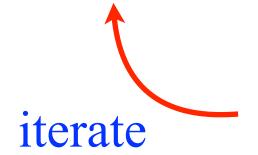
frequencies

$$v = E'-E"$$

least-squares comparison to measured

transition

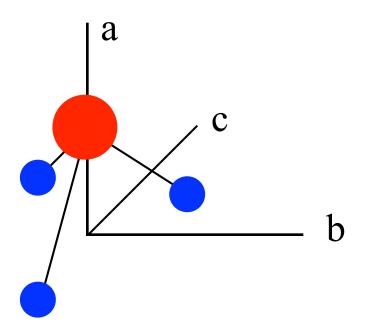
frequencies



new B, D, H,

Symmetric Top Molecules

Examples are NH₃, CH₃Cl, PH₃



$$I_{A} \neq 0$$

$$I_{B} = I_{C} \neq 0$$

Energy - Symmetric Top

$$A = \frac{h}{8\pi^2 c I_A} \qquad B = \frac{h}{8\pi^2 c I_B}$$

$$E(J,K)=BJ(J+1)+(A-B)K^{2}$$

J is the total angular momentum quantum number J = 0, 1, 2, ...

K is the component of angular momentum about the figure axis:

$$K = J, J-1, J-2, \dots -J$$

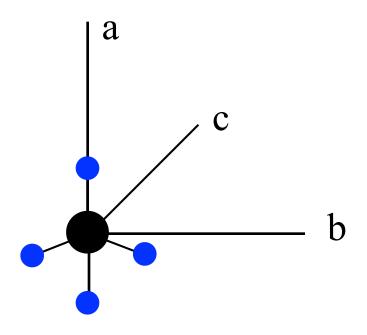
Energy - Symmetric Top

$$E(J,K)=BJ(J+1)+(A-B)K^{2}$$

when Coriolis and other resonances are accounted for the energy expression is much more complicated. See Poynter RL, Margolis JS. The ground state far infrared spectrum of NH₃. Mol Phys 1983;48:401-18.

Spherical Top Molecules

Examples are CH₄, CCl₄, SF₆



$$I_A = I_B = I_C$$

Energy - Symmetric Top

$$B = \frac{h}{8\pi^2 c I_B}$$

$$E(J)=BJ(J+1)$$

J is the total angular momentum quantum number J = 0, 1, 2, ...

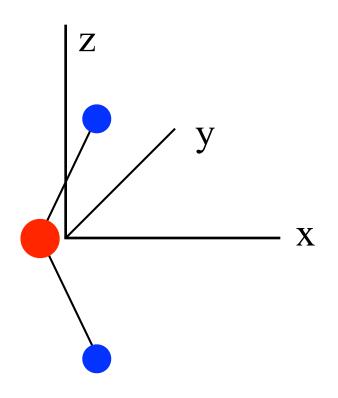
Note inclusion of resonances gives a much more complicated Hamiltonian.

see

Jean-Paul Champion, Gérard Pierre, Hubert Berger, Jean Cadot, Vibration-rotation energies of harmonic and combination levels in tetrahedral XY₄ molecules: Analysis of the 2v₂ and v₂ + v₄ bands of ¹²CH₄, Journal of Molecular Spectroscopy 79, 281–294 (1980).

Asymmetric top molecules

Examples are H₂O, HNO₃, H₂CO, O₃, ...



$$I_A \neq I_B \neq I_C \neq 0$$

Energy - Asymmetric Top

$$A = \frac{h}{8\pi^2 c I_A} \qquad B = \frac{h}{8\pi^2 c I_B} \qquad C = \frac{h}{8\pi^2 c I_C}$$

$$E(J,K_a,K_c)=complicated$$

Flaud J-M, Camy-Peyret C. Vibration-Rotation intensities in H₂O- Type molecules application to the 2v₂, v₁,v₃ Bands of H₂¹⁶O, J. Mol. Spectrosc. 1975; 55: 278-310