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In this work, Complex Robert–Bonamy calculations of half-widths and line shifts were

done for N2-broadening of water for 1639 transitions in the rotational band using two

models for the trajectories. The first is a model correct to second order in time, the

Robert–Bonamy parabolic approximation. The second is the solution of Hamilton’s

equations. Both models use the isotropic part of the atom–atom potential to determine

the trajectories. The present calculations used an intermolecular potential expanded to

20th order to assure the convergence of the half-widths and line shifts. The aim of the

study is to assess if the difference in the half-widths and line shifts determined from the

two trajectory models is greater than the accuracy requirements of the spectroscopic

and remote sensing communities. The results of the calculations are compared with

measurements of the half-widths and line shifts. It is shown that the effects of the

trajectory model greatly exceed the needs of current remote sensing measurements and

that line shape parameters calculated using trajectories determined by solving

Hamilton’s equations agree better with measurement.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since the pioneer works of Anderson [1,2] (ATC) and
Tsao and Curnutte [3], several semiclassical theoretical
models were developed to predict the pressure-broadening
parameters [4–6] (and references therein). Within these
theories, the relative motions of the perturber and the
radiator (trajectories) are described classically and often
parameterized by the molecular interaction potential used
to describe the molecular collisions through various classical
dynamics models. In the ATC theory, the bending of the
ll rights reserved.
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trajectories due to the stronger interaction at close distances
was not taken into account and simple straight paths with
constant relative velocity were used. Moreover to insure
physical behavior of the theory requires an unphysical
cutoff be applied at small impact parameters. In the
semiclassical Quantum Fourier Transform (QFT) theory
[7,8], the cutoff parameter was adjusted so that the theore-
tical calculations agree with measured values for high and
intermediate J lines [8]. This model leads to good predictions
for systems where electrostatic interactions are dominant
(‘‘strong-collision’’ systems), however inaccurate results are
obtained when close collisions are important, i.e. weak
interacting systems. Here the notion of strong and weak
collision systems adopts the definition of Oka [9].

Several developments have focused on building cutoff-
free theories and, in general, improving the molecular
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dynamics models [10–22]. Herman and Tipping [10–12]
considered approximate curved trajectories determined
by an isotropic intermolecular Lennard–Jones potential.
An isotropic potential was also used within the approach
developed by Neilsen and Gordon [13] but the computa-
tion time required made it unusable for practical applica-
tions. A similar dynamical model was used by Smith et al.
[14], however the peaking approximation made this
theory inaccurate at very low quantum numbers. In the
formalism developed by Robert and Bonamy (RB) [16], the
cutoff procedure was eliminated through the application
of the linked-cluster techniques and the cumulant expan-
sion [23]. The RB model introduced a short-range atom–
atom potential and an analytical trajectory model (correct
to second order in time) defined by the isotropic part of
the atom–atom potential. Since its development for linear
active molecule perturbed by a linear molecule or an
atom, the RB formalism has been extended to asymmetric
and symmetric top [24–26], and spherical top molecules
[27–30]. The extension using a complex implementation
(CRB) [31] allows the calculation of the pressure-broad-
ening parameters through a single calculation that takes
into account simultaneously the real and imaginary com-
ponents of the scattering matrix. The RB and CRB calcula-
tions of broadening-pressure parameters were performed
for numerous molecular systems, one can refer to Refs.
[5,6] and references therein for a detailed bibliography.
These studies using curved trajectories based on the
isotropic part of the intermolecular potential show
improvement of the calculations relative to the straight
path model.

Due to the improvement in computational resources,
the influence of real trajectories can be studied using the
so-called ‘‘exact’’ trajectory models based on the classical
dynamic equations of motion [32] (Hamilton’s equations).
Bykov et al. [33] (and references therein) proposed an
exact solution of Hamilton’s equations based on a uni-
versal function of two arguments, which is independent of
the parameters of potential and initial conditions of the
collisions, allowing the general solution to then be applied
to collision systems where long-range interactions are
dominant. Joubert et al. [34] and Buldyreva et al. [35–38]
made calculations using this formalism for several mole-
cular systems. ‘‘Exact’’ trajectories can also be obtained by
the numerical integration of Hamilton’s equations of
motion. RB calculations for self-broadening of CO and N2

were done using several ‘‘exact’’ trajectory models by
Afzelius et al. [38]. Within the CRB framework, Neshyba
and Gamache [39] made calculations for N2-broadening of
�10 water vapor transitions using both the parabolic
model of Robert and Bonamy and the ‘‘exact’’ trajectory
model by solving Hamilton’s equations. They found less
than a percent difference between the half-widths from
the two methods of calculation. Antony et al. [40] have
calculated the half-widths of self-broadening of H2O using
the numerical integration of Hamilton’s equations, how-
ever they found no significant differences between the
parabolic and the ‘‘exact’’ model for this strong-collision
system. Despite the fact that these procedures are more
time consuming than approximate trajectories, as numer-
ical integration is required at each point of the trajectory,
they do yield more realistic trajectories. It has also been
found that the RB parabolic model is inappropriate for
some collision systems, e.g. CO2–N2 or CO2–O2 [41,42].

Water vapor plays a crucial role in the terrestrial atmo-
sphere and in interstellar space [43]. In the Earth’s atmo-
sphere, H2O is the strongest absorber of infrared radiation
[44]. From remote sensing measurements one can deter-
mine the temperature, pressure, and concentration profiles
for all the major gases present in the atmosphere if the
spectroscopic parameters (positions, intensities, half-widths,
line shifts, and temperature dependence) are known. These
parameters are available from databases such as HITRAN
[45] or GEISA [46]. Among the parameters used for the
inversion of the remote sensing measurement, the half-
widths and line shifts are those with the largest uncertainty.
Several studies of the 22 and 183 GHz lines of water vapor
[47–49] have shown that small changes in the pressure-
broadened parameters can yield significant improvements
in retrieved profiles. Due to its importance for the Earth’s
atmosphere, numerous measurements (Ref. [50] and refer-
ences therein) and calculations [5,6,51–55] of the pressure-
broadened parameters have been done for self, N2, O2, and
air broadening of water vapor. The improvement of both
experimental techniques and semiclassical theories has
shown that small effects previously considered as insignif-
icant may be important to meet the requirements of the
spectroscopic and remote sensing community [56–58]. The
inclusion of the imaginary components in the calculations of
the half-widths is an example. The mean-relative thermal
velocity approximation has been used in almost all the
calculations, despite the fact that studies have shown
[59,60] the importance of explicitly averaging over the
Maxwell–Boltzmann distribution. Similarly, the question of
the influence of vibration on the half-widths of water vapor
was considered in previous studies [61–65], a survey paper
[66], and several workshops [56–58] that estimated that the
effect of the vibrational states of the transition was smaller
than experimental uncertainties. A study by Gamache and
Hartmann [67] demonstrated, for the first time, a clear
vibrational dependence of the half-widths for certain classes
of transition in both the measured and calculated data. The
effects mentioned above must now be considered if the
calculations are to meet the needs of the spectroscopic and
remote sensing communities.

Similar questions arise regarding the influence of the
trajectory models on the half-widths and line shifts.
While some studies have shown no difference between
the two models [39,40], these studies considered only a
small number of broad lines (large half-width). In 2009, in
a study of some transitions in the rotational band of water
broadened by nitrogen, Tipping and Ma [68] found the
difference can reach about 10%.

In a recent work [69], the question of trajectory models
was addressed for the half-widths. The present study
extends this work using a higher order expansion of the
intermolecular potential as recommended by Ma et al.
[22], considers the line shifts, explains some of the
observed features in more detail, and compares the
calculations with measurement. CRB calculations using
trajectories obtained from solving Hamilton’s equations
and from the parabolic approximation were made and the



Table 1
Values of electrostatic moments for H2O, N2.

Molecule Multipole moment (esu) Refs.
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results compared with each other and with measurement.
The two trajectory models are compared with the needs
of the remote sensing community in mind.
H2O m¼1.8549�10�18 [76]

Qxx¼�0.13�10�26 [77]

Qyy¼�2.5�10�26 [77]

Qzz¼2.63�10�26 [77]

N2 Qzz¼�1.4�10�26 [78]

Fig. 1. Robert–Bonamy PA trajectory model (dashed line) compared

with the real trajectory (solid line).
2. Theory

2.1. The complex Robert–Bonamy formalism

The Complex Robert–Bonamy formalism (CRB) used for
the calculations is described in details in Refs. [31,70–72],
only the main features are given here. Within this formal-
ism, the half-width, g, and line shift, d, of a ro-vibrational
transition f’i are obtained from a single calculation by the
real and minus the imaginary part of

ðg�idÞf’i ¼
n2

2pc
/v½1�e�

RS2ðf ,i,J2 ,v,bÞe�ifS1ðf ,i,J2 ,v,bÞþ IS2 ðf ,i,J2 ,v,bÞg�Sv,b,J2

ð1Þ

where n2 is the number density of perturbers, c the speed of
light, and /Sv,b,J2

represents an average over all trajectories
(impact parameter b and initial relative velocity v) and
initial rotational state J2 of the collision partner. S1 and
S2¼

RS2þ iIS2 are, respectively, the first and the second order
terms in the successive expansion of the Liouville scattering
matrix, S. They depend on the ro-vibrational states involved
and associated collision induced jumps from these levels,
and on the intermolecular potential and characteristics of
the collision dynamics. Note that since there is no change in
the vibrational state, the S1 term vanishes. Within the
semiclassical CRB formalism, the S2 terms can be written
as the product of reduced matrix elements (quantum
mechanical component) for the perturber and the radiator
and the resonances functions (classical component). The
exact forms of these terms can be found in Refs. [70–72].

The wavefunctions used to evaluate the reduced
matrix elements are obtained by diagonalizing the Wat-
son Hamiltonian [73] in a symmetric top basis. The
wavefunctions for the ground vibrational state are deter-
mined using the constants of Matsushima et al. [74]. The
molecular rotation constants for N2 are from Huber and
Herzberg [75].

The intermolecular potential used in the calculations is
a sum of an electrostatic component (dipole and quadru-
pole moments of H2O with the quadrupole moment of N2)
and an atom–atom component. Many of the molecular
parameters for the H2O–N2 system are well known and
the present calculations use the best available values from
the literature [76–79]. The dipole and quadrupole
moments of water vapor, and the quadrupole moment
of nitrogen are listed in Table 1.

The atom–atom potential is defined as the sum of pair-
wise Lennard–Jones 6–12 interactions [80] between
atoms of the radiating molecule and the perturbing
molecule, N2. The Lennard–Jones parameters for the
atomic pairs, the eij and sij, are usually constructed from
homonuclear-atom–atom parameters, ei and si, by ‘‘com-
bination rules’’ [81–84]. The use of different combination
rules and sources of data can yield values of eij and sij that
differ significantly. Hence, these parameters are generally
adjusted if reliable experimental data are available. Here,
these parameters are adjusted to fit some 177 measured
half-widths and 163 line shifts as described below.

The atom–atom distance, rij, is expressed in terms of
the center of mass separation, R, via the expansion in 1/R
of Sack [85]. The expansion is truncated at an order and
rank (see Ref. [72] for details). Here the formulation of
Neshyba and Gamache [26] expanded to twentieth order

and rank 4 is used.
The isotropic part of the expanded atom–atom short

range potential is then used to define the curved trajec-
tories used in our calculations.

2.2. Trajectory models

Most of the previous calculations within the CRB
formalism employed the RB parabolic trajectory model
[16]. In this model the isotropic part of the intermolecular
potential is taken into account in determining the dis-
tance rc

!
, the velocity vc

!
, and the force, FðrcÞ

��!
, at closest

approach. Expanding to second order in time, the trajec-
tory is defined by

rðtÞ
�!
ffi rc
!
þvc
!

tþ
FðrcÞ
��!
m

t2

2
ð2Þ

where m is the reduced mass of the system. Within the
Robert–Bonamy formalism, the trajectories are in a plane
and can be described by the intermolecular distance R(t)
and the collision angle c(t) (Fig. 1). Within the parabolic
model, R(t) and c(t) can be expressed as

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

c þv02c t2
q

; cðtÞ ¼ vct=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

c þv02c t2
q

ð3Þ

with the constraint sin2cðtÞþcos2cðtÞ ¼ 1. This constraint
must be enforced since the sine can become larger than
one for large values of rc because the approximation is



Table 2
H2O–N2 atom–atom parameters used in the CRB calculations.

e/kB (K) s (Å)

HN 19.539 2.783

ON 41.033 2.583

Trajectory 68.669 3.5827
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only valid to second order in time. In the model, the true
trajectory is replaced by an approximate parabolic trajec-
tory with an effective relative velocity v0c

!
given by

v0c ¼ vc 1þ
8e
mv2

5
s
rc

� �12

�2
s
rc

� �6
" #( )1=2

ð4Þ

where e and s are the molecular parameters of the
isotropic 6–12 Lennard–Jones potential. Within this ana-
lytical model, the classical parameters b, v can be replaced
by rc, vc using the conservation of momentum and the
conversation of energy [16].

This model corresponds to approximated solutions at
the second order of the classical dynamical equations of
motion, from here on designated PA. More realistic
trajectories can be obtained by solving Hamilton’s equa-
tions of motion (HE model). For a given time t, considering
the Hamiltonian H formed by the kinetic energy and the
isotropic Lennard–Jones potential, the Cartesian compo-
nents of the trajectories Xi are obtain by solving the
system of equations

d

dt
Xi ¼

@H

@Pi
;

d

dt
Pi ¼�

@H

@Xi
; i¼ 1,. . .,4 ð5Þ

where Pi is the conjugate momentum of Xi. The odd and
even values of the index i refer to the parallel and
perpendicular component of the trajectories in the plane,
respectively. The initial conditions X0

i , P0
i have to be given

in order to describe the correct relative motion of the
perturber and the radiator, which can be seen as the
motion of an effective particle with a reduced mass
around the center of mass. From the solutions of Hamil-
ton’s equations, the trajectories are calculated by

RðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1�X3Þ

2
þðX2�X4Þ

2
q

cðtÞ ¼ ArctanððX2�X4Þ=ðX1�X3ÞÞ ð6Þ

The closest approach geometry was chosen as the
origin of the frame by defining the conditions
Rð0Þ ¼ rc; cð0Þ ¼ 0: The closest approach distance and
angle are determined numerically by this procedure using
a fine time grid. In order to determine accurately those
parameters, the grid step is reduced around the closest
approach geometry. The differential equations algorithm
of Shampine and Gordon [86] is used to perform the
numerical integration of Hamilton’s equations described
in Eq. (5). From the distance of closest approach, the
trajectory for the positive times is determined by the
same procedure but at predetermined time steps up to
the maximum time value chosen for the numerical
integration (input to the codes). The trajectory is then
symmetrized around the closest approach geometry to
yield the complete numerical trajectory. Note that in this
case, the distance at closest approach rc is no longer a
meaningful parameter, and the integration in Eq. (1) must
be done over the b, v parameters.

3. Calculations

Initial HE calculations were done using the CRB form-
alism for N2-broadening of water. Following the study of
Ma et al. [22], the intermolecular potential was expanded
to high order and rank, 20 4 4, in order to assure the
convergence of the half-widths and line shifts. This yields
1073 terms in the potential. The atom–atom parameters
of the previous work [87] for the (000)–(000) band of
H2

16
O were used as starting values and were then adjusted

to produce line shape parameters which agree with the
experimental data for the half-widths and line shifts
taken from the measurement database for H2O–N2 [50].
Also included in the fit are the isotropic Lennard–Jones
parameters used for the calculation of the trajectories.
Their initial values are determined by the fit of the
isotropic part of the potential to an effective 6–12 Lennard
Jones potential. 177 (163) transitions were included in the
fit for the half-widths (line shifts), ranging from
0.016 cm�1 atm�1 to 0.117 cm�1 atm�1 (from �0.018
cm�1 atm�1 to 0.025 cm�1 atm�1). The half-widths are
taken from Devi et al. [88], Mrowinski [89], Goyette et al.
[90], Frenkel and Woods [91], Bauer et al. [92,93], Liebe
and Dillon [94], Kasuga et al. [95], Emery [96], Toth [97],
Chance et al. [98], Tretyakov et al. [99], Cazzoli et al.
[100–102], Seta et al. [103], Koshelev et al. [104], Golu-
biatnikov [105], Golubiatnikov et al. [106], and Gamache
and Laraia [87]. The line shifts are from Toth [97],
Tretyakov et al. [99], Koshelev et al. [104], Golubiatnikov
[105], Golubiatnikov et al. [106]. Table 2 reports the final
values of the fitted parameters. For the half-widths, 99 of
the 177 transitions are within 2s of the experimental
errors, and this value is 44 of 169 for the line shifts.

Using these parameters the half-widths and the line
shifts for the 1639 transitions of the (000)–(000) band of
H2

16
O considered in the previous work [87] are calculated

with N2 as the perturbing gas using the potential
expanded at 20th order and rank 4 and 4; first with the
HE trajectory model and next using the RB parabolic
approximation. In the present calculations, the average
over the Maxwell–Boltzmann distribution of velocities is
done and results are presented for seven temperatures:
200, 225, 275, 296, 350, 500, and 700 K.

4. Discussion

In Fig. 2 the percent difference between the half-
widths obtained from the parabolic and the HE trajectory
models are plotted versus the half-width in cm�1 atm�1

for the nitrogen-broadening of water. The plot symbols
are J00. The general trend from the broad to intermediate to
narrow lines is that the percent difference and the spread
of the data increase. For the broad lines, the difference is
roughly �1%, whereas it reaches almost þ5% for the
intermediate and �5% for the narrow lines. This indicates
that for the transitions with large half-widths the para-
bolic and HE models give similar results, confirming the



Fig. 2. Percent difference between Hamilton’s equations and the parabolic trajectory model calculations of the half-widths versus the half-width for

nitrogen broadening of water. The plot symbols are J00 .

Table 3
Statistics of the comparison of line half-widths and line shifts for H2O in

collision with N2 determined from the two trajectory models of this

study. For the line shift the deviation, dHE�dPA, is reported in

cm�1 atm�1.

Parameter APD AAPD SD PDmax PDmin

g �0.30 1.08 1.52 4.24 �6.63

ADa AADa
S ~Da (dHE–dPA)max (dHE–dPA)min

d 0.712 0.589 0.596 0.00272 �0.00253

a AD¼

PN

i ¼ 1
ðdmeas�dcalc Þ

N � 102, AAD¼

PN

i ¼ 1
ð9dmeas�dcalc 9Þ

N � 102, and S ~D is

the standard deviation of AD.

J. Lamouroux et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 951–960 955
results of Refs. [39,40], however for the intermediate and
narrow lines a more realistic trajectory model should be
employed. The statistics (percent difference (PD), average
absolute percent difference (AAPD), and standard devia-
tion (SD)) of the comparison for the 1639 transitions
involved the calculations are presented in Table 3. Plots
were also made with the x-axis being J00 þ0.1(J00 �Ka00)
with Ka00 as the plot symbols or Ka00 þ0.1(J00 �Ka00) with J00

as the plot symbols to see if structure with respect to the
rotational quantum numbers could be detected. Some of
these plots are available on one of the authors web site
(faculty.uml.edu/Robert_Gamache) Unfortunately, no
structure could be detected that would allow the devel-
opment of propensity rules.

In order to better understand the influence of the
trajectory model on these results, the 165 11’164 12

(hereafter called line 1) and 150 15’141 14 (hereafter
called line 2) transitions of the rotational band of water
were studied in detail. These transitions are similar in J00

values but yield about �1.5% and �5.3% difference,
respectively, on the half-widths between the two trajec-
tory models. For these two transitions, the imaginary and
real parts of (1�e�S) as a function of the impact para-
meter b is plotted in Fig. 3. In the CRB formalism both the
real and imaginary parts contribute to the half-width and
line shift. However, in this work using the CRB theory for
H2O–N2 the effect of the imaginary term on the half-
width is small [72] hence the focus is on graph on the
right-hand-side of Fig. 3. The integrand has very different
behavior for the two transitions: for line 1 the integrand
reaches 1 (saturates) to about 3 Å whereas for line 2 it
never saturates. Notice also that as the real part saturates
for line 1 the imaginary part goes to zero.

A comparison of the trajectories obtained from both
models for different values of the impact parameter b is
presented in Fig. 4. It is observed that as the value of b

increases, the difference between the two trajectory
models decreases. For larger value of b, the trajectories
are exactly the same and as b increases further both
models reduce to the straight-line trajectory model. Con-
sequently for line 1, which saturates about 3 Å, the
trajectories are similar and the difference between the
half-widths from the two models is small. For line 2 the
integrand does not saturate and the integral continues to
small values of b where the results are sensitive to the
details of the short-range atom–atom potential. Here at
small impact parameter the differences between the two
trajectory models are large, leading to different values of
the half-width from the two models.

The differences between the trajectory models are
greatest for nearly head-on collisions with small impact
parameter b. Meanwhile, as shown in Eq. (1), the inte-
grand of the shift is proportional to exp(�ReS2(b)) whose
magnitudes are close to zero in small b region because
ReS2(b) is larger there. Thus, one expects the effects on the
shifts from choosing different trajectory models are less
significant than on the half-widths. In addition, one



Fig. 3. Imaginary and real parts of (1�e�S) for the 165 11’164 12 and 150 15’141 14 N2-broadened H2O transitions in the (000)’(000) band versus the

impact parameter b (in Angstrom).
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expects that in general, calculated shifts are mainly
determined by the long-range interactions. However, if
percent differences are calculated the range is from
�2650% to 600%. In forming the percent difference one
divides by the rotational band line shifts (small numbers)
which greatly exaggerates the values. A better method is
to look at the difference in the line shifts, dHE�dPA in
cm�1 atm�1. Fig. 5 shows the difference, dHE�dPA, in the
N2-induced line shifts calculated using the two trajectory
models versus J00 þ0.1(J00 �Ka00), where the second term is
to spread out points that have the same J00. The plot
symbols in Fig. 5 are Kamin of the transition (minimum
of Ka00 and Ka0) to look for structure with respect to the
Kamin of the transition. Other plots were made to look at
structure with respect to J00 and Ka00. From these plots no
apparent structures were found. The range of the devia-
tions in Fig. 5 is small (up to 0.0027 cm�1 atm�1) com-
pared with the average absolute shift (0.007 cm�1 atm�1

for the HE calculations).
The calculations using both trajectory models were

compared to the N2-broadening measurement database
[50]. The average percent difference between the calcula-
tions and the measurements for each trajectory model are
very similar; �5.4 for the HE model and �5.57 for the PA.
There is considerable scatter in the measurements [50],
which contributes to the similar differences between the
two trajectory models. Closer inspection shows that when
the difference between the HE and PA calculations is
greater than 1.75% the HE calculations are always closer
to the measured data. For N2-broadening of H2O only the
measurements of Toth [97] considered a large number of
transitions. These data are also thought to be among the
best for the rotational band. Considering Toth’s N2-broa-
dened half-width data (158 transitions) the HE calcula-
tions show a �1.86 PD, a 11.07 AAPD, and 17.18 SD
compared with �2.01 PD, 12.02 AAPD, and 18.19 SD for
the PA calculations. The statistics for comparing with all
N2-broadening measurements are presented in Table 4.

There are less measured data for the line shifts. Table 5
gives the statistics for the comparison of the calculations
with these measurements. The HE calculations agree better
with the measurements than do the PA calculations.

5. Conclusions

The half-widths and line shifts of 1639 rotational band
transitions of water vapor in collision with N2 were
calculated using trajectories determined by solving
Hamilton’s equations of motion and by the Robert–
Bonamy parabolic approximation. The parameters deter-
mined from the two trajectory models are compared with
each other and with the measurement database. The
differences in half-widths between the two trajectory
models range from about 5% to �5%. These differences
are greater than the current requirements of the spectro-
scopic and remote sensing communities [56–58]. It is
important to note that future missions are already
demanding a reduction in these uncertainties. Compar-
ison of the HE and PA calculations with the measurement
databases reveals that the HE calculations show better
agreement with measurements for both the half-width
and the line shift.

Despite the fact that the HE trajectory solutions are
computationally more intense, theoretical calculations of



Fig. 4. Comparison of the trajectories obtained from Hamilton’s equations and parabolic trajectory model for different values of the impact parameter b

(in Angstrom).

Fig. 5. Deviation, dHE�dPA, between Hamilton’s equations and the parabolic trajectory model calculations of the line shifts versus J00 þ0.1(J00 �Ka00) for

nitrogen broadening of water. The plot symbols are Kamin.
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Table 4
Statistics of the comparison of measured half-width data with the half-

width parameters determined from the two trajectory models of this

study for N2-broadening of H2O.

Refs. # Points HE PA

PD AAPD SD PD AAPD SD

[107] 17 0.99 8.94 12.66 0.68 8.79 12.85

[108] 7 �39.12 51.58 62.62 �41.04 54.25 65.16

[109] 15 29.82 29.82 16.08 30.02 30.02 15.99

[110] 3 28.05 28.05 10.64 27.70 27.70 10.72

[97] 158 �1.86 11.07 17.18 �2.01 12.02 18.19

[111] 42 �34.70 34.85 37.42 �34.68 34.88 38.22

[103] 2 �0.31 1.17 – �0.76 1.09 –

[104] 3 3.64 3.64 – 3.60 3.60 –

[101] 5 8.34 8.34 4.59 8.11 8.11 4.66

Table 5
Statistics of the comparison of measured line shift data with the line

shape parameters determined from the two trajectory models of this

study for H2O in collision with N2.

Refs. # Data HE PA

ADa AADa
S ~Da ADa AADa

S ~Da

[97] 158 �0.105 0.345 0.435 �0.197 0.712 0.891

[104] 3 �0.0263 0.140 – �0.0767 0.305 –

[106] 2 �0.0180 0.0250 – �0.0070 0.0500 –

a See Table 3 for definitions.

J. Lamouroux et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 951–960958
the line shape parameters must employ this model if the
needs of the remote sensing community are to be met. As
a result of this study, our line shape codes now use
Hamilton’s equations for the trajectory model.
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Mikhailenko S, Nemtchinov V, Nikitin A, Newnham D, Perrin A,
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