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Abstract

Total internal partition sums (TIPS) are calculated for all molecular species in the 2000 HITRAN database.
In addition, the TIPS for 13 other isotopomers/isotopologues of ozone and carbon dioxide are presented. The
calculations address the corrections suggested by Goldman et al. (JQSRT 66 (2000) 455). The calculations
consider the temperature range 70–3000 K to be applicable to a variety of remote sensing needs. The method
of calculation for each molecular species is stated and comparisons with data from the literature are discussed.
A new method of recall for the partition sums, Lagrange 4-point interpolation, is developed. This method,
unlike previous versions of the TIPS code, allows all molecular species to be considered.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Overview

The aim of this work has been to provide a comprehensive set of total internal partition sums
(TIPS) for species of atmospheric interest, calculated to the greatest possible degree of accuracy
and packaged in a form which allows for easy and rapid recall of the data. This work is therefore
a modern revision of previous calculations which supplants previously released partition function
data. As such, the work is based upon prior work by Gamache et al. [1,2] and incorporates all of
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the corrections discussed in Goldman et al. [3], as well as newer physical constants and molecular
parameters.

Given that partition functions are most commonly used by those interested in remote sensing,
these partition functions are provided to augment the HITRAN 2000 spectroscopic database [4].
Therefore, the scope of the calculations matches these interests. Partition functions are provided
for all molecular species and isotopologues present on the 2000 edition of the HITRAN database,
except for the O atom, for which rotational and vibrational partition functions are undeFned. Ad-
ditionally, partition functions are provided for a number of ozone isotopologues/isotopomers which
are not currently on the HITRAN database and one isotopologue of carbon dioxide. The temperature
range of the calculations (70–3000 K) was selected to match a variety of remote sensing needs
(planetary atmospheres, combustion gases, plume detection, etc.). Although there are a number of
molecular species for which the partition sum at high temperatures is of no practical importance, e.g.
ozone, hydrogen peroxide, the aim was to have a consistent set of partition sums for all molecular
species.

2. Methodology

The general methodology used in this study was selected to minimize the possibility of human
error or faulty constants producing error in the Fnal partition sums. Molecular constants used were
taken from scientiFc literature. The total internal partition sum is given by a sum over all states, s,
labeled by the electronic, vibrational, rotational, torsional, : : : structure of the molecule,

Q(elec; vib; rot; tors; : : :) = di
∑

all states s

dse−Es=kT ; (1)

where di is the state-independent degeneracy factor and ds is the state-dependent degeneracy factor
(see below and [2]) and Es is the energy of the electronic, vibrational, rotational, torsional, : : : state.
In practice, the energy states are usually not known for all rotational levels of all vibrational states of
all electronic states. When there are other complications, such as lambda doubling, torsional motion,
etc. the situation for the energy states is worse. In such cases it is assumed that

E(elec; vib; rot; tors; : : :) = Eelec + Evib + Erot + Etors + · · · (2)

from which the product approximation can be made

Q(elec; vib; rot; tors; : : :) = Qelec × Qvib × Qrot × Qtors × · · · : (3)

The problem is now reduced to calculating the electronic, vibrational, rotational, : : : partition sums.
Which approach is used is determined by the availability of energy states for the molecule in
question.

For the rotational partition sums, when possible, rotational energy levels were calculated from
molecular constants using appropriate expressions and compared to measured energy levels. For
certain species, energy levels were provided by other researchers. These energy levels were then
used to evaluate the rotational partition sum at a variety of temperatures by direct summation of



ARTICLE IN PRESS
J. Fischer et al. / Journal of Quantitative Spectroscopy & Radiative Transfer ( ) – 3

Fig. 1. Convergence of the partition sum as a function of
temperature for 16O3.

Fig. 2. Comparison of the product approximation,
Qvib ∗ Qrot , with QDirect Sum for 12C16O2.

the expression

Qrot = di
∑

all
rotational
states

dre−Er=kT ; (4)

where dr is the degeneracy of the rotational state with energy Er. This sum clearly becomes incom-
plete at high enough temperatures for a given set of energies. Therefore, the convergence of these
partition sums was tested by plotting Qrot(T; J ) versus the rotational quantum number J at various
temperatures of interest. Converged partition sums exhibit a horizontal asymptote at energy levels
where Er is signiFcantly larger than kT cease to contribute signiFcantly to the sum. Incomplete par-
tition sums do not exhibit this asymptote. By Fnding the greatest temperature at which these plots
still exhibited an asymptote, it was possible to determine the highest temperature to which a direct
sum could be used for a given set of energies. Fig. 1 is a convergence plot for the 16O3 species.
The general trend of all convergence plots is similar to this graph. For a given temperature, lower
rotational energy levels contribute signiFcantly more to the partition sum, due to the e−Es=kT term.
At a constant temperature, as higher rotational levels are summed, they contribute less and less to
the total internal partition function and a horizontal asymptote is seen in the graph. However, at
higher temperatures, it is impossible to reach this point with a Fnite set of rotational energy levels.
The highest temperature at which the graph still exhibits a horizontal asymptote (i.e. the point where
summation of all higher energy levels leads to a negligible change in the total value of the partition
sum) is the highest temperature at which the partition sum remains converged.

Next, when necessary, an appropriate analytical expression was used to evaluate Qrot(T ). The
expression used was selected based on molecular symmetry. For linear molecules, McDowell’s ex-
pression was used [5]; for asymmetric rotors, Watson’s expression was used [6], for spherical [7]
and symmetric top molecules [8], McDowell’s expressions were used.

A comparison was then performed between the direct sum and the analytical expression for each
species. Bearing in mind that the direct sum is only accurate at temperatures low enough for it to
remain converged and that all of the analytical expressions used are approximations which become
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better in the limit of high temperatures, the assumption was made that if a good agreement can be
demonstrated between a converged direct sum and an analytical expression for a fair temperature
range, that the analytical expression probably exhibits similar or smaller errors at higher temperatures.
In all cases, a good agreement could be demonstrated between the two methods and, in most cases,
the analytical expression was used for the entire temperature range. For certain species where the
analytical expression did not work as well for lower temperatures, the direct sum was used for low
temperatures and an analytical expression was used for higher temperatures.

For all species, unless otherwise noted, the vibrational partition function was calculated using
the harmonic oscillator approximation (HOA) of Herzberg [9]. Vibrational fundamentals were taken
from the literature and used in the following expression:

Qvib(T ) =
∏

vibrational fundamentals

1
1− ehcE�=kT

: (5)

Once the vibrational and rotational partition functions were calculated for species in the elec-
tronic ground state and with no other structure (hyperFne, torsion, : : :), the product approximation,
Qvib × Qrot, was used to evaluate the total internal partition functions. The product approximation
assumes that the vibrational and rotational energy levels are totally independent of each other and
therefore, that the rotational and vibrational partition functions are also totally independent. With
this approximation, the total internal partition function, for most molecules, is merely the product
of the rotational and vibrational partition functions. The validity of the product approximation was
tested in a rough manner by comparing the total internal partition function for CO2 calculated by
using the product approximation with an analytical expression with a partition function calculated
by a direct sum of ro-vibrational energy levels. The results of this test are summarized in Fig. 2.

One often neglected aspect of calculating partition sums is the inclusion of state independent
degeneracy factors. Degeneracy factors can be divided into state dependent and state independent
components. Note, below when the state dependent degeneracy factors are discussed here it is the
factor in addition to the normal (2J + 1) or the (2F + 1) factor. These additional state dependent
degeneracy factors occur in systems in which the rotational wavefunction of the species couple with
the nuclear wavefunctions of some of the atoms in the molecule. Typically, this happens in species
with some degree of symmetry where only certain products of rotational and nuclear wavefunctions
yield the proper symmetry for the complete wavefunctions. The net result of this is that for some
molecules, even and odd symmetry states have diMerent weights and these values must be factored
in accordingly when calculating partition sums.

For molecules where two identical nuclei are exchanged upon rotation, it is easy to determine
the nuclear statistical weights which are part of the state dependent degeneracy factors. For Fermi
systems (i.e. molecules where the exchanged nuclei have half-integer spins) and Bose systems (i.e.
molecules where the exchanged nuclei have integer spins) the following equations give the state
dependent degeneracy factors:

Fermi system–even state:

Bose system–odd state:
1
2 [(2Ix + 1)2 − (2Ix + 1)];

Fermi system–odd state:

Bose system–even state:
1
2 [(2Ix + 1)2 − (2Ix + 1)];

(6)
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where Ix is the nuclear spin of the atoms which are interchanged. For example, for H2O, the two
interchanged nuclei are the hydrogen atoms, which are spin 1=2. Inserting this value into the above
equations gives a three-fold degeneracy for the odd states and a one-fold degeneracy for the even
states. For 16O3, the two interchanged nuclei are oxygen atoms with spin zero. Substituting this value
into the above equations yields a one-fold degeneracy for the even levels and a zero-fold degeneracy
for the odd levels (i.e., such levels do not exist). For molecules which have more than one pair
of atoms exchanged upon rotation, expressions for the number of spin functions for each state are
given in Ref. [9, p. 17, Eqs. (I.8) and (I.9)].

When direct sums were calculated in this work, state dependent factors were handled explicitly
by calculating the parity of each state using an expression appropriate for the molecular symmetry
of the species involved and the correct degeneracy factors were incorporated into the direct sum.
When analytical expressions were used, an average state dependent factor was used by taking the
arithmetic mean of the state dependent factors involved. For example, for 16O3, a factor of 0.5 was
used to account for the average of the state dependent factors.

State independent factors are often omitted from partition sum calculations. They are, however,
necessary for the partition functions to relate to thermodynamic quantities. State independent factors
occur in molecules where there are atoms with non-zero nuclear spins that are not interchanged
upon rotation. This degeneracy factor is expressed as

∏
(2I +1), where I is the nuclear spin and the

product is taken over all nuclei not interchanged by rotation [9]. Note, there are other factors that
can sometimes mimic state independent factors, for example a doubling for all levels when there
is lambda doubling, torsion or inversion. These factors are discussed speciFcally in the appropriate
sections of the text.

Although the state independent factors are often omitted in studies which report partition sums,
it is usually not a problem, since the actual values of the partition sum are infrequently used.
More commonly, a ratio of partition sums is employed and the state independent factors cancel
out. However, in this study, every attempt has been made to include the complete state independent
factor for all species and hence determine the true total internal partition function. In comparing the
partition sums from this study to others from the literature, it is sometimes necessary to multiply by
an integer value to obtain agreement due to the omission of the state-independent factors in other
studies. Such comparisons are discussed speciFcally in the text.

3. Calculations

The calculations of the total internal partition sums were made employing a number of method-
ologies depending on the molecular species in question. Here, the calculations are summarized. Ref.
[10] gives complete details of the calculations including the rotational and vibrational constants used,
the state-independent and state-dependent statistical factors, complications that arise due to hyperFne
structure, lambda doubling, spin coupling, etc., comparisons of the direct sum and analytical calcu-
lations, and the accuracy of the recall of the calculated values. In addition, the analytical models for
Qrot that were developed are presented in Ref. [10].

Because of the temperature range of the study, 70–3000 K, it was necessary to make most of the
calculations via the product approximation and determine Qrot via analytical models and Qvib via the
harmonic oscillator approximation of Herzberg. There were a small number of species where the
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Fig. 3. Percent diMerence between QDirect Sum and Qanalytical formula for H16
2 O.

direct sum over energy states yields the TIPS. These include the isotopologues of oxygen molecule
and the isotopologues of the hydrogen halides. For the isotopologues of OH and PH3 the product
approximation, Qvib × Qrot, was used where Qrot was determined by direct summation. For OH the
rotational energy levels were produced using the method of Beaudet and Poynter [11], which includes
Fne structure interaction and lambda doubling.

The TIPS for all isotopologues/isotopomers of the following asymmetric rotors on the HITRAN
database: O3, SO2, NO2, HNO3, H2CO, HOCl, COF2, H2S, HCOOH, HO2, ClONO2, HOBr, and
C2H4, were determined by the product approximation, Qvib×Qrot, where Qrot was determined by the
analytical formula of Watson [6]. For NO2 there were corrections for electron spin and hyperFne
Fermi resonance (see [12]) and the analytical model for HO2 included an additional statistical factor
of 2 in order to account for the F-splittings due to ESR present in this open shell molecule.

For water vapor, a light asymmetric rotor, comparisons were made between the Qrot determined
by direct sum and by using Watson’s analytical model. Fig. 3 shows the diMerence between the
direct sum and the analytical expression for the H16

2 O species for the temperature range 50–3000 K.
The Fgure shows that the diMerence between the two methods is large at low temperature, where
the analytical expression is unable to properly model the quantum structure of the system. The
diMerence is also quite large at high temperatures, where the direct sum is incomplete. However, at
intermediate temperatures, there is a region where the agreement between the two methods is quite
good. In order to provide the most accurate representation of the partition sum, a combination of
the direct sum and the analytical expression was used for Qrot in the Fnal product approximation
partition sums for the four most abundant species. In part, this method was selected because the
greatest errors for all of these species occurred at low temperatures. The lowest temperatures at which
the analytical expression was used were 1401 K, 451 K, 349 K and 675 K for H16

2 O, H18
2 O, H17

2 O,
HD16O, respectively. At these temperatures, the diMerences between the direct sum and the analytical
expression were 0.62%, 0.52%, −0:46% and 0.66% for H16

2 O, H18
2 O, H17

2 O, HD16O, respectively.
For HD18O and HD17O the product approximation with Watson’s analytical model for Qrot was used
throughout the entire temperature range.

The product approximation, Qvib×Qrot, with McDowell’s model [5] was used for all isotopologues
of the following linear molecules on the database: CO2, N2O, CO, OCS, N2, HCN, C2H2, and NO+.
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The TIPS for isotopologues of the symmetric top molecules on the database; CH3D, NH3, CH3Cl,
and C2H6, were calculated using the product approximation, Qvib × Qrot, with Qrot determined via
the analytical formula of McDowell [8]. For 12CH4, 13CH4, and SF6 the product approximation was
used with Qrot determined by McDowell’s spherical top formula [7].

For the doublet-pi molecular species of NO and ClO, which have spin-orbit, lambda doubling and
hyperFne interactions (see Ref. [3] for details) the product approximation, Qvib×Qrot, was used. An
analytical formula, based on the linear molecule formula of McDowell [5], was developed. Factors
of 3, 3, and 2 for the hyperFne structure and 2, 2, and 2, for the lambda doubling structure were
incorporated into the analytical partition sums for 14N16O, 14N18O, and 15N16O, respectively. For
both isotopologues of ClO, the analytical partition sums were multiplied by 4 to account for the
hyperFne structure and 2 to account for the lambda doubling.

An analytical model for the rotational partition sum, which accounts for torsion in hydrogen
peroxide, was developed using a number of approximations. A discussion of the complexity of
this system is given by Goldman et al. [3]. It might appear at Frst that a simple doubling of
the rotational levels by the tunneling through the low trans barrier would give a useful approx-
imation to the partition function. This is not suOcient because the tunneling induces a splitting
which increases from ∼ 11 cm−1 (for n = 0) to ∼ 106:3 cm−1 (n = 1), to ∼ 206 cm−1 (n = 2),
etc. and the rotational constants (A; B; C;PK , etc.) vary signiFcantly from one torsional state to an-
other. For each rotational state, the energies for the torsional states are labeled by n. The analytical
model developed considered all states up to n= 7 and is based on Watson’s analytical formula [6].
Vibrational partition sums were calculated using only the 5 “low amplitude modes, �1, �2, �3, (Ags

symmetry) and the �5, �6 (Bus symmetry), 3580, 1395.8, 865.939 37, 3780, and 1264:58417 cm−1,
respectively, as suggested by the studies of Refs. [13–16]. The exact value of Q(T ) calculated by
direct sum at 296 K is 9851.664 73. The analytical model developed here gives 9819.750 19, a 0.3%
diMerence.

Table 1 presents the total internal partition sum at 296 K for the species considered in this work.
Also given in the table are the state-independent statistical factors, which are often needed when
comparing with values from the literature.

Comparisons were made with data taken from the literature for at least the principal isotopologue
of each molecule except HI and NO+ for which no literature values were found. In total there are
98 comparisons made. For cases where the literature values are only for the rotational partition
sum, the literature value is multiplied by the vibrational partition sum (product approximation) in
order to compare with the TIPS calculated in this work. Most of the comparisons show very good
agreement: the percent diMerence, 100 ∗ (Qliterature − Qthis work)=Qliterature, for 83 comparisons are less
than 1 percent, 14 are between 1 and 2 percent, and one is 4.75%. The last comparison, for C2H6 at
300 K, demonstrates the need to add anharmonic corrections for torsion in ethane to our calculations.
This is currently being pursued. The comparisons are presented in Ref. [10].

4. Recall of data

Although some compilations of partition functions [1,2,17,18] utilized a four- or Fve-coeOcient
polynomial Ft to the Q(T ) data and provided the coeOcients as a means of rapid recall, this work
has abandoned that concept in favor of interpolation.
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Table 1
Total internal partition sums at 296 K for molecular species on the HITRAN database

Molecule ISO Codea Qtot(296 K) di Molecule ISO Codea Qtot(296 K) di

H2O 161 1:7464× 102 1 OH 61 8:0362× 101 2
181 1:7511× 102 1 81 8:0882× 101 2
171 1:0479× 103 6 62 2:0931× 102 3
162 8:5901× 102 6
182 8:7519× 102 6 HF 19 4:1466× 101 4
172 5:2204× 103 36

HCL 15 1:6066× 102 8
CO2 626 2:8694× 102 1 17 1:6089× 102 8

636 5:7841× 102 2
628 6:0948× 102 1 HBr 19 2:0018× 102 8
627 3:5527× 103 6 11 2:0024× 102 8
638 1:2291× 103 2
637 7:1629× 103 12 HI 17 3:8900× 102 12
828 3:2421× 102 1
728 3:7764× 103 6 ClO 56 3:2746× 103 4
727 1:1002× 104 1 76 3:3323× 103 4

O3 666 3:4838× 103 1 OCS 622 1:2210× 103 1
668 7:4657× 103 1 624 1:2535× 103 1
686 3:6471× 103 1 632 2:4842× 103 2
667 4:3331× 104 6 623 4:9501× 103 4
676 2:1405× 104 6 822 1:3137× 103 1
886 7:8232× 103 1
868 4:0063× 103 1 H2CO 126 2:8467× 103 1
678 4:5896× 104 6 136 5:8376× 103 2
768 4:6468× 104 6 128 2:9864× 103 1
786 4:5388× 104 6
776 2:6630× 105 36 HOCl 165 1:9274× 104 8
767 1:3480× 105 1 167 1:9616× 104 8
888 4:2015× 103 1
887 4:8688× 104 6 N2 44 4:6598× 102 1
878 2:4640× 104 6
778 2:8573× 105 36 HCN 124 8:9529× 102 6
787 1:4126× 105 1 134 1:8403× 103 12
777 8:2864× 105 6 125 6:2141× 105 4

N2O 446 5:0018× 103 9 CH3CL 215 1:1583× 105 4
456 3:3619× 103 6 217 1:1767× 105 4
546 3:4586× 103 6
448 5:3147× 103 9 H2O2 1661 9:8198× 103 1
447 3:0971× 104 54

C2H2 1221 4:1403× 102 1
CO 26 1:0712× 102 1 1231 1:6562× 103 8

36 2:2408× 102 2
28 1:1247× 102 1 C2H6 1221 7:0780× 104 1
27 6:5934× 102 6
38 2:3582× 102 2 PH3 1111 3:2486× 103 2
37 1:3809× 103 12
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Table 1 (continued)

Molecule ISO Codea Qtot(296 K) di Molecule ISO Codea Qtot(296 K) di

COF2 269 7:0044× 104 1
CH4 211 5:9045× 102 1

311 1:1808× 103 2 SF6 29 1:6233× 106 1
212 4:7750× 103 3

H2S 121 5:0307× 102 1
O2 66 2:1577× 102 1 141 5:0435× 102 1

68 4:5230× 102 1 131 2:0149× 103 4
67 2:6406× 103 6

HCOOH 126 3:9133× 104 4
NO 46 1:1421× 103 3

56 7:8926× 102 2 HO2 166 4:3004× 103 2
48 1:2045× 103 3

ClONO2 5646 4:7884× 106 12
SO2 626 6:3403× 103 7646 4:9102× 106 12

646 6:3689× 103 1
NO+ 46 3:1168× 102 3

NO2 646 1:3578× 104 3
HOBr 169 2:8339× 104 8

NH3 4111 1:7252× 103 3 161 2:8238× 104 8
5111 1:1527× 103 2

C2H4 221 1:1041× 104 1
HNO3 146 2:1412× 105 6 231 4:5197× 104 2

aHITRAN isotopomer code

The reasons for this transition are numerous. First, as available computer power and storage space
constantly increase, it is no longer necessary to provide Fnal data in the most terse manner possible.
The entire set of tables as an uncompressed, Fxed format Fle occupies only a few megabytes of
storage space, and although the interpolation routines require somewhat more computer time than
the polynomial expansion, both methods are nearly instantaneous in modern terms.

Second, when polynomial Fts were used, there were a number of species for which the error
introduced by the Fts was greater than the 1% criterion at certain temperatures. Studies revealed that
systems with many low lying vibrational states gave vibrational partition sums that increase rapidly.
When the product with the rotational partition sum is made the resulting total internal partition sum
increases too rapidly to Ft accurately by the polynomial in the chosen temperature ranges. With
interpolation of Q(T ) data the situation is improved. The values produced by interpolation are, in
general, much closer to the calculated values than those produced by polynomial expansion. Fig. 4
shows the error introduced by using interpolation with a step size of 50 K for nitric acid. Nitric acid
was selected for this study because its partition function is diOcult species to Ft by a polynomial
function. As evidenced by these graphs, a step size of 50 K is more than satisfactory, even for a
species which is troublesome to Ft.
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Fig. 4. Error in recalculated Q(T ) by interpolation with 50 K step size for nitric acid.

A third reason for the switch to interpolation is that it presents the data in the most direct
form possible. By looking at the tables, or using them as input data to a graphing program, it is
possible to immediately see trends in the partition functions. Also, since the actual numbers are
provided, rather than coeOcients which are not directly meaningful, there is a much smaller chance
of the wrong values being used in a calculation, or the accidental switching of two coeOcients for
example.

As part of this work, various interpolation schemes were considered. Since partition functions
have a rather exponential trend, the concept of storing either ln(Q(T )) versus T or ln(Q(T )) versus
ln(T ) was tested for the eOcacy of reducing interpolation errors. Three schemes were tested; 4-point
Lagrange interpolation of Q(T ) versus T , ln{Q(T )} versus T , and ln{Q(T )} versus ln{T}. Fig. 5
shows the percent diMerence (calculated-interpolated) for the three schemes with 50 K temperature
step for nitric acid. From the plot it is clear that the Q(T ) versus T and ln{Q(T )} versus ln{T}
interpolations are more precise than the ln{Q(T )} versus T interpolation. Fig. 6 shows the maximum
error at all points within the temperature range of interest for nitric acid, for the Q(T ) versus T
and ln{Q(T )} versus ln{T} interpolations as a function of the spacing between temperature points.
As Fig. 6 shows, although taking the logarithm of both axes signiFcantly reduces the maximum
error at large step-size values, it does little, or even increases the error at smaller step-size values.
Additionally, providing tables of ln(Q(T )) versus ln(T ) still makes it diOcult to examine the data
without performing further calculations. In light of all of these Fndings, and a critical analysis of
the size of the tables required versus induced error, the decision was made to use interpolation with
a 25 K step size and no logarithms.

Data tables were generated that list values for Q(T ) at 25 K intervals. A four-point
Lagrange interpolation scheme is used, with extra points provided below 70 K and above 3000 K
so that a four point interpolation can be used throughout the entire temperature range. These
tables and the four-point Lagrange interpolation scheme were then coded into a FORTRAN pro-
gram (TIPS 2003.for) and subroutine (BD TIPS 2003.for) and are available from one of the au-
thors (RRG, see faculty.uml.edu/Robert Gamache) or the HITRAN ftp site (cfa-ftp.harvard.edu/pub/
HITRAN).



ARTICLE IN PRESS
J. Fischer et al. / Journal of Quantitative Spectroscopy & Radiative Transfer ( ) – 11

Fig. 5. Error in recalculated Q(T ) by diMerent interpola-
tion schemes with 25 K step size for nitric acid. (a) Q
vs. T , (b) ln{Q} vs. T , and (c) ln{Q} vs. ln{T}.

Fig. 6. Error versus temperature step size in interpolation
for Q(T ) vs. T (solid circles) and ln{Q(T )} vs. ln{T}
(triangles) for nitric acid.

5. Discussion

The partition sums calculated above include all isotopologues/isotopomers on the HITRAN database
as well as some isotopologues/isotopomers not currently on the database. The partition sums are pro-
vided in tabular form with a 25 K step size, accompanied by a Lagrange interpolation program to
evaluate the partition sums at any temperature within the temperature range of this study. The con-
version to an interpolation scheme has allowed for the inclusion of a number of partition sums which
were previously undistributed because they could not be Ft with a suitable degree of accuracy by
the polynomial expression used at that time.

Although this work is similar to previously released partition functions, it also includes many
new species, several new analytical models, interpolation for greater accuracy, and incorporates
all of the corrections to the previous set of partition functions discussed in Goldman et al. [3].
There are a number of improvements that will be made to the partition sums in the future. For
molecular systems where it is necessary to use the product approximation this work only included
the harmonic oscillator approximation of Herzberg [9]. Anharmonic corrections will be added to the
model for ethane. The analytical approximation of the rotational partition sum for asymmetric rotors
[19] includes a component for centrifugal distortion that was not applied in this work.

Acknowledgements

The authors would like to acknowledge Alain Barbe for providing constants for rare, isotopically
substituted species of ozone. Two of the authors (J.F. and R.R.G.) are also pleased to acknowledge
the support of this research by the National Science Foundation Grant No. ATM-9812540, and the
University of Massachusetts Lowell Council on Teaching, Learning and Research as Scholarship.
Any opinions, Fndings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reSect the views of the National Science Foundation.



12 J. Fischer et al. / Journal of Quantitative Spectroscopy & Radiative Transfer ( ) –

ARTICLE IN PRESS

References

[1] Gamache RR, Hawkins RL, Rothman LS. Total internal partition sums in the temperature range 70–3000 K:
atmospheric linear molecules. J Mol Spectrosc 1990;142:205–19.

[2] Gamache RR, Kennedy S, Hawkins R, Rothman LS. Total internal partition sums for molecules in the terrestrial
atmosphere. J Mol Struct 2000;517-518:413–31.

[3] Goldman A, Gamache RR, Perrin A, Flaud J-M, Rinsland CP, Rothman LS. HITRAN partition functions and
weighted transition-moments squared. JQSRT 2000;66:455–86.

[4] Rothman LS, Barbe A, Benner DC, Brown LR, Camy-Peyret C, Carleer MR, Chance KV, Clerbaux C, Dana V,
Devi VM, Fayt A, Flaud J-M, Gamache RR, Goldman A, Jacquemart D, Jucks KW, LaMerty WJ, Mandin J-Y,
Massie ST, Nemtchinov V, Newnham DA, Perrin A, Rinsland CP, Schroeder J, Smith KM, Smith MAH, Tang K,
Toth RA, Vander-Auwera J, Varanasi P, Yoshino K. The HITRAN molecular spectroscopic database: edition of
2000 including updates through 2001. JQSRT doi:10.1016/S0022-4073(03)00146-8.

[5] McDowell RS. Rotational partition functions for linear molecules. J Chem Phys 1988;88:356–61.
[6] Watson JKG. The asymptotic asymmetric-top rotational partition function. Mol Phys 1988;65:1377–97.
[7] McDowell RS. Rotational partition functions for spherical-top molecules. JQSRT 1987;71:414–29.
[8] McDowell RS. Rotational partition functions for symmetric-top molecules. J Chem Phys 1990;93:2801–11.
[9] Herzberg G. Molecular spectra and molecular structure II. Infrared and Raman spectra of polyatomic molecules.

New York: Van Nostrand, 1960.
[10] Fischer J, Gamache RR, Goldman A, Rothman LS, Perrin A. Total internal partition sums for molecular species

on the HITRAN database. ScientiFc report No. AS03-01, Department of Environmental, Earth, and Atmospheric
Sciences, University of Massachusetts Lowell, 2003.

[11] Beaudet RA, Poynter RL. Mirowave spectra of molecules of astrophysical interest. XII. Hydroxyl radical. J Phys
Chem Ref Data 1978;7:311–3.

[12] Perrin A, Flaud J-M, Camy-Peyret C, Carli B, Carlotti M. The far infrared spectrum of 14N16O2. Electron spin-rotation
and hyperFne Fermi contact resonances in the ground state. Mol Phys 1988;63:791–810.

[13] Flaud J-M, Camy-Peyret C, Johns JWC, Carli B. The far infrared spectrum of H2O2. First observation of staggering
of the levels and determination of the cis barrier. J Chem Phys 1989;91:150–1.

[14] Perrin A, Flaud J-M, Camy-Peyret C, Schernaul R, Winnewisser M, Mandin J-Y, Dana V, Badaoui M, Koput J.
Line intensities in the far infrared spectrum of H2O2. J Molec Spectrosc 1996;176:287–96.

[15] Flaud J-M, Perrin A. High-resolution infrared spectroscopy and one dimensional large amplitude motion in
asymmetric tops: HNO3 and H2O2. In Papousek D, editor. Vibration-Rotational Spectroscopy & Molecular Dynamics,
Advanced series in physical chemistry, Vol. 9. Singapore: World ScientiFc Publishing Co., 1997. p. 396–460
[chapter 7].

[16] Klee S, Winnewisser Perrin A, Flaud J-M. Absolute line intensities for the v6 band of H2O2. J Molec Spectrosc
1999;195:154–61.

[17] Fischer J, Gamache RR. Total internal partition sums for molecules of astrophysical interest. JQSRT 2001;74:
263–73.

[18] Fischer J, Gamache RR. Partition sums for non-local thermodynamic equilibrium applications. JQSRT 2001;74:
273–84.

[19] Watson JKG. Determination of centrifugal distortion coeOcients of asymmetric-top molecules. J Chem Phys
1967;46:1935–49.


	Total internal partition sums for molecular species in the 2000 edition of the HITRAN database
	Overview
	Methodology
	Calculations
	Recall of data
	Discussion
	Acknowledgements
	References


