Comparison of trajectory models in calculations of N$_2$-broadened half-widths and N$_2$-induced line shifts for the rotational band of H$_2^{16}$O and comparison with measurements

J. Lamouroux a,b, R.R. Gamache a,b,*, A.L. Laraia a,b, Q. Ma c, R.H. Tipping d

a University of Massachusetts, School of Marine Sciences, MA 01854-5045, USA
b University of Massachusetts Lowell, Department of Environmental, Earth, and Atmospheric Sciences, One University Avenue, Lowell, MA 01854-5045, USA
c NASA/Goddard Institute for Space Studies, Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, NY 10025, USA
d Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA

1. Introduction

Since the pioneer works of Anderson [1,2] (ATC) and Tsao and Curnutte [3], several semiclassical theoretical models were developed to predict the pressure-broadening parameters [4–6] (and references therein). Within these theories, the relative motions of the perturber and the radiator (trajectories) are described classically and often parameterized by the molecular interaction potential used to describe the molecular collisions through various classical dynamics models. In the ATC theory, the bending of the trajectories due to the stronger interaction at close distances was not taken into account and simple straight paths with constant relative velocity were used. Moreover to insure physical behavior of the theory requires an unphysical cutoff be applied at small impact parameters. In the semiclassical Quantum Fourier Transform (QFT) theory [7,8], the cutoff parameter was adjusted so that the theoretical calculations agree with measured values for high and intermediate J lines [8]. This model leads to good predictions for systems where electrostatic interactions are dominant (“strong-collision” systems), however inaccurate results are obtained when close collisions are important, i.e. weak interacting systems. Here the notion of strong and weak collision systems adopts the definition of Oka [9].

Several developments have focused on building cutoff-free theories and, in general, improving the molecular...
dynamics models [10–22]. Herman and Tipping [10–12] considered approximate curved trajectories determined by an isotropic intermolecular Lennard–Jones potential. An isotropic potential was also used within the approach developed by Neilsen and Gordon [13] but the computation time required made it unusable for practical applications. A similar dynamical model was used by Smith et al. [14], however the peaking approximation made this theory inaccurate at very low quantum numbers. In the formalism developed by Robert and Bonamy (RB) [16], the cutoff procedure was eliminated through the application of the linked-cluster techniques and the cumulant expansion [23]. The RB model introduced a short-range atom–atom potential and an analytical trajectory model (correct to second order in time) defined by the isotropic part of the atom–atom potential. Since its development for linear active molecule perturbed by a linear molecule or an atom, the RB formalism has been extended to asymmetric and symmetric top [24–26], and spherical top molecules [27–30]. The extension using a complex implementation (CRB) [31] allows the calculation of the pressure-broadening parameters through a single calculation that takes into account simultaneously the real and imaginary components of the scattering matrix. The RB and CRB calculations of broadening–pressure parameters were performed for numerous molecular systems, one can refer to Refs. [5,6] and references therein for a detailed bibliography. These studies using curved trajectories based on the isotropic part of the intermolecular potential show improvement of the calculations relative to the straight path model.

Due to the improvement in computational resources, the influence of real trajectories can be studied using the so-called “exact” trajectory models based on the classical dynamic equations of motion [32] (Hamilton’s equations). Bykov et al. [33] (and references therein) proposed an exact solution of Hamilton’s equations based on a universal function of two arguments, which is independent of the parameters of potential and initial conditions of the collisions, allowing the general solution to then be applied to collision systems where long-range interactions are dominant. Joubert et al. [34] and Buldyreva et al. [35–38] made calculations using this formalism for several molecular systems. “Exact” trajectories can also be obtained by the numerical integration of Hamilton’s equations of motion. RB calculations for self-broadening of CO and N₂ were done using several “exact” trajectory models by Afzelius et al. [38]. Within the CRB framework, Neshyba and Gamache [39] made calculations for N₂-broadening of ~10 water vapor transitions using both the parabolic model of Robert and Bonamy and the “exact” trajectory model by solving Hamilton’s equations. They found less than a percent difference between the half-widths from the two methods of calculation. Antony et al. [40] have calculated the half-widths of self-broadening of H₂O using the numerical integration of Hamilton’s equations, however they found no significant differences between the parabolic and the “exact” model for this strong-collision system. Despite the fact that these procedures are more time consuming than approximate trajectories, as numerical integration is required at each point of the trajectory, they do yield more realistic trajectories. It has also been found that the RB parabolic model is inappropriate for some collision systems, e.g. CO₂–N₂ or CO₂–O₂ [41,42].

Water vapor plays a crucial role in the terrestrial atmosphere and in interstellar space [43]. In the Earth’s atmosphere, H₂O is the strongest absorber of infrared radiation [44]. From remote sensing measurements one can determine the temperature, pressure, and concentration profiles for all the major gases present in the atmosphere if the spectroscopic parameters (positions, intensities, half-widths, line shifts, and temperature dependence) are known. These parameters are available from databases such as HITRAN [45] or GEISA [46]. Among the parameters used for the inversion of the remote sensing measurement, the half-widths and line shifts are those with the largest uncertainty. Several studies of the 22 and 183 GHz lines of water vapor [47–49] have shown that small changes in the pressure-broadened parameters can yield significant improvements in retrieved profiles. Due to its importance for the Earth’s atmosphere, numerous measurements (Ref. [50] and references therein) and calculations [51,55–55] of the pressure-broadened parameters have been done for self, N₂, O₂, and air broadening of water vapor. The improvement of both experimental techniques and semiclassical theories has shown that small effects previously considered as insignificant may be important to meet the requirements of the spectroscopic and remote sensing community [56–58]. The inclusion of the imaginary components in the calculations of the half-widths is an example. The mean- relative velocity approximation has been used in almost all the calculations, despite the fact that studies have shown [59,60] the importance of explicitly averaging over the Maxwell–Boltzmann distribution. Similarly, the question of the influence of vibration on the half-widths of water vapor was considered in previous studies [61–65], a survey paper [66], and several workshops [56–58] that estimated that the effect of the vibrational states of the transition was smaller than experimental uncertainties. A study by Gamache and Hartmann [67] demonstrated, for the first time, a clear vibrational dependence of the half-widths for certain classes of transition in both the measured and calculated data. The effects mentioned above must now be considered if the calculations are to meet the needs of the spectroscopic and remote sensing communities.

Similar questions arise regarding the influence of the trajectory models on the half-widths and line shifts. While some studies have shown no difference between the two models [39,40], these studies considered only a small number of broad lines (large half-width). In 2009, in a study of some transitions in the rotational band of water broadened by nitrogen, Tipping and Ma [68] found the difference can reach about 10%.

In a recent work [69], the question of trajectory models was addressed for the half-widths. The present study extends this work using a higher order expansion of the intermolecular potential as recommended by Ma et al. [22], considers the line shifts, explains some of the observed features in more detail, and compares the calculations with measurement. CRB calculations using trajectories obtained from solving Hamilton’s equations and from the parabolic approximation were made and the
results compared with each other and with measurement. The two trajectory models are compared with the needs of the remote sensing community in mind.

2. Theory

2.1. The complex Robert–Bonamy formalism

The Complex Robert–Bonamy formalism (CRB) used for the calculations is described in details in Refs. [31,70–72], only the main features are given here. Within this formalism, the half-width, \(\gamma \), and line shift, \(\delta \), of a ro-vibrational transition \(f \leftrightarrow i \) are obtained from a single calculation by the real and minus the imaginary part of

\[
\langle \gamma - i \delta \rangle_{f \leftrightarrow i} = \frac{n_2}{2\pi c} \left< |\psi_{v,b,J}(1)|^2 - |\psi_{v,b,J}(0)|^2 \right>_{v,b,J}
\]

where \(n_2 \) is the number density of perturbers, \(c \) the speed of light, and \(\langle \cdot \rangle_{v,b,J} \) represents an average over all trajectories (impact parameter \(b \) and initial relative velocity \(v \)) and initial rotational state \(J_2 \) of the collision partner. \(S_1 \) and \(S_2 = S_1^2 + i S_2^2 \) are, respectively, the first and the second order terms in the successive expansion of the Liouville scattering matrix, \(S \). They depend on the ro-vibrational states involved and associated collision induced jumps from these levels, and on the intermolecular potential and characteristics of the collision dynamics. Note that since there is no change in the vibrational state, the \(S_1 \) term vanishes. Within the semiclassical CRB formalism, the \(S_2 \) terms can be written as the product of reduced matrix elements (quantum mechanical component) for the perturber and the radiator and the resonances functions (classical component). The exact forms of these terms can be found in Refs. [70–72].

The wavefunctions used to evaluate the reduced matrix elements are obtained by diagonalizing the Watson Hamiltonian [73] in a symmetric top basis. The wavefunctions for the ground vibrational state are determined using the constants of Matsushima et al. [74]. The molecular rotation constants for \(N_2 \) are from Huber and Herzberg [75].

The intermolecular potential used in the calculations is a sum of an electrostatic component (dipole and quadrupole moments of \(H_2O \) with the quadrupole moment of \(N_2 \)) and an atom–atom component. Many of the molecular parameters for the \(H_2O-N_2 \) system are well known and the present calculations use the best available values from the literature [76–79]. The dipole and quadrupole moments of water vapor, and the quadrupole moment of nitrogen are listed in Table 1.

The atom–atom potential is defined as the sum of pairwise Lennard–Jones 6–12 interactions [80] between atoms of the radiating molecule and the perturbing molecule, \(N_2 \). The Lennard–Jones parameters for the atomic pairs, the \(e_{ij} \) and \(\sigma_{ij} \), are usually constructed from homonuclear–atom–atom parameters, \(e_i \) and \(\sigma_i \), by “combination rules” [81–84]. The use of different combination rules and sources of data can yield values of \(e_{ij} \) and \(\sigma_{ij} \) that differ significantly. Hence, these parameters are generally adjusted if reliable experimental data are available. Here, these parameters are adjusted to fit some 177 measured half-widths and 163 line shifts as described below.

The atom–atom distance, \(r_{ij} \), is expressed in terms of the center of mass separation, \(R \), via the expansion in \(1/R \) of Sack [85]. The expansion is truncated at an order and rank (see Ref. [72] for details). Here the formulation of Neshyba and Gamache [26] expanded to twentieth order and rank 4 is used.

The isotropic part of the expanded atom–atom short range potential is then used to define the curved trajectories used in our calculations.

2.2. Trajectory models

Most of the previous calculations within the CRB formalism employed the RB parabolic trajectory model [16]. In this model the isotropic part of the intermolecular potential is taken into account in determining the distance \(r_c \), the velocity \(v_c \), and the force, \(F(r_c) \), at closest approach. Expanding to second order in time, the trajectory is defined by

\[
r(t) = r_c + v_c t + \frac{F(r_c)}{\mu} t^2 \quad (2)
\]

where \(\mu \) is the reduced mass of the system. Within the Robert–Bonamy formalism, the trajectories are in a plane and can be described by the intermolecular distance \(R(t) \) and the collision angle \(\psi(t) \) (Fig. 1). Within the parabolic model, \(R(t) \) and \(\psi(t) \) can be expressed as

\[
R(t) = \sqrt{r_c^2 + v_c^2 t^2} ; \quad \psi(t) = v_c t / \sqrt{r_c^2 + v_c^2 t^2} \quad (3)
\]

with the constraint \(\sin^2 \psi(t) + \cos^2 \psi(t) = 1 \). This constraint must be enforced since the sine can become larger than one for large values of \(r_c \) because the approximation is
only valid to second order in time. In the model, the true trajectory is replaced by an approximate parabolic trajectory with an effective relative velocity \(v' \) given by

\[
v'_c = v_c \left(1 + \frac{8e \sigma}{\mu v^2} \left[\left(\frac{\sigma}{r_c} \right)^{12} - 2 \left(\frac{\sigma}{r_c} \right)^{6} \right] \right)^{1/2}
\]

where \(e \) and \(\sigma \) are the molecular parameters of the isotropic 6–12 Lennard–Jones potential. Within this analytical model, the classical parameters \(b, v \) can be replaced by \(r_c, v_c \) using the conservation of momentum and the conversation of energy \[16\].

This model corresponds to approximated solutions at the second order of the classical dynamical equations of motion, from here on designated PA. More realistic trajectories can be obtained by solving Hamilton’s equations of motion (HE model). For a given time \(t \), considering the Hamiltonian \(H \) formed by the kinetic energy and the isotropic Lennard–Jones potential, the Cartesian components of the trajectories \(X_i \) are obtained by solving the system of equations

\[
dt X_i = \frac{\partial H}{\partial P_i}; \quad dt P_i = -\frac{\partial H}{\partial X_i}; \quad i = 1, \ldots, 4
\]

where \(P_i \) is the conjugate momentum of \(X_i \). The odd and even values of the index \(i \) refer to the parallel and perpendicular component of the trajectories in the plane, respectively. The initial conditions \(X_i^0, P_i^0 \) have to be given in order to describe the correct relative motion of the perturber and the radiator, which can be seen as the motion of an effective particle with a reduced mass around the center of mass. From the solutions of Hamilton’s equations, the trajectories are calculated by

\[
R(t) = \sqrt{(X_1 - X_3)^2 + (X_2 - X_4)^2}
\]

\[
\psi(t) = \arctan((X_2 - X_4)/(X_1 - X_3))
\]

The closest approach geometry was chosen as the origin of the frame by defining the conditions \(R(0) = r_c; \quad \psi(0) = 0 \). The closest approach distance and angle are determined numerically by this procedure using a fine time grid. In order to determine accurately those parameters, the grid step is reduced around the closest approach geometry. The differential equations algorithm of Shampine and Gordon \[86\] is used to perform the numerical integration of Hamilton’s equations described in Eq. (5). From the distance of closest approach, the trajectory for the positive times is determined by the same procedure but at predetermined time steps up to the maximum time value chosen for the numerical integration (input to the codes). The trajectory is then symmetrized around the closest approach geometry to yield the complete numerical trajectory. Note that in this case, the distance at closest approach \(r_c \) is no longer a meaningful parameter, and the integration in Eq. (1) must be done over the \(b, v \) parameters.

3. Calculations

Initial HE calculations were done using the CRB formalism for \(\text{N}_2 \)-broadening of water. Following the study of Ma et al. \[22\], the intermolecular potential was expanded to high order and rank, 20 4 4, in order to assure the convergence of the half-widths and line shifts. This yields 1073 terms in the potential. The atom–atom parameters of the previous work \[87\] for the \((000)\)–\((000)\) band of \(\text{H}_2^{16}\text{O} \) were used as starting values and were then adjusted to produce line shape parameters which agree with the experimental data for the half-widths and line shifts taken from the measurement database for \(\text{H}_2\text{O}–\text{N}_2 \) \[50\]. Also included in the fit are the isotropic Lennard–Jones parameters used for the calculation of the trajectories. Their initial values are determined by the fit of the isotropic part of the potential to an effective 6–12 Lennard Jones potential. 177 (163) transitions were included in the fit for the half-widths (line shifts), ranging from 0.016 cm\(^{-1}\) atm\(^{-1}\) to 0.117 cm\(^{-1}\) atm\(^{-1}\) (from 0–0.018 cm\(^{-1}\) atm\(^{-1}\) to 0.025 cm\(^{-1}\) atm\(^{-1}\)). The half-widths are taken from Devi et al. \[88\], Mrowinski \[89\], Goyette et al. \[90\], Frenkel and Woods \[91\], Bauer et al. \[92\], Liebe and Dillon \[94\], Kasuga et al. \[95\], Emery \[96\], Toth \[97\], Chance et al. \[98\], Tretyakov et al. \[99\], Cazzoli et al. \[100\,101\], Seta et al. \[102\], Koshelev et al. \[104\], Golubiatnikov \[105\], Golubiatnikov et al. \[106\], and Gamache and Laraia \[87\]. The line shifts are from Toth \[97\], Tretyakov et al. \[99\], Koshelev et al. \[104\], Golubiatnikov \[105\], Golubiatnikov et al. \[106\]. Table 2 reports the final values of the fitted parameters. For the half-widths, 99 of the 177 transitions are within 2\% of the experimental errors, and this value is 44 of 169 for the line shifts.

Using these parameters the half-widths and the line shifts for the 1639 transitions of the \((000)\)–\((000)\) band of \(\text{H}_2^{16}\text{O} \) considered in the previous work \[87\] are calculated with \(\text{N}_2 \) as the perturbing gas using the potential expanded at 20th order and rank 4 and 4; first with the HE trajectory model and next using the RB parabolic approximation. In the present calculations, the average over the Maxwell–Boltzmann distribution of velocities is done and results are presented for seven temperatures: 200, 225, 275, 300, 500, and 700 K. 4. Discussion

In Fig. 2 the percent difference between the half-widths obtained from the parabolic and the HE trajectory models are plotted versus the half-width in cm\(^{-1}\) atm\(^{-1}\) for the nitrogen-broadening of water. The plot symbols are \(f \). The general trend from the broad to intermediate to narrow lines is that the percent difference and the spread of the data increase. For the broad lines, the difference is roughly \(-1\% \), whereas it reaches almost \(+5\% \) for the intermediate and \(-5\% \) for the narrow lines. This indicates that for the transitions with large half-widths the parabolic and HE models give similar results, confirming the

| Table 2: \(\text{H}_2\text{O}–\text{N}_2 \) atom–atom parameters used in the CRB calculations. |
|-----------------|-------|-------|
| \(\varepsilon / k_B \) (K) | 19.539 | 2.783 |
| \(\sigma (\text{Å}) \) | 41.033 | 2.583 |
| Trajectory | 68.669 | 3.5827 |

Please cite this article as: Lamouroux J, et al. Comparison of trajectory models in calculations of \(\text{N}_2 \)-broadened half-widths and \(\text{N}_2 \)-induced line shifts for the rotational band of \(\text{H}_2^{16}\text{O} \) and comparison with.... Journal of Quantitative Spectroscopy & Radiative Transfer (2011), doi:10.1016/j.jqsrt.2011.11.010
For these two transitions, the imaginary part of the shift is proportional to \(\exp(-ReS_2(b)) \) whose magnitudes are close to zero in small \(b \) region because \(ReS_2(b) \) is larger there. Thus, one expects the effects on the shifts from choosing different trajectory models are less significant than on the half-widths. In addition, one

\[\frac{1}{c}(\delta_0 - \delta_H) \]

results of Refs. [39,40], however for the intermediate and narrow lines a more realistic trajectory model should be employed. The statistics (percent difference (PD), average absolute percent difference (AAPD), and standard deviation (SD)) of the comparison for the 1639 transitions involved the calculations are presented in Table 3. Plots were also made with the \(x \)-axis being \(J' + 0.1(J'' - Ka^\ast) \) with \(Ka^\ast \) as the plot symbols or \(Ka'' + 0.1(J'' - Ka^\ast) \) with \(J'' \) as the plot symbols to see if structure with respect to the rotational quantum numbers could be detected. Some of these plots are available on one of the authors web site (faculty.uml.edu/Robert_Gamache) Unfortunately, no structure could be detected that would allow the development of propensity rules.

In order to better understand the influence of the trajectory model on these results, the 16_11 \(\rightarrow \) 16_12 (hereafter called line 1) and 15_15 \(\rightarrow \) 14_14 (hereafter called line 2) transitions of the rotational band of water were studied in detail. These transitions are similar in \(J' \) values but yield about \(-1.5% \) and \(-5.3% \) difference, respectively, on the half-widths between the two trajectory models. For these two transitions, the imaginary and real parts of \(1 - e^{-b} \) as a function of the impact parameter \(b \) is plotted in Fig. 3. In the CRB formalism both the real and imaginary parts contribute to the half-width and line shift. However, in this work using the CRB theory for \(H_2O-N_2 \) the effect of the imaginary term on the half-width is small [72] hence the focus is on graph on the right-hand-side of Fig. 3. The integrand has very different behavior for the two transitions: for line 1 the integrand reaches 1 (saturates) to about 3 A whereas for line 2 it never saturates. Notice also that as the real part saturates for line 1 the imaginary part goes to zero.

A comparison of the trajectories obtained from both models for different values of the impact parameter \(b \) is presented in Fig. 4. It is observed that as the value of \(b \) increases, the difference between the two trajectory models decreases. For larger value of \(b \), the trajectories are exactly the same and as \(b \) increases further both models reduce to the straight-line trajectory model. Consequently for line 1, which saturates about 3 A, the trajectories are similar and the difference between the half-widths from the two models is small. For line 2 the integrand does not saturate and the integral continues to small values of \(b \) where the results are sensitive to the details of the short-range atom–atom potential. Here at small impact parameter the differences between the two trajectory models are large, leading to different values of the half-width from the two models.

The differences between the trajectory models are greatest for nearly head-on collisions with small impact parameter \(b \). Meanwhile, as shown in Eq. (1), the integrand of the shift is proportional to \(\exp(-ReS_2(b)) \) whose magnitudes are close to zero in small \(b \) region because \(ReS_2(b) \) is larger there. Thus, one expects the effects on the shifts from choosing different trajectory models are less significant than on the half-widths. In addition, one

Please cite this article as: Lamouroux J, et al. Comparison of trajectory models in calculations of N2-broadened half-widths and N2-induced line shifts for the rotational band of H216O and comparison with... Journal of Quantitative Spectroscopy & Radiative Transfer (2011), doi:10.1016/j.jqsrt.2011.11.010
expects that in general, calculated shifts are mainly determined by the long-range interactions. However, if percent differences are calculated the range is from \(-2650\%\) to \(600\%\). In forming the percent difference one divides by the rotational band line shifts (small numbers) which greatly exaggerates the values. A better method is to look at the difference in the line shifts, \(\delta_{\text{HE}} - \delta_{\text{PA}}\) in \(\text{cm}^{-1} \text{ atm}^{-1}\). Fig. 5 shows the difference, \(\delta_{\text{HE}} - \delta_{\text{PA}}\), in the \(\text{N}_2\)-induced line shifts calculated using the two trajectory models versus \(J_0 + 0.1(J'' - K_a)\), where the second term is to spread out points that have the same \(J''\). The plot symbols in Fig. 5 are \(K_{a,\text{min}}\) of the transition (minimum of \(K_a''\) and \(K_a'\)) to look for structure with respect to the \(K_{a,\text{min}}\) of the transition. Other plots were made to look at structure with respect to \(J''\) and \(K_a''\). From these plots no apparent structures were found. The range of the deviations in Fig. 5 is small (up to \(0.0027 \text{ cm}^{-1} \text{ atm}^{-1}\)) compared with the average absolute shift (0.007 \(\text{cm}^{-1} \text{ atm}^{-1}\) for the HE calculations).

The calculations using both trajectory models were compared to the \(\text{N}_2\)-broadening measurement database [50]. The average percent difference between the calculations and the measurements for each trajectory model are very similar; \(-5.4\%\) for the HE model and \(-5.57\%\) for the PA. There is considerable scatter in the measurements [50], which contributes to the similar differences between the two trajectory models. Closer inspection shows that when the difference between the HE and PA calculations is greater than \(1.75\%\) the HE calculations are always closer to the measured data. For \(\text{N}_2\)-broadening of \(\text{H}_2\text{O}\) only the measurements of Toth [97] considered a large number of transitions. These data are also thought to be among the best for the rotational band. Considering Toth’s \(\text{N}_2\)-broadened half-width data (158 transitions) the HE calculations show a \(-1.86\%\) PD, a 11.07 AAPD, and 17.18 SD compared with \(-2.01\%\), 12.02 AAPD, and 18.19 SD for the PA calculations. The statistics for comparing with all \(\text{N}_2\)-broadening measurements are presented in Table 4.

There are less measured data for the line shifts. Table 5 gives the statistics for the comparison of the calculations with these measurements. The HE calculations agree better with the measurements than do the PA calculations.

5. Conclusions

The half-widths and line shifts of 1639 rotational band transitions of water vapor in collision with \(\text{N}_2\) were calculated using trajectories determined by solving Hamilton’s equations of motion and by the Robert–Bonamy parabolic approximation. The parameters determined from the two trajectory models are compared with each other and with the measurement database. The differences in half-widths between the two trajectory models range from about \(5\%\) to \(-5\%\). These differences are greater than the current requirements of the spectroscopic and remote sensing communities [56–58]. It is important to note that future missions are already demanding a reduction in these uncertainties. Comparison of the HE and PA calculations with the measurement databases reveals that the HE calculations show better agreement with measurements for both the half-width and the line shift.

Despite the fact that the HE trajectory solutions are computationally more intense, theoretical calculations of
Fig. 4. Comparison of the trajectories obtained from Hamilton’s equations and parabolic trajectory model for different values of the impact parameter \(b \) (in Angstrom).

Fig. 5. Deviation, \(\delta_{\text{HE}} - \delta_{\text{PA}} \), between Hamilton’s equations and the parabolic trajectory model calculations of the line shifts versus \(J' + 0.1(J' - K_{\alpha}') \) for nitrogen broadening of water. The plot symbols are \(K_{\alpha}\min\).

Please cite this article as: Lamouroux J, et al. Comparison of trajectory models in calculations of \(\text{N}_2 \)-broadened half-widths and \(\text{N}_2 \)-induced line shifts for the rotational band of \(\text{H}_2\text{H}^{16}\text{O} \) and comparison with... Journal of Quantitative Spectroscopy & Radiative Transfer (2011), doi:10.1016/j.jqsrt.2011.11.010
the line shape parameters must employ this model if the needs of the remote sensing community are to be met. As a result of this study, our line shape codes now use Hamilton’s equations for the trajectory model.

Acknowledgment

JL, RRG, ALL are pleased to acknowledge support of this research by the National Science Foundation through Grant no. ATM-0803135. QM and RT acknowledge financial support from NASA under Grants NNG06GB23G, NNX09AB62G, and FCCS-547. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or NASA.

References

Table 4

Statistics of the comparison of measured half-width data with the half-width parameters determined from the two trajectory models of this study for N2-broadening of H2O.

<table>
<thead>
<tr>
<th>Refs.</th>
<th># Points</th>
<th>HE</th>
<th>PA</th>
<th>PD</th>
<th>AAPD</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>[107]</td>
<td>17</td>
<td>0.99</td>
<td>8.94</td>
<td>12.66</td>
<td>0.68</td>
<td>8.79</td>
</tr>
<tr>
<td>[108]</td>
<td>7</td>
<td>−39.12</td>
<td>51.58</td>
<td>62.62</td>
<td>−41.04</td>
<td>54.25</td>
</tr>
<tr>
<td>[109]</td>
<td>15</td>
<td>29.82</td>
<td>29.82</td>
<td>16.08</td>
<td>30.02</td>
<td>30.02</td>
</tr>
<tr>
<td>[110]</td>
<td>3</td>
<td>28.05</td>
<td>28.05</td>
<td>10.64</td>
<td>27.70</td>
<td>27.70</td>
</tr>
<tr>
<td>[97]</td>
<td>158</td>
<td>−1.86</td>
<td>11.07</td>
<td>17.18</td>
<td>−2.01</td>
<td>12.02</td>
</tr>
<tr>
<td>[111]</td>
<td>42</td>
<td>−34.70</td>
<td>34.85</td>
<td>37.42</td>
<td>−34.68</td>
<td>34.88</td>
</tr>
<tr>
<td>[103]</td>
<td>2</td>
<td>−0.31</td>
<td>1.17</td>
<td>−</td>
<td>−0.76</td>
<td>1.09</td>
</tr>
<tr>
<td>[104]</td>
<td>3</td>
<td>3.64</td>
<td>3.64</td>
<td>−</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>[101]</td>
<td>5</td>
<td>8.34</td>
<td>8.34</td>
<td>4.59</td>
<td>8.11</td>
<td>8.11</td>
</tr>
</tbody>
</table>

*a See Table 3 for definitions.

Table 5

Statistics of the comparison of measured line shift data with the line shift parameters determined from the two trajectory models of this study for H2O in collision with N2.

<table>
<thead>
<tr>
<th>Refs.</th>
<th># Data</th>
<th>HE</th>
<th>PA</th>
<th>AD*</th>
<th>AAD*</th>
<th>SD*</th>
<th>AD*</th>
<th>AAD*</th>
<th>SD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>[97]</td>
<td>158</td>
<td>−0.105</td>
<td>0.345</td>
<td>0.435</td>
<td>−0.197</td>
<td>0.712</td>
<td>0.891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[104]</td>
<td>3</td>
<td>0.0263</td>
<td>0.140</td>
<td>−</td>
<td>−0.0767</td>
<td>0.305</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[106]</td>
<td>2</td>
<td>−0.0180</td>
<td>0.0250</td>
<td>−</td>
<td>−0.0070</td>
<td>0.0500</td>
<td>−</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please cite this article as: Lamouroux J, et al. Comparison of trajectory models in calculations of N2-broadened half-widths and N2-induced line shifts for the rotational band of H216O and comparison with.... Journal of Quantitative Spectroscopy & Radiative Transfer (2011), doi:10.1016/j.jqsrt.2011.11.010
to model rovibrational and rovibrionic spectra of molecules pertaining to various point groups. Journal of Molecular Spectroscopy 2004;228:620–34.

