Goal: To become familiar with the methods that researchers use to investigate aspects of causation and methods of treatment

UNIT 18: SCIENTIFIC STUDY OF CAUSATION AND TREATMENT
Scientific Study of Causation and Treatment

- Methods for studying causation
 - Case studies
 - Correlational research and differences-between-groups
 - Prospective designs
 - Experimental designs
Scientific Study of Causation and Treatment

- Case studies: many theories about causation come from therapists and their case studies
- Exciting, and a good way to generate ideas, but limited:
 - Are cases the exception or the rule? Can we generalize?
 - Very subjective data, vulnerable to therapist/observer bias, often little or no objective measurement
 - Client bias? Do they report the truth? Or tell us what we want to hear?
 - Replication difficult, even impossible
 - Post hoc reasoning--clients report what happened before, but just because X comes before Y does not mean that X caused Y
Scientific Study of Causation and Treatment

- Correlational designs: widely used
 - Measure two (or more) variables
 - Calculate the correlation coefficient (0.0 to 1.0) to assess the degree to which the two go together
 - Identify the direction (+ or -) for positive (direct) or negative (inverse) correlation
 - When two variables are significantly correlated, each can be viewed as a risk factor/predictor for the other
 - If one or both variables is categorical (e.g., a diagnosis, or gender), the design is often called “differences-between-groups”
Scientific Study of Causation and Treatment

- Correlation does not mean causation
- Even when the correlation or the difference is significant, we cannot be sure the variables are causally connected:
 - Directionality (the chicken-and-egg problem)
 - Third-variable (when the two are connected only because the two have some common cause)
 - Prospective designs can address the first (not the second), but are hard to conduct compared to cross-sectional
Scientific Study of Causation and Treatment

- Experimental designs are the strongest test of cause-and-effect relationships
 - Select research participants
 - Randomly assign participants to two or more groups
 - Manipulate the independent variable (the suspected cause)
 - Measure the dependent variable (the hypothesized effect)
 - Use statistics to see if there is a significant difference in the DV between groups
Scientific Study of Causation and Treatment

- Experimental control: to be sure that it was the IV that caused the change in DV, all other possibilities ("confounds") have to be controlled
 - Carry out experimental procedures under constant conditions (e.g., laboratories)
 - Randomly assign participants to groups to control for individual differences
 - Double-blind participants and researchers to control for their bias
- Control is the key that distinguishes true experiments from differences-between-groups designs
Scientific Study of Causation and Treatment

- Experimental studies of psychopathology are relatively rare:
 - Some experimental manipulations could cause harm
 - Some important causes might not be easily manipulated under controlled conditions
 - Highly controlled conditions might be artificial and not generalizable to the real world
 - Even if A causes B, it might cause more than B, and factors other than A might also cause B
Scientific Study of Causation and Treatment

- Analog designs allow experimental studies to be more easily carried out:
 - Animal studies
 - Studies of non-patients who have problems similar to those of clinical patients
 - Benign manipulations—making independent variables less intense, or for only brief durations, to do little or no harm

- No one design is perfect, so studies of causation rely on multiple methods: the convergence principle
Scientific Study of Causation and Treatment

- Methods for studying treatment
 - Case studies
 - Surveys
 - Correlational research and differences-between-groups
 - Experimental designs
 - Single-subject designs
Scientific Study of Causation and Treatment

- Case studies can be fascinating, can illustrate treatment methods, can be used to pilot new methods
- But same limitations as noted earlier
- And even when treatment seems to work, many alternative explanations:
 - Time and spontaneous remission
 - Other changes external to the treatment
 - Placebo effects
 - Non-specific treatment effects
 - Invalid reports of improvement
 - Sampling effects
Scientific Study of Causation and Treatment

- Surveys and correlational and differences-between-groups studies often use better samples than case studies, and often employ more objective forms of measurement.
- But these are open to all the same alternative explanations that occur with case studies.
Scientific Study of Causation and Treatment

- Experimental methods are the strongest
- The double-blind randomized placebo-control design—the “gold standard”
- Growing emphasis on evidence-based practice
- Creating “placebos” for psychological treatments is difficult, as is double-blinding
- Measuring success and showing that it is long-term also difficult
- Efficacy in clinical trials ≠ effectiveness in real world
Scientific Study of Causation and Treatment

- What is the key independent variable?
 - The specific type of treatment reflecting the different perspectives?
 - But what about:
 - "Dosage"—amount and duration and frequency of treatment
 - Treater variables
 - Client variables
 - Client-treater interaction variables
 - Process variables
 - Non-specific effects of treatment

- And are there any risks? Is the treatment safe, or worth the risk?