## Lecture 16: Statics, Equilibrium, Strength of Materials and Structures. (See Giancoli Chapter 9)

## YouTube

Explosive Demolition- 2002 Best Building Implosions
blbpdsusa 19 videos $\approx$ Subscribe


335,751
Uploaded by blbpdsusa on May 28, 2009
Video from Jan 2003 Int'I Society of Explosive Engineers (ISEE) conference in Las Vegas. It is one of four such "year end highlight videos" produced by Protec/Implosionworld for the annual conference between 1999 \& 2003. Approximately 70 implosions from 2002 are seen through our photographer's unique persective... which sometimes involved losing a few cameras.

740 likes, 22 dislikes
4 Artist: Yanni
Л Buy "Flight Of Fantasy (260 652)" on: AmazonMP3, Tunes
 Fail!
by brusspu
1,787,204 views Featured Video


YouTube Mix for Yanni
by YouTube
PLAYLIST 100 videos


Demolition Fail (Best Failures)
by ryanm 1985
338,046 views


Unbelieveable Tower Implosion
by rohitfreinds
62,051 views


4409 - (Unseen Footage) Tower 7 blasted into $r$. by RP4409
11,828,203 views
Implosionworld Explosive Demolition Compilation. by implosionworld


Explosive Demolition - 2001 Best Building Implo by implosionwo
1,970 views
970 views

# What happened to those buildings? 

A. They Exploded
B. They Imploded
C. They Fell Over

And Why? -be prepared to explain!

## Statics and Equilibrium

- Conditions for Equilibrium
- Forces and Torques still exist when there is no motion! (Remember Newton's ststaw)
- No net force or torque (the 2nd law)
- Stability of Structures (Newon's srd Law)
- Strength of Materials (stress, strain)
- Balance, strength and stability of the Human body


## Strategy for Statics Problems

## Examples

- Lever, used to lift a rock, jemmy a door, pull a nail.
- Pulley or "Block-and-Tackle"
- A large object that needs to stay balanced
- In All cases we can resolve:
- Net Force Horizontally
- Net Force Vertically
- Net Torque about some axis that we select.

In this Lever problem, resolving Torques gives $m g r=F_{p} R$. Is some additional force acting to match the big rock's weight?

1. Yes, the ground pushing up on the large rock
2. Yes, vertical component of normal force on the small rock.
3. No, no additional force needed because the mechanical advantage is $R / r$, multiplying the force applied


## Balance and Stability

- Can a Person Easily Touch their Toes with their back to a Wall?

1. Yes
2. No
3. Depends on how flexible they are

## Lifting a Weight



Do you notice any Friction in your joints? Synovial joints have $\mu_{\mathrm{S}}=0.01, \mu_{\mathrm{K}}=0.003$

## Now Bend the Arm!




## The Human Spine

## The angle at which this man's

 back is bent places an enormous force on the disks at the base of his spine, as the lever arm for $F_{M}$ is so small.

## Strength of Materials

- Define strength!
- Squeeze, Stretch, or Twist?
- Being made of atoms, many materials are spring-like in both compression and tension
- Hooke's Law -> F=k $\Delta L$
- But what do $\Delta \mathrm{L}$ and k depend on?
- Does the law break at some point?


## Elasticity and Fracture

This proportionality holds until the force reaches the proportional limit. Beyond that, the object will still return to its original shape up to the elastic limit. Beyond the elastic limit, the material is permanently deformed, and it breaks
 at the breaking point.

If we stretch an object, say a length of wire, or a tendon, what determines how much it stretches?

1. How stretchy the material is
2. How thick it is
3. How long it is
4. All of the above
5. None of the above


## Elastic (Young's) Modulus

- $\Delta L \propto F$
- $\Delta \mathrm{L} \propto \mathrm{L}$
- $\Delta L \propto 1 /($ cross sectional area)

Therefore: $\Delta \mathrm{L} \propto F L / A$

Or: $\Delta L=\frac{F L}{E A} \quad \begin{aligned} & \text { Where } E \text { is Elastic modulus } \\ & \text { (Young's modulus) }\end{aligned}$

## Stress and Strain

- Force divided by area is Stress
- Change in length divided by original length is Strain
- Strain is the object's response to Stress!
- Note from Definition of Elastic modulus,

$$
E=\frac{\text { Stress }}{\text { Strain }}
$$

The Strength of Materials is usually given in terms of the maximum stress that a particular material can bear before fracturing. Lets see some values......

- Ultimate Strength of Materials
- TABLE!!!!

TABLE 9-2 Ultimate Strengths of Materials (force/area)

|  | Tensile Strength <br> $\left(\mathbf{N} / \mathbf{m}^{2}\right)$ | Compressive <br> Strength <br> $\left(\mathbf{N} / \mathbf{m}^{2}\right)$ | Shear Strength <br> $\mathbf{( N / \mathbf { m } ^ { 2 } )}$ |
| :--- | :---: | :---: | :---: |
| Material | $170 \times 10^{6}$ | $550 \times 10^{6}$ | $170 \times 10^{6}$ |
| Iron, cast | $500 \times 10^{6}$ | $500 \times 10^{6}$ | $250 \times 10^{6}$ |
| Steel | $250 \times 10^{6}$ | $250 \times 10^{6}$ | $200 \times 10^{6}$ |
| Brass | $200 \times 10^{6}$ | $200 \times 10^{6}$ | $200 \times 10^{6}$ |
| Aluminum | $2 \times 10^{6}$ | $20 \times 10^{6}$ | $2 \times 10^{6}$ |
| Concrete |  | $35 \times 10^{6}$ |  |
| Brick |  | $80 \times 10^{6}$ |  |
| Marble | $40 \times 10^{6}$ | $170 \times 10^{6}$ |  |
| Granite | $35 \times 10^{6}$ | $5 \times 10^{6}$ |  |
| Wood (pine) (parallel to grain) | $10 \times 10^{6}$ |  |  |
| (perpendicular to grain) | $500 \times 10^{6}$ |  |  |
| Bylon (limb) | $130 \times 10^{6}$ | $170 \times 10^{6}$ |  |

## Summary



## Arches and Stability of Buildings



Copyright © 2005 Pearson Prentice Hall, Inc.

## Structural stability and the compressive strength of Concrete pushed to the limit...

## SRS Demolishes Massive Cooling Tower

If a 1000 Ton section of the tower falls $2 m$, how much momentum does it acquire?
$\left(10^{6} \mathrm{~kg} \times 6.2 \mathrm{~m} / \mathrm{s}=6.2 \times 10^{6} \mathrm{~m} . \mathrm{N}\right)$
If the impact takes say $1 / 100 \mathrm{sec}$, the impulse results in a force of $6.2 \times 10^{8} \mathrm{~N}$.

Force is exerted ov an area
$\mathrm{A}=\operatorname{circ}(2 \pi r=150)$
$=15 \mathrm{~m}^{2}$
So the Stress (Force/area) ${ }^{* \prime \prime} 612 \times 10^{8} / 15$
ree, Provide h of Concre
$=4 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
> Double the strength of Concrete!

