# Astronomical Detectors 

Lecture 3
Astronomy \& Astrophysics
Fall 2011

## Detector Requirements

- Record incident photons that have been captured by the telescope.
- Intensity, Phase, Frequency, Polarization
- Difficulty of getting these 4 depends on wavelength regime.
- For now focus on nIR, Optical, UV, soft X-ray (below ~10 KeV)
- Telescope/Camera/Spectrograph sort out all but the intensity*, leaving the job of counting photons and registering their location.
*In x-ray usage the photon energy is also estimated


## Raw PANIC

- A raw 5 second exposure with the PANIC infrared imager on 6.5 m the Magellan telescope in Chile
- No processing aside from selecting display scale
- Note all the image artifacts
- Dithering the telescope and combining many exposures which must be done anyway (to build dynamic range) will remove these artifacts.



## Processed Image

- This is the same data as the previous image.
- Stacked image composed from dozens of exposures taken in J,H,K filters
- Each frame processed to remove sky background, cosmic rays, detector artifacts etc.
- Representative color scale: $1.2 \mu=$ blue, $1.6 \mu=$ green, $2.2 \mu=\mathrm{red}$



## Film vs Electronic

- In days of yore (1880-1990) astronomers used photographic plates.
- Excellent wide-field coverage
- Good resolution
- Large dynamic range
- Low sensitivity (~1\%)
- Non-linear response to light
- Terrible to work with (messy, hazardous, laborious and difficult to analyze)

Today we use semiconductor devices

- Incredibly high sensitivity (90\%)
- Linear response
- Data in digital form
- Operate at liquid Nitrogen temps
- Small size of devices, makes wide field instruments expensive


## CCDs in Astronomy

- CCDs (charge coupled devices)

Photoelectric effect
Linear Response
Well depth
ADC
Gain
Noise - Read noise

- Dark Current \& Temperature

QE \& Wavelength response
Pixel Scale / Plate scale
S/N Ratio - Poisson distribution
Imaging vs Specroscopy

## What is a CCD ?

- Charge Coupled Device, is a pixellated semiconductor detector array.
- Each pixel is essentially a p-n photodiode, with millions of these fabricated on a single wafer, and connected by 'gate' transistors.
- Photoelectric effect -incoming photons free electrons, which accumulate in a "well".
- The number of electrons in the well increases linearly with increasing exposure. I.e. $\mathrm{N}_{\mathrm{e}} \propto \mathrm{N}_{\text {photon }}$ (this is not true for photographic emulsions)


| Material | Electromagnetic spectrum <br> wavelength range (nm) |
| :--- | :--- |
| Silicon | $190-1100$ |
| Germanium | $400-1700$ |
| Indium gallium arsenide | $800-2600$ |
| Lead(II) sulfide | $<1000-3500$ |

Various dopants are used to tune the bandgap to specific wavelength ranges

## CCD Properties

- Highly efficient: QE can exceed $90 \%$
- Broad wavelength response
- $E=h f$, but in the optical regime the value of $E_{e}$ is totally masked by thermal fluctuations, and the sheer fact the there are too many incoming photons to register them individually.
- We do not typically operate the devices in photoncounting mode*.
- Read-out consists of shuffling the charges across the array and measuring them at an amplifier.
- Count the accumulated photoelectrons using an analog-to-digital-converter (ADC)
- ADC gain is chosen (e-/ADU) based on the inherent noisiness of the array.
- Typical gain value is 4.0
- 16 bit ADC gives 65 K image "levels"



## Limitations

- There is a maximum well capacity, after which the electrons leak into neighboring pixels, and the net charge inhibits further electron capture
- This process is called saturation, linearity breaks down somewhere around $90 \%$ of saturation. Generally operate at much lower levels.
- Dynamic range is limited primarily by well depth, but is obviously affected by noise (and hence gain) also.
- Full well is 100,000-200,000 electrons
- Consequently, very deep observations require multiple exposures. Sometimes numbering in the hundreds or more.
- Dark current (electrons liberated by thermal fluctuations) can limit exposure time, and increase noise. Simple solution - Liquid Nitrogen
- Read Noise: In the process of shuffling the charge clusters across the array, and sensing them at the amp, some noise is added. Can range from a few to tens of electrons per pixel.
- Read noise means that co-adding lots of exposures is not quite as good as one long exposure.


## Gemini Multi-Object Spectrograph (GMOS)

- 3 CCDs butted together to give $\sim 8$ ' FoV.
- 0.07 "/pix
- Typical MK seeing is 0.7 " in the optical



## Gemini GMOS array characteristics

| Array | EEV |  |  |
| :---: | :---: | :---: | :---: |
| Pixel format | $6144 \times 4608$ pixels |  |  |
| Array layout | Three $2048 \times 4608$ chips in a row with $\sim 0.5 \mathrm{~mm}$ gaps |  |  |
| Pixel size | 13.5 microns square; 0.0727 arcsec/pixel |  |  |
| Spectral Response | approx 0.36 to 0.94 microns [ data / plot ] |  |  |
| Bias level | Bias image |  |  |
| Flat field response | Fringe images Flat field images |  |  |
| Readout time | See observing overheads page |  |  |
| Chip | CCD 01 | CCD 02 | CCD 03 |
| Chip ref no. | EEV 9273-16-03 | EEV 9273-20-04 | EEV 9273-20-03 |
| Dark current* | 0.8 e-/pix/hr | $0.7 \mathrm{e}-/ \mathrm{pix} / \mathrm{hr}$ | $0.5 \mathrm{e}-/ \mathrm{pix} / \mathrm{hr}$ |
| Full Well ** | 150 ke- | 101 ke- | 159 ke- |

Pixel size, scale,
Read noise and
Dark current

- Quantum efficiency as a function of wavelength



## Photon Counting, Poisson Distribution \& S/N Ratio

- The Poisson distribution expresses the probability of a given number of events occurring in a fixed interval of time (or space) if these events occur independently at a known average rate.
- Simeon Denis Poisson. published in 1838 in Recherches sur la probabilite des jugements en matiere criminelle et en matiere civile.
- If the expected number of occurrences in a certain interval is $\lambda$, then the probability that there are exactly $k$ occurrences ( $k$ being a non-negative integer, $k=0,1,2, \ldots)$ is equal to

$$
f(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$



- For instance, if photons arrive from a star on average 4 times per minute, and one is interested in the probability of an event occurring $k$ times in a 10 minute interval, one would use a Poisson distribution as the model with $\lambda=10 * 4=40$.
- The standard deviation of this distribution would then give the expected fluctuations either side of the mean.
- For Poisson distribution, the std error (uncertainty in the mean) $=\sqrt{ } \mathrm{N}$
- Hence the Signal-to-Noise Ratio $(\mathrm{S} / \mathrm{N})=\mathrm{N}_{\text {signal }} / \sqrt{ } \mathrm{N}_{\text {total }}$


## Example S/N Calculation

What $\mathrm{S} / \mathrm{N}$ do we get in a 1 minute exposure for a star that delivers 2,000 electrons per sec, on a night when the sky contributes $10 \mathrm{e} / \mathrm{s} / \mathrm{pix}$ and the seeing is an exceptional FWHM=0.6" ?

## GMOS parameters

Pixel size= 0.0727 "/pix
Read Noise $=3.6 \mathrm{e} / \mathrm{pix}$
Dark Current $=0.7 \mathrm{e}^{-/ \mathrm{pix}} / \mathrm{hr}$
Method: $S / N_{N}=\frac{N_{0}}{\sqrt{N_{\text {main }}}}$

$$
S / N^{=}=\frac{N_{0}}{\sqrt{\left(N_{1}+N_{\text {sex }}+N_{\text {ouxax }}\right)}+N_{\text {neat }}}
$$

$$
\begin{aligned}
& N_{\text {Sky }}=\text { Pixels } \times \text { Sky }=\pi R^{2} \text { Sky } \\
& N_{\text {Dark }}=\text { Pixels } \times \text { Dark } \\
& N_{\text {ReadNoise }}=R E A D N O I S E \sqrt{\text { Pixels }} \\
& N_{\text {ReadNoise }}=\sqrt{\left(n_{1}^{2}+n_{2}^{2}+\ldots . n_{n}^{2}\right)}=\sqrt{\text { pixels } \times n^{2}}=n \sqrt{\text { Pixels }}
\end{aligned}
$$

1. Seeing FWHM=0.6", so lets pick an aperture of say 1.2 " diameter to collect essentially all of the Star's flux but not so large as to gather excess Sky. So we set $R=0.6 / 0.0727=8.25$ pixels
2. Total counts form the star: Nstar= $60 \times 2,000=120,000$ (not quite a full well)
3. Find the number of pixels, so that we can calculate the total sky counts $\mathrm{N}_{\text {sky }}$, the total read noise $\mathrm{N}_{\text {Read }}$, and the total dark current $\mathrm{N}_{\text {dark. }}$. Area of Star on detector $=\pi R^{2}=3.142 \times 8.25^{2}=214$ pixels
4. Calculate Sky counts in our aperture: $N_{\text {sky }}=214$ pix $\times 10 \mathrm{e} \times 60 \mathrm{~s}=128,400$
5. Dark counts in aperture: $N_{\text {dark }}=214 \times 0.7 / 60 \approx 3$
6. Calculate Read Noise in aperture: $\mathrm{N}_{\text {Read }}=3.6 \sqrt{ } 214=53$
7. Compute the $\mathrm{S} / \mathrm{N}$ ratio:

$$
\begin{aligned}
& S / N=\frac{120,000}{\sqrt{(120,000+128,400+3)+53}} \\
& S / N=217
\end{aligned}
$$

## How many pixels are enough?

- Big blocky pixels are bad, because position and shape information are lost.
- Contrast is reduced if neighboring stars are blurred together.
- Poisson noise is increased due to additional sky background in a large pixel.
- On the other hand, the more pixels a given star's image is spread over, the more read noise will be introduced.
- Nyquist' s theorem* states that all the information in an image is captured when there are 3 samples per resolution element.
- Thus, there is little point in packing pixels more densely than $1 / 3$ the FWHM of the seeing disk. Conventionally defined as the FWHM of a stellar image.
- So in 1 " seeing, you need 0.3 " pixels for optimal sampling.
- Imagers (e.g GMOS) are usually designed with pixels small enough for the best seeing conditions that might occur, and are then binned to give effectively larger pixels for more "normal" or poorer conditions.
*Nyquist sampling theorem applies to all frequency analysis problems.


## Annotations

## Calibration Wedges

## Scan of a

## photographic plate

The open cluster M44. (Praseppe or "the Beehive", April 28, 1910, scanned by DASCH project.

5 min exposure -Faintest stars visible are B~14

## Photographic Emulsion Response to light



- Photographic Emulsion consists of microscopic silver halide grains suspended in gelatin.
- Light activates molecules (latent image)
- Development oxidizes the exposed grains causing them to become dark.
- Density of developed grains determines the darkness of the negative.
- Density increases with exposure (some product of aperture, time).
- Relation is log-linear, but only over a certain range.
- Results in effective PSF that is a convolution of the optical PSF (airey pattern+ seeing) with this nonlinear response to light.
- Stars of different brightness have differing shape as well as differing density.
- On the Plus side. Photographic plates can be made very large, at minimal cost.


## Measurements from Photographic plates

- Traditionally (and even today) measurements are made using a microscope, one star at a time
- Image diameter is compared against standard stars
- Plates can now be scanned, digitized and measured automatically.
- Calibration is performed by brute force using modern catalogs of photoelectric observations covering the same field.
- Non-linear response is fitted, and many other subtle effects can be calibrated out.



## Adaptive Optics Images of Close Binary Stars



- Images taken with Gemini North ( 8.5 m ) telescope
- Altair Adaptive Optics System
- Near Infrared (2 microns)
- PSF FWHM ~ 0.07" (measured)
- Pixel size $=0.02$ "
- This $0.07 / 0.02=3.5$ samples per resolution element. Basically Nyquist optimum sampling
- Images are stacks of $\sim 15-30$ very short exposures, each with T~0.01 s
- Distance to these stars is known, so the actual separation of the binaries is calculated by the same method used in your HW
- Airey disk is discernible, which tells you the image is approaching the diffraction limit of the telescope (1.22 $/ \mathrm{D}$ )
- Note the "speckles"
- Circles plotted at $\mathrm{r}=0.5$ ", 1 "

