Name:

Midterm Exam. Astronomy & Astrophysics I

- 1. <u>Angular Resolution of Telescopes</u> Calculate the theoretical angular resolution of:
- A. The Gemini optical Telescope (8m aperture, at visible wavelengths)
- B. Global VLBI (Radio, at ~ 1GHz)
- C. Given that atmospheric turbulence (or astronomical "Seeing") limits resolution to ≥ 0.5 ", what is the primary purpose of large optical telescopes?
- 2. From the observation that the Sun's energy output peaks in the yellow part of the spectrum (λ_{Max} =500 nm), estimate its effective surface temperature and luminosity.

3. Luminosity and Distance

The bright star Omicron Eridani (m_V =4.4, T=5,300 K) has an annual parallax motion of 0.2".

- A. Find the distance to Omicron Eridani (in pc)
- B. Absolute magnitude of Omicron Eridani
- C. Hence calculate the luminosity (in solar units) of Omicron Eridani.

Name:

4. <u>Luminosity, Radius, Temperature, Relationship</u> Omicron Eridani has a binary companion (actually it's a triple system). Star B is much fainter, despite being hotter (m_V =9.5, T=16,500 K)
A. Find the stellar radii of R_A & R_B in solar units. (hint: find the ratio first)
B. Comment on what types of stars these are.
5. <u>Spectral Types</u>
A. State the three most important spectral characteristic of stars of spectral types:
O, A M, and briefly note the physical condition responsible.
0:
A:
M:

Name:
6. Orbital Dynamics of Binary Stars The stars β Aurigae A and β Aurigae B, constitute a dual-lined eclipsing spectroscopic binary with an orbital period of 3.96 days. The observed radial velocity curves have amplitudes v_A =108 km/s and v_B =111 km/s.
Calculate the masses of the two stars.
7. <u>Sketch the Hertzprung Russell Diagram</u> . Label the key features, and indicate order-of-magnitude values for Temperature, Luminosity, and Radius.

Name:
8. <u>Stellar Physics.</u> Apply the Virial Theorem, (plus any other relevant stellar physics) to estimate the temperature deep inside the Sun.
9. <u>Nuclear Reactions</u> Write out the steps of the Proton-Proton chain
10. <u>Nuclear Reaction Conditions.</u> Estimate the interaction energy required for protons to get close enough together to have a reasonable probability of undergoing quantum tunneling, and compare this to the typical kinetic energy of solar protons.

C. What is likely the dominant energy production process (and why) in: A. The Sun

B. Sirius

C. Brown Dwarfs

Name:

Formulae:

 $\lambda_{\text{max}} = \frac{T}{2.9 \times 10^{-3} \, m \, K}$ Wien's Law $\frac{dP_r}{dr} = -\frac{GM_r \rho_r}{r^2}$ Hydrostatic Equilibrium Mass Distribution $\frac{dM_r}{dr} = 4\pi r^2 \rho_r$ **Gravitational Potential** $U_G = -\frac{3}{5} \frac{GM^2}{R}$ Energy $m_1 - m_2 = -2.5 \log_{10} \frac{f_1}{f_2}$ Magnitudes $\mu = m - M = 5\log_{10} D_{pc} - 5$ Distance modulus and absolute magnitude $(M_A + M_B)\sin^3 i = \frac{P(v_A^{obs} + v_B^{obs})^3}{2\pi G}$ $(M_A + M_B)\sin^3 i = \frac{4\pi^2}{GP^2}(a_A \sin i + a_B \sin i)^3$ Kepler's Law

Proton Mass: $1.67 \times 10^{-27} \text{ kg}$ Electron Mass: $9.11 \times 10^{-31} \text{ kg}$ Electron Charge: $-1.9 \times 10^{-19} \text{ C}$ Sun: Mass: $1.99 \times 10^{30} \text{ kg}$ Mean Radius: $6.38 \times 10^5 \text{ km}$ Absolute Magnitude: +4.83

Absolute Magnitude: +4.83 Apparent magnitude: -26.74

Flux at Earth: $1.4 \times 10^3 \text{ W/m}^2$

Earth: Mass: 5.98 x10²⁴ kg

Mean Radius: $6.38 \times 10^3 \text{ km}$ Earth-Sun Distance: $1AU = 150 \times 10^6 \text{ km}$

Plank's Constant: 6.63 x10⁻³⁴ J.s

Stefan-Boltzmann Constant: 5.67 x10⁻⁸ W/m².K⁴ Boltzmann's Constant: 1.38 x10⁻²³ J/K Coulomb Constant: 9 x10⁹ N/C

Gravitational Constant: 6.67 x10⁻¹¹ N.m²/kg