

The Farnese Atlas

Ancient Roman Sculpture
Records the lost star atlas of Hipparchus (125 BC)

Bradley Schaffer, LSU

This globe records 41 constellations accurately placed against a grid of reference circles, including the equator, tropics, Arctic circle, and Antarctic circle. As the constellation positions shift over time (due to precession as discovered by Hipparchus), the position of the constellations on the Titan's globe reveal the date of observations used by the sculptor.

The Alexandria - Syene Baseline used to measure the solar system in antiquity

Lunar Eclipses

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- A lunar eclipse occurs when the Earth passes between the Sun and Moon, with the Earth casting its shadow on the Moon giving it a dull red color

Recent and Upcoming Solar Eclipses

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solar Eclipse from Space

How fast does that shadow move?

	Sidereal period (yr)	Synodic period (yr)	Synodic period (d)
Solar surface	$0.069^{[1]}(25.3$ days)	0.074	27.3
Mercury	0.240846 (87.9691 days)	0.317	115.88
Venus	0.615 (225 days)	1.599	583.9
Earth	1 (365.25636 solar days)	-	-
Moon	0.0748	0.0809	29.5306
Apophis (near-Earth asteroid)	0.886	7.769	$2,837.6$
Mars	1.881	2.135	779.9
4 Vesta	3.629	1.380	504.0
1 Ceres	4.600	1.278	466.7
10 Hygiea	5.557	1.219	445.4
Jupiter	11.86	1.092	398.9
Saturn	29.46	1.035	378.1
Uranus	84.32	1.012	369.7
Neptune	164.8	1.006	367.5
134340 Pluto	248.1	1.004	366.7
136199 Eris	557	1.002	365.9
90377 Sedna	12050	365.1	

Until Herschel, Bessel and others in the 18 th C succeeded in detecting stellar parallax, its non-detection was held up as major evidence of the Earth's place at the immovable center of the universe.

The Distance to Sirius

- Measured parallax angle for Sirius is 0.377 arc second
- From the formula,

$$
\begin{aligned}
d_{p c} & =1 / 0.377 \\
& =2.65 \text { parsecs } \\
& =8.6 \text { light-years }
\end{aligned}
$$

The Hipparcos satellite measured parallaxes for ~ 1 million stars
Range is limited by positional error (about 1-3 mas) -> 300 pc

gaia

ESA SCIENCE \& TECHNOLOGY
GAIA

Missions

Show All Missions

Mission Home

- Summary
- Fact Sheet
- Objectives
- Mission Team

Mission Science
Galactic Structure

- Stars
- Solar System

Exoplanets

Spacecraft
Overview
Payload Module
Service Module

Mission Operations

Mission Operations

Gaia is an ambitious mission to chart a three-dimensional map of our Galaxy, the Milky Way, in the process revealing the composition, formation and evolution of the Galaxy. Gaia will provide unprecedented positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars in our Galaxy and throughout the Local Group. This amounts to about 1 per cent of the Galactic stellar population.

LATEST NEWS

Europe bids Gaia a safe journey

27 June 2013 ESA's billion-star surveyor, Gaia, has completed final preparations in Europe and is ready to depart for its launch site in French Guiana, set to embark on a five-year mission to map the stars with unprecedented precision. Read more

News archive

COUNTDOWN TO LAUNCH - THE GAIA BLOG

Search here

11-Sep-2013 16:11 UT

Shortcut URL
http://sci.esa.int/gaia

Elsewhere on esa.int

Gaia has arrived in French Guiana

Unfolding Gaia

Special Features

Science@ESA: Episode
6: Chartinq the Galaxy

GAIA Probe

Lissijou figure Orbit around solar L2 1.5 million km from Earth

For How many Stars can we use parallax to measure distance?
From ground, $e_{p}(\min) \approx 0.3^{\prime \prime}$ at best. So the further star we could even hope to measure is at distance $\frac{1}{0.3^{\prime \prime}}=3 \cdot 3 p c \quad\left(\right.$ even $\left.0 \cdot 1^{\prime \prime} \rightarrow 10 p c\right)$ There are not many stars that close. of the 20 nearest stars, all are within $3.5 p c$. So, only ≈ 20 stars toul! From space the Hiparcos satellite with $\Delta \theta_{p} \approx 1 \mathrm{mas}\left(10^{-3}\right.$ ")

$$
\begin{aligned}
& \text { The Hiparcos Satellite } \\
& D_{\text {max }} \cong \frac{1}{10^{-3}}=1000 \mathrm{pc}(\mathrm{kpc}) \text {, but with error } \pm 1000 \mathrm{pc} \text { ! }
\end{aligned}
$$

But, requiring a good measurement implies perhaps $\frac{\theta_{p}}{\Delta \theta_{p}} \geqslant 3$
So that $\theta_{p}(\min) \rightarrow \frac{1}{3 \times 10^{-3}}=333 p c$.
For the purposes of perspective,
The Sun lies 8.5 kpc from
Center of our galaxy. \rightarrow So even in Space, we
 can meas re distances to stars only $\frac{1}{25}$ th of the way the GC! (Tiny!) TO GO further \rightarrow Calibuite "Std Candles !"

Geometry of the Tidal Force Vector Components

Earth

$$
\begin{aligned}
& F_{P, x}=\frac{G M m}{s^{2}} \cos \phi \\
& F_{P, y}=\frac{G M m}{s^{2}} \sin \phi \\
& \Delta F \approx \frac{G M m R}{r^{3}}(2 \cos \theta-\sin \theta)
\end{aligned}
$$

Resultant Tidal force vectors

(a)

Gravitational force of the Moon on the Earth

(b)

Differential Gravitational force on Earth, relative to its center.

Copyright © 2005 Pearson Prentice Hall, Inc.

