Angular Resolution of the Eye and Telescopes
 Dependence on Diffraction theory
 Astronomical “Seeing”
 S/N in astronomical detectors

Blackbody Radiation from Stars
 Wien's Law
 Stefan-Boltzmann Law
 Color Temperature, Flux and Luminosity

Parallax and Distance
Magnitude and Absolute Magnitude

Spectral Type
 Stellar surface Temperature
 Absorption Lines (conditions of formation)

Line Profiles
 Natural, Pressure, Thermal, Rotational

Binary Stars
 Spectroscopic binaries
 Masses from RV curves
 Sizes from Eclipse duration

Hertzprung-Russell Diagram
 Be able to plot it, with order of magnitude labels
 Know all the major features
 Explain the slope of the main sequence

Estimate the pressure at the center of the Sun

Apply the Virial Theorem to estimate the temperature deep in the Sun

Know the Proton-Proton Chain
Formulae:

Hydrostatic Equilibrium
\[
\frac{dP_r}{dr} = -\frac{G M \rho_r}{r^3}
\]

Mass Distribution
\[
\frac{dM_r}{dr} = 4\pi r^2 \rho_r
\]

Magnitudes
\[
m_1 - m_2 = -2.5 \log_{10} \frac{f_1}{f_2}
\]
\[
m - M = 5 \log_{10} D_{pc} - 5
\]

Kepler’s Law
\[
(M_A + M_B) \sin^3 i = \frac{P(v_A^{\text{obs}} + v_B^{\text{obs}})^3}{2\pi G}
\]
\[
(M_A + M_B) \sin^3 i = \frac{4\pi^2}{GP^2} (a_A \sin i + a_B \sin i)^3
\]