Study Guide for Midterm Exam. Astronomy & Astrophysics I

Angular Resolution of the Eye and Telescopes
Dependence on Diffraction theory
Astronomical "Seeing"
S/N in astronomical detectors

Blackbody Radiation from Stars

Wien's Law Stefan-Boltzmann Law Color Temperature, Flux and Luminosity

Parallax and Distance Magnitude and Absolute Magnitude

Spectral Type

Stellar surface Temperature Absorption Lines (conditions of formation)

Line Profiles

Natural, Pressure, Thermal, Rotational

Binary Stars

Spectroscopic binaries Masses from RV curves Sizes from Eclipse duration

Hertzprung-Russell Diagram

Be able to plot it, with order of magnitude labels Know all the major features Explain the slope of the main sequence

Estimate the pressure at the center of the Sun

Apply the Virial Theorem to estimate the temperature deep in the Sun

Know the Proton-Proton Chain

Formulae:

Hydrostatic Equilibrium
$$\frac{dP_r}{dr} = -\frac{GM_r\rho_r}{r^2}$$

Mass Distribution
$$\frac{dM_r}{dr} = 4\pi r^2 \rho_r$$

Magnitudes
$$m_1 - m_2 = -2.5 \log_{10} \frac{f_1}{f_2}$$

$$m - M = 5\log_{10} D_{pc} - 5$$

Kepler's Law
$$(M_A + M_B) \sin^3 i = \frac{P(v_A^{obs} + v_B^{obs})^3}{2\pi G}$$

$$(M_A + M_B)\sin^3 i = \frac{4\pi^2}{GP^2}(a_A \sin i + a_B \sin i)^3$$