Integration Techniques

I. Basic antidifferentiation rules you should know:

\[
\int x^n \, dx = \frac{1}{n+1} x^{n+1} \quad \text{if } n \neq -1 \\
\int \frac{1}{x} \, dx = \ln |x|
\]

\[
\int e^x \, dx = e^x \\
\int \sin(x) \, dx = -\cos(x)
\]

\[
\int \cos(x) \, dx = \sin(x) \\
\int \tan(x) \, dx = \ln |\sec(x)| = -\ln |\cos(x)|
\]

\[
\int \cot(x) \, dx = \ln |\sin(x)| = -\ln |\csc(x)| \\
\int \sec^2(x) \, dx = \tan(x)
\]

\[
\int \csc^2(x) \, dx = -\cot(x) \\
\int \sec(x) \tan(x) \, dx = \sec(x)
\]

\[
\int \csc(x) \cot(x) \, dx = -\csc(x) \\
\int \frac{1}{x^2 + 1} \, dx = \arctan(x)
\]

\[
\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x)
\]

II. If your integrand does not appear on the above list, it may be possible to simplify the integrand by expanding it.

Example 1. \(\int (x^2 + 1)^2 \, dx = \int [x^4 + 2x^2 + 1] \, dx \)

Example 2. \(\int \frac{x+1}{x^2} \, dx = \int \left[\frac{x}{x^2} + \frac{1}{x^2} \right] \, dx = \int \left[\frac{1}{x} + x^{-2} \right] \, dx \)

III. If it is not possible to simplify your integrand, try a substitution. Rules of thumb for deciding what to choose for \(u \) when using substitution:

1. If an expression appears raised to a power or under a root, let \(u = \) that expression.

 Example. To find \(\int \sqrt{2x+5} \, dx \) let \(u = 2x + 5 \).

2. If one part of the integrand is the derivative of a second part of the integrand, let \(u = \) the second part.

 Example. To find \(\int 3x^2 \sin (x^3) \, dx \), let \(u = x^3 \).

OVER
IV. If substitution does not work, try integration by parts: \[\int u \, dv = uv - \int v \, du \]

Rule of thumb for deciding what to choose for \(u \) when using integration by parts: **ILATE** (Inverse trig functions, Logarithms, Algebraic expressions like powers of \(x \), Trig functions, Exponential functions). If the integrand contains an inverse trig function, let \(u \) be that piece of the integrand. If there is no inverse function in the integrand but there is a logarithm, let \(u \) be the logarithm. If there are no inverse functions or logs but there is an algebraic expression (e.g. a power of \(x \)), let \(u \) be the algebraic expression, etc. Don’t forget that you may have to integrate by parts more than once.

Example. To find \(\int \tan^{-1}(x) \, dx \), let \(u = \tan^{-1}(x) \), \(dv = dx \), then \(du = \frac{1}{1+x^2} \, dx \), \(v = x \), so \(\int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int \frac{x}{1+x^2} \, dx \).

V. If the integrand contains a term of the form \(\sqrt{a^2 - u^2} \), \(\sqrt{a^2 + u^2} \), or \(\sqrt{a^2 - u^2} \), a trigonometric substitution may be helpful.

1. For integrands involving \(\sqrt{a^2 - u^2} \) let \(u = \sin(t) \). E.g., for \(\int \frac{1}{x^2\sqrt{25-x^2}} \, dx \), let \(x = 5 \sin(t) \).

2. For integrands involving \(\sqrt{a^2 - u^2} \) let \(u = \sec(t) \). E.g., for \(\int \frac{1}{\sqrt{x^2 - 9}} \, dx \), let \(x = 3 \sec(t) \).

3. For integrands involving \(\sqrt{a^2 + u^2} \) let \(u = \tan(t) \). E.g., for \(\int \frac{1}{x^4 \sqrt{4x^2 + 9}} \, dx \), let \(2x = 3 \tan(t) \).

VI. If the integrand is a proper rational function, try a partial fraction decomposition.

Example. To find \(\int \frac{x^2 - 2x + 1}{x^4 + x^2} \, dx \), use partial fractions:

\[
x^2 - 2x + 1 \quad \frac{x^2 - 2x + 1}{x^4 + x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1} \quad \Rightarrow \quad x^2 - 2x + 1 = \left[\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1} \right] (x^4 + x^2)
\]

\[
= Ax(x^2 + 1) + B(x^2 + 1) + (Cx + D)x^2
\]

\[
= (A + C)x^3 + (B + D)x^2 + Ax + B \quad \Rightarrow \quad \begin{cases} A + C = 0 \\ B + D = 1 \\ A = -2 \\ B = 1 \end{cases}
\]

\(\Rightarrow A = -2, \ B = 1, \ C = 2, \ D = 0 \Rightarrow \)

\[
\int \frac{x^2 - 2x + 1}{x^4 + x^2} \, dx = \int \left[\frac{-2}{x} + \frac{1}{x^2} + \frac{2x}{x^2 + 1} \right] \, dx = -2 \ln |x| - x^{-1} + \ln (x^2 + 1) + c
\]