Integration Techniques

I Basic antidifferentiation rules you should know:
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II. If your integrand does not appear on the above list, it may be possible to simplify the integrand
by expanding it.

Example 1. /(:132—1—1)2 d$:/[$4+2$2—|—1] dx
1 1 1

Example 2. /:Et d:nz/[%—l——z] d:nz/[——l—:n_z] dx
x x x x

I11. If it is not possible to simplify your integrand, try a substitution. Rules of thumb for deciding
what to choose for u when using substitution:

1. If an expression appears raised to a power or under a root, let © = that expression.
Example. To find /\/ 2z + 5 dx let u =2z + 5.

2. If one part of the integrand is the derivative of a second part of the integrand, let u = the
second part.

Example. To find / 322 sin (:133) dx, let u = 3.
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If substitution does not work, try integration by parts: / u dv = uv — / v du

Rule of thumb for deciding what to choose for u when using integration by parts: ILATE (Inverse
trig functions, Logarithms, Algebraic expressions like powers of x, Trig functions, Exponential
functions). If the integrand contains an inverse trig function, let u be that piece of the integrand.
If there is no inverse function in the integrand but there is a logarithm, let u be the logarithm.
If there are no inverse functions or logs but there is an algebraic expression (e.g. a power of
x), let u be the algebraic expression, etc. Don’t forget that you may have to integrate by parts
more than once.
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Example. To find /4:17 In(z) dzlet u = In(z) and dv = 4z dz. Thenu = In(x) = du = - dx and

dv =4z dx = v = /4:L' dx = 22°, so /4:L' In(z) dz = 2z°In(x) —/2:L' dz, = 22° In(x) — 2
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If the integrand contains a term of the form va2 — u2, Va2 — u2, or Va2 + u?2, a trigonometric
substitution may be helpful.
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1. For integrands involving va? — u2 let u = asin(t). E.g., for | ———— dx
; : W) B tor | s =

let = = 5sin(t).

2. For integrands involving vu? — a? let u = asec(t) dz, let © = 3sec(t).
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3. For integrands involving va? + u? let u = atan(t). E.g., for
let 2z = 3 tan(t).

If the integrand is a proper rational function, try a partial fraction decomposition.

—2x+1

Example. To find / 5— dz, use partial fractions:
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= (A+C)2*+(B+D)2*+ Az +B=

A+C = 0
B+D =1
A = =2
B =1
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