Due Date: Monday, February 27.
Please show all work to receive full credit.

1. Formula 39 from the Table of Integrals (with \(a = 1 \)) gives
\[
\int \sin^2(x) \, dx = \frac{x}{2} - \frac{1}{4} \sin(2x).
\]

However,
\[
\frac{d}{dx} \left[\frac{x}{2} - \frac{1}{4} \sin(2x) \right] = \frac{1}{2} - \frac{1}{2} \cos(2x).
\]

Is Formula 39 incorrect, or is \(\frac{1}{2} - \frac{1}{2} \cos(2x) = \sin^2(x) \)?

2. (p. 363 # 41) Evaluate
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \left(\frac{j}{n} \right)^{3}
\]
by expressing it as a definite integral and then evaluating this integral using the Fundamental Theorem of Calculus.

3. (From the Kiwi files)
 a. Write an expression for the left Riemann sum \(L_n \) for the integral
 \[
 \int_{0}^{1} e^x \, dx
 \]
 using \(n \) intervals of equal length.

 b. Find a closed-form expression for \(L_n \). (Hint: Use the formula for geometric sums discussed in class.
 \(1 + r + r^2 + r^3 + \ldots + r^{n-1} = \frac{1 - r^n}{1 - r} \).)

 c. Use your answer to part b to find
 \(\lim_{n \to \infty} L_n \).

 d. Evaluate
 \[
 \int_{0}^{1} e^x \, dx
 \]
 using the FTC. Does your answer agree with your answer to part c?

CONTINUED ON NEXT PAGE
4. In class, Chris pointed out that you need to use more terms in a Riemann sum to approximate the integral of a function with a spike or with rapid oscillations than to approximate the integral of a slowly varying function. The purpose of this problem is to explore that idea.

a. Consider the definite integral $I = \int_{0}^{\pi/2} \cos(x) \, dx$. Use Theorem 3 on p. 387 of the textbook to find a value of n for which $|I - L_n| \leq 10^{-3}$.

b. Consider the definite integral $I = \int_{0}^{\pi/2} 5e^{-x} \cos(20x) \, dx$. Use Theorem 3 on p. 387 of the textbook to find a value of n for which $|I - L_n| \leq 10^{-3}$.