Due Date: Monday, March 6.
Please show all work to receive full credit.
Problems 3 – 5 are from the Kiwi files.

1. Consider the definite integral \(I = \int_0^1 \sin(x^2) \, dx \).
 a. Find a value of \(n \) for which \(|I - L_n| < 10^{-4}\).
 b. Calculate the value of \(L_n \) using the value of \(n \) from part a.
 c. Find a value of \(n \) for which \(|I - M_n| < 10^{-4}\).
 d. Calculate the value of \(M_n \) using the value of \(n \) from part c.

2. The purpose of this problem is to derive the formulas for the nodes and weights in the Gaussian quadrature formula \(GQ_2 = w_1 f(x_1) + w_2 f(x_2) \approx \int_{-1}^{1} f(x) \, dx \).
 a. Evaluate the definite integrals \(I_1 = \int_{-1}^{1} 1 \, dx \), \(I_2 = \int_{-1}^{1} x \, dx \), \(I_3 = \int_{-1}^{1} x^2 \, dx \), and \(I_4 = \int_{-1}^{1} x^3 \, dx \).
 b. Use the fact that the formula \(GQ_2 \) gives exact answers for \(I_1, I_2, I_3 \) and \(I_4 \) to derive the equations \(w_1 + w_2 = 2 \), \(w_1 x_1 + w_2 x_2 = 0 \), \(w_1 x_1^2 + w_2 x_2^2 = 2/3 \), \(w_1 x_1^3 + w_2 x_2^3 = 0 \).
 c. Solve the equations from part b. (You can either do this by hand or by using Mathematica.)

3. a. Sketch the graphs of the equations \(y^2 = x + 1 \) and \(y = x - 1 \).
 b. Find the area bounded by these curves by integrating with respect to \(x \).
 c. Find the area bounded by these curves by integrating with respect to \(y \).

4. Find the length of the curve given by \(y = \frac{x^2}{2}, 0 \leq x \leq 1 \). (You might want to use the integral tables for this one.)

5. Use integration to show that the volume of a circular cone of radius \(r \) and height \(h \) is \(\frac{1}{3} \pi r^2 h \). Hint: Draw a picture. Can you represent the cone as a solid of revolution?