92.231 Calculus III Practice Exam # 1 Solutions Spring 2004

Problem #1 (20 points)

Let $\mathbf{a} = \langle 2, 1, -2 \rangle$ and let $\mathbf{b} = \langle 3, 0, 4 \rangle$.

- a. Compute $\mathbf{a} \mathbf{b}$. $\mathbf{a} \mathbf{b} = \langle 2 3, 1 0, -2 4 \rangle = \overline{\langle -1, 1, -6 \rangle}$
- b. Compute $\mathbf{a} \cdot \mathbf{b}$. $\mathbf{a} \cdot \mathbf{b} = 2 \cdot 3 + 1 \cdot 0 + (-2) \cdot 4 = \boxed{-2}$.
- c. Compute $\mathbf{a} \times \mathbf{b}$. $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -2 \\ 3 & 0 & 4 \end{vmatrix} = \mathbf{i} [(1)(4) (0)(-2)] + \mathbf{j} [(-2)(3) (2)(4)] + \mathbf{k} [(2)(0) (1)(3)] = \begin{bmatrix} \langle 4, -14, -3 \rangle \end{bmatrix}$.
- d. Compute $\operatorname{proj}_{\mathbf{a}}\mathbf{b}$ (the vector projection of \mathbf{b} onto \mathbf{a}). $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a} = \frac{-2}{2^2 + 1^2 + (-2)^2}\mathbf{a} = \boxed{\left\langle -\frac{4}{9}, -\frac{2}{9}, \frac{4}{9} \right\rangle}$.

Problem #2 (10 points)

Find the equation of the plane containing the point (0,3,2) and perpendicular to the vector (2,1,-2).

The equation of the plane containing the point (x_0, y_0, z_0) and perpendicular to the vector $\langle a, b, c \rangle$ is $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$. Therefore, the equation of the plane described in this problem is 2(x-0)+1(y-3)-2(z-2)=0, or 2x+y-2z=-1.

Problem #3 (15 points)

Let P denote the point (1, -1, 2) and let S denote the sphere with center at P and radius 3.

- a. Let Q denote the point (3,0,0). Compute the distance from P to Q. Using the distance formula, we find that $|PQ| = \sqrt{(3-1)^2 + [0-(-1)]^2 + (0-2)^2} = \boxed{3}$.
- b. Does Q lie on the sphere S? Why or why not? The sphere S consists of all points whose distance from P is 3. Since |PQ| = 3, Q does lie on S.
- c. Find the equation of the sphere S. The equation of a sphere with radius r and center (x_0, y_0, z_0) is $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$, so the equation of S is $(x 1)^2 + [y (-1)]^2 + (z 2)^2 = 3^2$, or $(x 1)^2 + (y + 1)^2 + (z 2)^2 = 9$.

Problem #4 (15 points)

Let C denote the curve described by the vector function $\mathbf{r}(t) = \left\langle e^{2t}, 2e^{2t}, 2e^{2t} \right\rangle$, $0 \le t \le 1$.

- a. Show that $|\mathbf{r}'(t)| = 6e^{2t}$. $\mathbf{r}(t) = \langle e^{2t}, 2e^{2t}, 2e^{2t} \rangle \Rightarrow \mathbf{r}'(t) = \langle 2e^{2t}, 4e^{2t}, 4e^{2t} \rangle$ (because $\frac{d}{dt}[e^u] = e^u \frac{du}{dt}$). Therefore, $|\mathbf{r}'(t)| = \sqrt{[2e^{2t}]^2 + [4e^{2t}]^2 + [4e^{2t}]^2} = \sqrt{4e^{4t} + 16e^{4t} + 16e^{4t}} = \sqrt{36e^{4t}} = 6e^{2t}$.
- b. Find the length of C. The length of C is given by $L = \int_a^b |\mathbf{r}'(t)| \ dt = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = 3e^{2t}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}{2e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2t}}\Big|_0^1 = \underbrace{\int_0^1 6e^{2t} \ dt}_{u=2t, \ du=2dt} = \frac{3e^{2$

$$3e^2 - 3 \approx 19.167.$$

Problem #5 (20 points)

Let C denote the curve described by the vector function $\mathbf{r}(t) = \langle t^2, t, 2-t \rangle$

- a. Find $\mathbf{r}'(t)$. $\mathbf{r}(t) = \langle t^2, t, 2 t \rangle \Rightarrow \boxed{\mathbf{r}'(t) = \langle 2t, 1, -1 \rangle}$. (Take the derivative of each component.)
- b. Show that the point (4,2,0) lies on C. We must find a value of t for which $t^2=4$, t=2, and 2-t=0. t=2 clearly satisfies all three conditions, so the point (4,2,0) lies on C.
- c. Find parametric equations for the line tangent to C at the point (4,2,0). The parametric equations of the line containing the point (x_0,y_0,z_0) and parallel to the vector $\langle a,b,c\rangle$ are $x=x_0+at, y=y_0+bt, z=z_0+ct$. The vector $\mathbf{r}'(t)$ is tangent to C, so $\mathbf{r}'(2)=\langle 2t,1,-1\rangle|_{t=2}=\langle 4,1,-1\rangle$ is tangent to C at (4,2,0). (From part b we know that the point (4,2,0) corresponds to t=2.) The tangent line therefore contains point (4,2,0) and is parallel to vector $\langle 4,1,-1\rangle$, so its parametric equations are x=4+4t, y=2+1t, z=0+(-1)t, or x=4+4t, y=2+t, z=-t.

Problem #6 (20 points)

Let C denote the curve described by the vector function $\mathbf{r}(t) = \langle 1 + \sin(4t), 3t, 2 - \cos(4t) \rangle$.

- a. Find the unit tangent vector $\mathbf{T}(t)$. $\mathbf{r}(t) = \langle 1 + \sin(4t), 3t, 2 \cos(4t) \rangle \Rightarrow \mathbf{r}'(t) = \langle 4\cos(4t), 3, 4\sin(4t) \rangle \Rightarrow |\mathbf{r}'(t)| = \sqrt{[4\cos(4t)]^2 + 3^2 + [4\sin(4t)]^2} = \sqrt{16\cos^2(4t) + 9 + 16\sin^2(4t)} = \sqrt{16\left[\cos^2(4t) + \sin^2(4t)\right] + 9} = \sqrt{16 + 9} = 5$. Therefore, $\mathbf{T}(t) = \frac{1}{|\mathbf{r}'(t)|}\mathbf{r}'(t) = \frac{1}{5}\langle 4\cos(4t), 3, 4\sin(4t) \rangle = \sqrt{\frac{4}{5}\cos(4t), \frac{3}{5}, \frac{4}{5}\sin(4t)}\rangle$.
- b. Find the unit normal vector $\mathbf{N}(t)$. $\mathbf{T}(t) = \left\langle \frac{4}{5}\cos(4t), \frac{3}{5}, \frac{4}{5}\sin(4t) \right\rangle \Rightarrow \mathbf{T}'(t) = \left\langle -\frac{16}{5}\sin(4t), 0, \frac{16}{5}\cos(4t) \right\rangle$ $\Rightarrow |\mathbf{T}'(t)| = \sqrt{\left[-\frac{16}{5}\sin(4t) \right]^2 + 0^2 + \left[\frac{16}{5}\cos(4t) \right]^2} = \sqrt{\left(\frac{16}{5} \right)^2 \left[\cos^2(4t) + \sin^2(4t) \right]} = \frac{16}{5}.$ $\mathbf{N}(t) = \frac{1}{|\mathbf{T}'(t)|} \mathbf{T}'(t) = \frac{1}{16/5} \left\langle -\frac{16}{5}\sin(4t), 0, \frac{16}{5}\cos(4t) \right\rangle = \left[\langle -\sin(4t), 0, \cos(4t) \rangle \right].$
- c. Find the curvature κ . $\kappa = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{16/5}{5} = \boxed{16/25}$