Calculus III Practice Final Exam Solutions  Spring 2004

1. Let C be the curve described by the vector function r(t) = (sin(t), 2¢, cos(t)).
a. Find r'(t) and r”(¢).

r(t) = (sin(t), 2t, cos(t)) = |r'(t) = (cos(t),2, —sin(t)),r"(t) = (—sin(t), 0, — cos(t))
b. Find a vector tangent to C' at the point (0,0, 1).

The point (0,0, 1) corresponds to the value t = 0: r(t) = (sin(¢), 2¢, cos(t)) = (0,0,1) =
sin(t) = 0, 2t = 0, cos(t) = 1 = ¢t = 0. The vector r'(a) is tangent to C' at the point
corresponding to t = a, so r'(0) = [(1,2,0) | is tangent to C at (0,0, 1).

c. Find parametric equations of the line tangent to C' at the point (0,0, 1).

The line tangent to C' at the point (0,0, 1) is parallel to the vector (1,2,0) and passes
through the point (0,0, 1). Therefore, the line is described by the parametric equations
=041t y=0+2¢, 2=1+0¢, or |z =1, y =2t zzl‘.

2. Let L7 be the line given by the parametric equations xt =1+4+t¢, y =1+1t, z= 1+ 3t and let
Lo be the line given by the parametric equations z =2 + ¢, y = —t, z = —t.

a. Show that the point (1,1, 1) lies on both Ly and Ls.

To show that (1,1, 1) lies on L; we must show that there is a value of ¢ for which
1=1+4t¢ 1=1+¢, and 1 =1+ 3¢t. Clearly, ¢t = 0 satisfies all three equations, so (1,1, 1)
lies on L;. To show that (1,1,1) lies on Ly we must show that there is a value of ¢ for
which 1 =2+1¢, 1 = —¢, and 1 = —t. Clearly, t = —1 satisfies all three equations, so
(1,1,1) lies on Ly.

b. Find the equation of the plane containing L1 and Ls.

To find the equation of a plane we need a point on the plane and a vector v perpendicular
to the plane. As shown in part a, the point (1,1, 1) lies in the plane containing L; and
Lo. A vector perpendicular to the plane containing Ly and Ls must be perpendicular to
both Ly and Lo, so we can take v to be the cross product of the direction vectors for
Ly and Ly. A direction vector for Ly is a = (1,1,3), and a direction vector for Lg is
b = (1,—-1,—1). (The coefficients of ¢ in the parametric equations are the components of
the direction vector.) v =a x b = (2,4, —2) is perpendicular to the plane containing L;
and Lo, and the plane contains the point (1,1, 1). Therefore, the equation of the plane is
20z —1)+4(y—1)—2(z—1) =0, 0r |z +2y — 2 = 2|,

if g(1) = 3, (1) = 2,
t=1
3,2) =4, and f,(3,2) = —2.

3. Suppose z = f(z,y), z = g(t), and y = h(t). Find %
g/(l) = _17 h/(l) = 27 fm( )

d 0z d 0z d
The Chain Rule says that g _ o= e Therefore,

dt _%dtJra_ydt'
=




4. Let f(z,y,z) =x +ycos(z), let P denote the point (1,2,0), and let a = (2,1, —2).
a. Find the directional derivative of f at P in the direction a.

f(x,y,2) = & + ycos(z) = Vf(x,y,2) = (fo, fy, f-) = (1,cos(2), —ysin(z)). Therefore,

Vf(1,2,0) = (1,1,0). a = (2,1,-2) = |a| = /22 + 12 + (=2)2 = 3. Therefore, a unit
1

vector in the direction of a is u = N (2/3,1/3,—2/3) and the directional derivative

of f at P in the direction a is Dy f(1,2,0) =V f(1,2,0)-u=(1,1,0)-(2/3,1/3,-2/3) =
1

b. Find a vector in the direction in which f increases most rapidly at P.

f increases most rapidly in the direction Vf(P) = |(1,1,0)|.

5. Evaluate // (z% + y?) dA, where D is the triangular region with vertices (—1,0), (0, 1) and (1, 0).
D

The left boundary of D is the line y = x + 1, or x = y — 1; the right boundary of D is
the line y = 1 —x, or = 1 — y. Express the given double integral as an iterated inte-

1 ,rl—y
gral, integrating first with respect to z: // (22 +y?%) dA = / / (22 +y?) da dy =
0 Jy—1

=l-y PRY:] _1\3
/ ——|—y:n dy:/ol{l(l 3y) +y3(1—y) —l(y 31) +yi(y—1) } dy =
r=y—1
_ _ )4 3 all
/01 [%Hyz—mﬁ] dyz—(1 6y) +2%—y70 1/3|

6. Let F(z,y,2) = (2zy, 2% + 2yz,y?) and let f(x,y, 2z) = 2%y + y°=.
a. Show that f is a potential for F'.

To show that f is a potential for F, we must show that V f(z,y, z) = F(z,y, 2). Vf(x,y,2) =
(fas fys [2) = 2y, 72 +2yz,y%) =F, so f is a potential for F.

b. Evaluate / F - dr where C is the helix z = sin(t), y = cos(t), z =1¢, 0 <t <.
C

The starting point of C' is (sin(0), cos(0),0) = (0,1,0) and the terminal point of C' is
(sin(m), cos(m), m) = (0, —1, 7). By the Fundamental Theorem for Line Integrals,

/ F-dr = f(0,—1,7) — £(0,1,0) = [0%(=1) 4 (—1)%*x] — [0%(1) + (1)%(0)] =7}
C



7. Evaluate the integral /// z dV,

where E is the region between the spheres 22 4+ y? + 22> = 1 and 22 + y? + 22 = 9.

Use spherical coordinates. In spherical coordinates, z = p cos(¢) and dV = p? sin(¢) dp d¢ df.
The equations of the spheres forming the boundaries of E are p = 1 and p = 3 in spher-

2 w3
ical coordinates. Therefore, /// z dV = / / /pCOS(¢) (p?sin(¢) dp do df) =
o Jo J1

21 27 p=3
/ / / p° cos(¢) sin(¢) dp do df = / / — cos(¢) sin(¢) do df =

2T p=m 2T =1
/ / 20 cos(¢) sin(¢) de df _/ 10sin*(¢)| o= [ 0o =[0}

0 =0 0
u=sin(¢)
8. Let F(x,y,2) = (yz+y,zz+x,zy + 1).
a. Find V- F (=div (F))
0
F fd . = — J— N e
(z,y,2) = (yz+y,zz +z,2y + 1) = V-F(z,y, 2) 5 (yz+y) + 9y (xz+x)+ o (zy+1)
b. Find V x F (= curl (F))
i j k
V xF = Or Oy 0. =(rz—2)i+(y—y)j+(z—2)k=0.

yz+y zz+zx zy+1
c. Show that F is conservative.

Since V x F =0, F is conservative.

d. Find a potential for F.

We must find a function f such that Vf =F. Vf =F = (fy, fy, f2) = (yz+y, 2z +z, 2y + 1) =
foe=yz+y, fy =224z, and f, =2y + 1. fo =yz+ty = f = [yz+yde =
xyz+ay+9(y, 2) = fy = vz +x + gy. However, fy =2z +z,s022+2+gy=a2+7 =
gy =0=g(y,2) = [0dy =0+ h(z) = f = zyz + zy + h(z). Therefore, f, = zy + I/ ().
But f,=2zy+1,s0xy+h(z)=ay+1=n"(2)=1= h(z) = [1dz =2+ c. Tt follows
that the potential f is given by | f(x,y,2) = zyz + 2y + z + c|.




9. Let S denote the part of the surface z = 9 — 22 — 32 above the xy plane and let F = (x, y, 2).

a. Find a vector perpendicular to S at the point (x,y, z) having positive k component. (You
should get (2x,2y, 1) or a positive multiple of this.)

The surface S can be described by the parametric equations x = x,y = y,z = 9 —
2 —y? Let r(z,y) = (x,y,9—2?—y*). The vector r, x r, is perpendicular to S.
r(z,y) = (2,9,9— 2% — y*) = r, = (1,0, —22) and r, = (0, 1, —2y). Therefore, r; x r, =

1]
1 0 2z |=2zi+2yj+1k=|(2z,2y,1)|
01 -2

)
b. Evaluate / F-dsS.

Using the parametrization for S from part a, we see that F = (z,4,9—2? —y?*) on 5. S
intersects the zy plane (z = 0) in the circle 9 — 22 — % = 0, or 2% + % = 9. Therefore,

// F.dS = // F-(r; xr,) dA, where D is the region inside the circle 2% +y? = 9.

D
We use polar coordinates to evaluate this double integral.

// F-(r, xry) dA= // (z,y,9— 2% —y?)-(22,2y,1) dA = // 9422 4y? dA =
D

2 2 9p2 A3 o
/ /9+r (r dr d§) = / /97"—1—7" drd@—/ 9%*% d@:/ 24—3d9—
0 0

2437 /2|

r=0

10. Let F(z,y, 2) = (xz,yz, xy) and let S denote the hemisphere 22 4+ ¢ + 22 =1, z > 0.
Use Stokes’s Theorem to evaluate // (V x F)-n dS, where n is the unit outer normal
S

vector.

The conclusion of Stokes’s Theorem is that / / (VXxF)-ndS= / F - dr, where C is

c
the curve that forms the boundary of S. In this problem, the intersection of S with the xy
plane (z = 0) is the circle 22 4+ y? = 1, so this circle is the curve C. We can parametrize C
by the equations z = cos(t), y = sin(t), z =0, 0 <t < 27. Let r(t) = (cos(t), sin(t),0). On

C, F = ([cos(t)](0), [sin(t)](0), cos(t) sin(t)) = (0,0, cos(t) sin(t)). Therefore, / F.dr =
C

2T

F.r'dt= /027r (0,0, cos(t) sin(t)) - (—sin(¢), cos(t),0) dt = ; 0dt= @

2T

0



