
Calculus III Practice Final Exam Solutions Spring 2004

1. Let C be the curve described by the vector function r(t) = 〈sin(t), 2t, cos(t)〉.
a. Find r′(t) and r′′(t).

r(t) = 〈sin(t), 2t, cos(t)〉 ⇒ r′(t) = 〈cos(t), 2,− sin(t)〉 , r′′(t) = 〈− sin(t), 0,− cos(t)〉

b. Find a vector tangent to C at the point (0, 0, 1).

The point (0, 0, 1) corresponds to the value t = 0: r(t) = 〈sin(t), 2t, cos(t)〉 = 〈0, 0, 1〉 ⇒
sin(t) = 0, 2t = 0, cos(t) = 1 ⇒ t = 0. The vector r′(a) is tangent to C at the point
corresponding to t = a, so r′(0) = 〈1, 2, 0〉 is tangent to C at (0, 0, 1).

c. Find parametric equations of the line tangent to C at the point (0, 0, 1).

The line tangent to C at the point (0, 0, 1) is parallel to the vector 〈1, 2, 0〉 and passes
through the point (0, 0, 1). Therefore, the line is described by the parametric equations
x = 0 + 1t, y = 0 + 2t, z = 1 + 0t, or x = t, y = 2t, z = 1 .

2. Let L1 be the line given by the parametric equations x = 1 + t, y = 1 + t, z = 1 + 3t and let
L2 be the line given by the parametric equations x = 2 + t, y = −t, z = −t.

a. Show that the point (1, 1, 1) lies on both L1 and L2.

To show that (1, 1, 1) lies on L1 we must show that there is a value of t for which
1 = 1 + t, 1 = 1 + t, and 1 = 1 + 3t. Clearly, t = 0 satisfies all three equations, so (1, 1, 1)
lies on L1. To show that (1, 1, 1) lies on L2 we must show that there is a value of t for
which 1 = 2 + t, 1 = −t, and 1 = −t. Clearly, t = −1 satisfies all three equations, so
(1, 1, 1) lies on L2.

b. Find the equation of the plane containing L1 and L2.

To find the equation of a plane we need a point on the plane and a vector v perpendicular
to the plane. As shown in part a, the point (1, 1, 1) lies in the plane containing L1 and
L2. A vector perpendicular to the plane containing L1 and L2 must be perpendicular to
both L1 and L2, so we can take v to be the cross product of the direction vectors for
L1 and L2. A direction vector for L1 is a = 〈1, 1, 3〉, and a direction vector for L2 is
b = 〈1,−1,−1〉. (The coefficients of t in the parametric equations are the components of
the direction vector.) v = a × b = 〈2, 4,−2〉 is perpendicular to the plane containing L1

and L2, and the plane contains the point (1, 1, 1). Therefore, the equation of the plane is
2(x− 1) + 4(y − 1) − 2(z − 1) = 0, or x + 2y − z = 2 .

3. Suppose z = f(x, y), x = g(t), and y = h(t). Find
dz

dt

∣∣∣∣
t=1

if g(1) = 3, h(1) = 2,

g′(1) = −1, h′(1) = 2, fx(3, 2) = 4, and fy(3, 2) = −2.

The Chain Rule says that
dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
. Therefore,

dz

dt

∣∣∣∣
t=1

= (4)(−1) + (−2)(2) =

−8 .



4. Let f(x, y, z) = x + y cos(z), let P denote the point (1, 2, 0), and let a = 〈2, 1,−2〉.

a. Find the directional derivative of f at P in the direction a.

f(x, y, z) = x + y cos(z) ⇒ ∇f(x, y, z) = 〈fx, fy, fz〉 = 〈1, cos(z),−y sin(z)〉. Therefore,
∇f(1, 2, 0) = 〈1, 1, 0〉. a = 〈2, 1,−2〉 ⇒ |a| =

√
22 + 12 + (−2)2 = 3. Therefore, a unit

vector in the direction of a is u =
1
|a|a = 〈2/3, 1/3,−2/3〉 and the directional derivative

of f at P in the direction a is Duf(1, 2, 0) = ∇f(1, 2, 0) · u = 〈1, 1, 0〉 · 〈2/3, 1/3,−2/3〉 =
1 .

b. Find a vector in the direction in which f increases most rapidly at P .

f increases most rapidly in the direction ∇f(P ) = 〈1, 1, 0〉 .

5. Evaluate
∫ ∫

D

(
x2 + y2

)
dA, where D is the triangular region with vertices (−1, 0), (0, 1) and (1, 0).

The left boundary of D is the line y = x + 1, or x = y − 1; the right boundary of D is
the line y = 1 − x, or x = 1 − y. Express the given double integral as an iterated inte-

gral, integrating first with respect to x:
∫ ∫

D

(
x2 + y2

)
dA =

∫ 1

0

∫ 1−y

y−1

(
x2 + y2

)
dx dy =

∫ 1

0

x3

3
+ y2x

∣∣∣∣∣

x=1−y

x=y−1

dy =
∫ 1

0

{[
(1− y)3

3
+ y2(1− y)

]
−

[
(y − 1)3

3
+ y2(y − 1)

]}
dy =

∫ 1

0

[
2(1− y)3

3
+ 2y2 − 2y3

]
dy = −(1− y)4

6
+

2y3

3
− y4

2

∣∣∣∣∣

1

0

= 1/3 .

6. Let F(x, y, z) =
〈
2xy, x2 + 2yz, y2

〉
and let f(x, y, z) = x2y + y2z.

a. Show that f is a potential for F.

To show that f is a potential for F, we must show that ∇f(x, y, z) = F(x, y, z). ∇f(x, y, z) =
〈fx, fy, fz〉 =

〈
2xy, x2 + 2yz, y2

〉
= F, so f is a potential for F.

b. Evaluate
∫

C

F · dr where C is the helix x = sin(t), y = cos(t), z = t, 0 ≤ t ≤ π.

The starting point of C is (sin(0), cos(0), 0) = (0, 1, 0) and the terminal point of C is
(sin(π), cos(π), π) = (0,−1, π). By the Fundamental Theorem for Line Integrals,∫

C

F · dr = f(0,−1, π)− f(0, 1, 0) =
[
02(−1) + (−1)2π

]
−

[
02(1) + (1)2(0)

]
= π .



7. Evaluate the integral
∫ ∫ ∫

E

z dV ,

where E is the region between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 9.

Use spherical coordinates. In spherical coordinates, z = ρ cos(φ) and dV = ρ2 sin(φ) dρ dφ dθ.
The equations of the spheres forming the boundaries of E are ρ = 1 and ρ = 3 in spher-

ical coordinates. Therefore,
∫ ∫ ∫

E

z dV =
∫ 2π

0

∫ π

0

∫ 3

1
ρ cos(φ)

(
ρ2 sin(φ) dρ dφ dθ

)
=

∫ 2π

0

∫ π

0

∫ 3

1
ρ3 cos(φ) sin(φ) dρ dφ dθ =

∫ 2π

0

∫ π

0

ρ4

4
cos(φ) sin(φ)

∣∣∣∣∣

ρ=3

ρ=1

dφ dθ =

∫ 2π

0

∫ π

0
20 cos(φ) sin(φ) dφ

︸ ︷︷ ︸
u=sin(φ)

dθ =
∫ 2π

0
10 sin2(φ)

∣∣∣
φ=π

φ=0
dθ =

∫ 2π

0
0 dθ = 0 .

8. Let F(x, y, z) = 〈yz + y, xz + x, xy + 1〉.

a. Find ∇ · F (= div (F))

F(x, y, z) = 〈yz + y, xz + x, xy + 1〉 ⇒ ∇·F(x, y, z) =
∂

∂x
(yz + y) +

∂

∂y
(xz + x) +

∂

∂z
(xy + 1) =

0 .

b. Find ∇× F (= curl (F))

∇× F =

∣∣∣∣∣∣∣

i j k
∂x ∂y ∂z

yz + y xz + x xy + 1

∣∣∣∣∣∣∣
= (x− x) i + (y − y) j + (z − z) k = 0.

c. Show that F is conservative.

Since ∇× F = 0, F is conservative.

d. Find a potential for F.

We must find a function f such that∇f = F. ∇f = F ⇒ 〈fx, fy, fz〉 = 〈yz + y, xz + x, xy + 1〉 ⇒
fx = yz + y, fy = xz + x, and fz = xy + 1. fx = yz + y ⇒ f =

∫
yz + y dx =

xyz + xy + g(y, z) ⇒ fy = xz + x + gy. However, fy = xz + x, so xz + x + gy = xz + x ⇒
gy = 0 ⇒ g(y, z) =

∫
0 dy = 0 + h(z) ⇒ f = xyz + xy + h(z). Therefore, fz = xy + h′(z).

But fz = xy + 1, so xy + h′(z) = xy + 1 ⇒ h′(z) = 1 ⇒ h(z) =
∫

1 dz = z + c. It follows
that the potential f is given by f(x, y, z) = xyz + xy + z + c .



9. Let S denote the part of the surface z = 9− x2 − y2 above the xy plane and let F = 〈x, y, z〉.
a. Find a vector perpendicular to S at the point (x, y, z) having positive k component. (You

should get 〈2x, 2y, 1〉 or a positive multiple of this.)

The surface S can be described by the parametric equations x = x, y = y, z = 9 −
x2 − y2. Let r(x, y) =

〈
x, y, 9− x2 − y2

〉
. The vector rx × ry is perpendicular to S.

r(x, y) =
〈
x, y, 9− x2 − y2

〉
⇒ rx = 〈1, 0,−2x〉 and ry = 〈0, 1,−2y〉. Therefore, rx × ry =∣∣∣∣∣∣∣

i j k
1 0 −2x
0 1 −2y

∣∣∣∣∣∣∣
= 2x i + 2y j + 1 k = 〈2x, 2y, 1〉 .

b. Evaluate
∫ ∫

S

F · dS.

Using the parametrization for S from part a, we see that F =
〈
x, y, 9− x2 − y2

〉
on S. S

intersects the xy plane (z = 0) in the circle 9 − x2 − y2 = 0, or x2 + y2 = 9. Therefore,∫ ∫

S

F ·dS =
∫ ∫

D

F · (rx × ry) dA, where D is the region inside the circle x2 + y2 = 9.

We use polar coordinates to evaluate this double integral.∫ ∫

D

F·(rx × ry) dA =
∫ ∫

D

〈
x, y, 9− x2 − y2

〉
·〈2x, 2y, 1〉 dA =

∫ ∫

D

9+x2+y2 dA =

∫ 2π

0

∫ 3

0
9 + r2 (r dr dθ) =

∫ 2π

0

∫ 3

0
9r + r3 dr dθ =

∫ 2π

0

9r2

2
+

r4

4

∣∣∣∣∣

r=3

r=0

dθ =
∫ 2π

0

243
4

dθ =

243π/2 .

10. Let F(x, y, z) = 〈xz, yz, xy〉 and let S denote the hemisphere x2 + y2 + z2 = 1, z ≥ 0.

Use Stokes’s Theorem to evaluate
∫ ∫

S

(∇× F) ·n dS, where n is the unit outer normal

vector.

The conclusion of Stokes’s Theorem is that
∫ ∫

S

(∇× F) · n dS =
∫

C

F · dr, where C is

the curve that forms the boundary of S. In this problem, the intersection of S with the xy

plane (z = 0) is the circle x2 + y2 = 1, so this circle is the curve C. We can parametrize C
by the equations x = cos(t), y = sin(t), z = 0, 0 ≤ t ≤ 2π. Let r(t) = 〈cos(t), sin(t), 0〉. On

C, F = 〈[cos(t)](0), [sin(t)](0), cos(t) sin(t)〉 = 〈0, 0, cos(t) sin(t)〉. Therefore,
∫

C

F · dr =

∫ 2π

0
F · r′ dt =

∫ 2π

0
〈0, 0, cos(t) sin(t)〉 · 〈− sin(t), cos(t), 0〉 dt =

∫ 2π

0
0 dt = 0 .


